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Abstract
Visual trackers have already achieved remarkable robust-
ness due to discriminative template matching paradigm
and deep descriptive features that are employed for this
purpose. Yet, they are limited in their accuracy due to
bounding box constraint and low spatial resolution of
deep features. In recent works it has been shown that
improving accuracy of discriminative deep trackers with
one-shot segmentation module may not only improve the
accuracy, but also boost their robustness. In this work we
are exploring co-segmentation as another option for de-
termining accurate position and size through the task of
segmenting an object. We present our preliminary results
on a challenging VOT2020 dataset where the proposed
method achieves competitive performance to the state-of-
the-art.

1 Introduction
Visual tracking is an important building block in many
real-world computer vision applications. Using the most
widely accepted definition of the problem, a computer vi-
sion algorithm is required to predict the state of the object
in a sequence of images using only its initial state to sup-
port the prediction. Support data scarcity and the need
for robustness of predictions have led most tracking al-
gorithms to only address prediction of low-dimensional
state, i.e. target position and scale. According to the re-
cent benchmark [1], the dominant paradigm in the field is
correlation bounding box tracking using deep features [2,
3] where the target represented by a multi-channel tem-
plate is localized by cross-correlation between the tem-
plate and a search region. These trackers are very ro-
bust, yet they operate on fixed-size rectangular patches
and cannot deal with deformations that cause aspect chan-
ges.

Recently, a proposed combination of a discrimina-
tive template matcher and a deep generative segmenta-
tion model was proposed in [4]. The template matcher is
responsible for coarsely localizing the target, addressing
any distractors in the surrounding area. The segmentation
network then finely localizes the target and infers its size
and aspect ratio by determining its per-pixel mask. This
combination has been shown to improve not only the ac-
curacy of the tracker, but also its robustness. In this paper

Figure 1: Co-segmentation in visual tracking. Our method uses
an anchor image and a mask of an object of interest to infer its
mask in another frame.

we are investigating an alternative approach to object seg-
mentation using limited support data during the tracking
session. Our basis is co-segmentation, where an objec-
tive is to jointly segment semantically similar objects in
two or more images. We present our adaptations of a co-
segmentation method (see Figure 1) to the visual object
tracking domain and show some preliminary results that
demonstrate the feasibility of the approach.

2 Related work
For more than a decade, the most robust approaches to
visual tracking have viewed the problem as a machine-
learning task of discrimination between the object and
the background [5]. In this time the features used to de-
scribe an image and the methods that enabled fast learn-
ing of a discriminative model have changed dramatically.
Most recent methods use deep features, either pre-trained
for discriminative localization of an object [2] or train a
multi-channel discriminative correlation filter on-line [3,
6].

Different than localization, size estimation was com-
monly handled using a multi-scale pyramid, which is a
greedy but inaccurate approach [7] or not taken into ac-
count at all. With the success of deep learning and accep-
tance of more power-hungry methods, some researchers
begun experimenting with region proposal methods to es-
timate target’s size and aspect ratio [8, 9], others em-
ployed box refinement methods [10, 6]. While segmen-
tation output was considered in [9] it was not used to im-
prove the overall tracking process. In [4] a segmentation
was used in a mutually beneficial interaction with a dis-
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Figure 2: Schematic representation of our co-segmentation model for visual tracking.

criminative tracker for the first time. The discriminative
tracker provided initial localization that is then refined
using object segmentation. Segmentation is also used to
adjust sampling size. All this contributes to increased ac-
curacy and robustness. But the method is still partially
handcrafted. In this work we investigate an approach
based on co-segmentation method that is fully differen-
tiable and can be trained end-to-end.

The field of co-segmentation is a special branch of
segmentation where an objective is to segment one or
more objects in more than one image at the same time [11].
There are many types of co-segmentation with assump-
tions about number of salient objects [11, 12], background
constancy [13]. While co-segmentation seems like a
good match for visual tracking, the objects of interest
in co-segmentation are very loosely defined by salience
and the emphasis is on generality. Resulting segmen-
tation lacks specificity to segment only a single object
which is the goal in visual tracking which also makes no
assumptions about the appearance of the object itself as
well as its surrounding area. In the following section we
present a modification one of the deep co-segmentation
methods [14] that makes it usable in visual tracking sce-
nario.

3 The co-segmentation model
In this work we are evaluating a simple single-shot multi-
object co-segmentation approach, inspired by [14]. The
main concept behind the original work is a feature cor-
relation layer that originates from FlowNet [15] for deep
optical flow estimation. Instead of comparing deep fea-
tures locally, as it is common in optical flow estimation,
[14] compares all features from a reference image with all
features from the query image, building an affinity tensor.
This is then followed by an up-sampling decoder that is
trained to reconstruct a mask of semantically meaningful
objects found in both images.

In our co-segmentation network, displayed in Figure 2,
the VGG16 [16] backbone is replaced with a pre-trained
ResNet50 [17] that we have found to be better suited for
segmentation task. We use features from the third layer
of the feature extractor to calculate an affinity tensor be-

tween the anchor image and the query image. In contrast
to the co-segmentation task we have introduced a separate
encoder to encode the input mask from the anchor frame
to its high-dimensional representation that we use during
the prediction mask inference process together with the
computed affinity tensor. In contrast to the original work,
we also introduce skip connections from the feature en-
coder for the query image into the decoder to improve the
details of the predicted mask.

