G E O L O G I J A št.: 67/2, 2024 www.geologija-revija.si 193 Ivančič, K., Bartol, M., Marinšek, M., Kralj, P., Mencin Gale, E., Atanackov, J. & Horvat, A. A review of the Neogene formations and beds in Slovenia, Western Central Paratethys 217 Spahić, D., Simić, D., Barjaktarović, M. & Kurešević, L. Late Cretaceous turbidite systems of southern Belgrade outskirts: Constraints on the Santonian convergence onset, evidence from the Sava Suture Zone (Guberevac-Babe, northern Šumadija, Serbia) 237 Mangasini, F.M., Msabi, M., Macheyeki, A. & Kira, A. Alternative gold prospecting methods used by artisanal and small scale miners: A review 249 Čar, J. & Šegina, E. Geologic structure and origin of the Zadlog karst polje 273 Rogan Šmuc, N. Molybdenum, lead and zinc mobility potential in agricultural environments: a case study of the Kočani field, North Macedonia 285 Pattnaik, S. & Majhi, S. Mineralogy, geochemistry and genesis of low-grade manganese ores of Anujurhi area, Eastern Ghats, India 301 Umaraliev, R., Zaginaev, V., Sakyev, D., Tockov, D., Amanova, M., Makhmudova, Z., Nazarkulov, K., Abdrakhmatov, K., Nizamiev, A., Moura, R. & Blanchard, K. Localised multi-hazard risk assessment in Kyrgyz Republic 317 Bavec, Š., Cerar, S., Gaberšek, M. & Pogačnik, Ž. Geokemična porazdelitev elementov v okoljskih medijih iz okolice degradiranih območij površinskih kopov 333 Čeru, T. Izobraževalno-ustvarjalne delavnice: vključevanje ustvarjalnega izraza v geološke učne vsebine ISSN 0016-7789 2024 | št.: 67/2 20 24 | št .: 67 /2 ISSN Tiskana izdaja / Print edition: 0016-7789 Spletna izdaja / Online edition: 1854-620X GEOLOGIJA 67/2 – 2024 GEOLOGIJA 2024 67/2 187-368 Ljubljana GEOLOGIJA ISSN 0016-7789 Izdajatelj: Geološki zavod Slovenije, zanj direktor dr. Miloš Bavec Publisher: Geological Survey of Slovenia, represented by Director dr. Miloš Bavec Financirata Javna agencija za raziskovalno in inovacijsko dejavnost Republike Slovenije in Geološki zavod Slovenije Financed by the Slovenian Research and Innovation Agency and the Geological Survey of Slovenia UREDNIŠTVO / EDITORIAL TEAM Glavna in odgovorna urednica / Editor-in-Chief: dr. Mateja Gosar, Geological Survey of Slovenia, Ljubljana, Slovenia Tehnična urednica / Technical Editor: Bernarda Bole, Geological Survey of Slovenia, Ljubljana, Slovenia ČLANI TEHNIČNEGA UREDNIŠTVA / TECHNICAL EDITORIAL TEAM Vida Pavlica, Geological Survey of Slovenia, Ljubljana, Slovenia Maks Šinigoj, Geological Survey of Slovenia, Ljubljana, Slovenia Irena Trebušak, Geological Survey of Slovenia, Ljubljana, Slovenia Marko Zakrajšek, Marko Zakrajšek, e-Tutor s.p., Kranj, Slovenia UREDNIŠKI ODBOR / EDITORIAL BOARD Dunja Aljinović, Faculty of Mining Geology and Petroleum Engineering, Zagreb, Croatia Kristine Asch, Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany Maria João Batista, National Laboratory of Energy and Geology, Lisbon, Portugal Giovanni Battista Carulli, University of Trieste, Department of Mathematics and Earth Sciences, Trieste, Italy Miloš Bavec, Geological Survey of Slovenia, Ljubljana, Slovenia Mihael Brenčič, University of Ljubljana, Faculty of Natural Sciences and Engineering and Geological Survey of Slovenia, Ljubljana, Slovenia Stefano Covelli, University of Trieste, Department of Mathematics, Informatics and Geosciences, Trieste, Italy Katica Drobne, Research Centre of the Slovenian Academy of Sciences an Arts, Ivan Rakovec Institute of Palaeontology, Ljubljana, Slovenia Jadran Faganeli, University of Ljubljana, Biotechnical Faculty Ljubljana, Slovenia Lászlo Fódor, Eötvös Loránd University, Budapest, Hungary Martin Gaberšek, Geological Survey of Slovenia, Ljubljana, Slovenia Luka Gale, University of Ljubljana, Faculty of Natural Sciences and Engineering and Geological Survey of Slovenia, Ljubljana, Slovenia Špela Goričan, Research Centre of the Slovenian Academy of Sciences an Arts, Ivan Rakovec Institute of Palaeontology, Ljubljana, Slovenia Andrej Gosar, Slovenian Environment Agency and University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana, Slovenia Petra Jamšek Rupnik, Geological Survey of Slovenia, Ljubljana, Slovenia János Haas, Etvos Lorand University, Budapest, Hungary Mitja Janža, Geological Survey of Slovenia, Ljubljana, Slovenia Mateja Jemec Auflič, Geological Survey of Slovenia, Ljubljana, Slovenia Bogdan Jurkovšek, Geological Survey of Slovenia, Ljubljana, Slovenia Roman Koch, GeoZentrum Nordbayern, Institute of Palaeontology, Erlangen, Germany Marko Komac, Marko Komac s.p., Ljubljana, Slovenia Harald Lobitzer, GeoSphere Austria, Vienna, Austria Tamara Marković, Croatian Geological Survey, Zagreb, Croatia Miloš Miler, Geological Survey of Slovenia, Ljubljana, Slovenia Rinaldo Nicolich, University of Trieste, Trieste, Italy Frank Preusser, University of Freiburg, Institute of Earth and Environmental Science, Freiburg, Germany Roberto Rettori, University of Perugia, Department of Physics and Geology, Perugia, Italy Mihael Ribičič, University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana, Slovenia Nina Rman, Geological Survey of Slovenia, Ljubljana, Slovenia Boštjan Rožič, University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana, Slovenia Milan Sudar, University of Belgrade, Faculty of Mining and Geology, Beograd, Serbia Kristina Šarić, University of Belgrade, Faculty of Mining and Geology, Beograd, Serbia Sašo Šturm, Institut »Jožef Stefan«, Ljubljana, Slovenia Gevorg Tepanosyan, Center for Ecological-Noosphere Studies NAS RA, Yerevan, Armenia Timotej Verbovšek, University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana, Slovenia Miran Veselič, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Ljubljana, Slovenia Michael Wagreich, University of Vienna, Department of Geology, Vienna, Austria Nina Zupančič, University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana, Slovenia Naslov uredništva / Editorial Office: GEOLOGIJA Geološki zavod Slovenije / Geological Survey of Slovenia Dimičeva ulica 14, SI-1000 Ljubljana, Slovenija Tel.: +386 (01) 2809-700, Fax: +386 (01) 2809-753, e-mail: urednik@geologija-revija.si URL: https://www.geologija-revija.si/ GEOLOGIJA izhaja dvakrat letno. / GEOLOGIJA is published two times a year. GEOLOGIJA je na voljo tudi preko medknjižnične izmenjave publikacij. / GEOLOGIJA is available also on exchange basis. Izjava o etičnosti Izdajatelji revije Geologija se zavedamo dejstva, da so se z naglim naraščanjem števila objav v svetovni znanstveni lite- raturi razmahnili tudi poskusi plagiatorstva, zlorab in prevar. Menimo, da je naša naloga, da se po svojih močeh borimo proti tem pojavom, zato v celoti sledimo etičnim smernicam in standardom, ki jih je razvil odbor COPE (Committee for Publication Ethics). Publication Ethics Statement As the publisher of Geologija, we are aware of the fact that with growing number of published titles also the problem of plagiarism, fraud and misconduct is becoming more severe in scientific publishing. We have, therefore, committed to support ethical publication and have fully endorsed the guidelines and standards developed by COPE (Committee on Publication Ethics). Baze, v katerih je Geologija indeksirana / Indexation bases of Geologija: Scopus, Directory of Open Access Journals, GeoRef, Zoological Record, Geoscience e- Journals, EBSCOhost Cena / Price Posamezni izvod / Single Issue Letna naročnina / Annual Subscription Posameznik / Individual: 15 € Posameznik / Individual: 25 € Institucija / Institutional: 25 € Institucija / Institutional: 40 € Tisk / Printed by: TISKARNA JANUŠ d.o.o. Slika na naslovnici: Slike so nastale tekom izobraževalno-ustvarjalnih delavnic slikanja z naravnimi barvami. (Čeru, članek v tej številki) Cover page: The paintings were created during events of the educational-creative workshops on painting with natural colours. (Čeru, paper in this issue) GEOLOGIJA 67/2, 187-368, Ljubljana 2024 VSEBINA – CONTENTS Članki - Articles Ivančič, K., Bartol, M., Marinšek, M., Kralj, P., Mencin Gale, E., Atanackov, J. & Horvat, A. A review of the Neogene formations and beds in Slovenia, Western Central Paratethys ......................................... 193 Pregled neogenskih formacij in plasti v Sloveniji, zahodna Centralna Paratetida Spahić, D., Simić, D., Barjaktarović, M. & Kurešević, L. Late Cretaceous turbidite systems of southern Belgrade outskirts: Constraints on the Santonian convergence onset, evidence from the Sava Suture Zone (Guberevac-Babe, northern Šumadija, Serbia) .............................. 217 Zgornjekredni turbiditi južnega obrobja Beograda: Podrobna opredelitev začetka santonijske konvergence, dokazi iz Savske šivne cone (Guberevac-Babe, severna Šumadija, Srbija) Mangasini, F.M., Msabi, M., Macheyeki, A. & Kira, A. Alternative gold prospecting methods used by artisanal and small scale miners: A review ............................... 237 Alternativne metode iskanja zlata, ki jih uporabljajo obrtniki in rudarji v majhnem obsegu: pregled Čar, J. & Šegina, E. Geologic structure and origin of the Zadlog karst polje .......................................................................................... 249 Geološka zgradba in nastanek kraškega polja Zadlog Rogan Šmuc, N. Molybdenum, lead and zinc mobility potential in agricultural environments: a case study of the Kočani field, North Macedonia ........................................................................................................................................................ 273 Mobilnost molibdena, svinca in cinka v kmetijskih okoljih, primer Kočanskega polja (Severna Makedonija) M. Pattnaik, S. & Majhi, S. Mineralogy, geochemistry and genesis of low-grade manganese ores of Anujurhi area, Eastern Ghats, India ...... 285 Mineralogija, geokemija in geneza revnih manganovih rud z območja Anujurhi, Vzhodni Gati, Indija Umaraliev, R., Zaginaev, V., Sakyev, D., Tockov, D., Amanova, M., Makhmudova, Z., Nazarkulov, K., Abdrakhmatov, K., Nizamiev, A., Moura, R. & Blanchard, K. Localised multi-hazard risk assessment in Kyrgyz Republic .................................................................................. 301 Ocena tveganja večkratnih nevarnosti v Kirgiški republiki Bavec, Š., Cerar, S., Gaberšek, M. & Pogačnik, Ž. Geokemična porazdelitev elementov v okoljskih medijih iz okolice degradiranih območij površinskih kopov .....317 Geochemical distribution of elements in the environmental media from the surroundings of open pit areas Čeru, T. Izobraževalno-ustvarjalne delavnice: vključevanje ustvarjalnega izraza v geološke učne vsebine ..................... 333 Educational-creative workshops: integrating creative expression into geological learning content Poročila in ostalo - Reports and More Ivančič, K. : Poročilo o mednarodnem neogenskem srečanju NCSEE (Neogene of Central and South-Eastern Europe) .......................................................................................................................................................................... 349 Žagar, K., Koren Pepelnik, K., Rman, N. & Vreča, P.: Nacionalna delavnica o izotopih: Izboljšanje zmogljivosti upravljanja z vodnimi viri ........................................................................................................................................... 352 Domej, G.: From a Birthday Conference to an Apricot Plantation - An unusual business trip to Kyrgyzstan and Tajikistan (with a lot of food) October 6th to 19th, 2024 ................................................................................. 355 Repetski, J.E.: Tea Kolar-Jurkovšek elected as Honorary Fellow of the Geological Society of America ................ 365 Nekrolog - In memorium Zupančič, N.: V spomin zaslužnemu profesorju dr. Simonu Pircu. ............................................................................. 367 © Author(s) 2024. CC Atribution 4.0 License A review of the Neogene formations and beds in Slovenia, Western Central Paratethys Pregled neogenskih formacij in plasti v Sloveniji, zahodna Centralna Paratetida Kristina IVANČIČ1*, Miloš BARTOL1, Miha MARINŠEK1, Polona KRALJ1, Eva MENCIN GALE1, Jure ATANACKOV1 & Aleksander HORVAT2 1Geološki zavod Slovenije, Dimičeva ulica 14, SI-1000 Ljubljana, Slovenija; *corresponding author: kristina.ivancic@geo-zs.si 2ZRC SAZU, Paleontološki inštitut Ivana Rakovca, Novi trg 2, SI-1000 Ljubljana, Slovenija Prejeto / Received 8. 1. 2024; Sprejeto / Accepted 11. 6. 2024; Objavljeno na spletu / Published online 16. 12. 2024 Key words: Neogene, Miocene, Pannonian Basin System, Central Paratethys, Eastern Slovenia, Formations Ključne besede: Neogen, Miocen, Panonski bazen, Centralna Paratetida, Vzhodna Slovenija, formacije Abstract Neogene sedimentary successions are found in eastern and northeastern Slovenia. Their formation was closely related to the evolution of the western part of the Pannonian Basin System and the Central Paratethys; it was inf luenced by global transgressive and regressive cycles as well as by global, regional and local tectonics. Several formations and beds were defined within the Neogene sedimentary successions which can be found in three separate areas. The first one includes the formations north of two major fault systems, the Periadriatic Fault System and the Mid-Hungarian Zone, which were associated with the Mura-Zala and the Styrian Basins, respectively. Successions south of these major faults are not formally connected to any of the major basins and developed in two distinct parts: a strip between Tunjice and Kozjansko to the north and the Krško area to the south. From the Egerian to the early Badenian, different areas exhibit different types of sedimentation, whereas from the middle Badenian onwards, sedimentation in different zones is partly comparable, depending on the type of depositional environment. Egerian and Eggenburgian sediments are only found south of the above-mentioned major fault zones, whereas Karpatian sedimentation only occurred north of them. Sediments in both areas are characterized by alternation of shallow marine, brackish and terrestrial sedimentation. In contrast, sedimentary environment in the Badenian evolved from a terrestrial, mainly f luvial environment with alluvial fans, through a transitional stage (delta and lagoon) to a shallow and deep marine environment. The Sarmatian sequences ref lect a brackish environment with decreasing salinity and continue into extensive Pannonian delta systems that gradually fill the basins from west to east. The formations that correspond to the Pannonian in the Mura-Zala Basin can be correlated with the formations in the Krško area. The Pliocene is characterized by terrestrial sedimentation with the formation of rivers and lakes in the newly established intramontane basins. Izvleček Neogenska sedimentna zaporedja so prisotna v severovzhodnem in vzhodnem delu Slovenije. Njihov nastanek je vezan na razvoj zahodnega dela Panonskega bazena in Centralne Paratetide ter posledično na globalno, regionalno in lokalno tektonsko aktivnost ter globalne transgresijsko-regresijske cikle. Sedimentna zaporedja so opredeljena v več formacijah in plasteh, ki so se razvijala na treh večjih ločenih območjih. Prvo je severno od Periadriatskega preloma in Srednje- madžarske prelomne cone, kjer je bila sedimentacija vezana na Mursko-Zalski in Štajerski bazen. Neogenska zaporedja južno od omenjene prelomne cone so se razvijala na dveh ločenih območjih, v pasu od Tunjic do Kozjanskega ter na območju Krškega in niso del nobenih večjih bazenov. Od egerija do spodnjega badenija se sedimentna zaporedja med različnimi območji izrazito razlikujejo, medtem ko je sedimentacija od srednjega badenija dalje na različnih območjih delno primerljiva. Egerijski in eggenburgijski sedimetni so prisotni le južno od prelome cone, ottnangijske in karpatijske sedimente pa najdemo le severno od nje. V obeh primerih je sedimentacija potekala v plitvomorskem in brakičnem okolju ter na kopnem. Bolj enoten je bil razvoj od badenija dalje, ko je transgresija povzročila poplavitev celotnega ozemlja, kar je omogočilo razvoj podobnega sedimentacijskega okolja v različnih območjih. Sprva kopensko, predvsem rečno okolje z aluvialnimi vršaji se je nadaljevalo v prehodno okolje z deltami in lagunami, ki ga je hitro poplavilo morje Centralna Paratetida. Sarmatijska zaporedja odražajo brakično okolje z zmanjšano slanostjo, ki so počasi prehajala v obsežne sisteme panonskih delt. Te so postopoma zapolnjevala porečja od zahoda proti vzhodu, kar je omogočilo korelacijo formacije v Mursko-Zalskem bazenu in na območju Krškega. V pliocenu je značilna kopenska sedimentacija z nastankom rek in jezer v novo nastalih intramontanih bazenih. GEOLOGIJA 67/2, 193-215, Ljubljana 2024 https://doi.org/10.5474/geologija.2024.009 194 Kristina IVANČIČ, Miloš BARTOL, Miha MARINŠEK, Polona KRALJ, Eva MENCIN GALE, Jure ATANACKOV & Aleksander HORVAT Introduction The Miocene rocks and sediments, deposited in the Pannonian Basin System (PBS) are found in the eastern and north-eastern parts of Slove- nia. They are often present in distinct locations that stretch in an E-W or NW-SE direction. In the Miocene, sedimentation took place in three sepa- rate depositional units. In the north-eastern part, north of the Periadriatic Fault System (PFS) and Mid-Hungarian Zone (MHZ), south of it and in the Krško area. Sedimentation north of the PFS and MHZ was subjected to the development of two larger basins, the Mura-Zala and Styrian Basins (Fig. 1). The Mura-Zala Basin represented one of the deepest depressions of the PBS (Fodor et al., 2002), covering most of north and northeast Slo- venia in the Miocene (Drobne et al., 2008) (Fig. 1). The Styrian Basin was formed northwest of the Mura-Zala Basin - the boundary between these two basins in the present-day Slovenia is still not defined. It is described in Austria, where the boundary represents the South Burgenland Swell (Hasenhüttl et al., 2001). Each of these two basins is divided into smaller basins. The westernmost part, the Slovenj Gradec Basin, is connected to the Mura-Zala Basin (Ivančič et al., 2018a), while the northernmost part, the Ribnica-Selnica Trough, was subjected to the sedimentation of the Styri- an Basin (Gašparič & Hyžný, 2014). The second sedimentation unit was located south of the PFS Fig. 1. Distribution of the Miocene and Pliocene rocks in Slovenia. Explanatory notes: B – Basin, KA – Kungota area, KO – Kozjansko area, KR – Krško area, L – Laško area, M – Moravče area, RST – Ribnica Selnica Trough, S – Subbasin, SE – Senovo area, SGB – Slovenj Gradec Basin, T – Tunjice area, Z – Zagorje area (modified after Buser, 2010). 195A review of the Neogene formations and beds in Slovenia, Western Central Paratethys and MHZ. Today, the Miocene rocks are exposed in several parallel running facies belts (structur- ally forming cores of synclines) between Tunjice in the west through Moravče, Laško and Zagorje to Kozjansko in the east. The third unit is located in the south-east of the Sava Folds and represents the Krško area, which developed independently of the other two (Poljak, 2017a). At various times, the areas were either isolated and experienced unique development or connected and characterized by uniform sedimentation. Individual sedimentary sequences are com- bined into groups of strata, members and for- mations. Some formations are defined in several different regions (e. g., Laško formation, which is known from the area of Tunjice, Laško, Kozjansko and Krško), while other strata and members are associated to a single area (e. g., Radlje beds, which only occur in in the Ribnica-Selnica Trough). Syn- rift, post-rift and compressional tectonic phases along with eustatic changes have created various terrestrial, shallow- and deep-water sedimentary environments. Each formation represents a par- ticular type of sedimentary fill, characterized by a specific tectonic phase in a particular time interval (Jelen et al., 2006). This paper presents all the Neogene sedimenta- ry formations described in Slovenia in the transi- tional zone between the rising Alps and Dinarides on one side and the extensional PBS on the other. Their occurrence is strongly related to local, re- gional and global tectonic activity. Sedimentary succession has been extensively studied in a wide range of specific areas, but this knowledge has not yet been summarized into an integral picture. This paper aims to improve the general understanding of sedimentary processes taking place during the Neogene. Structural overview Northeastern Slovenia lies at the junction of four tectonic units: the PBS, the Southern Alps, the Eastern Alps and the Dinarides. The area is part of the broader collision zone between the African and Eurasian plate, characterized by a triple junc- tion of the European Plate, the Adriatic Microplate and the Pannonian Lithosphere (Brückl, 2010). The deep lithospheric structure is not definitive- ly known, with possible southward subduction of the European plate, northward subduction of the Adriatic plate or a combination of both. The area is split into two distinct zones of somewhat differ- ent Cenozoic tectonic evolution by the PFS and the MHZ. The PFS, which transitions into the MHZ, with its northernmost edge delineated by the Bala- ton Fault. The ALCAPA megaunit, composed of Adria-derived allochthons, underwent eastward lateral extrusion during the Neogene (Vrabec & Fodor, 2006; Schmid et al., 2020 and references therein; Fodor et al., 2021 and references therein). The zone to the north of the PFS-MHZ line, comprising the ALCAPA megaunit is composed of late Early to Late Cretaceous age Eoalpine gen- erally top-to-north thrust and nappe system of Adria-derived allochthons, generally composed of pre-Permian metamorphic rocks, with upward decreasing metamorphic grade, and overlying Per- mian to Mesozoic successions (Schmid et al., 2020 and references therein). The basement underwent extensive extensional tectonic deformation in the Miocene, as the result of subduction, slab breakoff and rollback in the Carpathians, the consequent crustal thinning and the formation of the Panno- nian Basin and the subsequent mantle upwelling and thermal subsidence of the basin. Extension- al tectonics in NE Slovenia initiated at 25–23 Ma (Eggerian), peaking at 19–15 Ma (Eggenburgian to Badenian) and ceasing by 12–11 Ma (Late Sarma- tian to early Pannonian) (Fodor et al., 2002, 2021). Extension resulted in the crustal thinning driven along low-angle detachment faults and the forma- tion of an asymmetric metamorphic core complex. It comprises the Pohorje and Kozjak domes, in which the metamorphic basement outcrops at the surface. To the east, the Murska Sobota extensional block or ridge moved eastward and subsided along the Pohorje and Kozjak detachments. Further still to the east, the Transdanubian Range moved east and subsided along the Baján detachment (Fodor et al., 2021). To the west of the Pohorje dome, the structure of the much smaller-scale extensional blocks is somewhat uncertain. The Pohorje and Kozjak domes are separated by the Lovrenc and Primož Faults. The (supradetachment) extensional basins formed both along the higher-angle normal faults that sole to the detachments and the detach- ments themselves, transitioned from terrestrial in the early Neogene (Eggenburgian to Karpa- tian, 19–17.25 Ma) into near-shore and bathyal in the Middle Miocene (Badenian, 15.97–12.8 Ma) (Fodor et al., 2021). Deformation subsequently migrated eastwards towards the Transdanubian Range in Hungary. In NE Slovenia, the most im- portant basins include the Slovenj Gradec Basin located west of the Pohorje dome, the Ribnica-Sel- nica Trough, which formed along the Lovrenc and Primož Faults, separating the Pohorje and Kozjak domes, the Radgona Subbasin, which lies to the north of the Murska Sobota ridge, the Ljutomer Subbasin, also known as the Haloze-Ljutomer- 196 Kristina IVANČIČ, Miloš BARTOL, Miha MARINŠEK, Polona KRALJ, Eva MENCIN GALE, Jure ATANACKOV & Aleksander HORVAT Budafa Subbasin located south of the Murska So- bota ridge, and the Mura-Zala Basin, which lies east of the Murska Sobota ridge (Fodor et al., 2002, 2021). The extensional tectonic regime per- sisted until the Sarmatian, after which the region underwent thermal subsidence, as evidenced by the deposition of a further, 1–2 km thick post-tec- tonic succession of sediments (Fodor et al., 2002). Neogene sediment total thickness reaches up to ~3000 m in the Radgona Subbasin, and more than 5000 m in the Ljutomer Subbasin (Gosar, 2005). In the latest Miocene and in the Pliocene, the region underwent an inversion of the tectonic re- gime, with extensional structures reactivated as compressional and transpressional, and exten- sional basins undergoing inversion (Fodor et al., 2002). The inversion only affected the southern part of the area, including the Ljutomer Subba- sin, with the reverse Ljutomer and Haloze North and South faults and the dextral strike-slip Do- nat Fault (Atanackov et al., 2021), and associat- ed large-scale folds, including the Ormož-Selnica Anticline and smaller-scale folds, such as the Pe- tišovci Anticline. South of the PFS-MHZ line, the basement is composed of the Adria-derived (eastward exten- sion of the) South Alpine unit, which comprises top-to-south thrust and nappe system composed mostly of Late Paleozoic (Carboniferous and Per- mian) clastics and Mesozoic carbonates. The South Alpine unit itself is thrust to the south over the External Dinarides, with the two units separated by the South Alpine Thrust Front (Placer, 2008; Schmid et al., 2020). The External Dinarides are a late-Eocene to early-Oligocene top-to-the south thrust / fold and thrust system, composed of Adria-derived allochthons, mostly of the Slove- nian