
ELEKTROTEHNIŠKI VESTNIK 88(4): 190–196, 2021
ORIGINAL SCIENTIFIC PAPER

Realizable Choreographies for Systems of
Components Communicating via Rendezvous,
Mailboxes and Letter Queues

Monika Kapus-Kolar
Jožef Stefan Institute, Department of Communication Systems, Jamova 39, SI-1111 Ljubljana, Slovenia
E-mail: monika.kapus-kolar@ijs.si
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components communicating over first-in-first-out channels with exactly one channel for every source-sink pair
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Izvedljive koreografije za sisteme komponent, ki
komunicirajo prek srečanj, poštnih nabiralnikov in

pisemskih vrst

Pred kratkim predlagan razred izvedljivih kompozicijsko speci-
ficiranih koreografij za sisteme komponent, ki komunicirajo
prek pisemskih vrst, z natanko eno vrsto za vsak par pošiljatelj-
prejemnik, je posplošen na sisteme s poljubnim številom
pisemskih vrst, poštnih nabiralnikov in kanalov za izmenjavo
pisem prek srečanj, brez omejitev glede tega, kdo sme izme-
njevati pisma prek posameznih komunikacijskih kanalov.

1 INTRODUCTION

When designing a distributed application supposed to
run on a given distributed system, a possible way
to proceed is to first conceive a choreography, i.e. a
model of interactions among the system components
from the global point of view. Ideally, the choreography
is realizable, i.e. component processes for its correct
implementation can be obtained simply by its projection.

The paper generalizes our recent extension [1] of the
work of Tuosto and Guanciale [2] on compositional
construction of realizable choreographies for systems in
which (1) every communication channel is between a
pair of two different components, (2) from any com-
ponent to any other component, there is exactly one
communication channel, and (3) every channel is an
initially empty, infinite-capacity buffer in which mes-
sages are queued in the order of arrival and exactly the
first in the queue is available for reception. Newly we
allow (1) any number of channels, with no restrictions
on who is allowed to use them for the exchange of
letters (i.e. triplets consisting of the identifier of the
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sender, the identifier of the recipient and the message
carried), (2) besides channels with an infinite-capacity
buffer also channels whose buffer capacity is zero, so
that any letter sent on it must be received in the same
event - a rendezvous of its sender and its recipient, and
(3) besides infinite-capacity communication buffers with
the first-in-first-out (FIFO) policy also such (we call
them mailboxes) in which letters are not queued and
can be retrieved at any time.

In line with the argumentation of Tuosto and Guan-
ciale [2] that in the formal study of choreographies, it
pays to go abstract, we follow the abstract view of [1]
that a choreography is a set of partially ordered multisets
(shortly pomsets) of interactions. An interaction is an
individual exchange of a certain letter on a certain buffer
and consists of two actions: a transmission of an instance
of the letter into the buffer and its reception from the
buffer at the same or some latter point. In case of a
zero-capacity buffer, the two actions by definition occur
simultaneously, so that the interaction can be regarded
as a compound action.

With the adopted abstract approach, we define the
semantics, projection and well-formedness of choreogra-
phies in a way independent of their concrete syntax. Like
[1], [2] and also [3], in which Tuosto and Guanciale
discuss the realizability of choreographies with mailbox
communication only, we define the semantics of a given
choreography as a set of action pomsets, and component
processes obtained by projection as communicating state
machines (CSMs) [4]. Like [2] and [1], but unlike [3],
we simplify the discussion by banning choreographies
with auto-concurrency (i.e. with multiple concurrent
instances per action) and by assuming that individual
CSMs are allowed to permanently stop exactly when in
a state with no further actions defined. We prove that all
well-formed choreographies are realizable.
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The choreography composition operators introduced
as syntax sugar are the same as in [1], namely the
operators of choice, parallel composition and sequential
composition. For each of them we adapt to the gener-
alized setting the operand constraints which [1] proves
sufficient for the well-formedness of the choreography
resulting from the composition.

