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The Mixture Poisson Exponential–Inverse
Gaussian Regression Model:

An application in Health Services
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Abstract

In this paper a mixed Poisson regression model for count data is introduced. This
model is derived by mixing the Poisson distribution with the one–parameter con-
tinuous exponential–inverse Gaussian distribution. The obtained probability mass
function is over–dispersed and unimodal with modal value located at zero. Esti-
mation is performed by maximum likelihood. As an application, the demand for
health services among people 65 and over is examined using this regression model
since empirical evidence has suggested that the over–dispersion and a large portion
of non–users are common features of medical care utilization data.

1 Introduction
Counting data are common in many social and biomedical studies to explain differences
among cases that generate small counts of events. The Poisson distribution plays an im-
portant role in the modeling of count data. In this regard, Poisson regression models have
been traditionally used to analyze data with a nonnegative integer response variable in a
wide range of different applied areas, for example, biostatistics, epidemiology, accident
analysis and prevention, insurance and criminology among other fields. Nevertheless, the
rigidity of the Poisson mean–variance relationship makes the Poisson regression models
exposed to over–dispersion (i.e. the empirical variance is larger than the empirical mean).
This is a crucial modeling issue for count data since inadequate confidence interval cov-
erage is produced when over–dispersed count data are considered. The Poisson model
does not allow for heterogeneity among individuals. Often there is additional heterogene-
ity between individuals that is not accounted for by the predictors in the model which
results in over–dispersion. To overcome this difficulty, practitioners usually use more
general specifications, e.g. negative binomial regression model (Hilbe (2007) and Greene
(2009)). The latter model is an example of mixed Poisson regression model. Mixed Pois-
son regression models are natural extensions of the Poisson regression model allowing for
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over–dispersion. This feature can be included in the model by assuming that the parame-
ter of the Poisson distribution is not fixed due to the heterogeneity of the population, being
likewise considered a random variable. For instance, for over–dispersed count–panel data
the negative binomial and Poisson–Inverse Gaussian regression models are well–known
in the statistical literature. In this regard, by using a gamma distribution for the unknown
parameter θ, the former model is obtained. The latter model was proposed by Dean et
al. (1989), in this case an inverse Gaussian distribution is used to describe the parame-
ter of the Poisson distribution. These models account for over–dispersion by assuming
that there will be unexplained variability among individuals who have the same predicted
value. It leads to larger variance in the overall outcome distribution but has no effect on
the mean.

Regrettably, other mixed Poisson regression models have not been used since they
involve special functions and appropriate numerical methods are required. Nevertheless,
due to the fast improvement of mathematical software these models can be handled rela-
tively easily. In this article a new mixed Poisson regression model is proposed. As mixing
distribution, a particular case of the continuous Exponential–Inverse Gaussian distribution
in Bhattacharya and Kumar (1986) when one of the parameter tends to infinity is consid-
ered. Furthermore, as it arises from a mixed Poisson distribution, many of its properties
can be derived from the ones of the mixing distribution. In this sense, it displays interest-
ing features such as over–dispersion, unimodality, closed–form expressions for factorial
moments of any order among other nice properties. The mixed Poisson regression model
introduced in this paper does not belong to the linear exponential family of distributions.
However, as Wedderburn (1974) showed, the parameter estimation and inference theory
developed for the exponential family (i.e. generalized linear models), can be extended to
models where a relation between the mean and variance of the response variable can be
specified, even though they were not associated with a known likelihood. In this sense,
the unconditional distribution obtained in the Poisson–Inverse Gaussian regression model
(Dean et al. (1989)) is not part of the exponential family of distributions.

In this manuscript, the demand for health services among people 65 and over is an-
alyzed by using this new mixed Poisson regression model. In particular, the number of
hospital stays among the elderly population is considered as response variable. Moreover,
as it will be shown later, the data include two important features a high proportion of
zeros and over–dispersion. The use of regression model to explain the demand for health
services has been studied by Gurmu and Elder (2000) where bivariate regression model
for count data was used and also by Lahiri and Xing (2004) by using two–parts model
based on Poisson selection model.