carbonate platform and later the Dinaridic carbonate platform, to a much lesser extent the Slovenian Basin, overlain in the western part by Eocene to Oligocene f lysch (Placer, 2008; Schmid et al., 2020). The easternmost part of SE Slovenia comprises the transitional zone into the Internal Dinarides along the thinned Mesozoic carbonate platform margin and transition into basinal suc- cessions and ophiolites of the Internal Dinarides (Placer, 2008). The basement was dissected by extensional tectonics, at least in SE Slovenia and into Croatia where the structure is well known (Krško Basin), beginning in the early Neogene, continuing until the late Neogene (Tomljenović & Csontos, 2001; Poljak, 2017a). Successions of Ne- ogene marine sediments locally exceeds 1000 m, e.g. ~1500 m in the Globoko Basin (Poljak, 2017b). A Middle to Late-Miocene stress field change to a generally N-S compression resulted in the for- mation of the Sava Folds (Placer, 1998). This is a fold and thrust belt of E-W to ENE-WSW trend- ing large scale folds, in general east of the Ljublja- na Basin and the Žužemberk Fault, reaching east into Croatia. An extension of the Sava Folds to the west into the External Dinarides is strongly sus- pected (Rižnar, 2009). The formation of the Sava Folds may be asynchronous, post-Sarmatian in the north (Placer, 1998) and post middle-Panno- nian in the south (Gosar & Janežič, 2006; Poljak, 2017b; Atanackov et al., 2018). The folds are con- firmed active in the south-southeastern part of the Sava Folds (Poljak, 2017a; Atanackov et al., 2018). Basins North of the Periadriatic Fault System and Mid-Hungarian Zone Two different series of Neogene sediments have developed in Slovenia. The first to the north, and the second to the south of the PFS and MHZ. In the north, the sedimentary environment is mainly subjected to the development of the Styrian and Mura-Zala Basins. These areas have been inf lu- enced by the ongoing tectonic activity in the north- ern depositional areas. In the southern region, the sedimentary record is variable and does not con- form to the large basin framework observed in the north. Neogene tectonic activity inf luenced the sediments, which are now found in isolated are- as (Fig. 1) that were deposited separately from the southern part until the Badenian, when both parts were f looded by the Central Paratethys. Formations and beds, Associated with the Styrian Basin The specific area in Slovenia that was subject- ed to sedimentation in the Styrian Basin has not yet been defined. Furthermore, it is not defined where the border between the Styrian and Mu- ra-Zala Basin is. It is defined by the South Bur- genland Swell, but its continuation into the Slove- nian area is not clear (Fodor et al., 2002). Fossil remains in the Ribnica-Selnica Trough indicate a similarity with the type of sedimentation in the Styrian Basin during the Karpatian transgression (Gašparič & Hyžný, 2014), where conglomerate layers alternate with sandstones and siltstones (Pavšič & Horvat, 2009). The main uncertainty is in the designation of the Kungota area, which is, to some extent, the border area between the Steirischer Schlier (Kreuzkrumpel Formation) of the Styrian Basin and the Haloze Formation of the Mura-Zala Basin (Hohenegger et al., 2009; Maros et al., 2012). On the one hand, sedimentation in the Kungota area resembles sedimentation to the 197A review of the Neogene formations and beds in Slovenia, Western Central Paratethys Wagna section (Rijavec, 1965), and the tectonic structures of the Kungota area suggest a con- nection to the Styrian Basin (Kralj et al., 2009). On the other hand, the sediments in the Kungota area indicate similarities to sedimentation in the Mura-Zala Basin (Fodor et al., 2002; Jelen et al., 2006; Fodor et al., 2011; Maros et al., 2012). This suggest that these two basins might be connected during the Karpatian transgression. However, de- tailed sedimentological and palaeontological anal- yses are still missing. Radlje beds The oldest Miocene sediments on the northern side of the PFS and the MHZ can be found in north- ern Slovenia, by the Austrian border, near Radlje ob Dravi (Fig. 2). The strata consist of conglom- erate and sandstones, whose Eggenburgian age is questionable (Mioč & Žnidarčič, 1977). The con- glomerate and gravel are full of metamorphic rocks fragments, indicating proximity to the hinterland and f luvial sedimentation (Mioč & Žnidarčič, 1977). This corresponds to the Radl Beds of the Eibiswald Formation, whose Ottnangian deposits are interpreted as alluvial fans and proximal delta facies (Stingl, 1994). However, as the Radlje beds have not been explored in the past or in the recent, their evolution and connection with the surround- ing basins is not yet defined. Formations and Beds, Associated with the Mura-Zala Basin In the Mura-Zala Basin, the Neogene sedimen- tation began in the Karpatian and continued to the Pliocene. The sedimentation was strongly inf lu- enced by tectonic activity and started in the Early Fig. 2. Distribution of the Miocene formations in Slovenia. Explanatory notes: F – Formation, B – Bed, Al – Alloformation (modified after Buser, 2010). 198 Kristina IVANČIČ, Miloš BARTOL, Miha MARINŠEK, Polona KRALJ, Eva MENCIN GALE, Jure ATANACKOV & Aleksander HORVAT Miocene extension, which led to the thinning of the crust and the formation of half-grabens (Jelen et al., 2006). The filling of the half-grabens was associated with different tectonic phases (post- rift, syn-rift); therefore, several formations were defined, namely the Haloze, Ptujska gora - Kog, Špilje, Lendava, Mura and Ptuj-Grad Formations. Besides those, informal names of beds in par- ticular areas are used in older literature, namely the Ivnik, Urban and Kungota beds (Jelen et al., 2006), which today are attributed to the Haloze Formation. The Haloze Formation (Karpatian – early Badenian) Description: Initial sedimentation in the Mu- ra-Zala Basin covered the pre-Cenozoic basement. Alternation of conglomerates, sandstones, mud- dy breccia with fossils such as oyster shells indi- cate first infilling of the grabens in the Karpatian (Fodor et al., 2011). In the Slovenj Gradec Basin, initial Karpatian sedimentation starts with the basal conglomerate and muddy breccia and con- tinues with alternating layers of conglomerate, sandstone, siltstone and marlstone of terrestrial character (Ivančič et al., 2018b). Sedimentation continued with the deposition of finer-grained sediments of the Central Paratethys. Nannoplank- ton assemblages point to functioning connection of Central Paratethys with the Mediterranean Sea (Ivančič et al., 2018a). The Haloze Formation is divided into several members: Plešivec-Urban, Stoperce-Kungota, and Neraplje-Cirknica (Jelen & Rifelj, 2011) as well as into specific beds: Ivnik, Haloze and Urban, which are described in greater detail below. The thickness of sediments is over 1300 m (Fodor et al., 2011) and are located north of the PFS (Fig. 1). The formation extends from the Karpatian to the lower Badenian. Sedimentation: The Haloze Formation repre- sent the infilling of the half-grabens formed in the first syn-rift phase of the PBS formation (Maros et al., 2012). Regression-transgression cycles alter- nated twice in the Central Paratethys at this time (Kováč et al., 2018), and strongly affected the PBS, especially the marginal parts (Pavelić & Kovačić, Fig. 3. Correlation of formations described in the paper with the stratigraphic time scale in the Central Paratethys (modified after Rögl et al., 2007 and Hohenegger et al., 2014). Explanatory notes: B.F. – Bizeljsko Formation, R.F – Raka Formation, G.A. – Globoko Alloformation, P-G F. – Ptuj-Grad Formation, Rad. B. – Radlje beds, Sar. b. - Sarmatian beds. 199A review of the Neogene formations and beds in Slovenia, Western Central Paratethys 2018; Ivančič et al., 2018b). Marine transgression caused sedimentation in the shallow marine, near- coast environment, with the deposition of sands, marls and lithothamnium nodules integrated with conglomerate (Maros et al., 2012). Gradually, a deepening of the sea and open-marine sedimenta- tion is indicated by the deposition of sandstones, siltstones and marlstone (Maros et al., 2012). Vol- canic activity in the surrounding area resulted in the deposition of tuff layers, called the Ranca tuff layer in the Kungota area (Fodor et al., 2011; Ma- ros et al., 2012). Correlation: Regression stage between the Karpatian/Badenian boundary is not yet defined in the Haloze Formation (Fodor et al., 2011). In the Wagna and Katzengraben sections, distinguished angular discordance can be observed, namely the Styrian Unconformity (Hohenegger et al., 2009). The regression stage between the Karpatian/ Badenian boundary is defined by coarse-grained high-energy f luvial sediments (Jelen & Rifelj, 2003, 2005; Jelen et al., 2006; Fodor et al., 2011). The beginning of the early Badenian transgression is characterized by the formation of transitional environment (e.g., lagoonal, deltaic; Ivančič et al., 2018b). The formation represents lateral variation of the Tekeres Formation in Hungary (Fodor et al., 2011). The Ivnik beds Description: Initial sedimentation of the Ivnik beds represents basal conglomerates of Karpatian age, which indicate the first infilling of the basin. Regression stage between the Karpatian/Badenian boundary is defined in the Slovenj Gradec Basin, where it is characterized by swamps with thick layers of coal (Ivančič et al., 2018a). Sedimenta- tion continues with deposition of conglomerate, which is gradually replaced by sandstones and, further on, marly siltstones (Ivančič et al., 2018a). Sediments are defined in the Slovenj Gradec Basin and Ribnica-Selnica Trough (Fig. 2). In both are- as, sedimentation took place form the Karpatian to the end of early Badenian. The thickness of the Ivnik layers is over 1200 m (Ivančič et al., 2018a). Sedimentation: Detailed sedimentological, ge- ochemical and paleontological analyses indicate three regression-transgression periods between the Karpatian and the end of the early Badenian (Ivančič et al., 2018a). The three depositional se- quences can be correlated to the global third order sequence cycles (TB 2.2, TB 2.3, TB 2.4; cf. Haq et al., 1988; Hardenbol et al., 1998). All three trans- gressions point to an active marine connection with the Mediterranean Sea. The first Badenian transgression is well defined in the sedimentary successions with lowstand and highstand system tract defined and sedimentation described in de- tail in Ivančič et al. (2018a). Correlation: Sedimentation of the Ivnik beds in the Slovenj Gradec Basin and Ribnica-Selni- ca Trough have specific differences in their sedi- mentary input. While the sediments in the Slovenj Gradec Basin originated from the south-west, west and subordinately form the south (Ivančič et al., 2018b), the main input into the Ribnica-Selnica Trough originated from the Pohorje Mountains (Mioč, 1978). According to the above, the two ba- sins were probably separated by a barrier in the Karpatian and early Badenian in the form of the partly uplifted Pohorje tectonic block (Trajanova, 2013; Ivančič et al., 2018a), but detailed inves- tigations are still missing. The Ivnik beds in the Slovenj Gradec Basin shows similarities in deposi- tional environment and represent time equivalent with the Haloze Formation (Ivančič et al., 2018a), while in the Ribnica-Selnica Trough with the Sty- rian Basin (Gašparič & Hyžný, 2014). The Urban beds Description: The Burdigalian age (Fig. 3) of the Urban layers is well supported in Rijavec (1965). They are divided into two parts: lower and upper Urban beds. The sediments discordantly cover the Paleozoic basement. In the lower part, brec- cia (with tonalite and gneiss blocks) is overlain by mica, sandy marlstone, mica carbonate sandstone, and marlstone. Rare conglomerate occurs. Micro- fossil remains such as foraminifera, ostracod and echinoderms indicate a marine environment. The upper part of the Urban beds consists of conglom- erate, sandy marlstone, sand, sandstone and tuff. Microfauna in both parts is similar. The thickness of the Urban beds is over 500 m (Rijavec, 1965). They occur near the Urban hill, NW of Maribor (Fig. 2). Sedimentation: Sediments were deposited in open-marine environment and indicate similar- ities to the beds in the Styrian basin (Rijavec, 1965). According to the latest research (Jelen & Rifelj, 2011; Fodor et al., 2011, Maros et al., 2012), the Urban beds are Karpatian in age and belong to the Plešivec-Urban Member of the Haloze For- mation. The Kungota beds Description: The Kungota beds are well de- scribed in Rijavec (1965). They occur in the Kun- gota area (Fig. 1) and overlie the Urban beds. The lower part of the Kungota beds is composed 200 Kristina IVANČIČ, Miloš BARTOL, Miha MARINŠEK, Polona KRALJ, Eva MENCIN GALE, Jure ATANACKOV & Aleksander HORVAT of conglomerate, sandstone, and marl with clay interlayers. On top of the marlstone, a tuff layer occurs. Microfossils including foraminifera, ostra- cods and echinoderms indicate Helvetian age (Fig. 3). The fauna differs from that in the Urban beds. The upper part of the Kungota beds is similar to the lower ones but does not contain any tuff layers. The thickness of the Kungota beds is over 400 m (Rijavec, 1965). Sedimentation: Sedimentation took place in shallow marine environment (Rijavec, 1965). Ac- cording to research (Jelen & Rifelj, 2011; Fodor et al., 2011; Maros et al., 2012) the Kungota beds are part of the Stoperce-Kungota Member of the Haloze Formation, which also includes the Ranca tuff bed. The Ptujska Gora – Kog Formation (early Badenian – Sarmatian) Description: The sedimentary succession of the Ptujska Gora – Kog Formation is composed of con- glomerate, gravel, breccia, sandstone, sand, sandy silt, silty marl, marlstone, clayey marl, limestone and dolomite with insertion of coal layers (Jelen & Rifelj, 2011; Maros et al., 2012). It comprises sediments form early Badenian to Sarmatian and can be found in a thin belt southwest northeast of Haloze (Fig. 2). Sedimentation: Ptujska-Gora Kog Formation is an informal lithostratigraphic unit, which is not commonly used in the literature. Sediments were deposited in various sedimentation environment from shallow marine, nearshore, brackish to f luvial environment (Maros et al., 2012). They represent the filling of the basin in the post-rift and first com- pressional phase in the PBS (Maros et al., 2012). The Špilje Formation (early Badenian – early Pannonian) Description: The Špilje Formation consist mainly of muddy and sandy sediments. In the Kungota area, the beginning of sedimentation is characterized by an unconformity (Rijavec, 1965), where the sediments discordantly overlay Karpa- tian sediments. The sedimentary succession starts with the basal conglomerates, which represent the first deposits in the basin and are overlain by sandstone, sand, marl, litothamnium limestone and marl (Žnidarčič & Mioč, 1989; Fodor et al., 2011). The thickness of the Špilje Formation is up to 1600 m (Fodor et al., 2011). The sandy beds in the area of Lenart were investigated in two discrete levels which were biostratigraphically assigned to the early-late Badenian (Bartol, 2009). Late Bad- enian lithothamnium limestones occur in a strip between the Pesnica and Drava Faults and north of the Pesnica Fault as rhodolithic conglomerates and individual rhodoids (Bartol, 2009). They consist of red algae and abundant bryozoans, corals, gastro- pods, bivalves, sea urchins and other reef-dwell- ing organisms. Sedimentation: The sediments were deposited in the basin, formed during the syn- and post-rift phases of the PBS from the early Badenian to the early Pannonian (Jelen & Rifelj, 2005; Bavec et al., 2005; Jelen et al., 2006). Sedimentation took place in shallow and deep marine environment enabling the formation of sandy turbidites (Fodor et al., 2011). The connection to the transgressive-regressive periods was defined in the vicinity of Lenart, where sediments were correlated with the sea-level low- stand between eustatic cycles TB2.3 and TB2.4 (af- ter Haq et al., 1988). A change from a deeper water depositional system to the sandy-turbiditic regime suggests the formation of restricted sub-basins, as does the contemporaneous reduction in the num- ber of planktonic foraminifera (Fodor et al., 2002). The overlying middle Badenian marls contain di- verse nannofossil assemblages (Bartol, 2009) and several horizons enriched in pteropods (Mikuž et al., 2012a), which is consistent with a fully marine environment and functioning marine connections with the surrounding areas. The sandy and marly beds in the Mura-Zala Basin dated to the boundary of nannofossil bio- zones NN5 and NN6 (Bartol & Pavšič, 2005; Bar- tol, 2009) were deposited during the sea-level low- stand at the transition between 3rd order cycles TB 2.4 and TB 2.5. The late Badenian nannofossil as- semblages are diverse and enriched in genera that indicate warm water, suggesting a pelagic sedi- mentary environment and a functioning connec- tion with the Mediterranean (Bartol, 2009; Bartol et al., 2014). Warm hemipelagic environment and connection to Mediterranean in early Badenian indicate also discoasters and pteropods (Bartol & Pavšič, 2005; Mikuž et al., 2012b). Correlation: Recent research (Jelen & Rifelj, 2011; Fodor et al., 2011) describes the Špilje For- mation as one of the formations in the Mura-Zala Basin. The sediments are found in the area between Lenart and Špilje (Fig. 2). Based on the micro- and macrofauna and the lithological similarities with the sediments of the Vienna Basin, the sedimen- tary succession of the Špilje Formation has been correlated with the sediments of the Vienna Basin (Rijavec, 1965; Kuščer, 1967). Rhodoids represent a littoral reef facies deposited in shallower parts of the basin (Šikić et al., 1979). 201A review of the Neogene formations and beds in Slovenia, Western Central Paratethys The Lendava Formation (Pannonian) Description: In most cases, the Lendava For- mation overlays the Špilje Formation, however in some localities, it overlays the pre-Tertiary beds. The formation consists of up to a few meters thick stack of layers of basal conglomerates at the bot- tom, the sequence continues with large amounts of sands and sandstones, which represent turbiditic sequences, and in the upper part of the formation, sandy muddy and silty marl and marlstone, clay and marly clay prevail (Jelen & Rifelj, 2011; Fodor et al., 2011). The thickness of sandy turbidites reaches up to 1000 m (Fodor et al., 2011). Sedi- ments of the Lendava Formation are outcroping in small areas north and west of Ormož (Fig. 2). Sedimentation: The Lendava Formation was defined based on seismic profiles and includes Pannonian sediments, which represent diachro- nous deposits of a large delta system. They include prograding delta and shelf-slope deposits (fine- grained sediments), and also sandy turbidites be- tween the delta fronts and the deep basin (Jelen & Rifelj, 2003; Bavec et al., 2005; Fodor et al., 2011; Maros et al., 2012). The Lendava Formation is fol- lowed by delta front sediments of Mura Formation (Jelen et al., 2006). Correlation: In general, in Hungary, the later- al equivalents are: Algyo Formation, Ujfalu For- mation and Zagyva Formation (Fodor et al., 2011; Maros et al., 2012), while in Austria, they are: the Schichten von Loipersdorf in Unterlamm, Stegers- bacher Schichten, Jennersdorfer Schichten, Tab- orer Schotter in Süsswasser-Kalk (Gross, 2003; Gross et al., 2008). The Mura Formation (Pannonian) Description: The Pannonian clastic sediments of the Mura Formation consist of poorly lithified interlaminated or massive silt, clayey silt, sandy silt and marl. In the overlying upward coarsen- ing Pontian succession interlaminated and in- terbedded sand and silt become more abundant, and locally, gravelly sand and sandy gravel, and coal seams occur (Fodor et al., 2011; Maros et al., 2012). Sedimentation: The Mura Formation was de- fined based on seismic profiles. It contains pro-del- ta and transitional pro-delta to delta front sedi- ments, representing a diachronous continuation of the deltaic sequence from the Lendava Formation (Jelen et al., 2006) (Fig. 4). In the uppermost sec- tion coal seams and organic matter occur and in- dicate the presence of swamps and the transition of environment into delta plain. The delta front deposits form an interconnected sand body that extends in a subsurface area of 22.128 km2 and yields economically important amount of thermal water (Mioč & Ogorelec, 1991; Kralj, 2001b; Nádor et al., 2012; Šram et al., 2015). Post-rift subsidence and the ongoing compres- sional phase (Huismans et al., 2001) of the south- west Pannonian Basin System during upper Pan- nonian (ex. Pontian) resulted in the retreat of the Lake Pannon toward the east. Fluvial systems draining from the west toward the east and south- east formed diverse deltaic environments along the coastline, and eventually infilled the body of stand- ing water (Kralj, 1995; Jelen et al., 2006; Fodor et al., 2011; Maros et al., 2012; Kováč et al., 2017). The Mura Formation consists of sediments deposit- ed in pro-delta, pro-delta to delta front, delta front and delta plain environment. Jelen and Rifelj (2011) have subdivided the Mura Formation into the Presika-Petišovci Member and the Cogetinci-Kuz- ma Member. Both members have rather similar lithology and thickness amounting up to 1200 m (Pleničar, 1970; Mioč & Ogorelec, 1991; Kralj, 1995, 2001a; Nádor et al., 2012; Šram et al., 2015). Fig. 4. Distribution of several formations of the Mura-Zala Basin and in the Krško area in relation to the sedimentation environment (modi- fied after Neal et al., 1993). Explanatory marks: F – Formation, A – Alloformation. 202 Kristina IVANČIČ, Miloš BARTOL, Miha MARINŠEK, Polona KRALJ, Eva MENCIN GALE, Jure ATANACKOV & Aleksander HORVAT The Ptuj-Grad Formation (Pliocene) Description: The beginning of the Ptuj-Grad Formation is characterized by coal deposits on the alluvial plain (Fig. 4). Generally, the for- mation consists of alternation of sand, silt, clay marl, lignite and gravel sediments and include numerous gravel bodies of Late Miocene to Plio- cene (Maros et al., 2012). Meandering accretions are mainly composed of gravelly sand or sandy gravel, and f lood plain deposits of gravelly-silty sand and sand interbedded with silty and clayey fine-grained sediments. The formation includes also extrusive basalt, lava f lows, basalt- pyroclas- tics and subvolcanic basaltic rocks (Maros et al., 2012). In the vicinity of the settlement of Grad, al- kali basaltic autoclastic, volcaniclastic and mixed f luvial-volcaniclastic deposits outcrop as erosional remnants of maar, tuff ring and tuff cone. Further to the east of Goričko, the Pliocene deposits are overlain by Early Quaternary gravel, sandy gravel and sand with minor intercalations of fine-grained sediments (Pleničar, 1970; Kralj, 1995). Sedimentation: As the upper Pannonian delta- ic sedimentation prograded toward the east, the Pliocene environment in north-eastern Slovenia changed to terrestrial and dominated by braid- ed and meandering river systems (Kralj, 1995, 2001a). A system of alluvial fans developed, and further to the east, it evolved into a system of braided and meandering rivers. The formation of the Ptuj Member is still poor- ly understood, although it has been assumed to be related to the meandering system of the Dra- va-Drau paleo f low draining into the Ptuj-Lutom- er Depression. Rare occurrences of coal indicate the existence of peat swamps (Žnidarčič & Mioč, 1989). Depositional environment and sedimentary successions of the Grad Member are more com- plex and closely related to the subsidence of the Styrian Basin and Mura-Zala Basin, and in partic- ular, the Radgona-Radkersburg Depression. The Grad member is assumed to have developed as a result of the drainage systems of Mura-Mur, Zala and Krka-Kerka paleo-streams. Several measured imbrications indicate nearly west-to-east f low di- rections (Kralj, 1995). Correlation: Alkali basaltic volcanism is about 3 Ma old and closely related to the Pliocene occur- rences in the Styrian Basin and Little Hungarian Plain (Winkler, 1926; 1927; Poulditis, 1981; Kralj, 1995, 2001a; 2010; Martin & Németh; 2004). The early f luvial sedimentation occurred along the South-Burgenland Swell infilling the Radgo- na-Radkersburg Depression as well. Formations and beds south of the Periadriatic Fault System and Mid- Hungarian Zone and in Krško area South of the PFS and MHZ, sedimentation from the Egerian to the Pliocene took place in two separate depositional units. The f irst extends from Tunjice in the west to Kozjansko in the east, and the second is in the Krško area. Today the sediments are preserved in several isolated areas, which were connected during the Egerian, Eggen- burgian and Badenian as part of the Central Para- tethys. While the sedimentary successions in the Early Miocene and Badenian were united by the transgression of the Central Paratethys, the Sar- matian and Pannonian sediments are not asso- ciated with any specif ic formation. In the Krško area in particular, several new formations have been defined within the Pannonian, which are shown in the newly published Geological map of the Krško area and described in the Explanatory notes (Poljak, 2017a, b). The Govce formation (late Egerian, Eggenburgian) Description: In the area of Zagorje the sequence starts with basal conglomerates and gravel with keratophyre pebbles and Lepidocyclina limestone (Kuščer, 1967). Basal beds are covered by blueish marly clay interchanging in the overlying beds with sand and sandstone that dominate