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Abstract

Using algebraic approach we implement a constant time algorithm for computing the
domination numbers of the Cartesian products of paths and cycles. Closed formulas
are given for domination numbers γ(Pn2Ck) (for k ≤ 11, n ∈ N) and domination
numbers γ(Cn2Pk) and γ(Cn2Ck) (for k ≤ 6, n ∈ N).
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1 Introduction

Domination and its variations have been intensively studied and its algo-
rithmic aspects have been widely investigated [9,10]. It is well known that
the problem of determining domination number of arbitrary graphs is NP–
complete [9]. It is therefore interesting to consider algorithms for some classes
of graphs, including Cartesian products of paths and cycles. Exact domination
numbers of the Cartesian products of paths Pn2Pk with fixed k were estab-
lished in [1,2,3,5,8,17]. Formulas were given for k up to 19 [5,17] and in [1]
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for k, n ≤ 29. Recently Chang’s conjecture stating that for every 16 ≤ k ≤ n,
γ(Pn2Pk) =

⌊

(n+2)(k+2)
5

⌋

− 4 was proved in [7].

Domination number of the Cartesian product of cycles Cn2Ck, also known as
tori, was studied in [4,12]. In [12], exact formulas for all k ≤ 4 and all n ∈ N

were given. Formula for k = 5 appears in [13], refering to an unpublished
manuscript by the second author. Domination number of the Cartesian prod-
uct of more than two cycles are investigated and in a special case, a formula
was given [12].

Cartesian products of cycles and paths are considered in [15]: Exact values for
Cn2Pk (k ≤ 4, n ∈ N) are calculated and the domination number of Cn2P5

is bounded. Exact values of γ(Cn2P5) for some n were given in [16], as they
can be deduced from the Roman domination numbers.

A general O(log n) algorithm based on path algebra approach which can be
used to compute various graph invariants on fasciagraphs and rotagraphs has
been proposed in [13]. The algorithm of [13] can in most cases, including the
computation of distance based invariants [11], the domination numbers [18]
and Roman domination numbers [16] be turned into a constant time algorithm,
i.e. the algorithm can find closed formulas for arbitrary n. The existence of
an algorithm that provides closed formulas for domination numbers on grid
graphs has been observed or claimed also in [5,14]. Here we use the algorithm
of [18] to find closed formulas for domination numbers of Pn2Ck and provide
closed formulas (for k ≤ 11 and n ∈ N). Furthermore, closed formulas for the
domination numbers of Cn2Pk and Cn2Ck (for k ≤ 6 and n ∈ N) are given.
The new formulas are an improvement of known results and provide answer
to some open questions from [12,15].

In the rest of this paper we first summarize the background for the main
algorithm from in [18] and [19]. The algorithm is precisely presented in Section
3. In Section 4 we summarize results obtained by implementing the algorithm.
Also some constructions for minimum dominating sets of investigated graphs
are given.

2 Preliminaries

We consider finite undirected and directed graphs. A graph will always mean
an undirected graph, a digraph will stand for a directed graph. An edge in an
undirected graph will be denoted uv while in directed graph, an arc between
vertices u and v will be denoted (u, v). Pn will stand for a path on n vertices
and Cn for a cycle on n vertices.
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For a graph G = (V,E), a set D is a dominating set if every vertex in V \D
is adjacent to a vertex in D. The domination number γ(G) is the minimum
cardinality of a dominating set of G. A dominating set of cardinality γ(G) is
called a minimum dominating set, or shortly a γ–set.

The Cartesian product of graphs G and H, denoted G2H, is a graph with
vertex set V (G) × V (H) and two vertices (g, h) and (g′, h′) are adjacent if
g = g′ and hh′ ∈ E(H) or gg′ ∈ E(G) and h = h′. Examples of the Cartesian
product graphs include the grid graphs, which are products of paths Pn2Pk,
and tori, which are products of cycles Cn2Ck.