As a final contribution, we compare our definition
of well-formed choreographies with the conceptually
similar definitions recently proposed in [5]–[7]. Contrary
to what is allegedly proved in the three papers, we
demonstrate that (and explain why) none of the similar
definitions secures the realizability of every well-formed
choreography.

2 BASIC CONCEPTS AND NOTATIONS

2.1 (Inter)actions and Their Instances

We assume that choreographies are designed for a
system with component set C. Elements of C are ranged
over by c.

Communication buffers, i.e. channels, are ranged over
by b. For a given buffer b, Fifo(b) denotes that it is a
FIFO channel, Mb(b) that it is a mailbox, and Rv(b)
that it is a rendezvous channel.

Messages are ranged over by m. A letter is denoted
as (c, c′,m) where c is its sender, c′ its recipient and m
its message. Letters are ranged over by l.

Interactions are ranged over by x. An interaction in
which a given letter l is exchanged over a given buffer b
is denoted as b : l, whereas its constituent transmission
and reception are denoted as b!l and b?l, respectively.
In case of Rv(b), the compound action representing a
simultaneous execution of the two constituent actions of
b : l is denoted as b!?l.

Actions, i.e. transmissions, receptions and rendezvous
regarded as compound actions, are ranged over by a,
action sequences by α, and sets of action sequences by
A. The participant set of a given action a of the form
b!(c, c′,m), b?(c, c′,m) or b!?(c, c′,m) is denoted as
prt(a) and defined as {c}, {c′} or {c, c′}, respectively.

(Inter)action instances are alternatively called events.
Events are ranged over by e, event sets by E , and event
sequences by ε.

For a given event e, λ(e) denotes its label, i.e. the
(inter)action of which it is an instance. For a given action
instance sequence ε = (ei)i=1...k, asq(ε) denotes the
action sequence (λ(ei))i=1...k.

Interaction instances and their sets are alternatively
(to expose their nature) ranged over by g and G, respec-
tively. For a given interaction instance g, e!g denotes the
constituent transmission instance, and e?g the constituent
reception instance. For a given instance g of an inter-
action b : l with Rv(b), e!?g denotes the action instance
representing a simultaneous execution of e!g and e?g . For

a given instance g of an interaction b : l with ¬Rv(b)
or Rv(b), ais(g) denotes the action instance set defined
as {e!g, e?g} or {e!?g }, respectively.

2.2 Partially Ordered Sets of (Inter)action Instances
A binary relation on a given event set E is a subset of
E ×E . If it is reflexive, anti-symmetric and transitive, it
is called partial order. The transitive closure of a given
binary relation R is denoted as R?.

A partially ordered set of events (shortly poset) is an
event set E endowed with a partial order ≤ and denoted
as (E ,≤). Posets are ranged over by p.

If for given posets p = (E ,≤) and p′ = (E ′,≤′) there
exist bijections φ : E → E ′ and φ′ :≤→≤′ with
(1) ∀e ∈ E : (λ(e) = λ(φ(e))) and
(2) ∀(e, e′) ∈≤: (φ′((e, e′)) = (φ(e), φ(e′))),
then p and p′ are isomorphic.

For a given poset p = (E ,≤), esq(p) denotes the set
of all event sequences (ei)i=1...|E| with
(1) E = {ei}i=1...|E| and
(2) ∀1 ≤ i < j ≤ |E| : (ej 6≤ ei).

For a given poset p = (E ,≤), pf(p) denotes the set
of all its prefixes, i.e. the set of all posets (E ′,≤′) with
(1) E ′ ⊆ E ,
(2) ≤′=≤ ∩(E ′ × E ′) and
(3) ≤ ∩((E \ E ′)× E ′) = ∅.

For given action instance poset p and action sequence
α, pf(p, α) denotes the set of all posets p′ ∈ pf(p)
whose esq(p′) comprises an event sequence ε with
asq(ε) = α, whereas asq(p) denotes the set of all action
sequences α′ with pf(p, α′) 6= ∅.