the upper part of the sequence. Sand beds also include ker- atophyre and carbonate gravel. Locally the sedi- mentary sequence continues with sandy limestone and occasionally contains Lepidociclyna. It is overlain by litothamnian limestone of Lower Mio- cene age. The upper part of the sequence contains thin coal layers in sand beds (Kuščer, 1967). For- mation development varies laterally. In the Tunjice Hills, a 380 m sequence starts with the Govce clay containing sand and sandstone, continues as in- terchanging marlstone and claystone beds covered by conglomerate and ends with sand and sand- stone (Vrabec, Mi., 2000). In the Krško area, the succession starts with silicate-carbonate pebbles and continues with several tens of meters of sili- cate-carbonate gravel and sand, sandstone, marl, marlstone, tuff and coal (Verbič, 1995; Dozet et al., 1998; Poljak, 2017a). In the area of Kozjansko, the Govce formation comprises a 500–600 m thick sequence of predominantly carbonate conglom- erates and sand, sandstone, marl, marlstone, tuff and coal (Aničić et al., 2002). In the surroundings of the Maclje Mountain, the Govce beds contain well lithified green glauconitic Maclje sandstone of Eggenburgian age (Aničić et al., 2002). Marlstone 203A review of the Neogene formations and beds in Slovenia, Western Central Paratethys in the Kozjansko area contain numerous calcitic nannoplankton of early and late Egerian, and the upper part could be attributed to the Eggenbur- gian (Pavšič & Aničić, 1998, 2000). The Govce formation comprises the oldest Miocene deposits in Slovenia. The formation includes poorly lithi- fied sediments of Oligocene and Lower Miocene (Egerian and Eggenburgian) age (Buser, 1978, 1979; Aničić & Juriša, 1985a, 1985b). It has been determined in Tunjice (Premru, 1980; Vrabec, Mi. 2000), Moravče, Sava folds (Hamrla, 1954; Kuščer, 1967), Krško (Poljak, 2017a), Kozjansko (Pavšić & Aničić, 1998; Aničić et al., 2002) and Žetale (Jel- en & Rifelj, 2011). The Govce beds lie discordantly on Pre-Cenozoic basement (Kuščer, 1967; Vrabec, Mi., 2000; Poljak, 2017a) or on Paleogene clastic sediments known as the Sivica and Pletovar for- mation, as well as on Oligocene volcanic rocks (Buser, 1978, 1979; Aničič et al., 2002). According to the correlation with surroundings basins, the sediments of the Govce formation in Krško area are presumably Ottnangian age (Poljak, 2017a). Sedimentation: Lower Miocene age has been assigned based on foraminifera (Kuščer, 1967). The lower portion of the Govce formation was de- posited in littoral environment while the upper part developed in brackish system. However, an abundance of pentalites in Kozjanko area indicate a decrease in salinity in the upper Egerian (Pavšič & Aničić, 1999). In Krško area, the formation is determined based on resemblance to the Govce beds in the Sava Folds, sediments were deposit- ed in f luvial, swamp and lacustrine environment (Poljak, 2017a). The Laško formation (Badenian) Description: Sediments of the Laško formation discordantly overlapped the Govce formation in the Krško Basin (Poljak, 2017a) and in the Laško area (Kuščer, 1967). The formation is divided into two parts: Laško marl, and lithothamnium lime- stone (Buser, 1978; Aničić et al., 2002; Bavec et al., 2005). In the Tunjice area, the Laško forma- tion consists of conglomerates present in the be- ginning of succession, and alternation of course to fine grained sandstones and siltsotnes (Vrabec, Mi. et al., 2014; Rojnik, 2015). In the Zagorje area, the succession starts with the basal conglomerate, composed of pebbles of eroded Govce beds, and continues with sandstone (with quartz and kera- tophyre grains), sandy and marly limestone and marl. The top of the succession is characterized by lithothamnium limestone of varying thickness defined as biosparite with rare grains of quartz with foraminifera, lithothamnium, bryozoan, and echinoderms (Strgar, 2003). The abundance of the biogenic component in the sediments is described in the Kozjansko area as well (Aničić et al., 2002). It occurs locally in two levels: below and above the Laško marl (Munda, 1951). Sediments are de- scribed as Badenian and in Krško area as Sarma- tian age as well (Poljak, 2017a), and are outcrop- ping in wider area from Tunjice, Laško, Zagorje, Kozjansko, Senovo and Krško (Fig. 1). The Laško marl is rich in bivalve and gastropod macrofossils. Lithothamnium limestone and Laško marl gradually alternate into Sarmatian clay in the area between Hrastnik and Laško (Munda, 1951; Kuščer, 1967) and in the Krško Basin (there is no strict boundary; Poljak, 2017a). Sedimentation: Sedimentation took place in shallow marine, nearshore, and shoreface envi- ronment in the Middle Miocene. A prominent gas- tropod species Pereiraeia gervaisi was found in several localities near Šentjernej ref lecting warm shallow water marine environment (Mikuž, 1999). Warm and humid paleoenvironmental conditions are also defined in Tunjice area (Ivančič et al., 2024). Most specimens were dated biostratigraph- ically to the upper part of the middle Badenian (Bartol et al., 2014), some accompanying nanno- fossil assemblages were enriched with Braarudo- sphaera bigelowii, which is able to tolerate fresh- water inf luences (Bartol et al., 2008). This could ref lect a sea-level lowstand at the boundary of 3rd order cycles TB 2.4 and TB 2.5. Late Badenian for- aminiferal assemblages suggest a complex sedi- mentary environment with outer shelf to bathyal water depths in the Planina Syncline and shallow, nutrient rich and cool water in the Kozjansko area (Oblak Brown, 2006). Correlation: The formation is described by var- ious authors, south of the PFS and MHZ (Munda, 1951; Hamrla, 1954; Kuščer, 1967; Aničić et al., 2002; Strgar, 2003; Poljak, 2017a). The lithotham- nium limestone of Laško formation is macroscop- ically similar to the lithothamnium limestone of Govce formation (Kuščer, 1967). Stratigraphic equivalent of the Laško marl represents Šentjur micritic limestone in the Celje area and Motnik Syncline. It contains remains of pelagic foramini- fers and does not contain fragments of lithotham- nium algae (Buser, 1979; Aničić et al., 2002). The Dol formation / Sarmatian beds (Sarmatian) Description: The Sarmatian sequence general- ly consists of conglomerate, gravel, sandstone and clayey layers in the lower part and continues with sandy and clayey marl, calcarenite, sandstone, sand and quartz sandstone. In the upper part, 204 Kristina IVANČIČ, Miloš BARTOL, Miha MARINŠEK, Polona KRALJ, Eva MENCIN GALE, Jure ATANACKOV & Aleksander HORVAT mica sand with interlayers of clayey marl prevail (Kuščer, 1967; Žnidarčič & Mioč, 1989; Aničić, 1990; Aničić et al., 2002). The calcareous sand- stone is dominated by the remains of lithothamni- um and other reef organisms (Buser, 1979; Prem- ru, 1983). The Dol formation is described in the Tunjice and Zagorje areas (Placer, 1998, 1999; Vrabec, Mi. et al., 2014), while in the Kozjansko and Laško area, Sarmatian sediments are not for- malized into a specific lithostratigraphic unit. In the Zagorje Syncline, these layers represent the deepest part of the depression. In the Tunjice area, the formation consists of clay, which represents the boundary between the Badenian and the Sar- matian sediments, covered by sand and calcaren- ite with the gastropods Cerithium. The thickness of the Sarmatian succession is up to 400 m (Pavšič & Horvat, 2009). In the Krško Basin, Sarmatian beds overlay Badenian layers in places, but occa- sionally Sarmatian strata are absent and Pannoni- an marlstones lie directly on Badenian beds. For this reason, the Sarmatian beds, when present in the Krško Basin, are included into the Laško for- mation (Poljak, 2017a; Poljak et al., 2016). Sedimentation: The Sarmatian sediments were deposited in a brackish environment (Rijavec, 1965; Žnidarčič & Mioč, 1989, Aničić et al., 2002). Extensive micropaleontological analyses of fo- raminifera (Oblak Brown, 2006), ostracods and nanoplankton (Marinšek et al., 2022) were carried out in the Kozjansko area. Based on the ostracod analysis, it was interpreted that the predominant environment was marine to brackish. The ostracod assemblage indicates a lower to middle Sarmatian age. Silicof lagellates in the Tunjice area indicate a marine environment with low inf low and shallow- ing of the basin. The later is confirmed with a de- crease of plankton as well as an increase of epilitic and epiphytic forms (Horvat, 2004). Seashore fos- sils suggest a good connection of the Central Para- tethys with the Indopacific in the early Sarmatian (Pavšič & Horvat, 2009). Correlation: According to the macro- and mi- crofauna and the lithological profiles in the Špilje area, the Sarmatian Beds are similar to the strata in the Vienna Basin (Rijavec, 1965; Kuščer, 1967). The Čatež Formation (Badenian, Sarmatian) Description: The lower part of the succession contains breccias and conglomerates with car- bonate matrix and dolomite pebbles, deposited on the pre-Neogene basement. Conglomerate include dolomite, carbonate, chert and marl pebbles. The succession continues with lithothamnium lime- stone (rudstone), characteristic of shallow marine environments. The Čatež Formation is determined in the north slope of the Gorjanci hills and is di- vided into the limestone Badenian part and the clastic Sarmatian part (Rižnar et al., 2002). Sedimentation: The rudstone interchanges with white litothamnium limestone (bindstone) typi- cal of low energy deeper marine environment. It is overlain by somehow deeper water (up to 100 m depth) calcarenite (packstone). The Sarmatian beds are represented by alternation of marlstones, marls and gravel with calcarenite layers, indicat- ing tectonically controlled sedimentation. Forami- niferal assemblages indicate a brackish environ- ment (Rižnar et al., 2002). The Drnovo Formation (Pannonian) Description: The formation overlays Sarmatian beds or lies transgressively on Badenian beds or on pre-Cenozoic basement. It consists of Panno- nian (including ex. Pontian) marls. The basal part is composed of thin bedded carbonate siltstones, they are followed by poorly lithif ied sediments (dolomite-calcite silts to siltstones). Towards the upper part, the clay and quartz minerals predom- inate. (Poljak, 2017a). The Drnovo Formation is defined in the Krško Basin and is generally found in the southern part of the Orlica Mountains and the Krško Hills. Sediments are usually deposited on Laško marls or Litothamnian limestones, but in some specif ic cases it can be found on Mesozo- ic limestones (Poljak, 2017a). The thickness of the Pannonian part of the formation is up to 300 m, and the ex. Pontian part up to 200 m. The age of the formation was defined on the basis of gastro- pods, molluscs and ostracods (Poljak, 2017a). Sedimentation: Sediments cover the ma- rine-brackish sediments of the Sarmatian or pre-neogene basement and are deposited in fresh- water and lake environment (Poljak, 2017a). Correlation: In the Croatian Zagorje, west of the Krško area, the deposits consist of alternations of sand, silt, marl, and clay of upper Pannonian age, where a turbiditic environment was present (Pikija, 1982). The Bizeljsko Formation (upper Pannonian) Description: Sediments of the Bizeljsko Forma- tion are deposited concordantly on sediments of the Drnovo Formation. It consists of an alterna- tion of marl and sand with rare intermediate lay- ers or lenses of gravel. The mineral composition of the formation is identical to that of the Drnovo Formation, and it mostly consists of quartz (Lap- ajne, 1975). In some upper layers, little pockets of unlithified and well rounded gravel can be found. 205A review of the Neogene formations and beds in Slovenia, Western Central Paratethys They are composed of magmatic and metamorphic rocks originated from the Eastern Alps (Trajano- va, 2006). The upper Pannonian age is determined by the ostracod microfauna. The thickness of the beds is up to 800 m (Poljak, 2017a). Sedimentation: Sedimentation took place in a deltaic environment, containing sediments from the delta front (Fig. 4). Ostracod assemblages in- dicate a brackish environment with varying ener- gy levels ranging from high and low (Marinšek et al, 2023). Individual sandy layers show evidence of synsedimentary slumps with the presence of rip-up clasts (Poljak, 2017a). The Raka Formation (upper Pannonian) Description: The formation consists of almost pure (up to 99 %) quartz sand and only occasion- ally are some marl lenses are present. In places, thin and irregular beds of oxidized clay sediments can be found. The uppermost Pannonian age of the sediments was determined based on mollusks and ostracods microfauna. The maximum thickness is 500 m. Within the Raka Formation, The Globoko Member occurs, composed of gravel, sand, silt, and clay with coal (Poljak, 2017a). Sedimentation: Sedimentation took place in a deltaic environment and include delta plain sedi- ments (Fig. 4). Pliocene - Quaternary Alloformations Description: The terrestrial sediments of the “Plio-Quaternary” unit comprising gravely, sandy, and muddy sediments are often pedoge- nized (Šikić et al., 1979; Verbič et al., 2000; Pol- jak, 2017a). The gravelly part is characterized as non-carbonate and carbonate gravel of Sava and Savinja River provenance (Verbič, 2004; Mencin Gale, 2021) preserved in several terraces (Poljak, 2017a; Mencin Gale et al., 2019a, 2019b, 2024). The thickness of the unit in the Krško Basin (Globoko claypit) is estimated at 30 m (Poljak, 2017a) and in Velenje Basin at 205 m (Brezigar et al., 1985). In the area of Krško Basin, the unit is formally described as the Globoko Alloforma- tion. The f irst attempts at estimating the age of the unit were based on the geological knowledge of the adjacent regions and stratigraphical po- sition and yielded a Pliocene-Lower Pleistocene age (Pleničar & Ramovš, 1954; Šikić et al., 1979). This was later revised to 1–2 Ma based on mor- phostratigraphy (Kuščer, 1993; Verbič, 2004). The f irst attempt of absolute dating of the Glo- boko Alloformation at the Globoko claypit local- ity employed optically stimulated luminescence (OSL), which yielded a minimum age of 306 000 years ± 2σ (Bavec, 2000), however, the capability of the dating method and sediment properties do not render reliable results (Bavec & Poljak, 2013). Further attempts included dating using terrestri- al cosmogenic nuclide (TCN) on the Libna Hill which yielded a minimum of 1.8 Ma (Cline & Cline, 2013; Cline et al., 2016). The latest results of TCN dating at several locations in the basin in- dicate the Globoko Alloformation spans the time interval from the latest Pliocene to Middle Pleis- tocene (Cline et al., 2018, personal communica- tion). The latest studies of the “Plio-Quaternary” unit were performed not only in Krško Basin (Mencin Gale, 2021) but also in Slovenj Gradec, Nazarje (Mencin Gale et al., 2019b), Celje, Dra- va-Ptuj (Mencin Gale et al., 2019b) and Velenje Basin (Mencin Gale et al., 2024). These studies encompass geomorphological, sedimentological, provenance analysis, and in the case of the Ve- lenje Basin also the chronological analysis of the “Plio-Quaternary” unit and represent one step closer to formalizing the newly called Plio-Early Pleistocene unit. Sediments of this unit are char- acterized by several different facies including matrix and clast supported gravel, massive and cross-bedded f ine- to coarse-grained sands and massive f ines (silt and clay), in parts containing dropstones. The Plio-Early Pleistocene unit is followed by the Quaternary sediments encompassing Mid- dle-Late Pleistocene and Holocene deposits. These deposits generally exhibit a less weathered charac- ter, higher carbonate content and better preserved morphology (Mencin Gale et al., 2019a, 2019b, 2024; Mencin Gale, 2021). Sedimentation: The Plio-Early Pleistocene de- posits are characterized as a terrestrial succession of f luvial deposits preserved in terrace staircases (Verbič, 2002, 2004; Poljak, 2017a; Mencin Gale et al., 2019a, 2019b, 2024; Mencin Gale, 2021) or buried in the central part of the basins (e.g. Krško Basin; Poljak, 2017a). Generally, sediments from the Plio-Early Pleistocene were deposited in f luvi- al or alluvial/colluvial fan settings. Interpretation of sedimentary environment is limited due to the poor quality of outcrops and can be only deduced in a few localities. In the Krško Basin, a braid- ed river system was interpreted, characterized by typical features like channel lag, overbank, or abandoned channel deposits (Mencin Gale, 2021). Shorter sections from the Drava-Ptuj Basin might also indicate a braided river system based on their lithofacies assemblages (Mencin Gale et al., 2019b). In the Velenje Basin, the sections suggest a wandering (intermediate category between the 206 Kristina IVANČIČ, Miloš BARTOL, Miha MARINŠEK, Polona KRALJ, Eva MENCIN GALE, Jure ATANACKOV & Aleksander HORVAT braided and meandering river systems) and mean- dering river system (Mencin Gale et al., 2024) and also lacustrine and swamp sedimentation (Brezi- gar et al., 1985). In the Krško Basin, two formal nomenclatures of the Quaternary alloformations and allomembers are currently available. Verbič (2004) discriminates between three Pleistocene (Dobrava, Brežice and Drnovo Alloformations) and four Holocene ter- races (uniform Vrbina Allomember; part of the Drnovo Alloformation). Poljak (2017) on the other hand describes Brezina, Sotla, Krka, Sava and Dobrava Alloformations, each further divided into several allomembers. The age constraints of Quaternary units using optically stimulated lu- minescence, infrared stimulated luminescence, 14C, U/Th, and terrestrial cosmogenic nuclides are summarized by Mencin Gale (2021). The age of the unit in the Velenje Basin was constrained by isochron-burial dating using cosmogenic 26Al and 10Be which yielded an age 2.7 ± 0.3 Ma (Mencin Gale et al., 2024), which is in excellent agreement with the biostratigraphic data (Rakovec, 1968, De- beljak, 2017; Drobne et al., 2017). Correlation: In general, the comparison of the Plio-Early Pleistocene unit between Slovenj Gra- dec, Nazarje, Velenje, Celje, Drava-Ptuj, and Krško Basins exhibits differents extent of the deposits. In the Velenje and Slovenj Gradec Basins Plio-Early Pleistocene unit strongly prevail over younger Middle-Late Pleistocene surfaces, distin- guishing them from the Nazarje, Celje, and Dra- va-Ptuj intramontane basins nearby. This could be due to specific tectonic changes, meaning that Pliocene-Quaternary f luvial sequence can serve as an important marker of tectonic processes (Mencin Gale et al., 2024). In the Krško Basin, correlation with cross-bor- der area is suggested by fossil material. No fossil material was found in the “Plio-Quaternary” unit of the Krško Basin. However, the “Plio-Quater- nary” unit was also mapped in the near-border area in northwest Croatia (Zagreb region), where some fossil material was found in Majdačko selo consisting of unionids and melanopsids of Plio- cene age (Šikić et al., 1979). This indicates that the »Plio-Quaternary« sediments represent the lateral equivalent of upper Viviparus beds (Šimu- nić & Avanić, 1985). It is, however, possible that the fauna was re-worked as the age determination is in contradiction with stratigraphic Bistra unit (Zagreb area), which indicates Pleistocene age (Bakrač & Koch, 1999, Grizelj et al., 2017). Discussion Marine connection of individual areas There are prominent differences in the Central Paratethys transgression and regression stages between the individual basins north and south of the PAF and the MHZ. In the southern basins, Neogene sedimentation started in the Egerian and continued to Eggenburgian, where the Govce for- mation is described. In the northern basins, the Eggerian and Eggenburgian sediments are not de- fined, and this transgression has not reached the Krško area either. However, the Govce formation is described in the Krško area as well, but sediments were deposited in Ottnangian in terrestrial envi- ronment, based on similarities with sediments in the Medvednica Mountains (Čorić et al., 2009; Pol- jak, 2017a). The fact that the transgression in the Egerian and Eggenburgian did not reach the area north of the PFS and the MHZ as well as south of the central Sava folds (Fig. 5) suggests that the transgression was of lesser extent, or the local tec- tonic uplift (or delayed subsidence) of individual blocks prevented the northward and southward spreading of the Central Paratethys. Prominent paleogeographic changes led to variable sedimentation in the late Early Miocene. Ottnangian sedimentation took place only in the Krško area, where Ottnangian/Karpatian alluvial, lacustrine and even marine sediments have been described (Verbič, 1995; Dozet et al., 1998; Riž- nar, 2005; Poljak, 2017a). Karpatian transgres- sion inf luenced sedimentation in the basins north of the PFS and the MHZ (Fig. 5) and caused the f irst marine transgression in the Early Miocene. The nanoplankton assemblages in the Slovenj Gradec Basin and the decapod crustacean fauna in the Ribnica Selnica Through indicate a marine connection with the Mediterranean Sea in the Karpatian (Gašparič & Hyžný, 2014; Ivančič et al., 2018a). In the areas south of the PFS and the MHZ, the Ottnangian and Karpatian sediments are not defined. While Karpatian marine sedimentation contin- ued in the Badenian in the Mura-Zala Basin (Ma- ros, 2012), the early Badenian transgression corre- lated with TB 2.3 (Haq et al., 1988) is defined only in the Slovenj Gradec Basin (Ivančič et al., 2018a). Nanoplankton assemblages point to the connection with the Mediterranean Sea (Ivančič et al., 2018a). The extent of the transgression towards the west is not yet defined (Fig. 5). South of the PFS and MHZ, the early Badenian transgression has been proven in the Kozjansko area (Aničić et al., 2002) and pre- sumable in the Tunjice and Moravče area. 207A review of the Neogene formations and beds in Slovenia, Western Central Paratethys At the end of the early Badenian, widespread palaeogegographic changes led to a cassation of Miocene sedimentation in the Ribnica Selnica Through, the Slovenj Gradec Basin and Kungota area due to the exhumation of the Pohorje Tecton- ic Block (Trajanova, 2013). The subsequent trans- gression of the Central Paratethys in the late Bad- enian caused the f looding of the areas north and south of the PFS and MHZ, as well as the Krško area (Fig. 5). Marine sedimentation continued in the Sarmatian, but the gradual filling of the ba- sin and the cassation and closure of the marine connection to the open sea caused first brackish and later deltaic and terrestrial sedimentation in the Pannonian with the deposition of fine-grained sediments, white intercalations of coarse-grained sediments and coal. Different names of lithological units The difficulty in comparing beds and forma- tions in various areas sometimes lies in the dif- ferent naming of the individual lithological units. More precise investigations have rarely been car- ried out, so usually only the descriptive field name of the unit has been established, which is some- times inaccurate. With coarse-grained sediments, Fig. 5. Transgressions of the Central Paratethys in the Slovenian area, through the Early and Middle Miocene stages: blue colour indicates presumed extension of the Central Paratethyan transgression, yellow colours indicate distribution of actual outcrops of Neogene sediments. 208 Kristina IVANČIČ, Miloš BARTOL, Miha MARINŠEK, Polona KRALJ, Eva MENCIN GALE, Jure ATANACKOV & Aleksander HORVAT this problem is not so pressing, as the names of the units can be determined fairly accurately in the field. The problem arises when fine-grained sediments or different types of limestone and calcarenites are present. For example, the term lithothamnium limestone is commonly used in the literature, but sometimes the name is not ap- propriate because of the involvement of different fossils. In several places, the terms lithotamni- um limestone, calcarenite or algal limestone are used. Rarely, lithothamnium limestone is defined more precisely (bindstone, rudstone) (Rižnar et al., 2002). The difficulties in defining lithotham- nium limestone have been emphasised by various authors (Fuchs, 1894; Mikuž et al., 2014; Poljak, 2017a). Within the Badenian there are several layers of lithotamnium limestones, which are not precisely dated. It is possible that the lithotham- nium limestone belongs to different 3rd order se- quence cycles, but without detailed sedimentolog- ical, stratigraphical and especially paleontological analyses, it is impossible to distinguish between them. Similar uncertainty with the commonly used term Laško marl (Laški lapor), which is pres- ent in more than one undefined horizon (bellow and over lithothamnium limestone). Moreover, the name Laško marl is commonly used for thicker se- quences of silty sediments. Correlation of different fauna between separate basins Palaeontological studies are occasionally well documented in individual areas, but they have rarely been compared with neighboring basins. The exception is a small part of Kozjansko area, which contains Pannonian sediments and has been the subject of a few studies (Stevanović & Škerlj, 1989, Aničić et al., 2002, Marinšek et al., 2022). The ostracod and mollusk fauna of the Koz- jansko area can easily be correlated to the Bizel- jsko Formation in the Krško area. In both areas an abundant ostracod assemblage, which assigned to the upper Pannonian (ex.