
 Informatica 28 (2004) 3–11 3

Representing Agents and their Systems: A Challenge for Current
Modeling Languages
Renato Levy
Intelligent Automation, Inc.
7519 Standish Place, Suite 200, Rockville, MD 20855 USA
rlevy@i-a-i.com

James Odell
James Odell Associates
3646 W. Huron River Drive
Ann Arbor, MI 48103 USA
email@jamesodell.com

Keywords: Systemic, Agents, Multi-agent systems, UML, AUML, model, modeling languages, modeling notation

Received: July 15, 2003

Leading-edge organizations are now developing systems that employ autonomous, interactive entities,
or agents. [1; 2] Compared to its predecessors, the agent-based approach is evolutionary. However, its
usages could be revolutionary. This paper begins by presenting some of the differences and similarities
between agents and previous approaches. We then discuss some of the challenges for using current
modeling approaches to represent agent-based systems. Our position is two folded: many of the
evolutionary aspects of agent modeling can accomplished by extending current modeling languages
such as UML 2.0; while the revolutionary aspects, however, will probably require new approaches.

1 Introduction
Advances on technology and on system’s theory
(non-linearity, complexity and chaos theory) has led
to engineers to challenge problems which had been
deemed intractable for a number of years. These
problems are usually NP-hard in high order, which
makes even the development of efficient heuristics a
very complex challenge. Observation of how nature
deals with problems of such complexity led to a
different approach to software development, known
as agent-based software, which has been successful in
developing solutions for such problems. The agent-
based software paradigm has established itself as viable
approach for developing software directed towards
control and simulation of complex systems.

Figure 1 illustrates one way of thinking about the
evolution of programming paradigms. Originally, the
basic unit of software was the complete program where
the programmer had full control. The program’s state
was the responsibility of the programmer and its
invocation determined by the system operator. The term
modular did not apply because the behavior could not be
invoked as a reusable unit in a variety of circumstances.

As programs became more complex and memory
space became larger, programmers needed to introduce
some degree of organization to their code. The modular
programming approach employed smaller units of code
that could be reused under a variety of situations. Here,
structured loops and subroutines were designed to have a
high degree of local integrity. While each subroutine’s
code was encapsulated, its state was determined by

externally supplied arguments and it gained control only
when invoked externally by a CALL statement. This
was the era of procedures as the primary unit of
decomposition.

In contrast, object orientation added to the modular
approach by maintaining its segments of code (or
methods) as well as by gaining local control over the
variables manipulated by its methods. However in
traditional OO, objects are considered passive because
their methods are invoked only when some external
entity sends them a message.

Software agents have their own logical thread of
control, localizing not only code and state but their
invocation as well. Such agents can also have individual
rules and goals, making them appear like “active objects

Figure 1: Evolution of programming approaches [3].

�����
������		
��

��������
�����
������		
��

�������
������		
��

�����
��
�
������		
��

����������	������
��
�

�����
��

��
�
�����

��
�
�������
�� ������� ������

 !������
�	�������

 !������

 !������
 !������
�"�##���

 !������ ��������

������� �������

��������

��������

4 Informatica 28 (2004) 3–11 R. Levy et al.

with initiative.” In other words, when and how an agent
acts is determined by the agent.

At each evolutionary step, then, various modeling
languages were created to aid system developers. The
latest and most popular graphical language is the Unified
Modeling Language (UML) developed by the Object
Management Group (OMG). As agent based systems
starts their transition from university and research labs
into mainstream engineering, grows the necessity for
appropriate graphical languages and tools to support it.
Since agent technology can be viewed as an evolution on
previous technologies, it would be reasonable to believe
that agent-based languages can be based on previous
approaches — at least in part. However, the way in
which agents can be used for application systems is far
richer than earlier approaches. Here, we may also need
to develop new languages to accommodate the agent-
based approach, in addition to adopting and modifying
pre-agent languages.