Let G1, . . . , Gn be arbitrary mutually disjoint graphs and X1, . . . , Xn a se-
quence of sets of edges such that an edge of Xi joins a vertex of V (Gi)
with a vertex of V (Gi+1). For convenience we also set G0 = Gn, Gn+1 = G1

and X0 = Xn. A polygraph Ωn = Ωn(G1, . . . Gn;X1, . . . Xn) over monographs
G1, . . . , Gn is defined in the following way:

V (Ωn) = V (G1) ∪ . . . ∪ V (Gn),

E(Ωn) = E(G1) ∪X1 ∪ . . . ∪ E(Gn) ∪Xn.

For a polygraph Ωn and for i = 1, . . . , n we also define

Di = {u ∈ V (Gi) | ∃v ∈ Gi+1 : uv ∈ Xi},

Ri = {u ∈ V (Gi+1) | ∃v ∈ Gi : uv ∈ Xi}.

In general, Ri∩Di+1 does not have to be empty. If all graphs Gi are isomorphic
to a fixed graph G and all setsXi are equal, then we call such a graph rotagraph
and denote it ωn(G;X). A rotagraph without edges between the first and the
last copy of G (formally, Xn = ∅) is fasciagraph, ψn(G;X). In rotagraph as
well as in fasciagraph, all sets Di and Ri are equal. We will denote those two
sets with D and R, respectively. Observe that Cartesian products of paths
Pn2Pk are examples of fasciagraphs and that Cartesian products of cycles
Cn2Ck are examples of rotagraphs. Products of a path and a cycle can be
treated either as fasciagraphs or as rotagraphs.

A semiring P = (P,⊕, ◦, e⊕, e◦) is a set P on which two binary operations, ⊕
and ◦ are defined such that:

(1) (P,⊕) is a commutative monoid with e⊕ as a unit;
(2) (P, ◦) is a monoid with e◦ as a unit;
(3) ◦ is left– and right–distributive over ⊕;
(4) ∀x ∈ P, x ◦ e⊕ = e⊕ = e⊕ ◦ x.

An idempotent semiring is called a path algebra. It is easy to see that a semiring
is a path algebra if and only if e◦ ⊕ e◦ = e◦ holds for e◦, the unit of the
monoid (P, ◦). An important example of a path algebra for our work is P1 =
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(N0∪{∞},min,+,∞, 0). Here N0 denotes the set of nonnegative integers and
N the set of positive integers.

Let P = (P,⊕, ◦, e⊕, e◦) be a path algebra and let Mn(P) be the set of all
n × n matrices over P . Let A,B ∈ Mn(P) and define operations ⊕ and ◦ in
the usual way:

(A⊕ B)ij =Aij ⊕Bij,

(A ◦B)ij =
n
⊕

k=1

Aik ◦Bkj.

Mn(P) equipped with above operations is a path algebra with the zero and the
unit matrix as units of semiring. In our example P1 = (N0∪{∞},min,+,∞, 0),
all elements of the zero matrix are ∞, the unit of the monoid (P,min), and
the unit matrix is a diagonal matrix with diagonal elements equal to e◦ = 0
and all other elements equal to e⊕ = ∞.

Let P be a path algebra and let G be a labeled digraph, that is a digraph
together with a labeling function ℓ which assigns to every arc of G an element
of P . Let V (G) = {v1, v2, . . . , vn}. The labeling ℓ of G can be extended to
paths in the following way: For a path Q = (vi0 , vi1)(vi1 , vi2) . . . (vik−1

, vik) of
G let

ℓ(Q) = ℓ (vi0 , vi1) ◦ ℓ (vi1 , vi2) ◦ . . . ◦ ℓ
(

vik−1
, vik

)

.

Let Sk
ij be the set of all paths of order k from vi to vj in G and let A(G) be

the matrix defined by:

A(G)ij =







ℓ (vi, vj) ; if (vi, vj) is an arc of G

e⊕; otherwise

It is well-known that
(

A(G)k
)

ij
=

⊕

Q∈Sk
ij

ℓ(Q).