“Pontian”) stage, can be found. The assemblage includes some charac- teristic species like Bakunella anae, Bakunella dorsarcuata, Hemicytheria Croatica and Campto- cypria acranasuta and can be correlated with the Croatian Mt. Medvednica and the Styrian Basin (Sokač, 1972; Gross, 2008). Correlations with the fauna in the Mura-Zala basin are still missing. Formalising the “Plio-Quaternary” unit The informal “Plio-Quaternary” unit has been a matter of debate for what is now a long while. This unit represents the onset of the youngest terrestri- al sedimentation, marked by successions of clas- tic sediments abundant in central, southern and eastern Slovenia. Rare adequate exposures and subsurface data, strong weathering and degraded geomorphological characteristics have prevented research on the composition, provenance, genesis and age of the “Plio-Quaternary” f luvial terrace se- quences in Slovenia, resulting in scarce relevant data in the past (Pleničar & Ramovš, 1954; Brezi- gar et al., 1985, 1987; Markič & Rokavec, 2002; Bavec et al., 2003; Verbič, 2004; Bavec & Poljak, 2013; Poljak, 2017a). The lack of knowledge con- cerning these units constitutes a scientific gap in the stratigraphy of the region, which limits our understanding of the Quaternary evolution of the entire pan-Alpine region. The latest studies of the “Plio-Quaternary” unit in Slovenj Gradec, Nazarje, Velenje, Celje, Dra- va-Ptuj and Krško Basins followed multi-meth- odological approach (Mencin Gale et al., 2019a, 2019b; Mencin Gale, 2021) and provided the basic ground for formalizing the alloformations. Howev- er, except in Velenje and Krško Basin, no numeri- cal age dating is available, which is the main aim of the future studies and the main condition for formalizing the sequence. Conclusions The Neogene period is characterized by signif- icant paleoenvironmental, structural, paleogeo- graphical and climatic changes. During this pe- riod, different depositional environments evolved which resulted in the deposition of several forma- tions. Their composition ref lects sea level f luctua- tions, which inf luenced not only the sedimentation processes, but also the connection of the Central Paratethys with the Mediterranean Sea and the open ocean. Such connections were established through the so-called Trans Tethyan (Sloveni- an) Corridor during the Karpatian and Badeni- an transgressions. While formations in the Mu- ra-Zala Basin (Haloze, Špilje, Lendava, Ptuj-Grad, Ptuj-Kog, Mura) were defined primarily on the basis of seismic profiles, the formations in other parts were defined on the basis of biostratigraphic correlations. The oldest sediments are described south of the PFS as the Govce formation, which includes largely silty marl deposits of Egerian and Eggenburgian age that were deposited in a shallow marine to brackish environment. Ottnangian and Karpatian sediments are only present north of the PFS and the MHZ. Ottnangian sediments, known as the Radlje layers, consist mainly of conglom- eratic successions, deposited in f luvial environ- ments. The Haloze Formation consists of fine- to 209A review of the Neogene formations and beds in Slovenia, Western Central Paratethys coarse-grained sediments of Karpatian age depos- ited in terrestrial, transitional and shallow marine environments. According to new data, it compris- es the Urban, Kungota and Ivnik beds. The Bade- nian transgressions f looded the entire study area. The Špilje and Ptujska Gora – Kog Formation are described in the Mura-Zala Basin, while the Laško and Čatež Formations are defined south of the PFS and MHZ; their successions consist of comparable sediments. Sedimentation begins with conglomer- ate layers overlain by sand, silt and marl with in- terbedded limestone layers. Sarmatian sediments are deposited concordantly on Badenian. South of the PFS and the MHZ, the Dol formation is de- scribed, comprises conglomeratic, sandy, silty and marly layers, deposited in marine and brackish environment. During the Pannonian, the Lendava, Mura and Ptuj-Grad formations were deposited in the Mura-Zala Basin. The sediments were initial- ly deposited in a turbiditic and later in a deltaic environment where deposition of clayey, silty and sandy sediments prevail. South of the PFS and the MHZ, Pannonian sediments are present in the Kozjansko and Krško area. While sediments are not described in any formation in the Kozjansko area, the Drnovo, Bizeljsko and Raka Formations are defined in the Krško area. In this area, the sandy and silty sediments were initially deposited in a brackish environment which evolved towards a deltaic setting. Pliocene and Quaternary forma- tions are only well defined in the Krško area, with the Globoko Alloformation consisting of non-car- bonate gravel, sandy and silty layers. Many uncertainties remain obscuring the over- all structure of the studied part of the PBS and its sedimentary evolution during the Neogene due to lack of research. This review provides some guide- lines for further research with the aim of expand- ing our knowledge of: - the precise age of individual formations, - stratigraphic, paleontological, and sedimen- tological correlations between different for- mations, - temporal and spatial description of the Trans-Tethyan Trench corridor, - standardization of different names/descrip- tions of similar lithological units, - formalization of the Plio-Quaternary units. Acknowledgments The authors gratefully acknowledge financial sup- port from the Slovenian Research and Innovation Agency - Research Core Funding No. P1-0025 “Mineral Resources”, No. P1-0011 »Regional Geology« and No. P1-0419 »Dynamic Earth«. Reference Aničić, B. 1990: Geological setting of the Orlica mountain. Geologija, 33/1: 233–287. https:// doi.org/10.5474/geologija.1990.005 Aničić, B. & Juriša, K. 1985a: Osnovna geološka karta SFRJ 1:100 000. List Rogatec. Zvezni geološki zavod, Beograd. Aničić, B. & Juriša, K. 1985b: Osnovna geološka karta SFRJ 1:100 000. Tolmač lista Rogatec. Zvezni geološki zavod, Beograd: 76 p. Aničić, B., Ogorelec, B., Kralj, P. & Mišič, M. 2002: Lithology of Tertiary beds in Kozjansko, Eastern Slovenia. Geologija, 45/1: 213–246. https://doi.org/10.5474/geologija.2002.017 Atanackov, J., Jamšek Rupnik, P., Rižnar, I., Bavec, M., Petronio, L., Cline, K., M., Cline, M., Logan & Quittmeyer, R. 2018: High-resolution seismic ref lection surveys in the Krško basin. In: Novak, M. & Rman, N. (eds.): 5. slovenski geološki kon- gres: Zbornik povzetkov, Velenje, 3–5. oktober 2018. Ljubljana, Geološki zavod Slovenije: 25 p. Atanackov. J, Jamšek Rupnik, P., Jež, J., Celarc, B., Novak, M., Milanič, B., Markelj, A., Bavec, M. & Kastelic, V. 2021: Database of Active Faults in Slovenia: Compiling a New Active Fault Da- tabase at the Junction Between the Alps, the Dinarides and the Pannonian Basin Tectonic Domains. Front. Earth Sci. 9: 604388. https:// doi.org/10.3389/feart.2021.604388 Bakrač, K. & Koch, G. 1999: A palynological con- tribution to the Quaternary deposits in the wider ares of Zagreb (Croatia). Acta Palaeobo- tanica Supplementum, 2: 467–469. Bartol, M. 2009: Middle Miocene Calcareous Nan- noplankton of NE Slovenia (Western Central Paratethys), Založba ZRC, Ljubljana: 136 p. Bartol, M. & Pavšič, J. 2005: Badenian Discoasters from the Section in Lenart (Northeast Slovenia, Central Paratethys). Geologija, 48/2: 211–23. https://doi.org/10.5474/geologija.2005.018. Bartol, M., Pavšič, J., Dobnikar, M. & Bernasconi, S.M. 2008: Unusual Braarudosphaera bigelowii and Micrantholithus vesper enrichment in the Early Miocene sediments from the Slovenian Corridor, a seaway linking the Central Para- tethys and the Mediterranean. Palaeogeography, palaeoclimatology, palaeoecology, 267/1: 77–88. https://doi.org/10.1016/j.palaeo.2008.06.005 Bartol, M., Mikuž, V. & Horvat, A. 2014: Palaeon- tological Evidence of Communication between the Central Paratethys and the Mediterranean in the Late Badenian/Early Serravalian. Palae- ogeography, Palaeoclimatology, Palaeoecology, 394: 144–57. https://doi.org/10.1016/j.pa- laeo.2013.12.009 210 Kristina IVANČIČ, Miloš BARTOL, Miha MARINŠEK, Polona KRALJ, Eva MENCIN GALE, Jure ATANACKOV & Aleksander HORVAT Bavec, M. 2000: Poročilo o določanju starosti kvartarnih sedimentov v Krški kotlini z meto- do termoluminescence (TL) in optično stimuli- rane luminescence (OSL) - unpublished report. Ljubljana, Geološki zavod Slovenije. Bavec, M. & Poljak, M. 2013: Plio-Quaternary sediments in Krško Basin, Knjiga sažetaka: 3. znastveni skup Geologija kvartara u Hrvatskoj s međunarodnim sudjelovanjem, povodom 130 godina rođenja akademika Marijana Salopeka i u spomen znastvenici Maji Paunović na 10. obljetnicu smrti, Zagreb 21.–23.3.2013. Za- greb, Hrvatska akademija znanosti i umjetnos- ti, Zavod za paleontologiju i geologiju kvartara: 65–67. Bavec, M., Novak, M., Poljak, M. & Skaberne, D. 2003: Peleoseismic investigations on Krško basin. Geological Survey of Slovenia, Ljublja- na: 19 p. Bavec, M., Budkovič, T., Brenčič, M., Jelen, M., Ku- melj, Š., Lapanje, A., Marinko, M., Markič, M., Mišič, M., Ogorelec, B., Placer, L., Poljak, M., Prestor, J., Rajver, D., Ribičič, M., Skaberne, D., Trajanova, M. & Urbanc, J. 2005: Overview of geological data for deep repository for ra- dioactive waste in argillaceous formations in Slovenia. Geološki zavod Slovenije, Ljubljana: 124 p. Brezigar, A., Kosi, G., Vrhovšek, D. & Velkovrh, F. 1985: Paleontološke raziskave pliokvartarne skladovnice velenjske udorine. Geologija, 28/1: 93–119. Brezigar, A., Ogorelec, B., Rijavec, L. & Mioč, P. 1987: Geološka zgradba predpliocenske pod- lage Velenjske udorine in okolice. Geologija, 30/1: 31–65. Brückl, E., Behm, M., Decker, K., Grad, A., Gu- terch, A., Keller, G.R. & Thybo, H. 2010: Crustal structure and active tectonics in the Eastern Alps. Tectonics, 29/2. https://doi. org/10.1029/2009TC002491 Buser, S. 1978: Osnovna geološka karta SFRJ 1:100 000. List Celje. Zvezni geološki zavod, Beograd. Buser, S. 1979: Osnovna geološka karta SFRJ 1:100 000. Tolmač lista Celje. Zvezni geološki zavod, Beograd: 72 p. Buser, S. 2010: Geological Map of Slovenia 1:250.000 1:250.000. Geological Survey of Slovenia. Cline, M.L. & Cline, K.M. 2013: Characterization of the Libna fault and tectonic framework of the Krško Basin, Slovenia. Final report. Pits- burgh, Paul C. Rizzo Associates, Inc.: 78 p. Cline, M. L., Cline, K., M., Jamšek Rupnik, P., Atanackov, J., Bavec, M. & Lowick, S.E. 2016: Tectonic geomorphology and geochronology supporting a probablistic seismic hazard anal- ysis in the Krško Basin, Slovenia: implications for a critical infrastructure. In: McCalpin, J. &Gruetzner, C. (eds.): 7th International IN- QUA Meeting on Paleoseismology, Active Tec- tonics and Archeoseismology (PATA Days). Crestone, Colorado, USA, Crestone: 63–66. Cline, M., L., Atanackov, J., Bavec, M., Cine, K., M., Rižnar, I., Jamšek Rupnik, P., Lowick, S.E., Rittenour, T. & Quittmeyer, R. 2018: Recent updates to the geochronological constraints in the Krško basin and surrounding region. In: Novak, M. & Rman, N. (eds.): 5. slovenski geološki kongres: Zbornik povzetkov, Velenje, 3.–5. oktober 2018. Ljubljana, Geološki zavod Slovenije: 36 p. Ćorić, S., Pavelić, D., Rögl, F., Mandic, O. & Vrabac, S. 2009: Revised Middle Miocene datum for initial marine f looding of North Croatian Ba- sins (Pannonian Basin System, Central Para- tethys). Geologica Croatica, 62: 31–43. https:// doi.org/10.4154/GC.2009.03 Debeljak, I. 2017: Fosilni trobčarji iz Šaleške do- line. Zbornik Šaleški razgledi (2016-2017): 35–50. Dozet, S., Rijavec, J., Aničić, B., Škerlj, Ž. & Sto- janovič, B. 1998: Neogene beds of the Krško- Brežice plain and its borderland (southeastern Slovenia). RMZ – Materials and Geoenviron- ment, 45/3-4: 375–404. Drobne, K., Ogorelec, B., Pavšič, J. & Pavlov- ec, R. 2008: Palaeogene and Neogene. Slove- nian Tethys basins. In: McCann, T. (ed.): The geology of Central Europe. London: The Geological Society, 1093-1098. Drobne, K., Mikuž, V. & Pavšič, J. 2017: Tapir - edinstveni pliocenski sesalec iz Šaleške doline. In: Grmovšek, S., Hudales, J. & Ravnikar, T. (eds.): Zbirka Šaleški razgledi, 15: 67–74. Fodor, L., Jelen, B., Márton, E., Rifelj, H., Krai- jic, M., Kevrić, R., Marton, P., Koroknai, B. & Baldi-Beke, M. 2002: Miocene to Quaternary deformation, stratigraphy and paleogeography in Northeastern Slovenia and Southwestern Hungary. Geologija, 45/1: 103–114. https:// doi.org/10.5474/geologija.2002.009. Fodor, L., Uhrin, A., Palotás, K., Selmeczi, I., Nádor, A., Tóth-Makk, Scharek, P., Rižnar, I. & Trajanova, M. 2011: Geološki konceptualni model v okviru projetka T-JAM. Ljublajana, Budimpešta. 211A review of the Neogene formations and beds in Slovenia, Western Central Paratethys Fodor, L., Balázs, A., Csillag, G., Dunkl, I., Héja, G, Jelen, B., Kelemen, P., Kövér, S., Németh, A., Nyíri, D., Selmeczi, I., Trajanova, M., Vrabec, M. & Vrabec, Mi. 2021: Crustal exhumation and depocenter migration from the Alpine orogen- ic margin towards the Pannonian extensional back-arc basin controlled by inheritance. Glob- al and Planetary Change, 201: 103475. https:// doi.org/10.1016/j.gloplacha.2021.103475 Fuchs, Th. 1894: Tertiaerfossilien aus den kohlen- fuhrenden Miocaenablagerungen der Umge- bung von Krapina und Radoboj ünd tiber die Stellung der sogenannten »Aquitanischen Stufe«. Mitt. Jb. ung. geol. Anst., X., Budapest. Gašparič, R. & Hyžný, M. 2014: An early Miocene deep-water Decapod Crustacean Faunule from the slovenian part of the Styrian Basin and its palaeoenvironmental and palaeobiogeographi- cal significance. Papers in Palaeontology, 1/2: 141–166. https://doi.org/10.1002/spp2.1006 Gosar, A. 2005: Seismic ref lection investigations for gas storage in aquifers (Mura Depression, NE Slovenia). Geologica Carpathica, 56/3: 285–294. Gosar, A. & Janežič, B. 2006: Structural maps of seismic horizons in the Krško basin = struk- turne karte seizmičnih horizontov v Krški ko- tlini. RMZ - Materials and geoenvironment: periodical for mining, metallurgy and geology, 53/3: 339–352. Grizelj, A., Bakrač, K., Horvat, M., Avanić, R. & Hećimović, I. 2017: Occurrence of vivianite in alluvial Quaternary sediments in the area of Sesvete (Zagreb, Croatia). Geologia Cro- atica, 70/1: 41–52. https://doi.org/10.4154/ gc.2017.01 Gross, M. 2003: Beitrag zur Lithostratigraphie des Oststeirischen Beckens (Neogen/Pannonium; Österreich). In: Piller, W.E. (ed.): Stratigraph- ia Austriaca. Österr. Akad. Wiss., Schriftenr. Erdwiss. Komm. 16: 11–62. Gross, M., Minati, K., Danielopol, D. & Piller, W. 2008: Environmental changes and diversifi- cation of Cyprideis in the Late Miocene of the Styrian Basin (Lake Pannon, Austria). Pa- laeobio. Palaeoenv., 88: 161–181. https://doi. org/10.1007/BF03043987 Hamrla, M. 1954: Geološke razmere ob sever- nem robu laške sinklinale vzhodno od Savinje. Geologija, 2: 118–144. Haq, B.U., Hardenbol, J. & Vail, P.R. 1988: Me- sozoic and Cenozoic chronostratigraphy 753 and eustatic cycles. In: Wilgus, C.K., Hastings, B.S., Posamentier, H., van Wagoner, J., Ross, C.A. & Kendall, C.G.St.C. (eds.): Sea-level changes: An integrated approach. SEPM Spec. Publ., 42: 71–108. Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., de Graciansky, P.C. & Vail, P.R. 1998: Mesozo- ic and Cenozoic sequence chronostratigraphic framework of European Basins. In: de Gracian- sky, P.C., Hardenbol, J., Jacquin, T. & Vail, P.R.: (eds.): Mesozoic and Cenozoic sequence stratig- raphy of European Basins. SEPM Spec. Publ., 60: 3–13. Hasenhüttl, C., Kraljič, M., Sachsenhofer, R.F., Jelen, B. & Rieger, R. 2001: Source rocks and hydrocarbon generation in Slovenia (Mura De- pression, Pannonian Basin). Marine and Petro- leum Geology, 18: 115–132. Hohenegger, J., Rögl, F., Ćorić, S., Pervesler, P., Lirer, F., Roetzel, R., Scholger, R. & Stingl, K. 2009: The Styrian Basin: A key to the Middle Miocene (Badenian/Langhian) Central Pa- ratethys transgressions. Austrian Journal of Earth Sciences, 102: 102–132. Hohenegger, J., Ćorić, S. & Wagreich, M. 2014: Timing of the Middle Miocene Badenian Stage of the Central Paratethys. Geologica Carpathi- ca, 65/1: 55–66. https://doi.org/10.2478/geo- ca-2014-0004 Horvat, A. 2004: Srednjemiocenske kremenične alge Slovenije: Paleontologija, stratigrafija, pa- leoekologija, paleobiogeografija. ZRC SAZU, Ljubljana: 255 p. Huismans, R.S., Podladchikov, Y.Y. & Cloeting, S. 2001: Transition from passive to active rifting: Relative importance of astenospheric doming and passive extension of the litosphere. Jour- nal of geophysical research, 106/11: 271–291. Ivančič, K., Trajanova, M., Ćorić, S., Rožič, B. & Šmuc, A. 2018a: Miocene Paleogeography and Biostratigraphy of the Slovenj Gradec Basin: A Marine Corridor between the Mediterranean and Central Paratethys. Geologica Carpathica, 69/6: 528–44. https://doi.org/10.1515/geo- ca-2018-0031 Ivančič, K., Trajanova, M., Skaberne, D. & Šmuc, A. 2018b: Provenance of the Miocene Slovenj Gradec Basin Sedimentary Fill, Western Central Paratethys. Sedimentary Geology, 375: 256–67. https://doi.org/10.1016/j.sed- geo.2017.11.002. Ivančič, K., Brajkovič, R. & Vrabec, Mi. 2024: Geochemical and Mineralogical Approaches in Unraveling Paleoweathering, Provenance, and Tectonic Setting of the Clastic Sedimen- tary Succession (Western Central Paratethys). Appl. Sci. 14: 537. https://doi.org/10.3390/ app14020537 212 Kristina IVANČIČ, Miloš BARTOL, Miha MARINŠEK, Polona KRALJ, Eva MENCIN GALE, Jure ATANACKOV & Aleksander HORVAT Jelen, B. & Rifelj, H. 2003: The Karpatian in Slo- venia. In: Brzobohaty, R., Cicha, I., Kovač, M. & Rogl, F. (eds.): The Karpatian. A Lower Mio- cene Stage of the Central Paratethys. Masaryk Universiy, Brno: 133–139. Jelen, B. & Rifelj, H. 2005: Inner geodynamic control on the Late Paleogene and Neogoene stratigraphy in Slovenia. In: Patterns and Pro- cesses in the Neogene of the Mediterranean Region. 12th Congress R.C.M.N.S. Vienna. Jelen, B. & Rifelj, H. 2011: Karta neogenske tekton- ske strukture podlage Mursko-Zalskega bazena. 1: 250.000, Ljubljana, Geološki zavod Slovenije. Jelen, B., Rifelj, H., Bavec, M. & Rajver, D. 2006: Opredelitev dosedanjega konceptualnega geološkega modela “Murske depresije” Geološ- ki zavod Slovenije: 28 p. Kováč, M., Hudáčková, N., Halásová, E., Kováčová, M., Holcová, K., Oszczypko-Clowes, M., Bál- di, K., Less, G., Nagymarosy, A., Ruman, A., Klučiar, T. & Jamrich, M. 2017: The Central Paratethys palaeoceanography: a water cir- culation model based on microfossil proxies, climate, and changes of depositional environ- ment. AGEOS, 9/2: 75–114. Kováč, M., Halásová, E., Hudáčková, N., Holcová, K., Hyžný, M., Jamrich, M. & Ruman, A. 2018: Towards better correlation of the Central Pa- ratethys regional time scale with the standard geological time scale of the Miocene Epoch. Geologica Carpathica, 69/3: 283–300. Kralj, P. 1995: Lithofacies of the Pliocene Volcani- clastic and f luvial complex of Grad, north-east- ern Slovenia. Ph.D. University of Zagreb, Faculty of mining, geology and petroleum en- gineering, Zagreb. Kralj, P. 2001a: Pliocene clastic sediments in West- ern Goričko, Northeastern Slovenia. Geologija, 44/1: 73–79. https://doi.org/10.5474/geologi- ja.2001.004 Kralj, P. 2001b: Das Thermalwasser-System des Mur-Beckens in Nordost-Slowenien. Mittei- lungen zur Ingenieurgeologie und Hydrogeol- ogie 81, RWTH Aachen. Kralj, P. 2010: Eruptive and sedimentary evolution of the Pliocene Grad Volcanic Field, North-east Slovenia. Journal of Volcanology and Geo- thermal Research, 201: 272–284. https://doi. org/10.1016/j.volgeores.2010.09.004 Kralj P., Eichinger L. & Kralj, P. 2009: The Ben- edikt hydrothermal system (north-eastern Slovenia). Environvilonmental Geology, 58: 1653–1661. https://doi.org/10.1007/s00254- 008-1631-3 Kresevič, A. 2016: Sedimentologija in tektons- ka struktura srednjemiocenskih plasti v Tun- jiškem gričevju. Diplomsko delo. Univerza v Ljubljani, Naravoslovnotehniška fakulteta: 92 p. Kuščer, D. 1967: Zagorski terciar. Geologija, 10: 5–85. Kuščer, D. 1993: Neotektonika Krške kotline. Predhodno poročilo. Ljubljana: Geološki zavod Slovenije: 28 p. Lapajne, J. 1975: Geofizikalne raziskave na ob- močju Čateških Toplic = Geophysical Explo- ration of the Čatež Thermal Springs Area. Geologija, 18/1: 315–324. Marinšek, M., Hajek-Tadesse, V., Kolar-Jurkovšek, T. & Gale, L. 2022: Ostrakodi Kozjanske- ga - preliminarni rezultati. Rman, N., Bračič Železnik, B. & Žvab Rožič, P. (ur.): Zbornik povzetkov, 6. Slovenski geološki kongres / Vedeti (ne)vidno – vloga geologije v naši družbi, 3.-5. oktober 2022 Rogaška Slatina. Slovensko geološko društvo, str. 62. Marinšek, M., Hajek-Tadesse, V., Poljak., M., Ko- lar-Jurkovšek, T. & Gale, L. 2023: Upper Mio- ocene ostracods form the Krško Basin, SE Slo- venia. Geologia Croatica, 76/2: 57–72. https:// doi.org/10.4154/gc.2023.07 Markič, M. & Rokavec, D. 2002: Geološka zgradba, nekovinske mineralne surovine in lignit oko- lice Globokega (Krška kotlina). Rudarsko met- alurški zbornik, 49/2: 229–266. Maros, G., Jelen, B., Lapanje, A., Rifelj, H., Rižnar, I. & Trajanova, M. 2012: Summary report of the geological models, TRANSENERGY project. Ljubljana: Geološki zavod Slovenije; Bratisla- va: Štátny geologický ústav Dionýza Štúra; Bu- dapest: Magyar Földtani és Geofizikai Intézet. Wien: Geologische Bundesanstalt: 189 p. Martin, U. & Nemeth, K. 2004: Mio/Pliocene phrea- tomagmatic volcanism in the Western Pannonian Basin. Geol. Hungarica, 26: 1–191 Budapest. Mencin Gale, E. 2021: Pliocene to Quaternary sed- imentary evolution of intramountain basins at the junction pf Alps, Dinarides and Pannonian Basin. Doktorska disertacija. Univerza v Lju- bljani, Naravoslovnotehniška fakulteta, Lju- bljana: 187 p. Mencin Gale, E., Jamšek Rupnik, P., Trajanova, M., Bavec, M., Anselmetti S., F. & Šmuc, A. 2019a: Morphostratigraphy and provenance of Plio-Pleistocene terraces in the south-east- ern Alpine foreland: the Mislinja and Upper Savinja valleys, northern Slovenia. Journal of quaternary science, 9/ 2: 1–17. https://doi. org/10.1002/jqs.3156 Mencin Gale, E., Jamšek Rupnik, P., Trajanova, M., Gale, L., Bavec, M., S. Anselmetti, F. & Šmuc, 213A review of the Neogene formations and beds in Slovenia, Western Central Paratethys A. 2019 b: Provenance and morphostratigra- phy of the Pliocene- Quaternary sediments in the Celje and Drava-Ptuj Basins (eastern Slo- venia). Geologija, 62/2: 189–218. Mencin Gale., E., Jamšek Rupnik, P., Akçar, N., Christl, M., Vockenhuber, C., Anselmetti, F.S. & Šmuc, A. 2024: The onset of Pliocene - Early Pleistocene f luvial aggradation in the South- eastern Alpine Foreland (Velenje Basin, Slove- nia) and its paleoenvironmental implications. Journal of Quaternary Science. 1–19. https:// doi.org/10.1002/jqs.3623 Mikuž, V. 1999: Pereiraea gervaisi (Vezian) from Miocene beds south of Šentjernej in Lower Carniola, Slovenia. Geologija, 42/1: 123–140. Mikuž, V., Bartol, M. & Ulaga, Š. 2012a: The Bra- chiopod Lingula from the Middle Miocene – Badenian Beds of Slovenia. Geologija 55/2: 271–74. https://doi.org/10.5474/geologi- ja.2012.017 Mikuž, V., Gašparič, R., Bartol, M., Horvat, A. & Pavšič, J. 2012b: Miocenski pteropodi s Poličkega Vrha v Slovenskih goricah = Miocene pteropods from Polički Vrh in Slovenske gorice, northeast Slovenia. Geologija, 55/1: 67–75. https://doi.org/10.5474/geologija.2012.005 Mikuž, V., Bartol, M. & Ulaga, Š. 2014: Rib- je vretence iz miocenskih plasti v okolici Govc. Geologija, 57/1: 27–32. https://doi. org/10.5474/geologija.2014.003 Mioč, P. 1978: Osnovna geološka karta SFRJ 1:100 000. Tolmač lista Slovenj Gradec. Zvezni geološki zavod, Beograd: 74 p. Mioč, P. & Žnidarčič, M. 1977: Osnovna geološka karta SFRJ. 1:100 000. List Slovenj Gradec. Zvezni geološki zavod, Beograd. Mioč, P. & Ogorelec, B. 1991: Raziskave nafte in plina v Sloveniji: geološke raziskave: poročilo za leto 1991. Zv. 1, Murska depresija. Ljubljana: Geološki zavod Ljubljana, Inštitut za geologijo, geotehniko in geofiziko: 111 p. Munda, M. 1951: Geološko kartiranje med Hrast- nikom in Laškim. Geologija, 1: 37–89. Nádor, A., Lapajne, A., Tóth, G., Rman, N., Sőcs, T., Prestor, J., Uhrin, A., Rajver, D., Fodor, L., Muráti, J. & Székely, E. 2012: Transboundary geothermal resources of the Mura-Zala basin: a need for joint thermal aquifer management of Slovenia and Hungary. Geologija, 55/2: 209–224. https://doi.org/10.5474/geologi- ja.2012.013 Neal, J., Risch, D. & Vail, P. 1993: Sequence stra- tigraphy–A global theory for local success. Oil- f ield Rev., 2: 51–62. Oblak Brown, K. 2006: Foraminiferna taksonomi- ja, biostratigrafija in paleoekologija badenija v Planinski sinklinali (vzhodna Slovenija, Cen- tralna Paratetida. Doktorska disertacija. Lju- bljana, Univerza v Ljubljani, Naravoslovnoteh- niška fakulteta: 310 p. Pavelić, D. & Kovačić, M. 2018: Sedimentology and Stratigraphy of the Neogene Rift-Type North Croatian Basin (Pannonian Basin System, Croatia). Marine and Petroleum Geology, 91: 455–469. https://doi.org/10.1016/j.marpet- geo.2018.01.026. Pavšič, J. & Aničić, B. 1998: Nanoplanktonska stratigrafija oligocenskih in miocenskih plasti na Plohovem bregu pri Podčetrtku (Vzhodna Slovenija) = Nannoplankton stratigraphy of Oligocene and Miocene strata on Plohov breg near Podčetrtek (Eastern Slovenia). Razprave, 39: 55–79. Pavšič, J. & Aničić, B. 1999: S pentaliti bogate spodnjemiocenske plasti v profilu Plohov Breg pri Podčetrtku (Kozjansko, Vzhodna Slovenija) = Lower Miocene Beds Rich in Pentalites in the Plohov Breg profile at Podčetrtek (Kozjansko, Eastern Slovenia). Razprave, 40: 57–65. Pavšič, J. & Aničić, B. 2000: Lower miocene Braarudosphaera - and Micrantholithus - rich layers of eastern Slovenia. Journal of Nanno- plankton Research, 22/2: 130–131. Pavšič, J. & Horvat, A. 2009: Eocen, oligocen in miocen v osrednji in vzhodni Sloveniji. In: Pleničar, M., Ogorelec, B. & Novak, M. (eds.): The Geology of Slovenia. Geological survey of Slovenia, Ljubljana, 373–426. Pikija, M. 1982: Turbiditne karakteristike dije- la gornjopanonskih sedimenata u području Mihovljan-Labor (sjeverozapadna Hrvatska). Geol. vjesn., 35: 59–63. Placer, L. 1998: Contribution to the macrotectonic subdivision of the border region between South- ern Alps and External Dinarides. Geologi- ja, 41/1: 223–255. https://doi.org/10.5474/ geologija.1998.013 Placer, L. 1999: Structural meaning of the Sava folds. Geologija, 41/1: 191–221. https://doi. org/10.5474/geologija.1998.012 Placer, L. 2008: Principles of the tectonic subdivi- sion of Slovenia = Osnove tektonske razčlenitve Slovenije. Geologija, 51/2: 205–217. https:// doi.org/10.5474/geologija.2008.021 Pleničar, M. 1970: Osnovna geološka karta SFRJ 1:100 000. List Goričko. Zvezni Geološki za- vod, Beograd. Pleničar, M. & Ramovš, A. 1954: Geološko kartiranje severovzhodno od Brežic. Geologija, 2: 242–253. 