The rest of this paper is organized as follows: In
section 2 we present the philosophical differences
between agent systems and their predecessor software
engineering paradigms. Section 3 demonstrates how
these philosophical differences impact our ability to
represent such systems in current modeling languages,
and specifically in UML. In section 4, we proposed a set
of alternative representations that are able to solve some
of the previous modeling limitations and in section 5 we
present a study case in which some of the challenges and
proposed solutions are debated. Section 6 concludes this
paper with an invitation for an open debate about the
issues raised.

2 Philosophical Differences
Agents are commonly regarded as autonomous entities,
because they can watch out for their own set of internal
responsibilities. Furthermore, agents are interactive
entities that are capable of using rich forms of messages.
These messages can support method invocation—as well
as informing the agents of particular events, asking
something of the agent, or receiving a response to an
earlier query. Lastly, because agents are autonomous
they can initiate interaction and respond to a message in
any way they choose. In other words, agents can be
thought of as objects that can say “No”—as well as
“Go.” Due to the interactive and autonomous nature of
agents, little or no iteration is required to physically
launch an application. Van Parunak summarizes it well:
“In the ultimate agent vision, the application developer
simply identifies the agents desired in the final
application, and the agents organize themselves to
perform the required functionality." [3] No centralized
thread or top-down organization is necessary since agent
systems can organize themselves.

However, several other key areas exist that
differentiate the agent-based approach from traditional
approaches such as OO. The list below describes some
underlying concepts that agent-based systems can
employ. None are universally used by agents: active
object systems may use them as well. Furthermore, no

agent system is required to use all of them. This list
merely provides a “menu” of features that agent systems
can —and often do — employ.

Decentralization: Objects can be thought of as
centrally organized, because an object's methods are
invoked under the control of other components in the
system. Yet, some situations require techniques that are
decentralized and self-organized. For example, classical
ballet requires a high degree of centralization called
choreography, while at the other extreme the processes of
nature involve a high degree of individual direction.
However, most businesses require a balance of
standardized procedures and individual initiative: one
extreme or the other would be detrimental to the
business.

Supply-chain systems can be planned and centrally
organized when the business is basically stable and
predictable. In unstable and unpredictable environments,
supply chains should be decentralized and self-organized
(an option not supported by commercial supply-chain
systems today). Agent-based environments can employ
both centralized and decentralized processing. While
agents can certainly support centralized systems, they
can also provide us with the ultimate in distributed
computing.

Multiple and dynamic classification: In OO
languages, objects are created by a class and, once
created, may never change their class or become
instances of multiple classes (except by inheritance).
Agents can provide a more flexible approach. For
example, a particular agent can be a person, employee,
spouse, landowner, customer, and seller all at the same
time or at different times. When the agent is an
employee, that agent has all the state and procedural
elements consistent with being an employee. If the agent
is terminated from his or her job, the employment-related
state and procedural elements are now longer available to
the agent. Whether employed or not, the agent is still the
same entity—it just has a different set of features. The
ability to express roles and role changes is not new to
OO. However, most OO languages do not directly
support this mechanism (even though UML does).

Furthermore, agents might play different roles in
different domains. When you go to work, you play the
employee role. When you return home, you change
roles—for example, playing the spouse role. OO
languages do not directly support such domain-
dependent mechanisms that are necessary for agent-
based environments. The single-class OO approach is
efficient and reliable; the multiple and dynamic approach
provides flexibility and more closely models our
perception of the world. Agents can use either approach;
the choice belongs to the system designer.

Instance-level features: The features possessed by
each object are defined by the object’s class—a benefit
enjoyed by agents as well. However, each agent may
also acquire or modify its own features, i.e., features that
are not defined at the class level, but at the individual
agent (or instance) level. In other words, if an individual
agent has the ability to learn, it can change its own
behavior— permitting it to act differently that any other

REPRESENTING AGENTS AND THEIR... Informatica 28 (2004) 3–11 5

agent. If an agent can change itself, it can add (as well as
subtract) features dynamically. For example, with
genetic programming software, agents are created
genetically. Here, each parent contributes some portion
of an offspring agent's genetic string—much in the same
way that occurs in nature. This approach is particularly
popular in one area of agent-based systems known as
artificial life. (Artificial life is the study of man-made
systems that exhibit the behavioral characteristic of
natural living systems. It models life-as-we-know-it
within the larger picture of life-as-it-should-be.)