2.3 Partially Ordered Multisets of (Inter)actions
A partially ordered multiset of (inter)actions (shortly

pomset) is an isomorphism class of posets. The isomor-
phism class to which a given poset p = (E ,≤) belongs
is denoted as [p] or [E ,≤]. Pomsets are ranged over by
r, and their sets by R.

A natural way to discuss properties of a given pomset
is to discuss properties of a representative of the class.
Likewise, a natural way to define a composition operator
for pomsets is to do it in terms of selected representatives
of individual operands, taking care that the represen-
tatives are non-intersecting (inter)action instance sets.
When discussing or combining pomset sets, one would
proceed analogously. We therefore define the following
families of pomset and pomset set representatives:
(1) For given pomset r and (possibly omitted) natural

i, poi(r) = (Er,i,≤r,i) is the poset selected as the
default representative of the class r (for the natural
i), with Er,i ∩ Er′,i′ = ∅ for every pomset r′ and
natural i′ with (r, i) 6= (r′, i′).

(2) For given pomset set R and (possibly omitted) natu-
ral i, posi(R) denotes the poset set {poi(r)|r ∈ R}.
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For given action pomset r and action sequence α,
pf(r, α) denotes the set of all pomsets [p] with p ∈
pf(po(r), α). For given action pomset set R, asq(R)
denotes the union of all action sequence sets asq(p) with
p ∈ pos(R), whereas δR denotes the function that for a
given action sequence α ∈ asq(R) returns the union of
all pomset sets pf(r, α) with r ∈ R.

2.4 State Machines
An initialized, initially connected and deterministic

state automaton whose individual steps represent in-
dividual actions (shortly state machine) is denoted as
(A, δ) with A the set of all action sequences executable
from the initial state, and δ the function that for any
given action sequence in A returns the resulting state.
For a given state machine M = (A, δ), asq(M) denotes
A. For a given action pomset set R, sm(R) denotes the
state machine (asq(R), δR).

2.5 Projections
For a given action a and component c ∈ prt(a), a�c

denotes:
(1) if a is a b!?(c, c′,m) then the action b!(c, c′,m),
(2) if a is a b!?(c′, c,m) then the action b?(c′, c,m),
(3) otherwise the action a.

For given action instance set E and component c, E�c
denotes the set of all events e ∈ E with c ∈ prt(λ(e)).
For given action instance poset p = (E ,≤) and compo-
nent c, p�c denotes the poset (E�c,≤ ∩((E�c)× (E�c))).

For given action pomset set R and component c,
R�c denotes the set of all pomsets [p�c] with p ∈
pos(R), smc(R) denotes the state machine obtained
from sm(R�c) by changing each of its actions a into
a�c, and asqc(R) denotes the action sequence set
asq(smc(R)). For a given action pomset set R, λ(R)
denotes the set of all actions present in at least one
sequence in the set

⋃
c∈C asqc(R).

3 WELL-FORMED CHOREOGRAPHIES

3.1 Choreographies and Their Normal Form
In our simple specification language, choreographies

are defined as terms derived by the following grammar
(parentheses not necessary for disambiguation can be
omitted):
G ::= 0 | b : l | R | (G1|G2) | (G1;G2) | (G1+G2)

In the grammar, 0 denotes doing nothing, b : l is
assumed to be an interaction, R is assumed to be a
non-empty set of interaction pomsets, ‘|’ is the parallel
composition operator, ‘;’ is the sequential composition
operator, and ‘+’ is the choice operator.

To abstract away from the concrete syntax of chore-
ographies, we define for them a normal form. The
normal form of a given choreography G, denoted as
〈〈G〉〉, is a non-empty set of interaction pomsets, with
individual pomsets representing individual alternatives

between which the system is supposed to choose when
executing G. For our six choreography types, the normal
form is defined as follows:
〈〈0〉〉 = {[{}, {}]}
〈〈b : l〉〉 = {[{g}, {(g, g)}]} with g being an instance

of b : l.
The alternatives specified by a given interaction pom-

set set R are the pomsets. Accordingly, 〈〈R〉〉 is R itself.
The alternatives of a G1 +G2 are the alternatives of

G1 and the alternatives of G2. Accordingly, 〈〈G1+G2〉〉
is the union of 〈〈G1〉〉 and 〈〈G2〉〉.