3 The domination number of fasciagraphs and rotagraphs

Let us now summarize known results for determining the domination number
of fasciagraphs and rotagraphs. The algorithm which computes different graph
invariants on fasciagraphs and rotagraphs in O(log n) time was proposed in
[13] and then improved to run in O(C) time for domination number [18] and
also for some other graph invariants in [11,16,18,19]:
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Let ωn(G;X) be a rotagraph and ψn(G;X) a fasciagraph. Set U = Di ∪Ri =
D ⊔ R and let N = 2|U |. Define a labeled digraph G = G(G;X) as follows:
The vertex set of G is formed by the subsets of U , denoted Vi. An arc joins a
subset Vi with a subset Vj if Vi is not in a ”conflict” with Vj. Here a conflict
of Vi with Vj means that using Vi and Vj as a part of a solution in consecutive
copies of G would violate the problem assumption. In the special case we are
considering here, i.e. when computing the domination number, we introduce
an arc between vertices Vi and Vj if Vi ∩R ∩D ∩ Vj = ∅.

Now consider for a moment ψ3(G;X) and let Vi ⊆ D1 ∪R1 and Vj ⊆ D2 ∪R2

(of course R1 = R2 = R and D1 = D2 = D). Let γi,j(G;X) stand for the size
of minimum dominating set of G2 \ ((Vi ∩R1) ∪ (D2 ∩ Vj)). Then we define a
labeling of G, ℓ : E(G) −→ N0 ∪ {∞}, in the following way:

ℓ(Vi, Vj) = |Vi ∩R|+ γi,j(G;X) + |D ∩ Vj| − |Vi ∩R ∩D ∩ Vj| . (1)

The following algorithm, first proposed in [13], computes the domination num-
ber of a fasciagraph or a rotagraph in O(log n) time:

Algorithm 1 [13]

(1) Let P1 = (N0 ∪ {∞},min,+,∞, 0) be a path algebra.
(2) Label G(G;X) with the labeling, defined in (1).
(3) In M(P) calculate A (G)n.
(4) Let γ (ψn(G;X)) = (A (G)n)00 and γ (ωn(G;X)) = mini (A (G)n)ii .

This algorithm can be improved: computing the powers of A (G)n = An in
O(C) time is possible using special structure of the matrices in some cases,
including the domination numbers:

Lemma 3.1 [18] Let k = |V (G(G;X))| and K = |V (G)|. Then there is an
index q ≤ (2K + 2)k

2

such that Dq = Dp + C for some index p < q and some
constant matrix C. Let P = q − p. Then for every r ≥ p and every s ≥ 0 we
have

Ar+sP = Ar + sC .

Hence, if we assume that the size of G is a given constant (and n is a variable),
the algorithm will run in constant time. But it is important to emphasize that
the algorithm is useful for practical purposes only if the number of vertices of
the monograph G is relatively small, since the time complexity is in general
exponential in the number of vertices of the monograph G. Therefore some
additional improvements are welcome. One can also omit straightforward im-
plementation of the algorithm. Instead of calculating whole matrices A(G)n,
calculating only those rows which are important for the result and checking the
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difference of the new row against the previously stored rows until a constant
difference is detected yields a correct result because of the following lemma.

Lemma 3.2 [16] Assume that the j–th row of An+P and An differ for a con-

stant, a
(n+P )
ji = a

(n)
ji + C for all i. Then mini a

(n+P )
ji = mini a

(n)
ji + C.

4 Summary

We implemented the algorithm as described above and got results presented
in the sequel. Calculations of γ(Pn2Ck) for a fixed k were implemented as
fasciagraph and calculations of γ(Cn2Pk) and γ(Cn2Ck) for a fixed k were
implemented as rotagraphs. It is important to emphasize that calculations for
fasciagraphs are a lot less time consuming than those for rotagraphs because
γ (ψn(G;X)) = (A (G)n)00 and γ (ωn(G;X)) = mini (A (G)n)ii . In other words,
only one element of the matrix A (G)n is sufficient for the result on fasciagraphs
and a minimum over all diagonal elements of the same matrix is needed for
rotagraphs.

Theorem 4.1 Domination numbers of the Cartesian products of paths and
cycles, where the size of one factor is fixed, can be in computed constant
time, i.e. independently of the size of the second factor. Closed expressions
for γ(Pn2Ck), γ(Cn2Pk), and γ(Cn2Ck) are given in Table 1 and in Table 2
for some values of k.

We also present constructions of γ-sets in some cases (see Fig. 1 -4). The
patterns are enclosed in dashed boxes. In case of the graph Pn2C11 the pattern
is shifted hence the period is 11 · 8 = 88.