Emergence: The interaction of many individual
agents can give rise to secondary effects where groups of
agents behave as a single entity. For example, ant
colonies, flocks of birds, and stock markets have
emergent qualities. Each consists of individual agents
acting according to their own rules and even cooperating
to some extent. Yet, ants colonies thrive, birds flock, and
markets achieve global allocations of resources—all
without a central cause or an overall plan. Agents can
possess just a few very simple rules to produce
emergence. In fact, when constructing agent-based
systems, starting out with simple agents is important,
because emergence is then easier to understand and
harness. More complexity can be added over time to
avoid being overwhelmed.

Since traditional objects do not interact without a
higher level thread of control, emergence does not
usually occur. As more agents become decentralized,
their interaction is subject to emergence—either positive
or negative. This phenomenon is both the good news and
bad news for large multiagent systems.

Analogies from nature: The autonomous and
interactive character of agents more closely resembles
natural systems than do objects. Since nature has long
been very successful, identifying analogous situations to
use in agent-based systems is sensible. For example,
agents can die when they lack supportive resources. In
supply-chain manufacturing, when a manufacturing-cell
agent cannot operate profitably, it dies of "malnutrition."
Furthermore, another manufacturing cell could come by
and scavenge useful bits from the newly dead cell.

Agents can exhibit properties of parasitism,
symbiosis, and mimicry. They can participate in "arms
races" where agents can learn and outdo other agents.
Agents can participate in sexual (and asexual)
reproduction that can incorporate principles from
Darwinian and Lamarckian evolution. Agent societies
can exhibit political and organizational properties—
whether they are organized, anarchic, or democratic. In
short, nature can provide a rich trove of ideas for
multiagent system design.

3 Current Notation Challenges

Representing automated systems with currently available
notations is known to be problematic. The excessive need
for English notes in the modeling notation is one primary
indication of such inadequacies. Modeling languages that

communicate to a narrow set of system developers and
do not communicate to others is a problem for
communication among developers in general. These
limitations have already triggered a revision process in
UML (known as UML 2.0), which tries to remove some
of these current limitations. Furthermore, FIPA has
recently launched a Modeling Technical Committee
which will develop an agent-based notation called
AUML (Agent-based Unified Modeling Language).
With agent-based systems, modeling languages are even
more challenging because of the richness of representing
agents and their systems. In this section, we discuss
various aspects of agent-based systems and where
graphical modeling languages might be useful to
conceptualize and communicate about these systems.
First, we begin by examining various aspects of intra-
agent requirements. Second, we examine modeling
language opportunities that represent agents interacting
with other agents. Lastly, we consider the role of the
environment in agent-based systems and potential areas
for modeling languages.

3.1 Intra-Agent Modeling
Agents are autonomous entities and therefore must be
able to manage their own thread of control. This
management can consist of simple rules and procedures.
More elaborate agents, however, can include belief-
desire-intention (BDI) mechanisms and learning
capabilities. Expressing some of these features
graphically is already occurring.

Agent makeup: A common requirement for
developers of agent-based systems is to specify the way
in which an agent is composed. For instance, [4] suggest
extensions to UML that expresses features, such as state
attributes, actions, capabilities, perception, constraints,
and available services.

However, agent might consist of other kinds of
structures, such as classes, components, packages, as
well as other agents. Here, UML class, component, and
package diagrams can be employed to depict these
notions.

Agent activities and goals: A new aspect that agents
bring to modeling is that each agent can seek multiple
goals and perform multiple tasks. These goals and tasks
are pursued by the agent via the roles that the agent
assumes when interacting with other agents. At first, this
representation may look like no more than the equivalent
to an aggregation pattern in a class diagram, which can
be easily represented in UML. However, an agent’s
relationship with its goals and tasks is not as simple as an
object aggregation. The autonomicity of an agent
frequently promotes that such agents may not pursue a
given goal or task, even though it might be included in its
realm of specification.