The alternatives of a G1|G2 are all those defined as
a parallel composition of an alternative of G1 and an
alternative of G2. Accordingly, 〈〈G1|G2〉〉 is the set of
all pomsets [G1∪G2,≤1 ∪ ≤2] where (G1,≤1) is a poset
in pos1(〈〈G1〉〉) and (G2,≤2) is a poset in pos2(〈〈G2〉〉).

The alternatives of a G1;G2 are all those defined as
a sequential composition of an alternative of G1 and an
alternative of G2. Accordingly, 〈〈G1;G2〉〉 is the set of
all pomsets [G1 ∪ G2, (≤1 ∪ ≤2 ∪(G1 × G2))?] where
(G1,≤1) is a poset in pos1(〈〈G1〉〉) and (G2,≤2) is a
poset in pos2(〈〈G2〉〉).

3.2 Choreography Semantics
For given interactions x1 = b1 : (c1, c

′
1,m1) and

x2 = b2 : (c2, c
′
2,m2), let Ord1(x1, x2) denote that c2 ∈

{c1, c′1}. For given actions a1 and a2, let Ord2(a1, a2)
denote that (a1, a2) is
(1) an (a, b!(c, c′,m)) with c ∈ prt(a) or
(2) an (a, b!?(c, c′,m)) with c ∈ prt(a) or
(3) a (b?l1, b?l2) with Fifo(b) or
(4) a (b?l, b?l) with Mb(b).

In the normal form 〈〈G〉〉 of a given choreography
G, each constituent alternative of G is represented by
a pomset specifying the alternative very abstractly, in
terms of interactions. To obtain the semantics of G, we
refine every pomset r in 〈〈G〉〉 into a pomset r′ specifying
the alternative of G less abstractly, in terms of actions.
To obtain r′, we take the interaction instance poset p that
is the default representative of the isomorphism class r,
refine it into the action instance poset [[p]] below defined
as the semantics of p, and set r′ to the isomorphism
class to which [[p]] belongs. In other words, we define
that the semantics of a given choreography G, denoted
as [[G]], is the action pomset set {[[[p]]]|p ∈ pos(〈〈G〉〉)}.

In our semantics [[p]] of a given interaction instance
poset p, each of the interaction instances is represented
by its constituent action instances, whereas the extent to
which constituents of interaction instances ordered in p
are ordered in [[p]] is selected in line with the following
assumptions which [1] implicitly makes for every spec-
ified pair (g1, g2) of ordered interaction instances, with
λ(gi) a bi : (ci, c′i,mi) for i ∈ {1, 2}:
(1) The ordering of g1 and g2 means just that e!g2 (in

case of Rv(b2) a part of e!?g2 ) is supposed to be
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delayed with respect to e!g1 (in case of Rv(b1) a
part of e!?g1 ).

(2) The component responsible for the delaying is c2.
(3) If the delaying can be implemented at c2, which

is in case of Ord1(λ(g1), λ(g2)), it must be imple-
mented. Otherwise, the ordering of g1 and g2 has
been specified unintentionally and one is supposed
to pretend that it has not been specified (at least not
explicitly, for note that there is also ordering because
of the transitivity of the ordering relation).

Formally, our semantics [[p]] of a given interaction
instance poset p = (G,≤) is an action instance poset
(E , (≤1 ∪ ≤2 ∪ ≤3)

?) where
E =

⋃
g∈G ais(g)

≤1= {(e, e)|e ∈ E}
≤2= {(e!g, e?g)|(g ∈ G) ∧ (ais(g) = {e!g, e?g})}
≤3= {(e, e′)|((e, e′) ∈≤4) ∧Ord2(λ(e), λ(e

′))}
≤4=

⋃
((g,g′)∈≤5)∧(g 6=g′)(ais(g)× ais(g′))

≤5= ({(g, g′)|((g, g′) ∈≤) ∧Ord1(λ(g), λ(g
′))})?