214 Kristina IVANČIČ, Miloš BARTOL, Miha MARINŠEK, Polona KRALJ, Eva MENCIN GALE, Jure ATANACKOV & Aleksander HORVAT Poljak, M. 2017a: Geološka karta vzhodnega dela Krške kotline 1:25.000. Tolmač. Geološki za- vod Slovenije, Ljubljana: 108. Poljak, M. 2017b: Geološka karta vzhodnega dela Krške kotline 1:25.000. Geološki zavod Slovenije, Ljubljana. Poljak, M., Mikuž, V., Trajanova, M., Hajek-Ta- desse, V., Miknić, M., Jurkovšek, B. & Šoster, A. 2016: Badenijske in sarmatijske plasti v grad- beni jami za hidroelektrarno Brežice. Geologi- ja, 29/2: 129–153. https://doi.org/10.5474/ geologija.2016.008 Poulditis, Ch. 1981: Petrologie und Geochimie basaltischer Gesteine des steirischen Vulkan- bogens in der Steiermark und im Burgenland. Diss. Univ. Wien, Wien: 146 p. Premru, U. 1983: Osnovna geološka karta SFRJ 1:100 000. List Ljubljana. Zvezni geološki za- vod, Beograd. Premru, U. 1983: Osnovna geološka karta SFRJ 1: 100 000. Tolmač lista Ljubljana Zvezni geološ- ki zavod Beograd: 75 p. Rojnik, A. 2015: Sedimentološke in petrološke značilnosti klastičnih kamnin Laške formaci- je v profilu Doblič. Diplomsko delo. Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Ljubljana: 46 p. Rakovec, I. 1968: O mastodontih iz Šaleške doline. Razprave, XI/IV: 301–350. Rijavec, J. 1965: Mikrofavna terciarnih plasti in njih stratigrafija severno od Maribora. Disert- acija. Geološki zavod, Ljubljana: 119 p. Rižnar, I. 2005: Geološka zgradba mejnega po- dročja med Zunanjimi in Notranjimi Di- naridi vzhodne Slovenije. Doktorska disert- acija, Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu, Zagreb: 146 p. Rižnar, I. 2009: Gube med Ljubljanskim barjem in Južnimi Alpami. Geološki zbornik, 20: 136–138. Rižnar, I., Miletić, D., Verbič, T. & Horvat, A. 2002: Srednjemiocenske kamnine severnega pobočja Gorjancev med Čatežem in Kostan- jevico. Geologija, 45/2: 531–536. https://doi. org/10.5474/geologija.2002.060 Rögl, F., Ćorić, S., Hohenegger, J., Pervesler, P., Roetzel, R., Scholger, R., Spezzaferri, S. & Stingl, K. 2007: Cyclostratigraphy and trans- gressions at the Early/Middle Miocene (Kar- patian/Badenian) boundary in the Austrian Neogene basins (Central Paratethys). Scripta Facultatis Scientiarum Naturalium Universita- tis Masarykianae Brunensis, Geol., 36: 7–12. Schmid, S., Fügenschuh, B., Kounov, A., Maten- co, L., Nievergelt, P., Oberhänsli, R., Pleuger, J., Schefer, S., Schuster, R., Tomljenović, B., Ustaszewski, K. & van Hinsbergen, D. 2020: Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Research, 78: 308–374. https://doi. org/10.1016/j.gr.2019.07.005 Sokač, A. 1972: Pannonian and Pontian ostracode fauna of Medvednica. Pal. Jugoslav., 11: 1–140. Stevanović, P. & Škerlj, Ž. 1989: The Pontian sedi- ments of Slovenia. In: Malez, M. & Stevanović, P. (eds.): Chronostratigraphie und Neostra- totypen, Pliozan, Pontien, bd. VIII. – Jugosl. Akad. D. Wissen. Und Kunste: 153–179. Stingl, K. 1994: Depositional environment and sedimentary facies of the basinal sedi- ments in the Eibiswalder Bucht (Radl Formation and Lower Eibiswald Beds), Miocene Western Styrian Basin, Austria. Geologische Rund- schau, 83: 811–821. Strgar, I. 2003: Geološke raziskave nahajališč lito- tamnijskega apnenca na območju med Breznim in Savinjo. Geologija, 46/2: 313–328. https:// doi.org/10.5474/geologija.2003.027 Šikić, K., Basch, O. & Šimunić, A. 1979: Osnovna geološka karta SFRJ 1:100 000. Tolmač lista Zagreb. Zvezni geološki zavod, Beograd: 81 p. Šimunić, A. & Avanić, R. 1985: Korelacija geoloških odnosa in području Medvednice NW djela Savske potoline in djela Vukomeričkih gorica. Zagreb, Geološki zavod, Odur za geologiju i pa- leontologiju. Šram, D., Rman, N., Rižnar, I. & Lapajne, A. 2015: The three-dimensional regional geological model of the Mura-Zala Basin, northeastern Slovenia. Geologija, 58/2: 139–154. https:// doi.org/10.5474/geologija.2015.011 Tomljenović, B. & Csontos, L. 2001: Neogene– Quaternary structures in the border zone be- tween Alps, Dinarides and Pannonian Basin (Hrvatsko zagorje and Karlovac Basins, Croa- tia). International Journal of Earth Sciences, 90: 560–578. Trajanova, M. 2006: Granulometrijska in litološka sestava vzorcev proda iz lokacije Vrbina (Sv. Urh in Libna). Geološki zavod Slovenije, Lju- bljana: 9 p. Trajanova, M. 2013: Starost pohorskega magma- tizma; nov pogled na nastanek Pohorskega tek- tonskega bloka = Age of the Pohorje mountains magmatism; mew view on the origin of the Pohorje tectonic block. Doktorska disertaci- ja. Uiverza v Ljubljani, Naravoslonotehniška fakulteta, Ljubljana: 183 p. Verbič, T. 1995: Kvartarni sedimenti v vzhodnem delu Krške kotline. Poročilo, Arhiv URSJV, Ljubljana: 248 p. 215A review of the Neogene formations and beds in Slovenia, Western Central Paratethys Verbič, T. 2002: Lito- in alostratigrafija kvar- tarnih sedimentov ter neotektonska aktivnost v vzhodnem delu Krške kotline. 1. slovenski geološki kongres, Črna na Koroškem, 9.–11. oktober. Ljubljana, Geološki zavod Slovenije: 98–99. Verbič, T. 2004: Stratigrafija kvartarja in neotek- tonika vzhodnega dela Krške kotline. 1. del: Stratigrafija. Razprave, 45/3: 171–225. Verbič, T., Rižnar, I., Poljak, M., Demšar, M. & Toman, M. 2000: Quaternary sediments of the Krško Basin. 2. hrvatski geološki kongres, Cavtat-Dubrovnik 17.–20.5.2022. Zbornik ra- dova, Zagreb: 451-457. Vrabec, M. & Fodor, L. 2006: Late Cenozoic tecton- ics of Slovenia: structural styles at the North- eastern corner of the Adriatic microplate. In: Pinter, N., Gyula, G., Weber, J., Stein, S. & Medak, D. (eds.): The Adria microplate: GPS geodesy, tectonics and hazards. NATO Science Series IV, Earth and Environmental Sciences, 61: 151–168. https://doi.org/10.1007/1-4020- 4235-3_10 Vrabec, Mi. 2000: Govški Peščenjak v Profilu Do- blič. Diplomsko Delo. Univerza v Ljubljani, Nar- avoslovnotehniška fakulteta, Ljubljana: 100 p. Vrabec, Mi., Brajkovič, R. & Skaberne, D. 2014: Sedimentološke značilnosti terciarnih kamnin Tunjiškega gričevja. In: Rožič, B., Verbovšek, T. & Vrabec, Mi. (eds.): Zbornik povzetkov, 4. slovenski geološki kongres, Ankaran, 8.–10. 10. 2014. Oddelek za geologijo v sodelovan- ju s Slovenskim geološkim društvom. Nara- voslovnotehniška fakulteta, Ljubljana: 75–76. Winkler, A. 1926: Geologische Spezialkarte der Republik Österreich, Blatt Gleichenberg. Geol- ogische Bundesanstalt, Wien. Winkler, A. 1927: Erlauterungen zur geologischen Spezialkarte der Republik Österreich, Blatt Gleichenberg. Geologische Bundesanstalt, Wien: 164 p. Žnidarčič, M. & Mioč, P. 1989: Osnovna geološka karta SFRJ 1:100 000. Tolmač listov Maribor in Leibnitz. Zvezni geološki zavod, Beograd: 60 p. © Author(s) 2024. CC Atribution 4.0 License Late Cretaceous turbidite systems of southern Belgrade outskirts: Constraints on the Santonian convergence onset, evidence from the Sava Suture Zone (Guberevac-Babe, northern Šumadija, Serbia) Zgornjekredni turbiditi južnega obrobja Beograda: Podrobna opredelitev začetka santonijske konvergence, dokazi iz Savske šivne cone (Guberevac-Babe, severna Šumadija, Srbija) Darko SPAHIĆ1*, Dragan SIMIĆ1, Miljan BARJAKTAROVIĆ3 & Lidja KUREŠEVIò 1Geological Survey of Serbia, Rovinjska 12, 11000 Belgrade, Serbia; *corresponding author: darkogeo2002@hotmail.com 2IMS Institute, Bulevar vojvode Mišića 43, 11000 Belgrade, Serbia 3University of Vienna, Department of Geology, Jozef-Holaubek Platz 2, 1090 Vienna, Austria Prejeto / Received 28. 6. 2023; Sprejeto / Accepted 4. 6. 2024; Objavljeno na spletu / Published online 16. 12. 2024 Key words: Sava Suture Zone, Upper Cretaceous turbidites, folding and thrust faulting, Guberevac-Babe-Ropočevo, suture reactivation Ključne besede: Savska šivna cona, zgornjekredni turbiditi, gubanje in narivanje, Guberevac-Babe-Ropočevo, reaktivacija stika Abstract As ancient depositional systems associated with active continental margins, turbidites may provide crucial information on orogenic evolution. This paper offers new stratigraphic and structural data on one of the late Alpine turbidite systems of the Late Cretaceous age (Guberevac-Babe-Ropočevo area; Serbia). The two opposite yet juxtaposed tectonic systems were initially deposited within the Sava Suture Zone and East Vardar Zone, whereby the former experienced Upper Cretaceous contractional- and extensional-type deformations. The new biostratigraphic dating constrains the age of mapped compressional structures, which indicates their Santonian age. This deformed segment of the newly dated Santonian clastic-carbonate turbidite sequence near the Guberevac site exposes new important compressional structures. The folds, reverse faults, and tectonic stylolites are allocated several kilometers from the primary deformation (Bela Reka thrust fault), positioned within the crustal footwall of the overriding East Vardar Zone. The complexity of the geological processes in the Guberevac-Babe-Ropočevo area is further revealed by the previously mapped layering of Upper Cretaceous strata, exposed within the wider investigated area. Our combined field study provides a new statistical analysis of structural elements such as faults, folds, and bedding planes, adding to the depth of the understanding of the Sava Suture Zone. The observed contractional structures, mesoscopic folds, thrust faults, two-generation cleavage planes, as well as the produced statistical structures, are mostly imprinted into the out-of- deformation front or within the mixed clastic-carbonate turbidites of the Sava Suture Zone (Guberevac-Babe area). The composite study shows that the investigated footwall segment, represented by the deformed Sava Suture Zone turbidites, underwent tectonic shortening during Santonian (convergence onset). After the main crustal thickening event ceased, the Guberevac-Babe-Ropočevo suture segment was reactivated several times (post-orogenic extension). The investigated segment of the Neotethyan Vardar paleosuture experienced a total of four deformation stages spanning Late Cretaceous to Miocene times. These include the Late Oligocene reactivation and emplacement of the Glavčina-Parlozi Late Oligocene subvolcanic body and the slightly younger Stenička bara Miocene igneous system. Izvleček Turbiditi, kot sedimentacijski sistemi, vezani na aktivne robove celin, so turbiditi nosilci pomembnih podatkov o orogenem razvoju območja. V tem članku so predstavljeni novi stratigrafski in strukturni podatki o enem od alpskih turbiditnih sistemov iz časa pozne krede (območje Guberevac-Babe-Ropočevo; Srbija). Znotraj Savske šivne cone in Vzhodne Vardarske cone sta bili odloženi dve sinorogeni zaporedji, pri čemer je bilo prvo podvrženo poznokrednim kompresijskim in ekstenzijskim deformacijam. Glede na nove biostratigrafske podatke je do nastanka kompresijskih struktur prišlo v santoniju. V deformiranem delu santonijskega klastično-karbonatnega turbiditnega zaporedja v bližini Guberevaca so vidne nove pomembne kompresijske strukture. Gube, reverzni prelomi in tektonski stiloliti so vidni nekaj kilometrov stran od primarne deformacije (nariv Bela Reka), v talnini narinjene Vzhodne Vardarske cone. GEOLOGIJA 67/2, 217-236, Ljubljana 2024 https://doi.org/10.5474/geologija.2024.010 218 Darko SPAHIĆ, Dragan SIMIĆ, Miljan BARJAKTAROVIĆ & Lidja KUREŠEVIĆ Introduction and problem statement One of the most intriguing issues in the recon- struction of the complex geodynamic evolution of the Jurassic and/or Cretaceous “northwestern branch” of the peri-Neotethyan oceanic realm (Dimitrijević, 2001) is related to the evolution of collisional Sava Suture Zone (SSZ; Schmid et al., 2008, 2020; Spahić & Gaudenyi, 2022; Fig. 1). In the literature, SSZ is also known as the “Sava Var- dar Zone” of Pamić (2002), “Sava Zone” of Schmid et al., (2008), or “Central Vardar Zone” of Dimi- trijević (1997) and Toljić et al., (2019). Neverthe- less, much prior definition of the Vardar Zone by Dimitrijević (1997) or Pamić’s (2002), “Sava Var- dar Zone”, given in the paper published in 1973 by Anđelković SSZ is indicated. This early paper shows that the complex geology of the Belgrade area contains the magmatism that is of Cretaceous age. Investigated scarcely developed magmatic ep- isode is younger or of Upper Cretaceous age, em- placed much later than it was previously mapped and designated (Jurassic; see Spahić, 2022, for a review). A 1000 km long composite tectonic zone either belongs to a “relic Neotethyan ocean” (e.g., Karamata et al., 2000; Schmid et al., 2008; Ustaszewski et al., 2009, 2010) or represents a for- mer post-Neotethyan Cretaceous marine (strike- slip; Grubić, 2002; Pamić et al., 2002; Handy et al., 2015; Köpping et al., 2019) corridor intervening Dinarides and European margin (Spahić & Gaude- nyi, 2022). The Late Cretaceous post-Neotethyan-type deep marine corridor exposes bimodal-type mag- matic, metamorphic, and turbidite complexes, inclusive of the segment positioned near the city of Belgrade (Anđelković, 1973; Toljić et al., 2018; Spahić & Gaudenyi, 2022; Fig. 1). The investigated SSZ segment is an exhumed crustal fragment rep- resented by a fault bounded km-scale block, which is connecting the tectonic units derived from the (i) Eurasian (Europe) and (ii) mixed Gondwana/ Adria/Dinarides. The convergent assembly in- cludes Vardar Zone oceanic and continental plates (Fig. 2a,b). The mapped segment of the SSZ ex- poses the two almost identical Upper Cretaceous turbidite sequences that originate from two differ- ent Late Cretaceous–Paleogene tectonic-paleogeo- graphic realms: (i) foredeep suture-trench associ- ated with the aforementioned narrowing marine corridor (K2-SZ at Fig. 2b), and (ii) overriding foreland basin turbidites of the East Vardar Zone (K2-EV at Fig. 2b; Schmid et al., 2020; Toljić et al., 2018, Spahić & Gaudenyi, 2022). Before the latest Cretaceous–Paleogene conti- nent-continent collision and the precursory pro- duction of two turbidite systems, the origin of modern-day SSZ (“Piemont-Liguria, Vahic, In- acovce-Kriscevo, Szolnok, Sava unit” at Fig. 1) can be interpreted following the two different lithospheric-scale mechanisms or plate tectonic scenarios. The first option poses the orthogonal subduction model, elaborated by a „closing“ Neo- tethys Vardar ocean, also referred to as the ”Sava Ocean” (Schmid et al., 2008). The second pro- poses the model of a renewed strike-slip oblique subduction having occurred along the Cretaceous corridor intervening Adria and Europe (Spahić & Gaudenyi, 2022). In the study area, these imprints are well-hidden by the two different Upper Creta- ceous turbidite sequences. Near city of Belgrade, turbidites have just recently been separated into the two tectonic domains divided by the NNW- SSE striking west-vergent Bela Reka reverse fault (Toljić et al., 2018; Fig. 2b). The Bela Reka thrust fault separates the Western Vardar Zone including Sava Suture Zone (Adria-derived units), from the Eastern Vardar turbidite-ophiolitic units of Euro- pean affinity (Schmid et al., 2008, 2020; Boev et al., 2018; Toljić et al., 2018; Fig. 1). With regards to the two contemporaneous turbidite sequences, these exhibit different levels of deformation, and are very challenging for clear field recognition (Anđelković, 1973; Toljić et al., 2018; Fig. 2b). As study will show, the investigated near Belgrade suture segment further exposes some previously O kompleksnosti geoloških procesov na območju Guberevac-Babe-Ropočevo pričajo tudi plasti zgornjekrednih kamnin, ki so bile predhodno kartirane na širšem območju. V sklopu naše terenske študije smo izvedli statistično analizo strukturnih elementov, kot so prelomi, gube in plasti, kar prispeva k boljšemu razumevanju Savske šivne cone. Opazovane kompresijske strukture, kot so mezoskopske gube, narivi in klivažne ravnine dveh generacij, kot tudi pridobljeni statistični podatki o strukturah, se večinoma pojavljajo v prednarivnem čelu ali znotraj mešanih klastično-karbonatnih turbiditov Savske šivne cone (območje Guberevac-Babe). Celotna študija kaže, da je bil preiskovani segment talnine, ki ga predstavljajo deformirani turbiditi Savske šivne cone, izpostavljen tektonskemu krčenju v santoniju (začetek konvergence). Po koncu glavnega dogodka debeljenja skorje je bil šivni segment Guberevac-Babe-Ropočevo večkrat reaktiviran (postorogena ekstenzija). Preučevani segment neotetidine vardarske paleosuture je med pozno kredo in miocenom skupaj doživel štiri faze deformacij. Te vključujejo pozno-oligocensko reaktivacijo ter umestitev pozno-oligocenskega subvulkanskega telesa Glavčina-Parlozi in nekoliko mlajšega, miocenskega magmatskega sistema Stenička bara. 219Late Cretaceous turbidite systems of southern Belgrade outskirts: Constraints on the Santonian convergence onset, evidence from the Sava ... Metamorphic core complexes metamorphics First order thrusts First order normal faults First order strike slip faults Major faults African plate Hyblean foreland Tunisian Atlas Africa-derived allochthons Maghrebides of Sicily and Tunisia Calabro-Peloritani unit Continental ribbon of disputed origin D ac ia m eg a- un it Circum-Rhodope & Strandja units Sakarya unit Europe-derived units in the Alps Sardinia, Briançonnais nappes Helvetic and Subpenninic nappes Miocene-age thrust belt of Alps and Carpathians Audia, Macla, convolute flysch, Subsilesian, Silesian, Dukla, allochthonous molasse Marginal Folds, Tarcau, Skole Thrusted internal foredeep Adria-derived allochthons in the Dinarides, Hellenides & W-Turkey Budva-Cukali, Krasta, Pindos zones, Cycladic blueschists Pre-Karst unit, Bosnian flysch & Beotian zone High Karst & Parnass units Ionian zone Dalmatian, Kruja, Gavrovo-Tripolitza zones, Menderes, Bey Da Bükk, Jadar-Kopaonik & Tav Antalya-Alanya nappes East Bosnian-Durmitor, lower Pelagonian, Lycian nappes & Taurides Drina–Ivanjica, Korab, upper Pelagonian, Afyon–Ören units co m po si te n ap pe s, ca rry in g ob du ct ed op hi ol ite s Ophiolites & suture zones (mostly ophiolite bearing) Suture zones Obducted ophiolites Western Vardar ophiolitic unit (incl. Meliata- Maliac, Mirdita, Pindos & Almopias ophiolites) Ophiolites of western Turkey Eastern Vardar ophiolitic unit (incl. South Apuseni, Transylvanian & Circum-Rhodope ophiolites) Ligurian ophiolites Rhodope uppermost unit (Asenitsa- Thrace) Rhodope middle unit (Nestos suture zone) Rhodope upper unit (Kerdilion-Madan) Rhodope lower unit (Arda-Byala Reka) Rhodopes mega-unit (units of disputed origin) Pangaion-Pirin unit (SW Rhodopes) S-Alpine, Apenninic & Dinaridic-Hellenic foreland Adriatic microplate Adria-derived allochthons in the Apennines e.g. Tuscan nappe Adria-derived allochthons in the Alps & western Carpathians Lower Austroalpine, Infratatricum, Tatricum Upper Austroalpine & central west- Carpathian lower plate units Eoalpine high-pressure belt South Alpine unit Upper Austroalpine & internal west- Carpathian upper plate units AL C AP A m eg a- un it AED: Attica-Evia detachment MCD: Mid-Cycladic detachment NCD: North Cycladic detachment NPD: Naxos-Paros detachment WBD: West Biga detachment WCD: West Cycladic detachment Eurasian plate North Dobrogea Alpine-Carpathian foreland basin Variscan orogen & Moesia Precambrian platform Europe-derived units in the Pannonian region (Tisza mega-unit) Codru nappe system Bihor nappe system Mecsek nappe system Europe-derived allochthons in the Balkan Peninsula & Pontides Piemont-Liguria, Vahic, Inacovce, Szolnok suture zone Sava-Izmir-Ankara-Erzincan suture zone Ceahlau-Severin suture zone Pieniny klippen belt suture zone Valais, Rhenodanubian, Magura suture zone Nestos suture zone L. Constance L. Skoder L. Ohrid L. Prespes L. B alato n Bursa Izmir Patra Edirne Bucure Kavala Sofia Varna Skopje Beograd Banja Luka Dubrovnik Sarajevo Debrecen Krakow Bacau Pite ti Ia i Cernovcy Budapest TriesteVerona Milano Kosice Wien Bratislava München Zagreb Athina Chania Tirana Iraklio Istanbul Thessaloniki Cluj-Napoca Ljubljana Antalya IspartaDenizli Bodrum Afyon Napoli Roma Palermo Lecce Nabeul Split Zadar Salzburg Mostar Zlatibor Kopaonik Göcek Topolovgrad Asenovgrad Priština Novo Brdo Sirogojno L. Doiran Brze e Brus Zemplín Lezha Elbasani Kotor H e l l e n i c t r e n c h Calabr ian arc I o n i a n S e a A e g e a n S e a T y r r h e n i a n S e a A d r i a t i c S e a B l a c k S e a N C D N P D M C D W C D A E D W B D 41º 39º 37º 35º 43º 41º 39º 37º 35º 30º 47°30º28º 26º 49º 50º 24º 51º22º20º18º51º 50º 16º 14º 12º 10º49º 47º 45º 18º16º 14º 12º 10º 200 km0 20º 22º 24º 26º 28º 43º 45º AV - Avala Mt. JA - Jastrebac Mt. KO - Kosmaj Mt. KL - Klepa Mt. KO JA AV FG KL FG - Fruška Gora Mt. Subbucovinian, Bucovinian, Biharia, Supragetic, Serbo-Macedonian I Infrabucovinian, Getic, Sredna Gora, East Balkan Danubian, West Balkan, Struma Kula, Forebalkan Istanbul unit Fig. 1. The position of the investigated segment of the Sava Suture Zone, central Balkan Peninsula, Central Serbia, including the surrounding Alpine (modified after Schmid et al., 2008, 2020). 220 Darko SPAHIĆ, Dragan SIMIĆ, Miljan BARJAKTAROVIĆ & Lidja KUREŠEVIĆ Fig. 2. a. The relief map of the wider southern Belgrade area, including the position of the figure 2b and key locations; b. Simplified geological sketch map of the Ripanj-Ropočevo-Kosmaj Mt. segment (significantly modified after inset of Radulović, 1987). The geological sketch-map includes the collected field mapping data, including the position Bela Reka fault proposed by Toljić et al. (2018). 221Late Cretaceous turbidite systems of southern Belgrade outskirts: Constraints on the Santonian convergence onset, evidence from the Sava ... non-mapped compressional-type structures that are important for deciphering the exact conver- gence onset. The investigated tectonic relations (Fig. 2b) are additionally discussing the observed two-staged post-collisional extension-related tec- tonic episodes (Late Oligocene and Miocene times, e.g., Radulović, 1987; Vasković, 1987; Márton et al., 2022). The primary purpose of this study is to pro- vide a new stratigraphic and structural contribu- tion to the ongoing debate revolving around the exact onset of the Neotethys Vardar-related late Alpine convergence. The convergence connects the (Adria) Dinarides and the former southern Eur- asian margin (Robertson et al., 2008; Schmid et al., 2008). The field mapping and data collection is based upon the W–E-directed transect (Gu- berevac-Babe area). The measurements cover the exposed and deformed (former) Neotethyan lower plate. The lower plate is represented by a turbidite set that belongs to the SSZ(K2-SZ) (Figs. 2a, b, red rectangle, and Figs. 3, 4, 5). In addition, the field mapping results shows that the investigated Gu- berevac-Babe area exposes a few inconsistencies relevant to final (Neo)Tethyan termination and late Alpine collision. The first is the exact age of the K2-SZ / “Upper SSZ” sequence or Sava Suture Zone at the Guberevac-Babe area, which has been interpreted either as of the Jurassic age (sandy limestone; Radulović, 1987; Fig. 2b, 3a,b,c,d) or as the Lower Cretaceous f lysch (Filipović et al., 1973; Fig. 6a). The inconsistency is further spiced by a recent sketch map of Toljić et al. (2018), which shows that a Miocene veneer overlies the highly Fig. 3. a. The photos taken near Guberevac village, exposing the intensive folding (photo taken by D. Spahić). b. Intensely deformed rock, sampling area. c. The peculiar outlook of the outcropping deformed rock of questionable age: is the rock of latest Jurassic age or Late Cre- taceous? d. Ca. 100 m towards the east (by road) Sava Suture Zone turbidites have regular layered form steeply plunging towards the west (likely induced by the Glavčina ring structure). 