The remainder of the paper is structured as follows. Section 2 introduces the new
Poisson distribution together with some properties; additionally parameter estimation is
discussed; section 3 describes the mixed Poisson regression model derived from this dis-
tribution. Estimation is performed by maximum likelihood. Next, a numerical application
to analyze factors explaining medical care of people 65 and over is examined in section
4. Finally, some conclusions are drawn in section 5.
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2 The discrete model
The continuous Exponential–Inverse Gaussian distribution in Bhattacharya and Kumar
(1986) can be simplified by letting one of its parameters tends to infinity. Then a more
simple probability density function (pdf) is obtained. Then, the pdf of a random variable
Θ following an Exponential–Inverse Gaussian distribution with a single scale parameter
φ (henceforward EIG(φ)) is given by

f(θ|φ) =

√
φ

2 θ
exp

(
−
√

2φ θ
)
, with θ > 0 and φ > 0. (2.1)

Let us now consider the Poisson distribution (henceforward P(θ)) whose probability
mass function is given by

Pr{Y = y} = e−θ
θy

y!
, y = 0, 1, . . . , θ > 0. (2.2)

Definition 1. We say that a random variable Y has a Poisson–Exponential–Inverse Gaus-
sian distribution if it admits the stochastic representation:

Y |θ ∼ P(θ) (2.3)
θ ∼ EIG(φ), (2.4)

with φ > 0. We will denote this distribution by Y ∼ PEIG(φ).

Then, the unconditional probability mass function (pmf) of Y is given by

py =

√
2φΓ(2y + 1)

22y+1 y!
U
(

1

2
+ y,

1

2
,
φ

2

)
, y = 0, 1, . . . , (2.5)

where U(a, b, z) represents the Tricomi confluent hypergeometric function given by (a, z >
0):

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−zssa−1(1 + s)b−a−1ds (2.6)

(see Gradshteyn and Ryzhik (1994), page 1085, formula 9211–4).
The probability generating function is given by

GY (s) =

√
φπ

1− s exp

{
φ

2(1− s)

}[
1− erf

(√
φ

2(1− s)

)]
, (2.7)

where erf(z) is the error function given by

erf(z) =
2√
π

∫ z

0

e−t
2

dt =
2z√
π

1F1(1/2, 3/2,−z2),

being 1F1(·, ·, ·) the confluent hypergeometric function.
The factorial moments of order k can be obtained from (2.5). They are provided by

µ[k](Y ) = E[Y (Y − 1) · · · (Y − k + 1)] =
2k Γ(2k)

(2φ)k
, (2.8)
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with k = 1, 2, . . .
From the latter expression it can be seen that (2.5) is over–dispersed, since

var(Y )

E(Y )
=

5

φ
+ 1 > 1.

Additionally, as (2.1) has an asymptotic mode at 0, the discrete model (2.5) is uni-
modal with mode at 0 (see Holgate (1970)). Besides, as (2.1) is log–convex, then (2.5) is
infinitely divisible and therefore, it is a compound Poisson distribution (see Propositions
8 and 9 in Karlis and Xekalaki, 2005).

Let us now suppose that Y = (Y1, ..., Yn) is a random sample of size n from the
PEIG distribution with pmf (2.5). The log–likelihood function is proportional to

`(φ;Y) ∝ n

2
log φ+
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,
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2

)
. (2.9)

Having into account that

∂

∂z
U(a, b, z) = −a U(a+ 1, b+ 1, z),

the maximum likelihood estimate of the parameter φ can be simply obtained by solving
this normal equation

∂`(φ;Y)
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The Fisher’s information matrix can be approximated from

∂2`(φ;Y)
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This maximum likelihood estimate can also be calculated by using the EM algorithm.
This method is a powerful technique that provides an iterative procedure to compute max-
imum likelihood estimation when data contain missing information. This methodology
is suitable for distributions arising as mixtures since the mixing operation produces miss-
ing data. One of the main advantages of the EM algorithm is its numerical stability,
increasing the likelihood of the observed data in each iteration. It does not guaran-
tee convergence to the global maximum. It can be usually reached by starting the pa-
rameters at the moment estimates. The EM algorithm maximizes `(φ;Y) by iteratively
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maximizing E(`(φ;Y,Z)) where Y = (Y1, ..., Yn) denotes the sample observations and
Z = (θ1, ..., θn) denotes the missing observations and `(φ;Y, Z) is the complete log–
likelihood function.