3.3 Choreography Projection, Realizability and
Reception-Completeness

The projection of a given choreography G onto a
given component c is the CSM smc([[G]]). The CSM
system of a given choreography G is considered correct
(i.e. G is considered realizable) if, starting with every
constituent CSM in the initial state and every buffer
empty, it is unable to reach a deadlock (i.e. a state in
which it cannot proceed in spite of some buffers non-
empty or some constituent CSMs in a state with further
actions defined) or execute a global action sequence not
in asq([[G]]). If, in addition, the CSM system cannot
reach any state that is reception-incomplete (see below),
we say that the system and G are reception-complete.
The current system state is called reception-incomplete
if there exist a buffer b and a letter (c, c′,m) for which
one of the following is currently true:
(1) Rv(b) and c is ready for b!(c, c′,m), but c′ is not

ready for b?(c, c′,m).
(2) ¬Rv(b) and b allows immediate execution of

b?(c, c′,m), but c′ is not ready for it.

3.4 Auto-Concurrency
For a given action pomset setR, let Ac(R) denote the

presence of auto-concurrency, i.e. that for some poset
(E ,≤) ∈ pos(R) and event pair (e, e′) ∈ E × E with
λ(e) = λ(e′), neither e ≤ e′ nor e′ ≤ e is true.

Lemma 1. If a given choreography G satisfies
(|〈〈G〉〉| = 1)∧¬Ac([[G]]), it is realizable and reception-
complete.

Proof: Suppose that the premise is true and consider
the CSM system of G. What G prescribes is that (1)
of any given action, the system executes exactly a
certain number of instances, and (2) action instances are
executed in a certain partial order.

Of any given action a, every component c ∈ prt(a)
is ready to execute exactly the prescribed number of
instances of a�c. Hence, if G runs to completion, ev-
ery component reaches a state with no further actions
defined.

For any given buffer b with ¬Rv(b) and letter l, the
prescribed number of instances is the same for b!l and
b?l. Hence, if G runs to completion, every letter instance
put in a buffer is also retrieved from it.

For any given action a, by ¬Ac([[G]]), G prescribes
a total ordering of its instances and every component
c ∈ prt(a) implements a total ordering of instances of
a�c. Hence, for any given buffer b, letter l and natural
i, one can, even if Mb(b), safely assume that the ith

instance of b?l corresponds to the ith instance of b!l,
and in case of Rv(b) to the ith instance of b!?l.

For any prescribed direct ordering (e1, e2) of two
different action instances e1 and e2, one of the following
is true:
(1) λ(e2) is a b!(c, c′,m) with c ∈ prt(λ(e1)), in which

case e2 is delayed by c until after e1.
(2) λ(e2) is a b!?(c, c′,m) with c ∈ prt(λ(e1)), in

which case the transmission instance in e2 (and
thereby e2 itself) is delayed by c until after e1.

(3) e2 is an instance of a b?l and e1 is the corresponding
transmission instance, in which case b delays its
support for e2 until after e1.

(4) e2 is an instance of a b?l2 with Fifo(b) and e1
is an instance of a b?l1 for whose corresponding
transmission instance it is prescribed that it comes
before the one corresponding to e2, in which case b
delays its support for e2 until after e1.

(5) e2 is an instance of a b?l with Mb(b) and e1 is an
instance of b?l for whose corresponding transmis-
sion instance it is prescribed that it comes before
the one corresponding to e2, in which case b delays
its support for e2 until after e1.

Hence, no event is executed prematurely. Moreover, any
given component c is at any given time during the
execution of G ready for its part of any instance of a
b!?(c′, c,m) that is currently supported by c′, and for any
instance of a b?(c′, c,m) with ¬Rv(b) that is currently
supported by b, implying that the CSM system of G is
reception-complete and, hence, also deadlock-free.