Although one could extrapolate that it is easy enough
to include zero as a valid quantity for a given goal/task,
which would indicate that such goal/task might never be
pursued, the semantics of the notation would have been
changed from its original meaning.

6 Informatica 28 (2004) 3–11 R. Levy et al.

Several existing diagrams could model some of these
situations. For example, a UML activity and state
diagram could depict an agent’s activities flow of control
or state-based nature [5]. Goals, goal hierarchies, and
goal-task implications could be depicted using notations
defined in MESSAGE [6]. However, these goal-related
diagrams have not reached a great acceptance.

Dynamic adaptability: Different than objects,
agents can have the ability to modify their own behavior.
Goals and tasks can be added and removed, as new
features are acquired, learned, or considered obsolete for
the environment. Despite the actual methodology used to
implement the learning process, the needed
representation for this feature was not present on
standard object-oriented modeling. Dynamic adaptability
can also include when, and, where a role be
acquired/learned.

Using analogy: Analogies from nature, including
human social psychology can be useful to aid designing
MAS. For example, modeling techniques would be
useful for depicting notions such as single cell animal,
the shared environment of cell structures within cell, the
communication environment within a cell; a cell-to-
internal-structure relation. The forthcoming section on
Environmental Modeling will help with most of these
concerns.

3.2 Inter-Agent Modeling
In a MAS, agents interact with other agents.
Furthermore, to make multiagent systems scaleable,
some form of agent grouping must be provided.

Agent interaction: Social systems consist of sets of
interdependent role behaviors, providing a collective
pattern in which agents play their parts, or roles. The
limitations of the current notation become even more
visible, when the need to represent inter-task
relationships is present. To illustrate this argument, let’s
assume that an agent of type A can enroll as either,
buyer, broker or seller in a particular negotiation, but it
can only assume one of these tasks for a particular
negotiation.

To further complicate the modeling, several
negotiations may be active at any particular moment.
Since these multiple tasks may need to access common
information at the agent level, it is important to
determine how access to common values is controlled
and prioritized. Observe that in standard software
engineering the modeler hardly ever reaches this level of
detail, leaving to the implementer to guarantee
correctness. In this case, however, the correctness is not
at the implementer’s level, but rather is an aspect of the
system being modeled. UML sequence and activity
diagrams [7] are one mechanism for depicting
interactions using roles (See Fig. 2.). However, much
still remains to be done in this area. For example,
depicting role changes and role constraints still remains a
challenge.

seller-rfp

Buyer Seller

refuse-1

not-understood

propose

accept-proposal

reject-proposal

inform

cancel

deadline:�
8/8/99 at�

12:00 hours
x

x

xrefuse-2

Figure 2: Interaction protocol involving buyer and seller
agents.

Agent populations: Agent-based systems are no

longer contained within the boundaries of single, small-
agent groups. A group is a set of agents that are related
via their roles, where these relationships must form a
connected graph within the group. Groups can range
from small “work cells” to large organizations and
institutions. To meet the demands of large-scale system
implementations, groups of agent must interact with
other agent groups, as well as affect individual agents.

Representing groups, roles, and agent dependencies
would be useful in developing MAS. Castelfranchi [8]
has defined several forms of agent dependency that can
be expressed graphically using a UML-based
dependency diagram. Ferber [9] presents graphical
approach of his AALAADIN software to represent
groups, as well as their membership and interface points.
However, much still remains to be done in this area. For
example, a way of defining the mechanisms and
environment for a group is still not very well developed.
However, the forthcoming Environment Modeling
section might shed some light on this.

Other: The shared environment of agents with
groups, the communication environment between groups,
and group-to-agent relations, is also an area for
examination. It will be address in the next section on
Environmental Modeling.