The EM algorithm is based on two steps, the E–step, or expectation, fills in the missing
data. Once the missing data are built–in, the parameters are estimated in the M–step
(maximization step).

At the E–step of the (j+1)-th iteration the expected log–likelihood of the complete
data model is computed by

E(`(φ;Y, Z) | Y, φ̂(j)). (2.12)

In the M–step, the updated parameter estimate is computed from maximizing the
quantity (2.12) with respect to φ. Then, if some terminating condition is satisfied we
stop iterating, otherwise move back to E–step for more iterations.

In mixed Poisson distributions (Karlis, 2005) the unobserved quantities are the real-
izations of θi of the unobserved mixing parameter for each data point Yi, i = 1 . . . n.
Additionally, we assume that the distribution of Yi | θi is Poisson with θi following (2.1).
On the other hand, when the complete model is from the exponential family then the E–
step computes the conditional expectations of its sufficient statistics. As it can be seen
below, the continuous distribution given in (2.1) is a member of the exponential family of
probability distributions since it can be written as

f(θ|φ) = h(θ) exp (A(φ)T (θ)−B(φ)) where

h(θ) =
1√
2θ

, A(φ) = −√2φ, T (θ) =
√
θ and B(φ) = − log

√
φ. Then, T (θ) is a

sufficient statistic of this distribution.
The EM type algorithm for this model can be described as follows. From the current

estimates φ(j)

• E–step: Calculate the pseudo–values

ti = E(
√
θi | Yi, φ̂(j))

for i = 1, . . . , n.

• M–step: Find the new estimates φ̂(j+1)

φ̂(j+1) =
1

2

(
n∑n
i=1 ti

)2

.

• If some convergence condition is satisfied then stop iterating, otherwise move back
to the E–step for another iteration.

3 The regression model
Let us now consider a random variable Yi denoting event counts and a vector of covariates
or explanatory variables xi = (xi1, . . . , xip)

t, including an intercept, related to the i-th
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observation that denotes a weight of observable features. In this model with fixed effects,
it is assumed that

Yi|θi ∼ P(θiµi)

θi ∼ EIG(φ)

µi = exp(xi
tβ), (3.1)

where β = (β1, β2, . . . , βp)
t a vector of regression coefficients.

The PEIG distribution has mean µ = 1/φ and variance 1/φ+ 5/φ2. If we parameter-
ize µi = 1/φ = exp(xi

tβ), the marginal mean and the marginal variance of the response
distribution distribution are given by

E(Yi|xi) = exp(xi
tβ) and

var(Yi|xi) = E(Yi|xi) + 5E(Yi|xi)2,

respectively.
Likewise the conditional mean of the response variable is related to the explana-

tory variables through a link function, g(E(Yi|xi)) = xi
tβ, where g(·) is a monotonic

function. The link function determines the function of the conditional mean that is pre-
dicted by xi

tβ. As the mean of (2.5) is non-negative, the log–link is the usual choice for
PEIG regression model since it guarantees a non-negative value for the conditional mean.
Additionally, as var(Yi|xi) > E(Yi|xi), this mixed Poisson regression model is over–
dispersed. In addition to this, as the variance is determined by the mean, no additional
variance estimate is required. Besides, this model does not nest the Poisson regression
model. Maximum likelihood estimation for this fixed effect regression model involves
setting the partial derivatives of the log–likelihood function with respect to regression
coefficients βj with j = 1, . . . , p equal to zero.

Let us now suppose that (yi,xi), i = 1, . . . , n are n independent realizations of the
regression model given in (3.1) where yi is the response variable and xi a vector of ex-
planatory variables. Then, the log–likelihood function can be expressed as

`(β1, . . . , βp) =
n∑

i=1

`i(µi; β1, . . . , βp)

= −n
2

log µi +
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2
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2
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1

2
,

1
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)
. (3.2)

Then, the normal equations to obtain the maximum likelihood estimates are given by
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with s = 1, 2, . . . , p.
Furthermore, the required expressions to approximate the Fisher’s information matrix

associated with maximum–likelihood estimates are provided by
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for s = 1, 2, . . . , p and k = 1, 2, . . . , p.