222 Darko SPAHIĆ, Dragan SIMIĆ, Miljan BARJAKTAROVIĆ & Lidja KUREŠEVIĆ deformed Guberevac-Babe turbidites. Aiming to solve these inconsistencies, the following region- al geological study provides essential new strati- graphic data on the age of the newly discovered deformed Guberevac-Babe lower plate, i.e., its youngest SSZ turbidite sequence (K2-SZ; Fig. 2b). The importance and the tectonic activity of this Sava Suture Zone segment is additionally indicat- ed by imprints related to the post-orogenic Oligo- cene and Miocene magmatic stages. Regional geology Crosscutting the central part of the Balkan Peninsula along the W-E-trending Sava River, in the form of isolated outcrops (Hungary, Croatia, Bosnia & Herzegovina; Pamić et al., 2000, 2002; Pamić, 2002; Hrvatović, 2006; Grubić et al., 2009, 2010; Ustaszewski et al., 2009, 2010; Milošević, 2017; Maffione & van Hinsbergen, 2018; Farics et al., 2019; Gerčar et al., 2022), the Sava Suture Zone is passing near the Jadar block (e.g., Gerzina, 2010; Spahić & Gaudenyi, 2020). It further strikes across the Pannonian Basin and the Fruška Gora Mt. (Stojadinović et al., 2013, 2022; Dunčić et al., 2017; Toljić et al., 2019; Fig. 1), whereby this suture complex crops out in the immediate surrounding of the city of Belgrade, Serbia (southern city out- skirts; Fig. 1, 2a,b; Toljić et al., 2018, 2021; Sokol et al., 2019; Márton et al., 2022; Spahić, 2022; Fig. 1, 2,b). The investigated Upper Cretaceous-Paleo- gene turbidites are striking across Central Serbia (Jastrebac Mt., Marović et al., 2007a; Petrović et al., 2015; Erak et al., 2016), crossing into North Macedonia (Klepa Mt., Prelević et al., 2017; Köp- ping et al., 2019; Spahić et al., 2019), Greece and Turkey (Axios-Vardar Zone transferring into the İzmir-Ankara-Sava suture; e.g., van Hinsbergen & Schmid, 2012; Fig. 1). The investigated Upper Cre- taceous complex s.l. (Fig. 6a), including the dis- placed mafic-type Jurassic magmatic sequences of the reactivated NeoTethyan suture, constitutes a regional bedrock system accommodated mostly underneath the broader area of Belgrade and its surroundings (e.g., Anđelković, 1973; Marinović & Rundić, 2020). The wider Belgrade Alpine tectonic amalgama- tion comprises: (i) older Neotethyan magmatic-sed- imentary complex or Jurassic ophiolites belonging to the Western and East Vardar Zones, including the associated ophiolitic mélange of the Jurassic age (Dimitrijević et al., 2003; Schmid et al., 2008; Bragin et al., 2011, 2019; Toljić et al., 2018, 2021; Marinović & Rundić, 2020; Spahić, 2022; Fig. 1). The older crustal elements of the Middle Jurassic age are tectonically emplaced on top of the younger Late Jurassic, or middle Oxfordian to a late Titho- nian interval. Deep wells show depths of over 1500 m in the Pančevo area, which is positioned across the Danube River (Marinović & Rundić, 2020; Fig. 2a). Unconformably placed on top of the East Var- dar Jurassic oceanic formations, the Tithonian limestones and the Lower Cretaceous “Paraf lysch” were deposited (Anđelković, 1973; Dimitrijević & Dimitrijević, 2009; Toljić et al., 2018; Marinović & Rundić, 2020; Spahić et al., 2023). In the overlying position on top of the Tithoni- an-Lower Cretaceous Vardar Zone s.s. (both West- ern- and East Vardar Zone) are unconformable clastic sequences represented by the two similar turbidite units of the Upper Cretaceous age. Two turbidite belts have almost identical color and are of similar composition (Toljić et al., 2018; K2-SZ vs. K2-EV; Fig. 2). In their lower basal sections, the turbidites may contain different remnants of scarce bimodal basic and acidic magmatic signals (e.g., Anđelković, 1973; Karamata et al., 1997, 2005; Sokol et al., 2020). A recent study subdi- vided Sava Suture Zone into a lower-positioned slightly older SSZ segment containing the bimodal magmatics which is referred to as the “Lower SSZ” (Fig. 1, yellow rectangles), while the Upper Creta- ceous turbidites are referred to as the “Upper SSZ” (turbidites that outcrop to the west of Bela Reka fault line; Fig. 2, K2-SZ; Spahić & Gaudenyi, 2022). To the east of the Bela reka fault are East Vardar Upper Cretaceous turbidies (Fig. 2b). However, surface mapping of the two f lysch- type units of the Upper Cretaceous age permits a poor distinguishing of the tectonic boundary sep- arating the latter turbidites (Fig. 2b; also in Rad- ulović, 1987). The Bela reka thrust faults discon- necting the two turbidite systems inferred during field work. To subdivide turbidites we use the fol- lowing surface-subsurface markers: (i) the pres- ence of Jurassic-Lower Cretaceous markers be- longing to the footwall of both turbidite systems, inclusive the (ii) underlying NNW-SSE striking deep subsurface geophysical lineaments (Vukaši- nović, 1973a,b; Spahić et al., 2023). Constraints include (iii) the visualized localized aeromagnet- ic anomalies that are allowing insight into the near-surface configuration, in particular into the hidden magmatic areas (Vukašinović, 1973a,b; Spahić et al., 2023). With regards to the recurring magmatism that is localized along the strike of this regional-scale tectonic interface, the investigated Ripanj-Ropoče- vo-Kosmaj Mt. area belongs to a belt striking from the Avala Mt. at the north, over Rudnik Mt. (Kostić, 2021) further towards south including 223Late Cretaceous turbidite systems of southern Belgrade outskirts: Constraints on the Santonian convergence onset, evidence from the Sava ... Željin and Kopaonik Mts. (Figs. 1, 2a). The Gubere- vac-Babe-Ropočevo area exposes Cretaceous rocks with some evidence of Cretaceous magmatism to the north in Ripanj (Sokol et al., 2020; Fig. 6, Fig. 7a-f ). The postdating subvolcanic magmatic activity in the Oligocene induced the formation of Glavčina and Parlozi volcano-tectonic ring struc- tures having a diameter of 2.5–3 km (Radulović, 1987; Fig. 2b, 7a-c). The emplacement of Oligocene magmatics resulted in a number of round-shaped morphological features (Fig. 2b). The intrusion further induced a steep inclination of roofing tur- bidite layers (e.g., layers that are outcropping near Guberevac, vicinity of Glavčina intrusive feature; Fig. 3d, 7b). Another intrusion along the tecton- ic lineament is very near Kosmaj Mt. (Oligocene monzogranite, K-Ar on two whole rock samples yielded 30-29 Ma; Lovrić, 1982/83 in Vasković, 1987; Fig. 2a,b). The roofing turbiditic sequence contains predominantly quartz, mica-type min- erals, feldspars, and fragments of these Tertiary igneous rocks (Radulović, 1987). In summary, the following regional geological study aims to define the intermittent Late Cretaceous–Miocene lithospheric-scale activities along the proposed tectonic boundary, bondary, that disconnects the investigated two Upper. Cretaceous–Paleogene turbidite systems. Methods Taking into consideration the controversial age relations of the stacked turbidite complexes (Anđelković, 1953; Radulović, 1987; Toljić et al., 2018), in particular, deformation age, we conduct- ed the biostratigraphical and structural investiga- tions of the exposed highly deformed mainly fold- ed and thrust turbidite deposits of the SSZ (Figs. 4, 5). The data was collected by mapping the W – E transect connecting the Guberevac area with the Ropočevo quarry site (Fig. 2b). Biostratigraphic methods Several thin sections were produced from the pelagic highly-deformed rocks collected in the Guberevac area (Figs. 2, 3). These thin sections were investigated by the optical microscope to de- termine the presence of microfossils by applying magnifications of 2.5× and 10× (Fig. 5). Sampled turbidite could be defined as a calciturbiditic bed. Thin sections show that planktonic foraminifera are the main constituent of all analyzed microfos- sil assemblages. Fig. 4. a. The same outcrops near Guberevac village exposing highly deformed, previously unmapped deformations. b, c. The reverse fault, its hanging wall. Slickensides indicate reverse upwards-directed movement. d. The tectonic stylolite’s confirming reverse kinematics, and proximity of thrust fault. e. Intensely folded isocline folds in the peculiar Sava Suture sediments. The fold hinge plunges towards NNE. f. Detail view of tectonic stylolite. g. Evidence of contraction and cleavage formation. WSW ENE a b c d Footwall Missing fault block towards WSW NNE NNE NNESSW Fig.4b,c,d Tectonic Stylolites T h r u s t Youn ger n orma l faul t Fig.4c K2-SZ K2-SZ K2-SZ K2-SZ Original layering Deformed stylolites e WSW ENE K2-SZ f SSW SSW K2-SZ K2-SZ eg Calcite WSW ENE Contraction of turbidites Cleavage 224 Darko SPAHIĆ, Dragan SIMIĆ, Miljan BARJAKTAROVIĆ & Lidja KUREŠEVIĆ Structural analysis Preliminary field mapping of the critical out- crops yielded the presence of atypically complex folded turbidite sequences that, according to scarce available literature data, can be either of the latest Jurassic (Radulović, 1987) or the Upper Cretaceous age (Filipović et al., 1973). Observed deformations have not been mapped to date. To ad- dress these issues, we have applied the methods of lithostratigraphic and structural field mapping of the key outcrops, including the analysis of bedding data measured in a wider investigated area. The structural data (dip-direction/dip angle) are ex- tracted from the Basic Geological Map of Yugosla- via on a scale of 1:100,000, sheets Obrenovac and Smederevo (Filipović et al., 1973; Pavlović et al., 1979; Fig. 6a, b, c). We additionally measured oth- er field kinematic indicators, such as slickensides, striations, tectonic stylolites, and cleavage, to de- termine the displacement directions (Fig. 4a- g). Results From the Guberevac area towards the Bela Reka fault, the mapped Upper Cretaceous turbidites tur- bidites are changing gradually changing (no sharp contact) into the heterogeneous sequence with dominant marlstone-type deposits (Anđelković, 1953; Fig. 7e-yellow-colored rocks, 8a, d). Such a change marks the transition from a shallower ma- rine environment towards a deeper environment to the west of the Babe village. No sharp lithological change or tectonically displaced contact between the two turbidite belts is visible in the investigated area. There are no regional metamorphic changes, except in a few locations wherein small portions of Late Cretaceous turbidites are metamorphosed. According to the literature data, these spots were affected by the post-dating subvolcanic activity exposed at Stenička Bara, Babe village (Radulović, 1987; Fig. 7a, b, c, 8b). a. Contusotruncana cf. C. fornicata Plummer b. Dicarinella cf. D. concavata Brotzen c. Dicarinella sp. d. Globotruncana hilli Pessagno e. Globotruncana hilli Pessagno f. Hedbergella sp. Fig. 5. Microfauna from the select- ed samples is define and is scarce, and some of them are deformed Foraminifera species from the deformed Guberevac turbidites: Contusotruncana cf. C. fornicata Plummer, Dicarinella cf. D. con- cavata Brotzen, Dicarinella sp., Globotruncana hilli Pessagno, Hedbergella sp. 225Late Cretaceous turbidite systems of southern Belgrade outskirts: Constraints on the Santonian convergence onset, evidence from the Sava ... Stratigraphic update: Cretaceous stratigraphic investigation regarding the age of Sava Suture Zone turbidites As mentioned earlier, Toljić et al. (2018) pro- posed the distinction between the turbidite de- posits: (i) in the hanging wall East Vardar Co- niacian-Maastrichtian (lowermost Paleogene) turbidites vs. (ii) overriding Campanian (lower- most Paleogene) SSZ turbidites (divided by the Bela Reka fault; Fig. 2b). This study on the Upper Cretaceous turbidite sequences yielded (ii) the new stratigraphic data, whereby sequence positioned to the east of Bela Reka fault represents a subsystem of the Coniacian-Maastrichtian (-lowermost Pale- ogene) turbidites. The latter f lysch belongs to the Upper Cretaceous foreland system of the East Var- dar Zone/former south European foreland (sepa- rated by the Bela Rela fault; Toljić et al., 2018; see Spahić et al., 2023, for tectonic inheritance) (Fig. 2b). At the same time, the here presented new fossil content collected from the deformed SSZ(K2-SZ) turbidites indicated that the observed structures are of the Santonian (late Santonian) age "likely of syn-contractional origin". The new micropaleontological data of the rocks at the Guberevac locality has demonstrated the presence of identifiable pelagic foraminifera and some foraminifera species that cannot be deter- mined. Microfauna is scarce and difficult to deter- mine, mainly because samples were collected from highly deformed rocks. The presence of foraminif- era species indicates deeper, calmer, and cooler water with an average salinity (pelagic, open sea environment). The following species were identi- fied: Contusotruncana cf. C. fornicata Plummer, Dicarinella cf. D. concavata Brotzen, Dicarinella sp., Globotruncana hilli Pessagno, Hedbergella sp. (Fig. 5). The new biostratigraphic assembly pin- points the exact Santonian age of the highly de- formed Guberevac turbidites (lower plate), thus be- ing the key information for dating of the observed structural elements embedded therein. This San- tonian turbidite sequence should connect with the tuffs and andesite embedded into a thick succes- sion of Santonian marlstones (according to Toljić et al., 2018). However, during this field mapping campaign, we observed no such Upper Cretaceous magmatic equivalents across the investigated area. Structural analysis Analysis of bedding planes Field mapping of faults and folds, including the statistical analysis of the previously mapped tur- bidite layers (Fig. 6a) taken from the Basic Geo- logical Map of Yugoslavia on a scale of 1:100,000 yielded the two distinctive directions among mapped deformations, E-W and NE-SW (Fig. 6b). The S1 and S2 diagrams (Fig. 6b) are depict- ing the bedding data from the sheets Obrenovac and Smederevo, respectively (Fig. 6a). The Basic Geological Map has no distinction of the Sava Su- ture Zone and East Vardar Zone turbidites. Thus, the measured dip direction/dip angle of the strata represents the bulk Upper Cretaceous measure- ments (Filipović et al., 1973; Pavlović et al., 1979; Fig. 6a). Nevertheless, to obtain the best results, we separated the Upper Cretaceous sediments into the SSZ and the East Vardar Zone (S2) (Fig. 2b). The S1 and S2 diagrams are representing the manu- ally subdivided trends of the same deformation age deducted from the bulk data (Fig. 6a-c). The S1 has a bedding trend with dip directions orientation to the NE and SW, exposing the two π belts with the maximum of 047/68 and 214/77. The majority of the measurements have a SW-directed dipping of strata (Fig. 6b). From these statistical poles (max- ima), we have extracted the two statistically cal- culated fold limbs (represented by the traces). The limb one has a dip direction/dip angle of 227/22, whereas the limb two has 030/13. The statistical axial plane has a dip direction/dip angle of 040/86, whereas the statically calculated b-axis/fold axis has a trend/plunge of 310/03 (aligned with the Al- pine trend in the area; see Đoković 1985, for the explanation of the folding and associated b-axis/ fold axis trends). The S2 diagram has the statistical bedding with the principal dip directions of E-W, clustering the two π belts or a statistical maximum of the poles that have the maxima of 089/62 and 270/62 (with the majority of the measurements dipping towards the west). From these π belts/pole data, we have further extracted the two statistical- ly calculated fold limbs, which are entirely in line with the observed cluster of field data: dip-direc- tion/dip of the bedding, spatial position of west-di- vergent fault planes, including the important fold axes. Other rather subordinate maxima likely rep- resent the clustering of the structural elements ad- jacent to the brittle faults (strata are allocated and shifted by the subsequent post-Cretaceous fault ac- tivity). Limb one has a dip direction/dip angle of 270/27, and limb two has measurements of 091/28. The statistical axial plane has a dip direction/dip angle of 270/89, whereas the b-axis/fold axis has a trend/plunge angle of 180/01. The two trends are exposed in Figs. 6b, c, showing that the Upper Cretaceous s.l. bedding (Fig. 6a) can be subdivided into the two principal shortening trends – NE-SW and E-W-directed (Fig. 6b). 226 Darko SPAHIĆ, Dragan SIMIĆ, Miljan BARJAKTAROVIĆ & Lidja KUREŠEVIĆ Fig. 6. a. Combined geological map of the investigated area. b. S1 and S2 diagrams present bedding data from segments of sheets Obrenovac and Smederevo. See text for details. 227Late Cretaceous turbidite systems of southern Belgrade outskirts: Constraints on the Santonian convergence onset, evidence from the Sava ... Results of key-area structural analysis Observing compressional field kinematic in- dicators, such as slickensides, striations, tectonic stylolites, and cleavage, allowed us to determine the displacement directions (Fig. 4a-g). The out- crops expose a reverse fault plane, exposing its footwall domain and missing hangingwall. The plane is dipping towards the ENE with a dip of 55-60 and the azimuth of ca. 80, whereby the slickensides corroborate reverse upwards-directed movement towards the WSW (Fig. 4b, c, d). In- tensely folded isocline folds in the peculiar Sava Suture sediments (Fig. 4e) are located slightly east of the slickensides (Fig. 4f ). The fold hinge plunges towards NNE. In addition, the Guberevac outcrop exposes compressional cleavages observed earlier (Sajić, 1987). Farther to the east (Fig.6a), away from the Gu- berevac site, between the Babe and Ropočevo areas (Fig. 2b, 3c, d, 7a-d), measurements show a signif- icant change from the highly deformed into steeply inclined thin layered sequence (Fig. 3d). The latter sequence is represented by steeply inclined turbid- itic layers that are disturbed by the emplacement of the Glavčine granitoid body. As mentioned, the measurements show steeper dip angles (Radu- lović, 1987). At the Babe village, the marlstones have sharp yet largely diluvium-covered contact with the older Albian limestone of the East Vardar Zone. This lithostratigraphic change presumably marks the covered thrust-type contact (as per Tol- jić et al., 2018; also in Spahić & Gaudenyi, 2022; Fig. 2b, 7e). Despite the widespread Quaternary cover, the subsurface lineament or Bela Reka fault is also inferred by the presence of the Albian se- quence of the overriding East Vardar Zone ( just a few meters from the presumed fault; Fig. 2b, 7d-f ). The nearby “Ropočevo breccia” and the Albian sandy limestone sequence/calcareous-arenitic units are lithostratigraphic members of the “paraf- lysch” sequences (latest Tithonian-earliest Berria- sian, Albian-Cenomanian; Dimitrijević & Dimitri- jević, 2009; Spahić et al., 2023). The "paraf lysch" is the clastic-carbonates sequence of Lower Cre- taceous deposited on the reacivated and subsided European foreland (Dimitrijević & Dimitrijević, 2009; Spahić et al., 2023). Discussion: Late Cretaceous convergence onset, post-collisional magmatic reactivation, and suture kinematics In the wider Belgrade area Guberevac-Babe -Glavčine-Ropočevo area (Figs. 2a,b, 7, 8), the exact age of the onset of the regional lithospher- ic-scale contraction has not been previously con- strained by field deformations. Nevertheless, a few recent reports proposed a similar Cretaceous onset of the convergence-related compressional deformations related to Apulia/Adria/Dinarides collision with the former south European foreland (Schmid et al., 2008; Toljić et al., 2018, Marton et al., 2022). Reports mainly highlight a tectonic connection of f lysch deposits, describing the in- vestigated Upper Cretaceous sequence as syn-con- tractional turbidites (Pamić, 2002). Constraints on the Upper Cretaceous (Paleogene) regional compressional event (Cleavage patterns, folding and reverse faults) The collected field data and constraints on deformation stages (Fig. 9), coupled together with previous papers published from the studied area, point to the presence of two cleavage trends: first, older NE-dipping cleavage (Sajić, 1987) overprint- ed by cleavage trending depicted during fieldwork (developed within west-vergent folds; Fig. 4e). The older stage fits with the precursory latest Jurassic mild collision (Spahić et al., 2023, 2024), frequent- ly interpreted as an obduction-related event (here- inafter Stage#0; Maleš et al., 2023; Fig. 9). This pre-Cretaceous Tethyan convergent configuration is characterized by an intra-oceanic magmatic re- sponse of the latest Jurassic age (documented with- in the central East Vardar Zone; Resimić-Šarić et al., 2005; Šarić et al., 2009). Thus, we interpret this older cleavage pattern as a remnant of an ear- lier compressional stage related to the latest Ju- rassic closure of Neotethys (see also Spahić et al., 2023). The second cleavage pattern fits into the N-S- (in Cretaceous reference) or today, E-W-directed shortening and development of folds (hereinaf- ter Stage#2; Fig. 9). This second or younger N-S cleavage trend (Fig. 4g) and the observed folds are consistent with the investigated Late Cretaceous compressional event (Stage#1). Stage#1 repre- sents the onset of late Alpine Upper Cretaceous contraction, locally indicated by the observed folds (Fig. 4e). The observed folds have a west-north- west-vergence being of syn-contractional origin (b-axis or fold axis 12/9). Such combined fold– cleavage patterns may suggest the presence of a progressive Upper Cretaceous deformation (Stage 1 and Stage 2; Fig. 4g). According to the collected stratigraphic and structural data, it appears that the investigated late Mesozoic deformation was in- itiated already during the (late) Santonian. During Stage#3 (Fig. 9), the ongoing late Cre- taceous shortening and collision produced the observed thrust faults (note that the thrust faults 228 Darko SPAHIĆ, Dragan SIMIĆ, Miljan BARJAKTAROVIĆ & Lidja KUREŠEVIĆ and folds are in a confined place; Fig. 4). The pres- ence of reverse faults attests to the continuity of the Upper Cretaceous shortening (also indicated by the curved geometry of tectonic stylolites; Fig. 4d, f ). The progressive thrusting contributed to a further narrowing the remaining marine Upper Cretaceous corridor (deep sea). Eventually, the Upper Cretaceous - Paleogene shortening reached the (micro)continent-continent collision stage. The investigated reverse fault planes measured within the “Upper SSZ” are cropping at a distance from the area of the Bela Reka fault (Guberevac section; Fig. 2b, 4). Such a distance from the main defor- mation front could suggest the presence of the oblique motion of the two crustal domains docu- mented to the south in North Macedonia (Köpping et al., 2019; see later in the text). Stage#4 exhibit evidence of the Stage 4 exhib- it evidence of much younger regional extension (Fig. 9). The statistical results extracted from the Cretaceous layers show that the observed Late Cre- taceous compressional trends (bedding; Fig. 6) are affected by the emplacement of the younger mag- matic bodies or doming (e.g., the layering in the vicinity of the Glavčine ring structure; Radulović, 1987; Figs. 6a, 7a). In addition, the younger exten- sional-type brittle faults have the strike values dis- sipating towards the north (10-20°) and NNW (ca. 310°) (Fig. 6a). The statistical fault strike data are consistent with the younger extensional episodes (see Marović et al., 2007b; Marinović & Rundić, 2020, for details). Such a configuration suggests the latest Oligocene-Miocene extensional interference followed by the fault reactivation. In addition, Fig. 7. a. Geological sketch-map of the Babe ore-baring Glavčine-Parlozi structure (inset from Radulović, 1987, modified). b, c. The em- placement of the magmatic body explains the post-depositional tilting near across Glavčine-Parlozi area. The entire area is abundant with the ancient Roman-time abandoned slag deposits, spread all over the mapped ring structures (Spahić et al., 2007; Tančić et al., 2009). d, e. Ropočevo abandoned quarry, East Vardar Zone turbidite segment as carrier of complex brecciated body (Fig. 2b; see Kurešević et al., 2022, Spahić et al., submitted, for details). f. Albian sandstones (also in Pavlović et al., 1979), according to Toljić et al. (2018) it is of East Vardar inheritance (see Fig. 2b). 