REPRESENTING AGENTS AND THEIR... Informatica 28 (2004) 3–11 7

3.3 Environmental modeling
Another issue in which agent based systems differ from
traditional OO object is in the way the agents interact
with each other. Agents don’t have direct access to other
agents; instead they use the environment in which they
are immersed to transmit messages to other agents. As an
agent executes, it modifies its environment either directly
(sending messages that other agents can listen) or
indirectly (by altering some of the environment aspects
which other agents can sense).

In this fashion the environment plays the role of a
Petri dish, setting the rules with which those agents will
interact. Due to its vital role, it is important to describe
precisely such environment since a slight change could
impact the results of the agent system in unpredictable
ways. Currently there are no standardized ways to
describe this important feature, and to differentiate it
from the agent code itself.

Without an environment, an agent is effectively
useless. Cut off from the rest of its world, the agent can
neither sense nor act. An environment provides the
conditions under which an entity (agent or object) can
exist. It defines the properties of the world in which an
agent will function. Designing effective agents requires
careful consideration of both the physical and
communicational aspects of their environment.

Physical Environment: The particular kind of
environment that biological agents (animals and plants)
require for survival is referred to as their ecological
niche. While artificial agents can have different
requirements for survival, they still require an ecological
niche, or physical environment, to support them. The
physical environment provides those principles and
processes that govern and support a population of
entities.

Principles: For agents, principles of the physical
environment can be thought of as laws, rules, constraints,
and policies that govern and support the physical
existence of agents and objects. However, currently
there are no modeling languages that can express the
basic characteristics for an agent environment [10; 11]:
accessibility, determinism, diversity, controllability,
volatility, temporality, locality, and medium. Perhaps,
no graphical techniques can adequately express any of
these characteristics. However, some thought should go
into whether or not modeling languages might be useful
to the MAS developer.

Processes: In an agent environment, a primary
purpose of processes is to implement the environmental
principle. For example, the gravitational field is a
principle that can be implemented with a process that
attracts entities in a prescribed manner. In other words,
the falling of an apple to earth can be regarded as the
process of gravity in action. Different physical
environments will be required for different kinds of
agents—and vice versa. With artificial agents, much
more than physics is happening because much of the
environment is information intensive. In many defense-
related agent systems, the information-intense
environment includes satellite telemetry, body- and

vehicle-based communications technology, and
geographic positioning grids. In agent-based supply
chains, information about orders and resources is a major
component of the system.

To support the varied information requirements of
such agent-based systems, a common processing
platform would be useful and would consist of:
application support, communication and transportation,
physical linkage, agent management system, agent
platform security manager, agent platform
communication channel. Indeed several agent platforms
have been develop to support the implementation of such
agent systems (OpenCybele, JADE, Zeus, Voyager,
aglets just to name a few) each with its own strengths and
weaknesses.

In order to detail which features are more relevant
for the MAS under development and assist implementers
in selecting the correct tools, it is fundamental for the
developer to be able to express the relationship of the
agents with their environment as well as the structure of
each agent. Again, few graphical techniques can
adequately express many of these requirements. Yet,
some thought should go into whether or not modeling
languages might be useful to express these requirements
to a MAS developer. For example, the UML
deployment, component, and class diagrams might be
useful here.

Communication Environment: While an agent can
operate by alone, the increasing interconnections and
networking require a different kind of agent—one that
can communicate effectively with other agents. A
communication environment provides two things. First,
it provides the principles and processes that govern and
support the exchange of ideas, knowledge, information,
and data. Second, it provides those functions and
structures that are commonly employed to enhance
communication, such as roles, groups, and the interaction
protocols between roles and groups. In short: The
communication environment provides those principles,
processes, and structures that enable an infrastructure for
agents to convey information.

In rich multiagent societies (MAS), several
principles are required to facilitate the communication
environment. These would include: communication
language, interaction protocols, coordination strategies,
social policies, and culture.

An agent’s communication environment provides
processes that enable agents to interact productively. In
particular, it must provide: interaction management,
language processing and policing, coordination strategy
services, Directory service, mediation services, policy
enforcement service, social differentiation, and social
order1.