We conclude with a couple of remarks. Since every vertex of the Carte-
sian product of two cycles can dominate at most five vertices, it follows
that γ(Cn2Ck) ≥

nk
5
. Adapting similar idea as in case of Pn2C10 to graphs

C5m2C5l we have γ(Cn2Ck) ≤
nk
5

by construction. Therefore γ(C5m2C5l) =
5ml. This result could also be deduced from results on Roman domination
presented in [6].

By obvious reasoning we can extend constructions from Fig. 1 and Fig. 2
to obtain upper bounds for graphs Pn2Cm, see Table 3. We conjecture that
the bounds are exact values for m = 5k, 5k + 1, 5k + 2, 5k + 4. Clearly as
γ(Cn2Cm) ≤ γ(Pn2Cm), these are also upper bounds for the Cartesian prod-
uct of cycles.
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Table 1
Domination numbers of Pn2Ck for a fixed k.

k γ(Pn2Ck)

3

⌈

3n
4

⌉

+ 1; if n ≡ 0 (mod 4)
⌈

3n
4

⌉

; otherwise

4 n

5

3; if n = 2

4; if n = 3

n+ 2; otherwise

6

⌈

4n
3

⌉

; if n ≡ 1 (mod 3)
⌈

4n
3

⌉

+ 1; otherwise

7

⌈

3n
2

⌉

+ 1; if n ≡ 1 (mod 2)
⌈

3n
2

⌉

+ 2; otherwise

8

4; if n = 2

6; if n = 3

8; if n = 4
⌊

9n
5

⌋

+ 1; if n ≡ 5 (mod 10)
⌊

9n
5

⌋

+ 2; otherwise

9

5; if n = 2

7; if n = 3

10 if n = 4

2n+ 2; otherwise

10

2n+ 2; if n ≤ 5

2n+ 3; if 6 ≤ n ≤ 9

2n+ 4 otherwise

11

⌈

19n
8

⌉

+ 1; if n ∈ {1, 2, 4, 6} or n ≡ 3 (mod 8)
⌈

19n
8

⌉

+ 2; otherwise
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Table 2
Domination numbers of the Cartesian products of paths and cycles for a fixed k.

k γ(Cn2Pk) γ(Cn2Ck)

2

⌈

n
2

⌉

+ 1; if n ≡ 2 (mod 4)
⌈

n
2

⌉

; otherwise

3
⌈

3n
4

⌉ ⌈

3n
4

⌉

4
n+ 1; if n ∈ {5, 9}

n; otherwise
n

5

4; if n = 3
⌈

6n
5

⌉

+ 1; if n ≡ 3, 5, 9 (mod 10)
⌈

6n
5

⌉

; otherwise

n; if n ≡ 0 (mod 5)

n+ 2; if n ≡ 3 (mod 5)

n+ 1; otherwise

6

9; if n = 6
⌈

10n
7

⌉

+ 1; n ≡ 2, 6, 7, 9, 13 (mod 14)
⌈

10n
7

⌉

; otherwise

⌈

4n
3

⌉

+ 1; n ≡ 2, 3, 8, 9, 11, 14, 15, 17 (mod 18)
⌈

4n
3

⌉

; otherwise

8
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Table 3
Upper bounds for the domination numbers of the Cartesian products of paths and
cycles for n ≥ m.

γ(Pn2Cm)

m = 5k k(n+ 2)

m = 5k + 1 (8k+3)(n+2)
8

m = 5k + 2 (2k+1)(n+2)
2

m = 5k + 3 (k + 1)(n+ 2)

m = 5k + 4 (k + 1)(n+ 2)

9Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
16

7,
 D

ec
em

be
r 

22
, 2

01
1



Fig. 1. Periodical behaviour of γ-sets of Pn2Ck for 3 ≤ k ≤ 8.
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Fig. 2. Periodical behaviour of γ-sets of Pn2Ck for 9 ≤ k ≤ 11.
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Fig. 3. Periodical behaviour of γ-sets of Cn2Pk for 5 ≤ k ≤ 6.

Fig. 4. Periodical behaviour of γ-sets of Cn2Ck for 5 ≤ k ≤ 6.
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