3.5 Local Choice
For given non-empty action pomset sets R1 and R2,

presumably two alternative sets of alternative behaviours
of the system, let Lc(R1,R2) denote that the choice
between the two sets is local, i.e. that if it is ever made
by the system, this is upon a transmission (possibly a
part of a rendezvous) executed by a preselected com-
ponent, after (or upon) which every other component
for which the two alternatives are not identical is in
time informed of the choice, upon a reception (pos-
sibly a part of a rendezvous). Formally, Lc(R1,R2)
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denotes that there exists such a component set C′ with
|C′| ≤ 1 that for every component c, action sequence
α ∈ (asqc(R1) ∩ asqc(R2)), i ∈ {1, 2} and action a
with αa ∈ (asqc(Ri)\asqc(R3−i)), all the following is
true:
(1) There exists an action a′ with αa′ ∈ asqc(R3−i).
(2) If c ∈ C′, then a is a b!(c, c′,m), otherwise it is a

b?(c′, c,m).

Lemma 2. If given realizable and reception-complete
choreographies G1 and G2 satisfy Lc([[G1]], [[G2]]), the
choreography G = G1+G2 is realizable and reception-
complete.

Proof: Suppose that the premise is true and consider
the CSM system of G. By the realizability of G1 and
G2, the choice of a certain alternative Gi ∈ {G1, G2} is
made, if ever, when a certain component c for the first
time executes an action which at the particular point it
is ready to execute in Gi, but not in G3−i. For any such
event e, one of the following is true:
(1) e is an instance of a b!(c, c′,m) (possibly a part of a

rendezvous). Hence, c is, by the constraint (2) in the
definition of Lc([[G1]], [[G2]]), the preselected global
selector.

(2) e is an instance of a b?(c′, c,m) and executed as a
part of a rendezvous e′ in which the transmission
part is an instance e′′ of b!(c′, c,m). e′′ occurs at a
point when, by the reception-completeness of G3−i,
c′ is ready to execute b!(c′, c,m) in Gi, but not in
G3−i. By the assumption that Gi is not selected until
upon e, the latter implies that c′ also chooses Gi

exactly upon e′. One can, hence, safely say that the
choice of Gi is actually made not by c upon e, but by
c′ upon e′′. Moreover, by the constraint (2) in the
definition of Lc([[G1]], [[G2]]), c′ is the preselected
global selector.

(3) e is an instance of a b?(c′, c,m) with ¬Rv(b) and
executed at a point when b?(c′, c,m) is allowed by
b in Gi, but, by the reception-completeness of G3−i,
not in G3−i. The latter, however, implies that just
before e, the fact that Gi is selected in the particular
run is already evident from the current contents of
b and, hence, also from the current event history,
which contradicts the assumption that the choice is
not made until upon e.

Hence, the first component, if any, to make the choice
of a certain Gi ∈ {G1, G2} is the preselected global
selector, a c. Now suppose that at some later point, some
other component c′ becomes the first one to choose G3−i
instead, by the constraint (2) of Lc([[G1]], [[G2]]) upon
executing a certain instance e of a certain b?(c′′, c′,m)
which at the particular point it is ready to execute in
G3−i, but not in Gi. By the reception-completeness of
Gi, one of the following is true:
(1) c′′ 6= c and e is executed as a part of a rendezvous

whose transmission part is executed by c′′ when the
component has already selected G3−i.

(2) ¬Rv(b) and e is executed when the contents of b is
such as currently impossible in Gi, which can only
be because at least one component in C \{c, c′} has
already selected G3−i.

Both cases contradict the assumption that the first com-
ponent to choose G3−i is c′. Hence, every component
chooses, if ever, the same Gi as c. Moreover, when a
given component completes its part of Gi, it is, by the
constraint (1) in the definition of Lc([[G1]], [[G2]]), in
a state with no further actions defined. Hence, by the
realizability of G1 and G2, G is realizable and, by the
reception-completeness of G1 and G2, also reception-
complete.