Providing techniques for modeling both
communication principles and processes are highly
important to the functioning success of any large-scale
MAS. As mentioned earlier, UML sequence and activity

1 The agent communication channels are defined as part
of the physical environment. The communication
environment uses those channels to convey information.

8 Informatica 28 (2004) 3–11 R. Levy et al.

diagrams are two mechanisms for depicting interactions
using roles.

4 Notation Proposition

4.1 Intra-agent modeling
In this paper, we propose the modeling of agents as
classes, with a new set of associations towards their
roles, which in turn can be defined as classes or
components. Figure 3 shows a possible diagram to
represent the relationship between an agent and its roles.
In this diagram, the agent uses the UML implements
association on a different manner then the original way
intended by OO. Our proposed agent-modeling notion of
classes has no parallel with actual implementation but
rather the concept of independent structure. Hence the
notion of an implementation association is somewhat
different in which it qualifies the agent as capable of
assuming the target role.

The diagram below has other notation propositions,
which can be observed as the relationships between the
roles themselves. One may observe two proposed
standard associations between roles. The «prevents»
association means that while an agent is performing a
given role, within a context (i.e., a specific interaction
between agents), it becomes illegal for such an agent to
perform the other role in the same context. These
associations are unilateral, which forces us to indicate
twice when the association is mutual exclusive.

Figure 3: Proposed Class Diagram for Agents

The diagram above also demonstrates two new

concepts that are important for multi-agent descriptions.
The first concept is the presence of a variable. This
variable does not represent a real variable in the
implementation sense but rather an agent feature that is
observable by its roles. The second concept is a concept
of condition. A condition is a clause that holds
relationships between an agent and one of its possible
roles. In the example above the condition will hold true,
when the agent’s notary feature is false. The consequence
of the condition becoming true is the associations with
the roles, which in the case shown forbids the agent to
assume the broker role.

There is a slight but significant difference between
the «prevents» and the «forbids» association. The
«forbids» association impedes the execution of a role in
any context, which has a much broader effect then the
former one. The dual for the «prevents» and «forbids»
associations would be the «permits» and «allows»
associations respectively. One can certainly anticipate the
needs of other standard associations such as: obtain,
reset, removes, and others, which are yet to be explored.

Figure 4: Class Diagram with Environment description

4.2 Environment Modeling
Our proposal for environment modeling is also based on
the UML class diagram. Once more the modeling makes
no inference on the implementation implication of
classes but rather the encapsulation concept that they
assume. In our proposed modeling the global
environment is represented as wrapper around local
environments. Figure 4 demonstrates a simplistic
environment to simulate bacteria growth. In this
environment, two sugary solutions are placed in vials that
share an osmotic membrane. The relationship that
describes the osmosis process between the two sub-
environments is clearly defined as dependant on the
mechanics of the osmosis class. Each sub-environment
has its own grid that controls the amount of sugar
available in a certain coordinate.

 The model environment indicates that an agent has
to perform a “sense sugar” role in order to receive
information about the current concentration of sugar in
its location. In contrast any agent in this environment
immediately knows the concentration of O2 without the
need to an interaction. From the aggregate symbol in the
diagram above one can conclude that the grid is actually
a part of the vial sub-environment, but it has
encapsulated some unique behavior, as it is in this case
the way the sugar diffuses in the syrup.

5 Example
The purpose of this chapter is to demonstrate how even a
simple example real example can become a challenge for
notion languages when the richness of the system is to be
fully described such as needed when describing agent
systems.

REPRESENTING AGENTS AND THEIR... Informatica 28 (2004) 3–11 9

5.1 Case Study Description
The case study demonstrated is based in the United
Nations Security Council resolution process and was
used as a debate example in the FIPA Modeling
Technical Committee.

Description: The UN Security Council (UN-SC)
consists of 15 members, where 5 are permanent members
and the others are rotated from the members of the
United Nations according with the rules of the
organization. Members become the Chair of the Security
Council in turn monthly.

To pass a UN-SC resolution, the following procedure

would be followed:
(1) At least one member of UN-SC submits a

proposal to the current Chair;
(2) The Chair distributes the proposal to all

members of UN-SC and set a date for a vote on the
proposal.