229Late Cretaceous turbidite systems of southern Belgrade outskirts: Constraints on the Santonian convergence onset, evidence from the Sava ... literature data show that the investigated area ex- perienced a two-staged post-collisional magmatic interference during the Tertiary (e.g., Pamić et al., 2002; Cvetković et al., 2004; Palinkaš et al., 2008). Tertiary magmatic stages, evidence of extensional (post-orogenic) suture reactivation Distribution of the Oligocene-Miocene mag- matic entities implies that the late Paleogene igne- ous activity is clustered along the major NNW-SSE striking deep-crustal subsurface remnant linea- ment (Guberevac-Babe-Ropočevo segment). This NNE-SSW fault or subsurface geophysical linea- ment extends further to the south, striking across the Rudnik- Topola area and further in North Mac- edonia (Vukašinović, 1973b; Kostić, 2021; Toljić et al., 2021; Fig. 1, 2a). The emplacement of the sub- volcanic bodies was also guided by the local faults, likely reactivated strike-slip fault near the Babe area (Spahić & Gaudenyi, 2022; Fig. 7a, red bold lines). Such a position could indicate the location of the overprinted former restraining band (com- pression) and releasing band (extension). The post-collisional extension-type reactiva- tion and the emplacement of magmatic bodies oc- curred mainly in both the SSZ- and East Vardar turbidites (Fig. 9). However, within the investigat- ed area, its former overriding plate (Albian sand- stone, “Ropočevo breccia” of the East Vardar Zone) carries no magmatic entities except for the ker- santite body in the Ripanj area (Sokol et al., 2020). The former descending plate and SSZ turbidites are accommodation places of both (i) the Oligo- cene subvolcanic Glavčine-Parlozi ring structure (Fig. 8a,b) and (ii) the second Miocene igneous body exposed at the Stenička bara (Fig. 7a,b,c). The exposed pyroclastic rocks outline the young- est Miocene volcanic episode (25.12-23.27 Ma; Vasković, 1987). The presence of a suture-related Fig. 8. The outcrops showing the “Upper Sava Zone” turbidite sequence at the top of Parlozi ring structure. b. “Pyroclastic bomb” found in the Parlozi area (also in Radulović, 1987), c. Thermally affected turbidites in the area of the principal Babe fault indicate proximity of the magmatic levels, d. Typical marlstone of the area. 230 Darko SPAHIĆ, Dragan SIMIĆ, Miljan BARJAKTAROVIĆ & Lidja KUREŠEVIĆ post-collisional subvolcanic magmatic body could further be inferred by the occurrence of the rare- ly exposed eruptive igneous breccias (Fig. 8b). There, the underlying Glavčine-Parlozi magmatic body has thermally and chemically affected the surrounding cap-rocks, altering the investigated turbidites at their base (silif ication and turma- linization observed in the Babe village; Zrnić et al., 1998; Fig. 8c). The subsurface conditions are characterized with high temperature and lower pressure, typical for a subvolcanic level or shallow crust depths (Radulović, 1987; Zrnić et al., 1998; Logar et al., 1998). The sulfidic mineralizations are associated with quartz-latite, riolite, and ex- plosive igneous breccias (Zrnić et al., 1998). Such an assembly indicated a protracted magma-related near-suture activity (Radulović, 1987). The Guberevac-Glavčine-Stenička bara igne- ous sub-province is additionally depicted by the subsurface aeromagnetic anomaly (Vukašinović, 1973b). The subsurface data delineate the geom- etry of the emplaced entities beneath the ring structures (Fig. 2b, 7a). According to the geophys- ical record, the subsurface igneous bodies have a NNW-SSE direction or towards the Avala Mt. and slightly southward, towards the nearby Kosmaj Mt. (Fig. 2b). The maximum values of ΔT intensity reaching 1000-1200 nT are positioned precisely at the aforementioned ring structures, the Babe- Glavčine and Kosmaj Mt., including the anomaly beneath the Venčane igneous area north of Buku- lja and Rudnik Mts. (Vukašinović, 1973b; Fig. 1, 2a). Further to the south, the SSZ can be traced by this Oligocene magmatic reactivation (e.g., at Rudnik Mt., Kostić, 2021; Kostić et al., 2021; Fig. 1). Orthogonal vs. oblique underplating? Recent papers dealing with the investigated Belgrade area mainly explain the orthogonal sub- duction (relative to stable Europe), resulting ini- tially in a fore-arc extension of its upper plate (Tol- jić et al., 2018, 2021). Accordingly, the presumed fore-arc extension provided the conditions further allowing the extrusion of bimodal magmas of the Upper Cretaceous age (e.g., Grubić et al., 2009; Ustaszewski et al., 2010; Cvetković et al., 2014, 2016; Sokol et al., 2019). However, a few earlier (Dimitrijević & Dimitrijević, 1975; Dimitrijević, 1997) and some more recent observations have indicated that this area or the area of NeoTethys Vardar Ocean underwent a multistage oblique lith- ospheric-scale collision starting in the latest Ju- rassic (Fig. 9). According to this scenario, after the oceanic closure occurred in the latest Jurassic, the narrowing of the remaining deep-sea Cretaceous strike-slip corridor stepped into the final stage of the continent-continent collision (see Farangitakis et al., 2020, for the kinematic modeling Köpping et al., 2019; Spahić & Gaudenyi, 2022). The principal difference between these two (Upper) Cretaceous tectonic models is the lower plate configuration. Instead of the proposed or- thogonal subduction, the oblique dextral under- plating beneath the European plate occurred in the following two stages: (i) initially causing the Late Jurassic NeoTethyan Vardar closure and obduc- tion; (ii) the terminal Late Cretaceous - Paleogene (micro-continent) collision (Dimitrijević & Dimi- trijević, 1975; Grubić, 2002; Willingshofer et al., 1999; Pamić et al., 2002; Šarić et al., 2009; Bonev & Stampf li, 2008, 2011; Marroni et al., 2014; Köp- ping et al., 2019; Spahić & Gaudenyi, 2022; Spahić et al., 2023). The Cretaceous lower plate remobilization of Jurassic oceanic crust contributed to the produc- tion of Cretaceous pull-apart basins and associated bimodal magmatism (Köpping et al., 2019; Spahić & Gaudenyi, 2022; Fig. 1, yellow-black rectangles). Once developed, pull-apart transtensional releas- ing bend segments allowed the deposition of tur- bidities and intrusion of the Upper Cretaceous (Co- niacian) bimodal magmatism. This hypothesis of releasing and restraining bends could be verified by this study, which provides new constraints on a distant position of the Guberevac folds (restrain- ing bend positioned away from the Bela Reka fault; Fig. 2). Such a strike-slip faulting mechanism is frequently associated with evidence of crustal “tel- escoping”. Telescoping allows the tectonic expo- sure of different crustal levels, further involving the exhumation of deeper lithosphere sections (Cao & Neubauer, 2015). The bimodal magmatic signal is documented across the entire Sava Suture Zone (former deep sea marine corridor; Fig. 1). These bimodal magmatic imprints can be found exclu- sively within the localized near-suture (thinned) lithospheric fragments (see different locations and their Upper Cretaceous magmatic imprints with- in the Sava Suture Zone: Ustaszewski et al., 2009; Cvetković et al., 2014; Prelević et al., 2017; Balen et al., 2020; Sokol et al., 2020; Toljić et al., 2021; Fig. 1). Accordingly, this Upper Cretaceous mag- matism could serve as a marker of pull-apart mi- ni-basins associated with strike-slip movements (releasing bend that was reactivated in Oligocene and Miocene, see earlier in text). Thus, the inves- tigated Ripanj -Babe - Guberevac area could be described as a configurational crossover between the overprinted restraining and releasing bends 231Late Cretaceous turbidite systems of southern Belgrade outskirts: Constraints on the Santonian convergence onset, evidence from the Sava ... segments of the strike-slip Sava Suture Zone. Nev- ertheless, the complexity of the wider investigated area requires further study. Conclusions The study shows that the onset of the Late Al- pine collision was during the (late) Santonian. A principal difference between the two almost iden- tical, tectonically superimposed turbidites of the Upper Cretaceous age, can be attributed to ob- served different levels of the exposed compres- sional-type deformations. The “Upper Sava Suture Zone” positioned to the left of the Bela Reka fault experienced more intense compressive deforma- tion, resulting in structural elements like folds, thrust faults, and tectonic stylolites. These struc- tures are consistent with their foredeep-related depositional system, typical for turbidites. Second or the East Vardar Zone f lysch (overriding plate) has no prominent Upper Cretaceous deforma- tion observed across the investigated area. Thus, the entire Sava Suture Zone sector near Belgrade needs further study. Based on field mapping and previously pub- lished geophysical and structural data (Filipović et al., 1973; Pavlović et al., 1979), the imprints of four tectono-deformational phases were interpret- ed since the end of the Jurassic. The interpreta- tion yielded four tectono-deformational phases since the end of the shortening. The Santonian shortening marks the here-depicted onset of the contractional deformation. The Upper Cretaceous shortening led to the folding and progressive Up- per Cretaceous–Paleogene contraction and thrust faulting. Progressive deformation led to the devel- opment of brittle structures, represented by the prominent reverse faults (Guberevac area). After the crustal thickening ceased in the early Paleo- gene, the area was reactivated by the Oligocene igneous intrusion (Glavčine-Parlozi) and Miocene volcanic episode (Stenička bara). Other main con- clusions are: The Guberevac-Babe SSZ sector holds evi- dence of the two-staged contractional events: the latest Jurassic closure of Neotethys Vardar ocean (Stage#0, not investigated in this study) and in- tense Santonian to post-Santonian tectonic events marking the late Alpine progressive compressional Fig. 9. Deformation stages extracted from the study: Stage#0: lat- est Jurassic – Early Cretaceous compression; Stage#1: initial fold- ing at the beginning of Upper Cretaceous with NNE-SSW tensors; Stage#2: folding at the end of Upper Cretaceous with E- W tensors; Stage#3: collision (transpression); Stage#4: post-orogenic exten- sion and magmatic emplacement. 232 Darko SPAHIĆ, Dragan SIMIĆ, Miljan BARJAKTAROVIĆ & Lidja KUREŠEVIĆ stage (Stages#1,2,3). This new insight resolves the previous conf licting lithostratigraphical interpre- tations by confirming the presence of the Santoni- an SSZ turbidites in Guberevac. The intense initial post-Santonian (plastic) folding, including the observed vergence, suggests the presence of (late) Santonian syn-contractional deposition and progressive development of cleav- age (Stages#1 and 2); The observed thrust faults in the Guberevac area are marking the post-Santonian onset of the Adria-Europe collision (Stage#3). The reverse faults in the Guberevac-Babe SSZ segment are tec- tonically shifted several kilometers away from the main Bela Reka thrust interface; The exhumed Guberevac-Babe-Kosmaj Mt. paleosuture segment has been interrupted by a few post-orogenic extensional episodes charac- terized by intense igneous activity (Stage#4): (i) initially during late Paleogene/Oligocene time by the emplacement of the subvolcanic Glavčine ore body, and (ii) during the Miocene, accounting for the widespread regional extension and the em- placement of the Stenička bara volcanic system. The study further shows that these suture-related intrusions may or may not penetrate the overlay- ing Upper Cretaceous turbidites in regional terms. References Anđelković, M.Ž. 1953: Contribution à la connais- sance géologique et paléontologique des envi- rons du village Babe et du village Guberevac (Kosmaj). Geološki anali Balkanskoga polu- ostrva, 21: 29–54. Anđelković, M.Ž. 1973: Geology of the Mesozoic in the vicinity of Belgrade. Geološki anali Bal- kanskoga poluostrva, 38 (Géologie): 1–142. Anđelković, M.Ž. 1975: Gornja kreda – okolina Beograda = Upper Cretaceous, wider Belgrade area. In: Petković, K. (ed.): Geologija Srbije, ii- 2, Stratigrafija, mezozoik = Geology of Serbia, ii-2, Mesozoic: 280-300. Zavod za regionalnu geologiju i paleontologiju, RGF, Univerzitet u Beogradu, Belgrade. Boev, B., Cvetković, V., Prelević, D., Šarić, K. & Boev, I. 2018: East Vardar ophiolites revisited: A brief synthesis of geology and geochemical data. Contributions, Section of Natural, Math- ematical and Biotechnical Sciences MASA, 39/1: 51–68. Bonev, N. & Stampf li, G. 2008: Petrology, geo- chemistry, and geodynamic implications of Jurassic island arc magmatism as revealed by mafic volcanic rocks in the Mesozoic low-grade sequence, eastern Rhodope, Bulgaria. Lithos, 100/1–4: 210–233. https://doi.org/10.1016/j. lithos.2007.06.019 Bonev, N. & Stampf li, G. 2011: Alpine tectonic evolution of a Jurassic subduction-accretion- ary complex: Deformation, kinematics and 40Ar/39Ar age constraints on the Mesozoic low- grade schists of the Circum-Rhodope Belt in the eastern Rhodope-Thrace region, Bulgar- ia-Greece. Journal of Geodynamics, 52/2: 143– 167. https://doi.org/10.1016/j.jog.2010.12.006 Bragin, N., Bragina, L., Gerzina-Spajić, N., Đerić, N. & Schmid, S.M. 2019: New radiolarian data from the Jurassic ophiolitic mélange of Ava- la Mountain (Serbia, Belgrade Region). Swiss Journal of Geosciences, 112: 235–249. https:// doi.org/10.1007/s00015-018-0313-8 Bragin, N.Y., Bragina, L.G., Đerić, N. & Toljić, M. 2011: Triassic and Jurassic radiolarians from sedimentary blocks of ophiolite mélange in the Avala Gora area (Belgrade surroundings, Serbia). Stratigraphy and Geological Correla- tion, 19: 631–640. https://doi.org/10.1134/ S0869593811050030 Cao, S. & Neubauer, F. 2015: How Orogen-scale Exhumed Strike-slip Faults Initiate. In AGU Fall Meeting Abstracts, MR33C-2690. How Orogen-scale Exhumed Strike-slip Faults Ini- tiate - NASA/ADS (harvard.edu) Cvetković, V., Prelević, D., Downes, H., Jovanović, M., Vaselli, O. & Pécskay, Z. 2004: Origin and geodynamic significance of Tertiary postcolli- sional basaltic magmatism in Serbia (central Balkan Peninsula). Lithos, 73/3–4: 161–186. https://doi.org/10.1016/j.lithos.2003.12.004 Dimitrijević, M. D. 2001: Dinarides and the Vard- ar Zone: a short review of the geology. Dinar- ides and the Vardar Zone: a short review of the geology. Acta Vulcanologica, 13/1–2: 1–13. Dimitrijević, D.M. & Dimitrijević, N.M. 1975: Ofioli- tski melanž Dinarida i Vardarske Zone: Geneza i geotektonsko znacenje = Ophiolite melange of the Dinarides and the Vardar Zone: Genesis and its geotectonic importance. II godišnji znanstveni skup, Znanstveni savjet za naftu JAZU, Sekci- ja za primjenu geologije, geofizike I geokemije, ser. A, 5: Zagreb19753946 (in Serbo-Croatian). Dimitrijević M.N. & Dimitrijević, M.D. 2009: The Lower Cretaceous paraf lysch of the Vardar Zone: composition and fabric. Geološki anali Balkanskoga poluostrva, 70: 9–21. Dimitrijević, M.N., Dimitrijević, M.D., Karamata, S., Sudar, M., Gerzina, N., Kovács, S., Dosz- tály, l., Gulászi, Z., Less, G. & Pelikán, P. 2003: Olistostrome/mélanges - an overview of the 233Late Cretaceous turbidite systems of southern Belgrade outskirts: Constraints on the Santonian convergence onset, evidence from the Sava ... problems and preliminary comparison of such formations in Yugoslavia and NE Hungary. Slovak Geological Magazine, 9/1: 3–21. Dunčić, M., Dulić, I., Popov, O., Bogićević, G. & Vranjković, A. 2017: The Campanian- Maas- trichtian foraminiferal biostratigraphy of the basement sediments from the southern Panno- nian Basin (Vojvodina, northern Serbia): im- plications for the continuation of the Eastern Vardar and Sava zones. Geologica Carpathica, 68/2: 130–146. https://doi.org/10.1515/geo- ca-2017-0011 Erak, D., Matenco, L., Toljić, M., Stojadinović, U., Andriessen, P.A.M., Wilingshofer, E. & Ducea, M.N. 2016: From nappe stacking to exten- sional detachments at the contact between the Carpathians and Dinarides – The Jastrebac Mountains of Central Serbia. Tectonophysics, 710–711: 162–183. https://doi.org/10.1016/j. tecto.2016.12.022 Farangitakis, G. P., McCaffrey, K. J., Willingshofer, E., Kalnins, L. M., van Hunen, J., Persaud, P. & Sokoutis, D. 2020: The structural evolution of pull-apart basins in response to relative plate rotations; A physical analog modeling case study from the Northern Gulf of California. In EGU General Assembly Conference Abstracts (p. 5378). Farics, É., Dunkl, I., Józsa, S., Haas, J. & Kovács, J. 2019: Traces of the Late Eocene–Early Ol- igocene volcanic activity in the Buda Hills (Transdanubian Range, Hungary): link to the volcanism along the Periadriatic–Mid-Hun- garian–Sava-Vardar zone. In Geophysical Re- search Abstracts, 21: 1. Filipović, I., Gagić, N., Rodin, V. & Avramović, V. 1973: Osnovna geološka karta SFRJ 1: 100 000. List Obrenovac L 34-138 = Explanatory notes for the Basic geologic map of Yugoslavia 1:100000. Sheet Obrenovac L 34-1113 - in Ser- bian; English and Russian Summaries. Federal geologic survey, Belgrade. Gerčar, D., Zupančič, N., Waśkowska, A., Pavšič, J. & Rožič, B. 2022: Upper Campanian Ben- tonite Layers in the Scaglia-type Limestone of the Northern Dinarides (SE Slovenia), Cre- taceous Research, 134: 105158. https://doi. org/10.1016/j.cretres.2022.105158 Gerzina, N. 2010: Structural Characteristics and Tectogenesis of Zvornik Suture zone. Faculty of Mining and Geology, Belgrade University, Bel- grade: 142 p. Grubić, A. 2002: Transpressive Periadriatic suture in Serbia and SE Europe. Geologica Carpathica - Special Issue, 53: 141–142. Grubić, A., Radoičić, R., Knežević, M. & Cvijić, R. 2009: Occurrence of Upper Cretaceous pelag- ic carbonates within ophiolite-related pillow basalts in the Mt. Kozara area of the Vardar zone western belt, northern Bosnia. Lithos, 108: 126–130. https://doi.org/10.1016/j.li- thos.2008.10.020 Grubić, A., Ercegovac, M., Cvijić, R. & Milošević, A. 2010: The age of the ophiolite mélange and turbidites in the North-Bosnian zone. Bulletin de Academie Serbe des Sciences et des Arts 140 (Classe des Sciences Mathematiques et Natur- elles, Sciences Naturelles), 46: 41–56. Handy, M. R., Ustaszewski, K. & Kissling, E. 2015: Reconstructing the Alps–Carpathians–Dinar- ides as a key to understanding switches in sub- duction polarity, slab gaps, and surface mo- tion. International Journal of Earth Sciences, 104: 1–26. Hrvatović, H. 2006. Geological guidebook through Bosnia and Herzegovina. Geological Survey of Federation Bosnia and Herzegovina, Sarajevo: 164 p. Ivković, A., Vuković, A., Nikolić, J., Kovačević, D., Palavestrić, Lj., Petrović, V., Jovanović, Lj., Trifunović, R. & Sibinović, Lj. 1966: Osnovna geološka karta SFRJ 1:100 000. List Pančevo L34-114 = Basic Geologic Map of SFRY at scale 1:100 000. Sheet Pančevo L34-1114 - in Serbi- an; English and Russian Summaries. Federal Geological survey, Belgrade. Karamata, S., Knežević, V., Cvetković, V., Srećk- ović, D. & Marčenko, T. 1997: Upper Creta- ceous andesitic volcanism in the surrounding of Belgrade. Romanian Journal of Mineral De- posits, 78: 73–78. Karamata, S., Sladić-Trifunović M., Cvetković V., Milovanović D., Šarić K., Olujić J. & Vujnović L. 2005: The western belt of the Vardar zone with special emphasis to the ophiolites of Pod- kozarje - the youngest ophiolitic rocks of the Balkan Peninsula. Bulletin de l ’Académie Ser- be des sciences et des arts (Classe des sciences mathématiques et naturelles, Sciences natur- elles), 130/43: 85–96. Köpping, J., Peternell, M., Prelević, D. & Rutte, D. 2019: Cretaceous tectonic evolution of the Sava-Klepa Massif, Republic of North Mace- donia - Results from calcite twin based auto- mated paleostress analysis. Tectonophysics, 758: 44–54. https://doi.org/10.1016/j.tec- to.2019.03.010 Kostić, B., Srećković-Batoćanin, D., Filipov, P., Tančić, P. & Sokol, K. 2021: Anisotropic gros- sular-andradite garnets: Evidence of two stage 234 Darko SPAHIĆ, Dragan SIMIĆ, Miljan BARJAKTAROVIĆ & Lidja KUREŠEVIĆ skarn evolution from Rudnik, Central Serbia. Geologica Carpathica, 72/1: 17–25. https:// doi.org/10.31577/GeolCarp.72.1.2 Kostić, B. 2021: Contact metamorphism of upper cretaceous sedimentary rocks of Rudnik. Fac- ulty of Mining and Geology. University of Bel- grade, Belgrade: 124 p. Kurešević, L., Septfontaine, M., Vušović, O. & Delić-Nikolić, I. 2022: Contribution to geology and genetic pathway of the Ropočevo breccia – an “orphan” olistolithic body within the Upper Cretaceous f lysch near Sopot (central Serbia). Geologica Macedonica, 36/1: 5–18. https:// doi.org/1.46763/GEOL22361005k Logar, M., Zrnić, B. & Sajić, D. 1998: The geosta- tistical model of galena, sphalerite and chalco- pyrite weathering in the polymetalic deposit Babe, Kosmaj mountain (Serbia, Yugoslavia). Geološki anali Balkanskoga poluostrva, 62: 287–304. Maffione, M. & van Hinsbergen, D.J.J. 2018: Reconstructing plate boundaries in the Jurassic NeoTethys from the East and West Vardar Ophiolites (Greece and Ser- bia). Tectonics, 37/3: 858–887. https://doi. org/10.1002/2017TC004790 Maleš, D., Cvetkov, V., Vasiljević, I. & Cvetković, V. 2015: A new geophysical model of the Serbian part of the East Vardar ophiolite: implications for its geodynamic evolution. Journal of Geo- dynamics, 90: 1–13. https://doi.org/10.1016/j. jog.2015.07.003 Marinović, Đ. & Rundić, L. 2020: Depth geological relations of the wider area of Belgrade – based on the wells and geophysical data. Geološki anali Balkanskoga poluostrva, 81/2: 1–32. Marković, B., Veselinović, M., Obradović, Z., Anđelković, J., Atin, B. & Kostadinov, D., 1984: Osnovna geološka karta SFRJ 1:100 000. List Beograd L34-113 = Basic Geologic Map of SFRY at scale 1:100 000. Sheet Belgrade L34- 1113 - in Serbian; English and Russian Sum- maries. Federal Geological survey, Belgrade. Marović, M., Toljić, M., Rundić, Lj, & Milivojević, J. 2007a: Neoalpine Tectonics of Serbia. Serbi- an Geological Society, Belgrade: 87 p. Marović, M., Đoković, I., Toljić, M., Milivojević, J. & Spahić, D. 2007b: Paleogene–Early Miocene deformations of Bukulja–Venčac crystalline (Vardar Zone, Serbia). Geološki anali Balkan- skoga poluostrva, 68: 9–20. Marroni, M., Frassi, C., Göncüoğlu, M. C., Di Vin- cenzo, G., Pandolfi, L. U. C. A., Rebay, G. & Ot- tria, G. 2014: Late Jurassic amphibolite-facies metamorphism in the Intra-Pontide Suture Zone (Turkey): an eastward extension of the Vardar Ocean from the Balkans into Anatolia? Journal of the Geological Society, 171/5: 605–608. Márton, E., Toljić, M. & Cvetkov, V. 2022: Late and post-collisional tectonic evolution of the Adria-Europe suture in the Vardar Zone. Jour- nal of Geodynamics, 149: 101880. https://doi. org/10.1016/j.jog.2021.101880 Milošević, A. 2017: Formation of Orahova gneiss and quartz/sericite schistes in the north of mountain Prosara. Herald, 21: 91–106. https:// doi.org/10.7251/HER2117091M Palinkaš, L.A., Šoštarić, S.B. & Palinkaš, S.S. 2008: Metallogeny of the northwestern and central Dinarides and southern Tisia. Ore ge- ology reviews, 34/3: 501–520. Pamić, J. 2002: The Sava-Vardar Zone of the Di- narides and Hellenides versus the Vardar Ocean. Eclogae Geologicae Helvetiae, 95/1: 99–113. Pamić, J., Belak, M., Bullen, T.D., Lanphere, M.A. & McKee, E.H. 2000: Geochemistry and geo- dynamics of a Late Cretaceous bimodal vol- canic association from the southern part of the Pannonian Basin in Slavonija (North Cro- atia). Mineralogy and Petrology, 68: 217–296. https://doi.org/10.1007/s007100050013 Pamić, J., Balen, D. & Herak, M. 2002: Origin and geodynamic evolution of Late Paleogene magmatic associations along the Periadriat- ic-Sava-Vardar magmatic belt. Geodinamica Acta, 15/4: 209–231. https://doi.org/10.1016/ S0985-3111(02)01089-6 Pavlović, Z., Marković, B., Atin, B., Dolić, D., Gagić, N., Marković, O., Dimitrijević, M.N. & Vuković, Z. 1979: Osnovna geološka kar- ta SFRJ 1:100 000. List Smederevo L34-126 = Basic Geologic Map of SFRY at scale 1:100 000. Sheet Smederevo L34-12 - in Serbian; English and Russian Summaries. Federal Geo- logical survey, Belgrade. Prelević, D., Wehrheim, S., Reutter, M., Romer, R.L., Boev, B., Božović, M., van den Bogaard, P., Cvetković, V. & Schmid, S.M. 2017: The Late Cretaceous Klepa basalts in Macedonia (FYROM) Constraints on the final stage of Te- thys closure in the Balkans. Terra Nova, 29/3: 145–153. https://doi.org/10.1111/ter.12264 Radulović, P. 1987: The polymetalic Pb-Zn depos- it Babe (Kosmaj). Proceedings of Geoinstitute, 20: 116–126. Resimić-Šarić, K., Cvetković, V. & Balogh, K. 2005: Radiometric K/Ar data as evidence of the ge- odynamic evolution of the Ždraljica ophiolitic complex, central Serbia. Geološki anali Bal- 235Late Cretaceous turbidite systems of southern Belgrade outskirts: Constraints on the Santonian convergence onset, evidence from the Sava ... kanskoga poluostrva, 66/1: 73–79. https://doi. org/10.2298/GABP0566073R Robertson, A., Karamata, S. & Šarić, K. 2009: Overview of ophiolites and related units in the Late Palaeozoic–Early Cenozoic magmat- ic and tectonic development of Tethys in the northern part of the Balkan region. Lithos, 108/1–4: 1–36. https://doi.org/10.1016/j.li- thos.2008.09.007 Sajić, D. 1987: A contribution about the knowledge of tectonic framework of Babe deposit. Pro- ceedings of Geoinstitute, 20: 129–141. Šarić, K., Cvetković, V., Romer, R. L., Christofides, G. & Koroneos, A. 2009: Granitoids associat- ed with East Vardar ophiolites (Serbia, FYR of Macedonia and northern Greece): origin, evo- lution and geodynamic significance inferred from major and trace element data and Sr– Nd–Pb isotopes. Lithos, 108/1–4: 131–150. https://doi.org/10.1016/j.lithos.2008.06.001 Schmid, M.S., Bernoulli, D., Fügenschuh, B., Ma- tenco, L., Schefer, S., Schuster, R., Tischler, M. & Ustaszewski, K. 2008: The Alps-Car- pathians-Dinarides-connection: a correlation of tectonic units. Swiss Journal of Geoscienc- es, 101/1: 139–183. https://doi.org/10.1007/ s00015-008-1247-3 Schmid, M.S., Fügenschuh, B., Kounov, A., Ma- tenco, L., Nievergelte, P., Oberhänsli, R., Pleu- gerg, J., Schefer, S., Schuster, R., Tomljenović, B., Ustaszewski, K. & van Hinsbergend, D.J.J. 2020: Tectonic units of the Alpine collision zone between Eastern Alps and western Tur- key. Gondwana Research, 78: 308–374. Sokol, K., Prelević, D., Romer, R.L., Božović, M., van den Bogaard, P., Stefanova, E., Kostić, B. & Čokulov, N. 2019: Cretaceous ultrapotassic magmatism from the Sava-Vardar Zone of the Balkans. Lithos, 354–355: 105–268. Spahić, D. 2022: The birth of the Sava Suture Zone: The early geological observations and the con- text of bimodal magmatism (southern Belgrade outskirts; Anđelković, 1973). Geološki anali Balkanskoga poluostrva, 83/1: 23–37. https:// doi.org/10.2298/GABP220404004S Spahić, D., Barjaktarović, M., Mukherjee, S. & Bo- jić, Z. 2024: Tithonian limestone as a marker of early contraction of NeoTethyanardar Ocean: structural constraints on the latest Jurassic– earliest Cretaceous “docking” (Dobroljupci, Kuršumlija, Jastrebac Mt., Serbia). Carbonates & Evaporites, 39: 75. https://doi.org/10.1007/ s13146-024-00983-0 Spahić, D. & Gaudenyi, T. 2020: The role of the “Zvornik suture” for assessing the number of Neotethyan oceans: Surface-subsurface con- straints on the fossil plate margin (Vardar Zone vs. Inner Dinarides). Geološki anali Bal- kanskoga poluostrva, 81/2: 63–86. Spahić, D. & Gaudenyi, T. 2022: On the Sava suture zone: Post-Neotethyan oblique subduction and the origin of the Late Cretaceous mini mag- ma pools. Cretaceous Research, 131: 105062. https://doi.org/10.1016/j.cretres.2021.105062 Spahić, D., Gaudenyi, T. & Glavaš-Trbić, B. 2019: A hidden suture of the western Palaeotethys: Re- gional geological constraints on the late Paleo- zoic “Veleš Series” (Vardar Zone, North Mace- donia). Proceedings of Geologists’ Association 130/6: 130136. Spahić, D., Kurešević, L. & Cvetković, Ž. 2023: The paleokarst origin of the carbonate “Ropoče- vo breccia” and a closing Neotethys: Regional Geological constraints on the Vardar Zone s.s. (Belgrade area, Central Serbia). Carbonates and Evaporites, 38: 51. https://doi.org/10.1007/ s13146-023-00863-z Stojadinović, U., Đerić, N., Radivojević, D., Krstekanić, N., Radonjić, M. & Džinić, B. 2022: Late Jurassic radiolarites in the sub-ophiolitic mélange of the Fruška Gora (NW Serbia) and their significance for the evolution of the Inter- nal Dinarides. Ofioliti, 47/2: 103–112. Stojadinović, U., Matenco, L., Andriessen, P.A., Toljić, M. & Foeken, J.P. 2013: The balance between orogenic building and subsequent extension during the Tertiary evolution of the NE Dinarides: Constraints from low-tempera- ture thermochronology. Global and Planetary Change, 103: 19–38. Toljić, M., Matenco, L., Stojadinović, U., Will- ingshofer, E. & Ljubović-Obradović, D. 2018: Understanding fossil fore-arc basins: In- ferences from the Cretaceous Adria-Europe convergence in the NE Dinarides. Global and Planetary Change, 171: 167–184. https://doi. org/10.1016/j.gloplacha.2018.01.018 Toljić, M., Stojadinović, U. & Krstekanić, N. 2019: Vardar Zone: New insights into the tec- tono-depositional subdivision. In: Geological Congress of Bosnia and Herzegovina with in- ternational participation Laktaši: 60–73. Toljić, M., Glavaš-Trbić, B., Stojadinović, U., Krstekanić, N. & Srećković-Batoćanin, D. 2021: Geodynamic interpretation of the Late Cretaceous syn-depositional magmatism in central Serbia: Inferences from biostratigraph- ic and petrographical investigations. Geologica Carpathica, 71/6: 526–538. https://doi. org/10.31577/GeolCarp.71.6.4 236 Darko SPAHIĆ, Dragan SIMIĆ, Miljan BARJAKTAROVIĆ & Lidja KUREŠEVIĆ Ustaszewski, K., Schmid, S.M., Lugović, B., Schuster, R., Schaltegger, U., Bernoulli, D., Hottinger, L., Kounov, A., Fügenschuh, B. & Schefer, S. 2009: Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia & Herzegovina): Implications for the collision of the Adriatic and European plates. Lithos, 108: 106–125. https://doi.org/10.1016/j.li- thos.2008.09.010 Ustaszewski, K., Kounov, A., Schmid, S.M., Schaltegger, U., Krenn, E., Frank, W. & Fü- genschuh, B. 2010: Evolution of the Adria-Eu- rope plate boundary in the northern Dinarides: From continent-continent collision to back-arc extension. Tectonics, 29: TC6017. van Hinsbergen, D.J. & Schmid, S.M. 2012: Map view restoration of Aegean–West Anato- lian accretion and extension since the Eo- cene. Tectonics, 31/5: TC5005. https://doi. org/10.1029/2012TC003132 Vasković, N. 1987: Petrogenetic characteristics on Kosmaj monzogranite. Proceedings of Geoin- stitute 20: 91–113. Vukašinović, S. 1973a: Contribution to the geotec- tonic distinction of the interboundary space of the Dinaride, Panonide and Serbo-macedonian Mass. Zapisnici Srpskog geološkog društva za 1972. godinu: 1–18. Vukašinović, S. 1973b: Interpretation of Kos- maj-Barajevo aeromagnetic anomaly. Pro- ceedings of Institute for geological and mining investigation and exploration of nuclear and other raw materials in Belgrade, 8: 48–52. Zanchetta, S., Montemagni, C., Mascandola, C., Mair, V., Morelli, C. & Zanchi, A. 2023: The Meran-Mauls Fault: Tectonic switching from compression to transpression along a restrain- ing bend of the Periadriatic Fault. Journal of Structural Geology, 172: 104878. https://doi. org/10.1016/j.jsg.2023.104878 Zrnić, B., Cvetković, Lj. & Obradović, Lj. 1998: Mineral parageneses of the ore deposit Babe-Kosmaj. Geološki anali Balkanskoga poluostrva, 62: 267–285. © Author(s) 2024. CC Atribution 4.0 License Alternative gold prospecting methods used by artisanal and small scale miners: A review Alternativne metode iskanja zlata, ki jih uporabljajo obrtniki in rudarji v majhnem obsegu: pregled Fredrick Martin MANGASINI1,3*, Michael MSABI1, Athanas MACHEYEKI1 & Alex KIRA² 1Department of Geology, College of Earth Sciences and Engineering, University of Dodoma, Tanzania; (*) corresponding author: mangatz@yahoo.co.uk, e-mail: mmsabi@yahoo.com, asmacheyeki@yahoo.com 2Department of Accounting and Finance, College of Business and Economics, University of Dodoma, Tanzania, e-mail: alexkira10@gmail.com 3State Mining Corporation, P. O. Box 981, Dodoma, Tanzania Prejeto / Received 4. 