3.6 Choreography Well-Formedness

For a given action pomset set R, let Wb(R) denote
that R is well-branched, i.e. that either |R| = 1 or
there exist non-empty action pomset sets R1 ⊂ R and
R2 ⊂ R satisfying (R1 ∪ R2 = R) ∧ Wb(R1) ∧
Wb(R2)∧Lc(R1,R2). Like [1], we define that a given
choreography G is well-formed, which we denote as
Wf (G), if ¬Ac([[G]]) ∧Wb([[G]]).

Proposition 1. If a given choreography G satisfies
Wf (G), it is realizable and reception-complete.

Proof: Suppose that the premise is true. Hence,
there exists a choreography G′ with [[G′]] = [[G]] in
which every subterm is either a G′′ with (|〈〈G′′〉〉| =
1) ∧ ¬Ac([[G′′]]) or a G1 + G2 with Lc([[G1]], [[G2]]).
G′ and all its subterms are well-formed. By induction
on increasingly larger subterms of G′, in each individual
induction step using Lemma 1 or Lemma 2, respectively,
one can, hence, prove that each of the subterms and G′

itself are realizable and reception-complete. Hence, by
[[G]] = [[G′]], G is realizable and reception-complete.

3.7 Some Rules for the Inference of Choreography
Well-Formedness

In Section 2.5, the definition of λ(R) for a given
action pomset set R is uplifted to our more general
setting. Below, the same is done for the predicate Ls
used in [1]. With the two redefinitions, all the following
inference rules proposed in [1] remain valid in the more
general setting, together with their proofs provided in
[1]:

Proposition 2. If a choreography G satisfies (|[[G]]| =
1) ∧ ¬Ac([[G]]), then Wf (G).

Proposition 3. If a choreography G is of the form 0 or
b : l, then Wf (G).

Proposition 4. If given choreographies G and G′ satisfy
([[G]] = [[G′]]) ∧Wf (G), then Wf (G′).
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Proposition 5. If for a given choreography G, there
exist non-empty interaction pomset sets R1 and R2 with
(R1 ∪R2 = 〈〈G〉〉) ∧Wf (R1 +R2), then Wf(G).

Proposition 6. If given choreographies G1 and G2 sat-
isfy Wf (G1)∧Wf (G2)∧Lc([[G1]], [[G2]]), then Wf (G1+
G2).

Proposition 7. If given choreographies G1 and G2

satisfy Wf (G1)∧Wf (G2)∧ (λ([[G1]]) ∩ λ([[G2]]) = ∅),
then Wf (G1|G2).

For the next rule, we first redefine the predicate
Ls(G1, G2) [1] that for given choreographies G1 and
G2 denotes that they are locally strictly sequenced. In
our more general setting, this is in case that for every
interaction instance poset pair ((G1,≤1), (G2,≤2)) in
pos1(〈〈G1〉〉) × pos2(〈〈G2〉〉), the action instance poset
[[(G1 ∪ G2, (≤1 ∪ ≤2 ∪(G1 × G2))?)]] is an (E ,≤) with
≤⊇

⋃
c∈C((

⋃
g∈G1 ais(g)�c)× (

⋃
g∈G2 ais(g)�c)).

Proposition 8. If given choreographies G1 and G2 sat-
isfy Wf (G1)∧Wf (G2)∧Ls(G1, G2), then Wf (G1;G2).

3.8 Inadequacy of the Three Recently Proposed
Similar Definitions of Well-Formed Choreographies

In the examples presented in this section, any action
b!(c, c′,m), b?(c, c′,m) or b!?(c, c′,m) whose (b, c, c′)
is evident from the context is denoted simply as !m, ?m
or !?m, respectively.