(3) At a given date that the Chair set, a vote from
the members is made;

(4) Each member of the Security Council can vote
either FOR or AGAINST or ABSTAIN;

(5) The proposal becomes a UN-SC resolution, if at
least nine members voted FOR, and no permanent
member voted AGAINST (veto power).

(6) The members vote one at a time.
(7) The Chair calls the order to vote, and it is

always the last one to vote.
(8) The vote is open (in other words, when one

votes, all the other members know the vote)
(9) The proposing member(s) can withdraw the

proposal before the vote starts and in that case no vote on
the proposal will take place.

(10) All representatives vote on the same day, one
after another, so the chair cannot change within the vote
call; but it is possible for the chair to change between a
proposal is submitted until it goes into vote, in this case
the earlier chair has to forward the proposal to the new
one.

(11) A vote is always finished in one day and no
chair change happens on that day. The chair sets the date
of the vote.

(12) There is no change in the composition of the
Security Council during the entire voting process.
Proposals that cannot be voted in time are automatically
withdrawn and should be resubmitted (or not) when the
new composition of the Security Council is reestablished.

One must observe that the procedure above was

defined for a case study of agent-oriented modeling, and
it does NOT necessary represents the reality.

5.2 Notation Challenges
Even in this simple system, one can identify several
notions that can be problematic in modeling language
representations.

The first notation challenge is to clearly represent the
group organization within the Security Council amongst

the several agents, (i.e., permanent/temporary members,
chair) and how agents (members) join or leave their
groups.

The second problem is how to demonstrate the
cyclical nature of the voting process without creating a
lifeline for each member and even more how to describe
the temporary attributions of a member while it is
occupying the “chair” role.

Other notation challenges are due to the possible
combinations of allowed/disallowed membership/chair
change during different moments in the process. The
multitude of combinations forces us to create a modeling
format that supports this flexibility and yet clearly
defines which paths of execution are possible.

5.3 Proposed Diagrams
The diagrams presented in this section were our proposed
solution to this study case as presented in the FIPA
modeling Technical Committee forum.

Our solution for the case study presented was
composed of four diagrams. The first diagram [Figure 5]
presents the Security Council (SC) environment with its
two groups and indicates each member by name
(members were current when the solution was crafted).

Figure 5: UN-Security Council Environment

One of the drawbacks pointed out in our solution
was the lack of a process description by which temporary
members are rotated (or even that this rotation is a
necessary feature of the system). In order to introduce
this notion, the SC environment has to be defined as a
sub-environment of the whole United Nations
environment. Other solutions presented in the forum,
which have modeled the environment with a group
membership focus, were able to express this process in a
clearer fashion.

The intra-agent representation of our solution was

entirely based on the functional perspective of the
member agent. For a full description of the agent’s
internal structure other perspectives are necessary such as
goal orientation (how the agent would use the available
roles to pursue a given goal), social relationship (how the
instantiation of role varies the membership in the defined
groups of the system) and even in case of software
systems, the implementation perspective which describes
each of the classes used to implement the agent and the
relationship between these classes on a software
engineering view.

10 Informatica 28 (2004) 3–11 R. Levy et al.

Figure 6: Intra-Agent functional description

In object-oriented systems, typically only the
implementation perspective is used and notions of the
functional perspective are merged into the diagram. Due
to the complexity of agent systems (and its use to explain
and predict model behaviors in non-software oriented
domains) a clear separation and indication of the
perspective of the diagram becomes quintessential. To
our knowledge this kind of diagram (with small
nomenclature and notation changes) seems to be the most
homogenous between the ones used to describe agents
systems.

Figure 7: Chair rotation interaction diagram

Figure 7 and Figure 8 show the chair rotation
process and the proposal voting process in an interaction
diagram format (sequence diagram in UML). In our
proposal we have tried to keep the notation as close as
possible with the newer version of UML (2.0), altering
and extending only when necessary.