4 Application to health service data

4.1 Estimation of parameters
In the following, we are going to illustrate the performance of this mixed Poisson regres-
sion model. For that reason, let us consider now the number of hospital stays among
the elderly population age 65 and over in the U.S. This amount represents a significant
portion of the annual expenditures on hospital care since government insurance programs
in the U.S. bear the highest financial burden for health care. Moreover, it has been fore-
casted that the number of elderly will continue to grow in the coming years. This set of
data appears originally in Deb and Trivedi (1997) in their analysis of various measures of
health–care utilization using a sample of 4406 single–person households in 1987. Data
have been obtained from the Journal of Applied Econometrics 1997 Data Archive. Es-
timation of model and all the data analyses were done using Mathematica 9.0 software
package. All the codes used to obtain reported results and all additional information
useful to make research reproducible can be found on the journal’s website or it will be
made available by the authors on request. Our goal is to model the number of hospital
stays (HOSP) as the response variable. This measure includes two interesting features,
on the one hand over–dispersion, the mean and variance of the empirical distribution are
0.30 and 0.56 respectively, and, on the other hand, a very high proportion of non–users
(80.36%). Since the Poisson regression model is not able to capture the the heterogeneity
among individuals found in the data, the PEIG regression model is used to explain the
demand for health services.

Let us firstly considered the model without covariates. Parameter estimates, standard
errors (in brackets) and the maximum of the log–likelihood (`max) of the distribution of
the hospital stays are θ̂ = 0.296 (0.01) and `max = −3304.51 for Poisson model and
µ̂ = 0.308 (0.01), `max = −3021.92 for PEIG model respectively. For the latter model,
the estimate can also be obtained by using the EM algorithm after 25 iterations when the
relative change of the estimate between two successive iterations is smaller than 1×10−10,
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after taking initial starting value in the neighborhood of the moment estimate. Therefore,
it can be concluded that the PEIG model provides a better fit to the data than Poisson
distribution by considering maximum of the log–likelihood as criterion of comparison.
For the standard model given in (2.5) the estimated value of φ is 3.24783 with a stan-
dard error of 0.138. Since the empirical distribution is over-dispersed the Poisson model
seems to be inadequate for estimating these count data. Next, in Figure 1 the histogram
of the empirical distribution of the number of hospital stays (Observed), together with
fitted distribution, obtained from the Poisson distribution and PEIG distribution has been
plotted. As it can be observed, there is a clear spike of extra zeros representing the non-
hospitalization of the elderly population with the best fit to the data obtained with the
PEIG model.
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Poisson-Exponential-Inverse Gaussian

Poisson

0
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1500
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Figure 1: Observed and fitted (PEIG and Poisson) distribution of the number of hospital
stays (HOSP)

Let us now analyze the model with covariates. The explanatory variables are as fol-
lows: (1) a dummy variable (EXCLHLTH) which takes the value 1 if self–perceived
health is excellent; (2) a dummy variable (POORHLTH) which takes the value 1 if self–
perceived health is poor; (3) a count variable (NUMCHRON) giving the number of chronic
disease and condition (cancer, heart attack, etc.); (4) age (AGE) divided by 10; (5) a
dummy variable (MALE) with value 1 if the patient is male. For the ith patient, the
number of hospital stays Yi follows a PEIG whose mean depends on a set of covari-
ates trough the log–link function. The goal is to predict the number of hospital stays Yi
(response variable) using a vector of explicative variables (covariates).