3.1 Training
The model was trained on YouTube-VOS [18] video seg-
mentation dataset. Each training sample contained two
patches selected from the same sequence with correspond-
ing segmentation masks of the target object. Samples are
drawn randomly from the dataset and augmented using
geometrical transformations (translation, rotation, scale)
and pixel alteration (brightness, contrast, noise, blur). Ex-
amples of training samples are shown in Figure 3.

The ResNet feature extractor backbone was not up-
dated during training, we have only trained mask encoder
and mask decoder to minimize binary cross entropy (BCE)
loss. Similarly to [14] we have used each sample multiple
times, the final loss is therefore:

loss =BCE(P (I1,M1, I2),M2)

+BCE(P (I2,M2, I1),M1),
(1)

where the tuple (I1,M1, I2,M2) constitutes a training
sample, P (·, ·, ·) denotes the prediction model.

The model was trained on 40000 unique samples in
batches of 16 samples for 33 epochs, each lasting for 400
iterations. We have used Adam optimizer [19] with initial
learning rate 0.0001 that was decreased by half every 10
epochs.

3.2 Tracking
Similarly to [4], we have evaluated our segmentation model
within a state-of-the-art discriminative tracker, presented
in [6] where the IoU bounding box refinement [8] is re-
placed by our model for region and scale estimation. Both
components share the same ResNet50 [17] feature extrac-
tor.



361

Figure 3: Examples of training samples, each sample column is
composed of two augmented samples with corresponding seg-
mentation masks.

Tracker EAO A R Overlap
ATOM [6] 0.267 0.467 0.708 0.386
SiamMask[9] 0.321 0.624 0.648 0.405
D3S[4] 0.439 0.699 0.769 0.508
Ours 0.416 0.696 0.735 0.578

Table 1: Results for VOT2020 baseline and unsupervised ex-
periments. For all measures higher value is better.

In each frame the target is approximately localized
using the discriminative component, then a query patch
is extracted and fed into the segmentation model together
with the anchor patch (from first frame) and its mask. The
resulting mask is used to estimate the position of the tar-
get as well as its size. The size is used to adjust trackers
internal image sampling scale. We assume that the scale
changes according to a random-walk motion model that
we estimate using Kalman filter [20]. The uncertainty of
a prediction is estimated by using the co-segmentation in
reverse: using the predicted mask and query image as ref-
erence the model predicts the mask in the anchor frame
and compares it to the initialization mask. The overlap
between those masks is used to determine prediction un-
certainty.

4 Experimental evaluation
We have performed our experiments on a recent VOT2020
dataset [21]. The dataset contains 60 diverse sequences,
the target object in each sequence is annotated with a
segmentation mask. The overall results for the experi-
ment with multiple restarts and the unsupervised single
run experiment are shown in Table 4. Scores in the ta-
ble show that our method is performing comparably to
the D3S [4] and significantly outperforms another recent
segmentation tracker SiamMask [9] as well as ATOM [6]
from which it was derived. More importantly, the results
also show that our method improves results of ATOM in
terms of accuracy as well as robustness.

Comparison between our method and D3S [4] is also
interesting because the former can be viewed a general-
ization of the latter. In D3S the mask is directly down-
sampled to the feature size, the generative model and
its application are tuned by hand. Our method performs
down-sampling and matching in a fully differentiable man-

ner, allowing the network to take care of the exact details
of which data is important. This requires a larger net-
work, at the moment we have been very liberal with its
size, but we believe that the number of weights can be
reduced with further experiments. Still, it is worth noting
that our model was trained with around 2% of data used
by D3S and in 20% of the time (around 4 hours).

Even though the overall performance of D3S and our
method are similar, the results on per-sequence basis show
some conceptual differences. Figure 4 shows frames of
selected sequences. In general D3S better estimates re-
gions with highly deformable objects on a clearly dif-
ferent background (Figure 4, sequences gymnastics1 and
iceskater1). Our method is more conservative and does
not segment every limb in such cases. On the other hand
it can handle occlusions with similar objects better be-
cause of the more verbose correspondence description
(Figure 4, sequences girl, flamingo1, and nature).

The main weaknesses of the proposed method is the
static anchor template and the fragile scale estimation
approach. If the scene will change too much from the
first frame, the match will become unreliable. While our
method does not tend to explode the segmentation as fre-
quently as D3S, it is much more prone to collapse: be-
cause the difference between the anchor and query are too
great, the segmentation only captures part of the object
(hence wrong scale) or confuses it with with a similar ob-
ject with better matching appearance (Figure 4, sequence
fish2). This shows the need for a scale estimation that
is decoupled from segmentation as well as some kind of
anchor update mechanism.

5 Conclusion
We have presented our preliminary work with integration
of a co-segmentation model into a visual tracker. We
have modified a co-segmentation model [14] and inte-
grated into a state-of-the-art discriminative tracker. The
results on a challenging VOT2020 dataset show that our
proposed tracker outperforms a tracker that it was de-
rived from [6] and performs comparably to a very re-
cent method that integrates segmentation into tracking in
a conceptually similar way [4].

We believe that our findings open up new opportuni-
ties for more accurate and robust tracking using segmen-
tation. In the future we plan to investigate how to reliably
update the anchor image to keep it relevant in the long
run or to even use multiple anchor images. We will also
investigate how to estimate object’s scale directly in the
model and how to resolve ambiguities and distractions by
observing the context from the past frames.
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