One of the extensions was the usage of parameters to
define a specific individual in a lifeline that represents a
group in which the individual is member. The usage of
agent conditions (current chair) or message-defined
values allows the representation of the group as a whole
in the lifeline, and at the same time isolates the addressed

individual in the group, promoting a temporary
bifurcation of the lifeline.

Figure 8: interaction diagram for proposal voting

The lifeline bifurcation (present in UML 2.0 without
parameters) has been criticized as being visually
cumbersome when several blocks (alt, loops, …) are
involved.

The second extension is expressed in Figure 7, to
indicate the change/add of role in which a SC-member
becomes the new chair of the Security Council.

The final extension is only to create the optional
block representation (marked by an opt label in the block
construction). This type of block, which does not exist in
UML 2.0, indicates that actions within the block may or
not happen (as a block). This simple extension allows the
consolidation of two very similar interaction paths and
hence the simplification of the overall interaction
diagram.

REPRESENTING AGENTS AND THEIR... Informatica 28 (2004) 3–11 11

Discussions with the FIPA modeling technical
committee have raised the concern that the relationships
between different interaction diagrams are not clear in
our solution. Other authors in the forum have presented
Workflow/Activity based diagrams that were developed
to present the overall scheme between these diagrams.

6 Conclusion
In this paper we have presented some of the challenges
of modeling and notation of agent based systems and
how they differ from standard object oriented systems.
We have also proposed a notation format for the
presented challenges that are compliant with an extended
view of UML.

This paper has no intention to try to determine the
best notation for agent systems. The intention is rather to
present the need and stir the debate on this issue that is
currently active in the Agentlink and FIPA forums.

Acknowledgement

We would like to acknowledge NASA for funding this
effort in standardization of AUML notation as part of the
project under contract NAS2-02003 and the collaboration
of NASA’s technical representative Ms. Michelle Eshow
in our efforts.

Our thanks to Radovan Cervenka, Hong Zhu and
Misty Nodine, for their collaboration in the definition
and discussion of the study case presented which was
extracted from the discussion in the FIPA Modeling TC
forum, where each researcher presented their own
solution.

References
[1] HPLabs, http://www.hpl.hp.com/agents/
[2] BritishTelecom-

http://more.btexact.com/projects/agents.htm
[3] Parunak, H. Van Dyke, "’Go to the Ant’:

Engineering Principles from Natural Agent
Systems," Annals of Operations Research, 75, 1997,
pp. 69-101.

[4] Huget, Marc-Philippe, “Agent UML Class Diagrams
Revisited,” proceedings of the AgeS 2002
Workshop, Bolognia, 2002.

[5] Odell, J., H.V.D. Parunak, and B. Bauer,
Representing Agent Interaction Protocols in UML,
in Agent-Oriented Software Engineering, P.
Ciancarini and M. Wooldridge, Editors. 2001,
Springer: Berlin. p. 121-140.

[6] Evans, R., et al., MESSAGE: Methodology for
Agent-Oriented Software Engineering. 2001,
EURESCOM Project P907, Deliverable 3.

[7] Odell, J., H.V.D. Paranak, and B. Bauer, “Extending
UML for Agents,” in Proc. of the Agent-Oriented
Information Systems Workshop at the 17th National
conference on Artificial Intelligence, G.W. Yves
Lesperance, and Eric Yu, Editor. 2000, workshop
proceedings: Austin, TX. p. 3-17.

[8] Castelfranchi, C., “Engineering Social Order,”
Nordic Journal of Philosophical Logic, 2002. (to
appear).

[9] Ferber, J. and O. Gutknecht, “A meta-model for the
analysis and design of organizations in multi-agent
systems,” in Third International Conference on
Multi-Agent Systems (ICMAS'98). 1998. Paris,
IEEE Computer Society.

[10] Weiss, G., ed. Multiagent Systems: A Modern
Approach to Distributed artificial Intelligence. 1999,
MIT Press: Cambridge, MA.

[11] Russell, S. and P. Norvig, Artificial Intelligence: A
Modern Approach. 1995, NJ: Prentice-Hall