At first sight, it seems logical that due to the presence of over–dispersion, a relative
large long right tail, and a high proportion of zeros as compared to the proportion of other
values, a simple Poisson regression model is not adequate to explain the number of hospi-
tal stays since it tends to overestimate the probability of lower values and underestimate
the probability of larger values. For that reason, it is expected that a a mixed Poisson re-
gression model will describe in a more accurate way the right tail of empirical data and the
high proportion of zeros in the sample. As it can be observed in Table 1, the PEIG and
a Poisson (in brackets) regression model have been fitted to data. From left to right pa-
rameter estimates, standard errors, t-Wald and p-values are shown for both models. After
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observing the values of the estimated regressors, there exists some differences between
estimated effects of both models. In this sense, the PEIG regression model predicts a
higher use of the health service when self–perceived health is poor, the number of chronic
disease and condition and age increases and the patient is male. Furthermore, when self–
perceived health is excellent then the predicted change in the number of hospital stays
decreases at a lower rate than in the Poisson regression model. The intercept coefficient
−3.959 is the predicted logarithm of the number of hospital stays when the values of EX-
CLHLTH, POORHLTH, NUMCHR, AGE and MALE are equal to 0. Having said that,
it can be concluded, from this numerical application, that the PEIG regression model
predicts a higher use of the health service for this set of explanatory variables. All of
parameter estimates are significant at the usual nominal level.

Table 1: Parameter estimates, standard errors, t-Wald and p-values for PEIG and Poisson
(in brackets) regression models for the number of hospital stays.

Parameter Estimate S.E. t-Wald Pr > |t|
INTERCEPT –3.959(–3.220) 0.52(0.32) –7.63(–10.19) 0.00(0.00)
EXCLHLTH –0.688(–0.720) 0.22(0.18) –3.15(–4.10) 0.00(0.00)
POORHLTH 0.683(0.613) 0.12(0.07) 5.60(9.18) 0.00(0.00)
NUMCHRON 0.326(0.264) 0.03(0.02) 9.72(14.48) 0.00(0.00)
AGE 0.268(0.183) 0.07(0.04) 3.93(4.39) 0.00(0.00)
MALE 0.196(0.109) 0.10(0.06) 2.17(1.94) 0.03(0.05)

Following the work of Wedderburn (1974), we have also estimated the parameters
by using a quasi–likelihood model. In this case, we need only to specify the marginal
response variance in terms of the marginal mean, i.e. var(Yi) = µi + 5µ2

i , (i = 1, . . . , n).
Via quasi–likelihood estimation, the estimates are very close to the ones shown in Table
1. Note that they are given in the same order as in Table 1, that is, –3.92958, –0.679321,
0.605773, 0.307492, 0.262405 and 0.187604. The value of the negative of the maximum
of the log–likelihood is 2896.79.

4.2 Model assessment

Several measures of model validation to compare the PEIG and Poisson regression
model are shown in Table 2. Firstly, the value of the negative of the maximum of the
log–likelihood (NLL) and Akaike Information Criterion (AIC) are given in the first two
rows of this Table; as a lower value of these measures is desirable, the PEIG regression
model is preferable. Bozdogan (1987) proposed a corrected version of AIC, the Con-
sistent Akaike Information Criteria (CAIC), in an attempt to overcome the tendency of
the AIC to overestimate the complexity of the underlying model. Bozdogan (1987) also
observed that AIC does not directly depend on the sample size and, as a result, it lacks
certain properties of asymptotic consistency. See also Anderson et al. (1998). When for-
mulating the CAIC, a correction factor based on the sample size is used to compensate for
the overestimating nature of AIC. The CAIC is defined as CAIC = 2 NLL+(1+log n) p,
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where p refers to the number of estimated parameters and n is the sample size. Again, a
model that minimize the Consistent Akaike Information Criteria is preferable. As it can
be observed, the PEIG regression model also dominates the Poisson regression model in
terms of the CAIC.

Table 2: Measures of model selection for the models considered.