Speaking in terms of the abstract concepts introduced
in the previous subsections of Section 3, the conceptual
difference between our definition of well-formed chore-
ographies and those in [5]–[7] is that in [5]–[7], the
underlying definition of the choreography semantics is
virtually based on slightly modified predicate Ord2, and
in [5] also on slightly modified predicate Ord1. The two
modifications are as follows:
(1) The Ord2(a1, a2) which [5]–[7] implicitly employ

for given actions a1 and a2 is virtually true also if a2
is a b!?(c, c′,m) with c′ ∈ prt(a1) or a b?(c, c′,m)
with c′ ∈ prt(a1).

(2) The Ord1(x1, x2) which [5] implicitly employs for
given interactions x1 = b1 : (c1, c

′
1,m1) and x2 =

b2 : (c2, c
′
2,m2) is virtually true also if Rv(b2) ∧

(c′2 ∈ {c1, c′1}).
With the modification of Ord2, particularly if the

modification of Ord1 is also present, it is no longer
secured that the semantics [[G]] of a given choreography
G avoids prescribing delayed reception, i.e. that the
CSM system of G is reception-complete. Note, however,
that in our proof of Lemma 1, the deadlock-freeness
of the CSM system of the considered well-formed
G with |〈〈G〉〉| = 1 is deduced from its reception-
completeness, and that in our proof of Lemma 2, the
reception-completeness assumed for the considered al-
ternative choreographies G1 and G2 is employed for
deducing that no letter instance belonging to a given

Gi ∈ {G1, G2} is interpreted by its recipient as one
belonging to G3−i. As the two lemmas are employed in
our proof of Proposition 1, it is, hence, possible that with
the modification of Ord2, well-formed choreographies
are not necessarily realizable. The following examples
prove that this is indeed the case:

Example 1. Consider the choreography
G =(bAB : (A,B, x); bBC : (B,C, y);

bCA : (C,A, a); bAB : (A,B, x))+
(bAC : (A,C, z); bCB : (C,B, b);
bCA : (C,A, c); bAB : (A,B, x))

where each of the buffers is a FIFO channel or a mail-
box. With the modification of Ord2, all the following is
true, regardless of whether the modification of Ord1 is
also employed:
(1) Wf (G)
(2) [[G]] forbids that !y and !z are both executed.
(3) In the CSM system of G, A chooses between the ac-

tion sequences !x?a!x and !z?c!x, B chooses between
?x!y?x and ?b?x, and C chooses between ?y!a and
?z!b!c.

(4) Hence, the system possibly executes the action se-
quence !z?z!b!c?c!x?x!y (and thereby !y after !z) and
then terminates, in a state in which bBC and bCB are
non-empty and B wants to execute another ?x.

Example 2. Consider the choreography
G =(bAB : (A,B, x); bAC : (A,C, y);

bCD : (C,D, z); bBD : (B,D,w))+
(bAC : (A,C, y); bAB : (A,B, x);
bBD : (B,D,w); bCD : (C,D, z))

where each of the buffers is a rendezvous channel. With
the modification of Ord1 only or with the modification
of Ord2 only, [[G]] is as without the modifications
and G is realizable and reception-complete. With both
modifications, however, all the following is true:
(1) Wf (G)
(2) [[G]] forbids the action sequence !?x!?y!?w!?z.
(3) In the CSM system of G, A chooses between the

action sequences !x!y and !y!x, B’s only option
is ?x!w, C’s only option is ?y!z, and D chooses
between ?z?w and ?w?z.

(4) Hence, the system possibly executes the forbidden
!?x!?y!?w!?z.

4 FINAL REMARKS

By forbidding auto-concurrency and assuming that in
every rendezvous, the only participants are a predefined
sender and a predefined recipient, we easily adapted the
in [1] proposed definition of well-formed choreographies
to the considered more general kind of systems. In
the future, it would be interesting to extend the search
for easy-to-check sufficient conditions for choreography
realizability also to choreographies in which individual
rendezvous have multiple participants, and individual
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rendezvous participants have no predefined roles, for
note that symmetric multiway rendezvous are a very use-
ful concept, particularly in early system design phases
when the system is considered at a high level of abstrac-
tion [8].
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