Distribution
Criterion Poisson PEIG

NLL 3047.32 2895.11
AIC 6116.63 5802.22

CAIC 6150.98 5846.57
Pearson statistic, (εPi )2 7071.90 4626.74
Deviance residual/df –0.30183 –0.33572

Now we perform some diagnostic checks based on analysis of residuals. This is a
useful method to detect outliers and check the variance assumption in a more general
setting (see Cameron and Trivedi (1986), for details). Perhaps the most common choice is
Pearson’s residuals. They are used to identify discrepancies between models and data, and
they are based upon differences between observed data points and fitted values predicted
by the model. The i-th Pearson residual for a given model is provided by

εPi =
yi − µ̂i√
var(µ̂i)

, (4.1)

where µ̂i is the fitted marginal mean and var(µ̂i) is the estimated marginal variance un-
der the discussed model. Hence, if the model is correct, the variability of these residuals
should appear to be fairly constant, when they are plotted against fitted values or predic-
tors. The Pearson’s residuals are often skewed for non–normal data, and this make the
interpretation of the residual plots more difficult to interpret. For that reason, other quan-
tifications of the discrepancy between observed and fitted values have been suggested in
the literature. In this regard, another choice in the analysis of residual is the signed square
root of the contribution to the deviance goodness–of–fit statistic (i.e. deviance residuals).
This is given by D =

∑n
i=1 di, where

di = sgn(yi − µ̂i)
√

2(`(yi)− `(µ̂i)), i = 1, 2, . . . , n,

and sgn is the function that returns the sign (plus or minus) of the argument. The `(yi)
term is the value of the log likelihood when the mean of the conditional distribution for
the i-th individual is the individual’s actual score of the response variable. The `(µ̂i) is
the log–likelihood when the conditional mean is plugged into the log–likelihood. Usually
the deviance divided by its degree of freedom is examined by taking into account that a
value much greater than one indicates a poorly fitting model. See for example De Jong
and Heller (2008).
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It is well–known that for the Poisson distribution with parameter θi the deviance resid-
uals are given by (see Dunteman and Ho 2006))

di = sgn(yi − θ̂i)
[
2

(
yi log

(
yi

θ̂i

)
− (yi − θ̂i)

)]1/2
, i = 1, 2, . . . , n. (4.2)

For the model introduced in this manuscript the deviance residuals are easily obtained
by

di = sgn(yi − µ̂i)
{

2

[
log

( U(0.5 + yi, 0.5, (2yi)
−1)

U(0.5 + µ̂i, 0.5, (2µ̂i)−1)

)
− 1

2
log

(
yi
µ̂i

)]}1/2

,

i = 1, 2, . . . , n.

Note that the deviance does not exist whenever there are zero responses in the data.
However, it is usually assumed that di = 0 when yi = 0 (e.g. yi log yi is zero for yi =
0). The Pearson’s statistics together with the deviance residual divided by the degree of
freedom are shown in Table 2. The PEIG dominates widely the Poisson distribution in
terms of the Pearson’s statistics and small differences appear in the value of the deviance
residual. Recall that we have taken this value as zero when the observed response variable
takes the value zero.

Graphical model diagnostic may also be developed using expression (4.1). In this

case, for the Poisson regression model this reduces to εPi = (yi − θ̂i)/
√
θ̂i, while for the

distributionPEIG regression model, this expression is given by εPi = (yi−µ̂i)/
√
µ̂i(1 + 5µ̂i)

as it can be easily verified. For this example, not much differences are found between
these plots and those ones produced by the raw residuals, yi − θ̂i, which are shown in
Figure 2. On the other hand, the Pearson’s residuals are usually standardized by divid-
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Figure 2: Plots of the raw residuals for the Poisson (left) and the PEIG (right) regression
models.

ing by
√

1− hi, where hi are the leverages obtained from the diagonal of the hat matrix
W 1/2X(X ′WX)−1X ′W 1/2, being W equal to the n × n diagonal matrix with i–th en-
try wi, given by wi = (∂θi/∂x

′β))2 /var(Yi). This results θi for the Poisson regression
model and µi/(1 + 5µ2

i ) for the regression based on the new distribution presented here.
See Cameron and Trivedi (1986) for details about the construction of the hat matrix. The
standardized Pearson’s residuals have also been plotted, they are shown in Figure 3. As
it can be seen, for the Poisson regression model many of the values of the Pearson’s stan-
dardized residuals lie outside the range (−2, 2), pointing out a poorer fit to data than the
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Figure 3: Standardized Pearson’s residuals for the Poisson (left) and the PEIG (right)
distributions

one obtained for the PEIG regression model presented in this work. See Hilbe (2007)
for details.

In the following, as the regression model introduced in this paper is not nested in
the Poisson regression model, the Vuong’s test can be used to compare the estimates of
the Poisson regression model and PEIG regression model. In this regard, one might be
interested in testing the null hypothesis that the two models are equally close to the actual
model, against the alternative one that one of the model is closer (see Vuong (1989)). The
z-statistic is

Z =
1

ω
√
n

(
`(µ̂)− `(θ̂)

)
,

where

ω2 =
1

n

n∑

i=1

[
log

(
f(µ̂)

g(θ̂)

)]2
−
[

1

n

n∑

i=1

log

(
f(µ̂)

g(θ̂)

)]2

and f and g represent here the PEIG and Poisson distributions, respectively.
Due to the asymptotic normal behaviour of the Z statistic under the null hypothesis,

rejection of null hypothesis in favour of the alternative one that f occurs with significance
level α, when Z > z1−α being z1−α the (1− α) quantile of the standard normal distribu-
tion. For the Vuong’s test, Z = 3.95754, then the PEIG model is preferred at the usual
nominal levels.

4.3 Comparisons with other models
Finally the fit obtained with the PEIG regression model is compared to two other mixed
Posisson regression models traditionally used in the statistical literature, the negative bi-
nomial and the Poisson–Inverse Gaussian regression models (see Dean et al. (1989)).
Furthermore, when the empirical data includes a high presence of zeros it is usual to con-
sider a reparameterization of the parent distribution to capture all zeros in the sample, the
zero–inflated (ZI) model. If the parent distribution is p(x), a ZI distribution is built as
follows (see Cohen (1966))

p(x) =

{
(1− ψ) + ψ p(0), x = 0,
ψ p(x), x > 0,
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where p(x) is the parent distribution and 0 < ψ ≤ 1 is the inflated parameter. The PEIG,
negative binomial and Poisson–Inverse Gaussian distributions have been reparameterized
to obtain the maximum likelihood estimates under the ZI model and the results, together
with the homogeneous models (without inflation), are displayed in Table 3.

Table 3: Maximum of the log–likelihood and Consistent Akaike Information Criteria
(CAIC) for different homogeneous and ZI models.

Homegeneous ZI
Distribution NLL CAIC NLL CAIC
PEIG 2895.11 5846.57 2851.90 5769.74

NB 2857.11 5779.95 2853.37 5781.87
PIG 2877.33 5820.40 2847.69 5770.51

As it can be seen in this Table, the (ZI) PEIG regression model provides the best fit to
data for this particular dataset when the CAIC is used as a criterion of comparison since
the other two mixed Poisson regression models include an additional parameter. Since
the global maximum of the log–likelihood surface is not guaranteed, different initial val-
ues of the parametric space were considered as a seed point. The calculations have been
completed by using the FindMaximum function of Mathematica software package v.9.0
(Wolfram (2003)) (the derivative of the modified Bessel function of the third kind is avail-
able in this package). Additionally, by using other different methods such as Newton,
PrincipalAxis and QuasiNewton the same results were obtained.

5 Conclusions
In this paper, a new mixed Poisson regression model to explain the demand for health
services among people 65 and over to account for a large portion of non–users has been
proposed. This model has been derived by mixing the Poisson distribution with a par-
ticular case of the continuous Exponential–Inverse Gaussian distribution when one of its
parameter tends to infinity. Additionally, it is over–dispersed and unimodal with modal
value located at zero. The model might be considered an alternative to Poisson regression
model when the empirical data include a high proportion of zeros. In this regard, several
measures of model assessment, including the Vuong’s test for non-nested model selec-
tion, have been provided to support this goal. Apart from that, due to the high proportion
of zeros in the empirical data, a zero–inflated version of this model has also been used to
explain the demand for health services of elderly people.

Acknowledgment
The authors would like to thank the editor and two anonymous referees for their rele-
vant and useful comments. Research partially funded by grant by grant ECO2013-47092
(Ministerio de Economı́a y Competitividad, Spain).
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