4. 2023; Sprejeto / Accepted 21. 5. 2024; Objavljeno na spletu / Published online 16. 12. 2024 Key words: field geology, geological exploration, indicator minerals, mineralization, precious mineral Ključne besede: terenska geologija, geološke raziskave, indikatorski minerali, mineralizacija, dragoceni mineral Abstract Artisanal and Small Scale Mining (ASM) is distinctive to Industrial Mining (IM) upon minimal applications of scientific methods and inadequate funding of its geological exploration activities. Revision of scholarly sources indicate that for ASM, gold prospecting is done using visual features that signify zones of mineralization. Such features comprise soil and lithological indicators, geo-biotic indicators, indicator minerals, pathfinder elements and associate minerals. Others include physical features and mine vestiges. Imminent research on ASM rests upon studying scientific inter- relationships of such techniques and suitable mechanisms of financing activities related to geological exploration, an inordinate barrier to smart productivity of ASM. Izvleček Obrtniško rudarjenje in rudarjenje v majhnem obsegu (ASM) se od industrijskega rudarjenja (IM) razlikuje po minimalni uporabi znanstvenih metod in nezadostnem financiranju potrebnih geoloških raziskav. Pregled znanstvenih virov kaže, da se pri ASM iskanje zlata izvaja z uporabo vizualnih značilnosti, ki označujejo območja mineralizacije. Takšne značilnosti obsegajo talne in litološke indikatorje, geobiotske indikatorje, indikatorske minerale, sledilne elemente in povezane minerale. Druge vključujejo fizične značilnosti in ostanke rudarjenja. Bližnje raziskave ASM temeljijo na preučevanju znanstvenih medsebojnih odnosov takšnih tehnik in ustreznih mehanizmov financiranja dejavnosti, povezanih z geološkimi raziskavami, kar je pretirana ovira za pametno produktivnost ASM. GEOLOGIJA 67/2, 237-248, Ljubljana 2024 https://doi.org/10.5474/geologija.2024.011 Introduction Artisanal and Small Scale Mining is distin- guished from Industrial Mining owing to its low levels of production, lower degree of mechaniza- tion and technological applications (ASM often use picks, chisels, sluices and pans), high degree of labour intensity and little capital investment. Other factors include lack of long-term planning, informality, poor occupational health, safety and environment conditions (Chaparro Ávila, 2003; Hinton et al., 2003; Lahiri-Dutt, 2004; Hinton, 2006; Adler et al., 2013). Financing of geological exploration operations is yet another key difference between two modes of mining. IM finance exploration through debt, equity or own funding (Myers & Majluf, 1984) whereas ASM own funding is the foremost financ- ing alternative. Nonetheless, ASM are financially constrained, so they do not carry out geological exploration to a stage of reserve and resource clas- sification prior to operating their mines (Hentschel et al., 2003). Limited to using simple prospecting techniques (indicators), they work only to discover availability of the mineralization, and start mining instantaneously. Indicators, in principle entail visual features that signify areas where mineral commodity, such as gold may be found. Skills and abilities involved to identify such features comprise activity, obser- vation, knowledge, insight, opportunism, lateral 238 Fredrick Martin MANGASINI, Michael MSABI, Athanas MACHEYEKI & Alex KIRA thinking and luck (Marjoribanks, 1997). Little has been written about simple prospecting meth- ods applied by ASM in gold exploration. It is very timely to report these methods and provide basic scientific explanations to enable an ever more re- alistic mineral localization predictions in future. Apprehension of these techniques by the public is vital based on the fact that they are inexpensive, quick and simple, centered on field experience and minimal professional training, therefore they can be widely applied particularly in low income socie- ties. The methods do not readily follow procedures of traditional geochemical prospecting yet they provide physical evidence of the presence of gold mineralization or alteration (McClenaghan, 2005). Methodology This work involved desk review of various doc- uments including books, book chapters, academic journals and articles, conference papers and scien- tific reports. These documents were filtered using Google search engine on different platforms main- ly Google scholar, ResearchGate and ScienceDi- rect. The keyword terms for this search were de- signed to identify any study on gold prospecting related to ASM. Studies related to IM contexts were deliberately not included. The search keyword terms used include: gold exploration, controls of gold mineralization, indicators of gold mineraliza- tion, gold prospecting techniques, and geological prospecting methods. A total of seventy eight (78) references based on different gold prospecting techniques were select- ed for the review. Amongst are 6 books and 8 book chapters, 3 conference papers, 54 journal articles, and 7 scientific reports. Therefore, this work is confined to secondary sources of information that have provided qualitative data that support differ- ent techniques employed by ASM to discover zones of gold mineralization. Results and discussion We begin with soils and rocks to discuss how they are applied by ASM to prospect for gold miner- alization. Next we show how the biota is expedient for auriferous prospecting, pointing specifically to how some plants bolster sighting of mineralized zones. We also discuss uses of indicator minerals and surface features to point out potentials of gold locations. We conclude with the discussion of how historical features including reports and old infra- structures ease ASM prospecting for gold miner- alization. Soil indicators Whereas local geology and surface conditions sustain, soils make the simplest way of discover- ing gold deposits. Soil texture, color and profiles have been extensively used by ASM to identify zones of mineralization. Insitu weathered soils Soils in tropical environments evolved from gold bearing greenstones for example, become slowly enriched in gold as the bedrock weath- ers. In the Tapajós region in the Brazilian Ama- zon, ASM are reported panning this type of soil to locate and define the size of deposits (Veiga et al., 2006). Quartz fragments and/or f laky grains of hematite (an iron oxide mineral) together with gold particles are checked to determine if the gold particles originate from a vein, or is supergen- ic. Primary gold is usually angular and dendritic (tree-shape) containing more impurities, such as copper and silver than the recrystallized gold (Sa- rala, 2015). Large (over 1m) gold bearing quartz veins have been detected using this method. Lateritic soils Lateritic soils develop essentially from long term exposure of cratonal rocks to the atmosphere and hydrosphere in equatorial and tropical cli- mates (Colin et al., 1997). If they have for example developed from Archean to lower Proterozoic gold- rich formations, their profiles usually show an in- creasing gold concentration towards the bed rock. This is due to progressive weathering and leaching (Colin et al., 1997). Therefore, once discovered, they make good indicator of potential gold miner- alization. Rocks and ore bodies oxidized to depths of 30 to 100 meters in Geita, northern Tanzania (Cow- ley, 2001) exemplify this mode of mineraliza- tion. Other reported localities consisting similar form of gold mineralization include the Dondo Mobi gold deposit in Gabon (Colin & Vieillard, 1991), Amani gold deposit in southwest Tanza- nia (Dunn & von der Heyden, 2021); and Abim district gold deposit in northeastern Uganda (Voormeij, 2021). Soil color change Related to that is soil color change. It usually signif ies change in elemental content or oxida- tion states of elements and mineralogy of the soil; and can help to locate zones of gold mineraliza- tion (Rigobert et al., 2013). Goethite (α-FeOOH) and Haematite (α-Fe2O3), the most widespread Fe oxide and oxyhydroxide minerals in soils, par- 239Alternative gold prospecting methods used by artisanal and small scale miners: A review ticularly in well-drained tropical soils, greatly inf luence soil color (Allen & Hajek 1989; Schw- ertmann, 1988). These minerals are formed by weathering of primary Fe-bearing minerals, such as pyrite, py- roxene, olivine, augite, hornblende and biotite. Mafic intrusive rocks (for example Dolerite dykes), where these minerals originate, are mostly host of auriferous quartz–carbonate–sulfide veins (Field- ing et al., 2018). Therefore, ASM though unfamil- iar to chemical relations between gold localization and presence of Fe-rich soils, have been curious in identifying soil color changes considering them as important pointers to sources of gold mineral- ization. Soil color change may also be characteristic to lithological contacts (Graham et al., 1994; Wysocki et al., 2005). Formed through deposition, magma intrusion, and /or deformation of rock units, lith- ological contacts create weak zones through which hydrothermal f luids penetrate and precipitate mineralized veins (Zhu et al., 2011). Therefore, contiguous color changes in soil makes another important indicator to ASM of a probable gold set- ting. Buhemba and Nyasanero mines in Tanzania (Henckel et al., 2016) are example of places where ASM are mining quartz veins at lithological con- tacts. Light colored soils Furthermore, soils in lighter colors may be due to acidic mineral solutions bleaching lode deposits underground (Kontak & Kerrich, 1995). Both pre and syn-ore alteration, alters the physicochemi- cal properties of the mineralizing f luids and thus promotes gold precipitation (Hastie et al., 2020; Williams-Jones et al., 2009). For example, in the vicinity of an oxidizing sulfide deposit, large quan- tities of both sulfate and metals go into solution in the ground water, creating extremely acidic con- dition by the free sulfuric acid resulting from the oxidation of pyrite and marcasite. As a result, the mobility of elements in these areas will be higher than that in normal areas. Acidic solutions bleach host rocks to common- ly exhibit yellow to pale grey coloration (Xu et al., 2017). Youthful soils developed from such bleached (light-colored) parent rocks will usual- ly be lighter (Finkl, 1988). This feature has been used as an important indicator of gold mineraliza- tion in the deposits of Geita (Kwelwa et al., 2018) and Nyasirori (Yuan et al., 2019) in Tanzania; and Hira-Buddini in India (Sahoo et al., 2018). Lithological indicators Rocks are main hosts to primary gold mineral- ization. However, a handful rock types have been found to be useful to ASM as indicators for possi- ble gold mineralization settings. Quartz veins and reefs On a global scale, ubiquitous orogenic quartz veins and reefs have been a focus of ASM in their prospecting for gold mineralization (Goldfarb, 2001; Vishiti et al., 2019). Being limited on explo- ration and metallurgical technology, ASM gener- ally have less interest on low grade ores of wall rocks; rather they are focused onto highest-grade portions of the lodes. Logically, owing to their low production capacities, high grade veins seem nec- essary to ASM for two reasons. First, to minimize metallurgical costs; and secondly to earn more profit. Bismark reefs in the Lake Victoria Goldfield of Tanzania; and quartz veins mining in the Naz- ca-Ocoña belt in Peru are examples of gold discov- eries in quartz veins by ASM (Hester et al., 1995; Alfonso et al., 2019). Occurrence of gold mineralization in quartz veins can be explained using Bowen’s reaction se- ries, which posits that quartz (silica) precipitates last from the magma thus filling fissures and cav- ities of the host rock (Bowen, 1922). Since gold is chemically inert and does not react with most ele- ments, it precipitates within or along fractures of these veins. This is why quartz veins mostly asso- ciate with primary gold mineralization. Also, although gold is relatively soft (ductile and malleable), both quartz and gold also display relative resistance to physical weathering (Colin et al., 1997; Itamia et al., 2019). Their ability to sustain immediate physical and chemical changes help them to occur together, a fact that prompts ASM to look for quartz veins in their search for gold. Lamprophyres Another gold indicating rock is lamprophyre, a porphyritic igneous rock consisting of a fine- grained feldspathic groundmass with phenocrysts chief ly of biotite (McLennan, 1915). Gold enrich- ment of the lamprophyres is supported by their exceptionally deep origins in presumed Au-rich regions of the earth (>150 km), high F, K, Ba, and Rb and moderate S contents. H2O/(H2O + CO2) ra- tios and f luidized condition together make them uniquely similar to auriferous ore f luids in their element abundances and possibly in their physi- cal state. These features brand them well suited to transporting gold into the crust (McNeil & Ker- 240 Fredrick Martin MANGASINI, Michael MSABI, Athanas MACHEYEKI & Alex KIRA rich, 1986; Rock et al., 1989). Golden Pride intru- sions in Nzega Greenstone Belt of northern Tanza- nia are examples of the ASM mined lamprophyres (Kwelwa et al., 2013). Porphyries Porphyry, an igneous rock containing conspic- uous crystals (phenocrysts) surrounded by a ma- trix of finer-grained minerals is another rock unit indicator of gold mineralization if it is associated with quartz veinlets. Similar to the lamprophyres, gold in porphyries occurs in a stockwork of quartz veinlets within host rock units and their ores display remarkably consistent grade (Vila et al., 1991). Porphyries are commonly classified based on their main mineral contents. The carrier unit of gold is the Cu-Au porphyry. Amani and Mpanga Hills in southwest Tanzania where Cu-Au miner- alization is hosted within impure micaceous mar- bles are the known ASM worked Cu-Au porphyry deposits (Dunn et al., 2021). Breccia Breccia, a rock composed of large angular broken fragments of minerals or rocks cement- ed together by a fine-grained matrix associated with either in situ deformation of rock, cataclas- tic deformation in tectonic shear zones, or mass f low deposits such as landslides or rock falls (Gib- son et al., 1996), is another rock type considered in the search of gold mineralization. They may be mineralized within clasts and /or networks of ep- ithermal quartz veins and veinlets (Sutarto et al., 2015; Rottier et al., 2018). The well-known breccia deposit mined by ASM is the Mananila deposit in Morogoro, Tanzania. This is the 400 to 450 meters long, and from 60 to 80 meters thick gold miner- alized zone with echelon systems of quartz veins and veinlets, steeply dipping bodies of quartz breccia ranging from 1.0 to 1.5 meters thick. It is localized within tectonically sheared zones of Ear- ly Precambrian granitic-gneisses (Mykhailov et al., 2020). Conglomerates We note that auriferous conglomerates have also been a focus in the search for places of gold mineralization. These are clastic sedimentary rocks made up of rounded gravel and boulder sized clasts cemented or in a matrix support (Migoń, 2020). Generally, they mark periods of deep secu- lar weathering that is favorable for the production of gold placers. Their gold grains may be of detrital origin, but they may also be in crystallized forms indicating hydrothermal emplacement caused by localized remobilization (Taylor and Anderson, 2018). Surface indications of auriferous conglom- erates have been found to include manifestation of large amount of pyrite in the rocks, excess quanti- ties of quartz pebbles or sands in streams or soil, large concentration of SO4 in ground and surface waters due to the oxidation of pyrites, abundant iron staining and occurrence of gossans both re- sidual and transported. In Tanzania, ASM are mining gold nuggets in the conglomeratic horizons within the braided riv- er channels of the Amani River (Dunn et al., 2019). Banded iron formations Incongruent to clastic sediments are the chem- ically precipitated banded iron formations (BIFs). They are used in localization of gold places because gold in these rocks is found in cross-cutting quartz veins and veinlets, or as fine disseminations as- sociated with pyrite, pyrrhotite and arsenopyrite. Gold-bearing BIFs may also include native gold, magnetite, chalcopyrite, sphalerite, galena and sti- bnite. BIF make excellent prospecting targets be- cause of their scalability, often being found in clus- ters. A good example of BIF gold deposit exploited by ASM is the Mwamola gold deposit in northern Tanzania (Yuan et al., 2019). Geo-biotic indicators Scientific observations involving plant-soil re- lations on natural plant communities show that certain species can be used for the detection of el- emental enrichments arising from mineralization in the underlying bedrock (Timperley et al., 1972). An urge of using plants in the search of econom- ic deposits is based on either the ability of plants to absorb or to be affected by high concentrations of metals from considerable depths and/or from a mineralized halo surrounding the ore (Cannon, 1960). Botany provide evidence that plants can be used in geological prospecting in three ways: (a) through mapping distribution of particular spe- cies (indicator plants) most affected by the mineral sought, (b) by the physiological and morphological changes in plants growing in mineralized grounds (appearance), and (c) via the differences in chem- ical composition, that is plant analysis (Hawkes, 1957). Here (i-vi), we use category (a) and present species mostly used by ASM to ascertain the pres- ence of gold mineralization. The discussed species are shown in figure 1. 241Alternative gold prospecting methods used by artisanal and small scale miners: A review Ocimum centraliafricanum (Copper plant) It is a subshrub and grows primarily in the sea- sonally dry tropical biome. It is a perennial herb found in Africa (especially in Tanzania, the Demo- cratic Republic of Congo, Zambia and Zimbabwe). It is well known for its tolerance of high levels of copper in the soil (Paton et al., 2009). Since Cu sometimes occur with Au, the plant has been looked after by ASM to prospect for gold. Acacia mellifera (Black thorn) Known to up-take gold (Taylor, 2009), black thorn is an african shrub that grows to a height of about 9 m having an extensive root system that penetrates through large volumes of soils, allowing its survival in dry areas. It grows better on sandy, clayey or stony-rocky soils but it is tolerant of a wide range of soils, including black cotton soils (vertisols). The black thorn is found in regions with 400-800 mm annual rainfall but it can grow in areas with a minimum of 100 mm rainfall; and along seasonal watercourses or drainage networks (Heuzé & Tran, 2015). For ASM, its ability to oc- cur along watercourses, attracts them to locate Au placers along paleostreams. Eriogonum caespitosum (Wild Buckwheat) Occurs in areas highly mineralized with Cu, Pb, Au, Ag and U; the secondary mineral dispersion zones due to mechanical and /or chemical weath- ering (Smee, 1998). The Eriogonum caespitosum genus is tolerant of metals in the dispersion zones and accumulates them, making it a focus to metal prospectors (Cannon et al., 1986). Monardella odoratissima (Alpine Mountainbalm or Coyote Mint) A grayish, aromatic plant with erect, bunched, leafy stems bearing opposite leaves and topped by small, whitish to pale purple or pink f lowers in a dense head; grows in sandy soils in Au-Ag, Cu mineralized grounds in the secondary dispersion halos. Like Eriogonum caespitosum, it has been used by prospectors to identify areas of gold min- eralization (Cannon et al., 1986). Debarked trees Unlike specific f lora species discussed above, ASM have also been looking for “sign trees” during gold prospecting. These are debarked trees to indi- cate presence and direction of the gold mineralized veins. Early explorers in Tropical areas (especially along the Proterozoic Ubendian belt in the south- western Tanzania) prior to the wider applications of the Global Positioning System (GPS), debarked tree trunks to mark gold locations. In Africa, apart from locating gold, debarking was also done for other purposes such as trail making, ground water location and cultural activities (Atindehou et al., 2022). However, the scars for gold were made in a spe- cial way to point to the direction of the minerali- zation. Depth and width of the mineralized veins are indicated by the length and width of the scars. Where longer and wider scar is made, it means the vein is buried at depth and is thick (over 5 m). Nevertheless, narrow and shallower veins are rep- resented by narrow and short scars. In the Lupa Goldfield, SW Tanzania debarked trunks are cur- rently followed by ASM to identify locations of gold mineralized veins (Bryceson et al., 2012). Termitaria Mounds made by termites are fauna-related features useful for mineral exploration. Termites move large amounts of soil material, and thereby bring up anomalous materials from depth to the surface through bioturbation process. For insitu soils, the moved up material is usu- ally representative of the underlying bed rock. Therefore, termite mound allows observation and/ or sampling of geochemical materials from the interior without need for drilling and with much better certainty than surface soil sampling ena- bling locating of gold anomalous zones (Arhin et al. 2010; Petts et al., 2009). Indicator minerals Whereas indicator minerals can indicate the presence of a specific mineral deposit, alteration or rock lithology, their physical and chemical char- acteristics, including visual distinctiveness, mod- erate to high density, silt or sand size, and ability to survive weathering and/or clastic transport, al- low them to be readily recovered from exploration sample media. In addition, their abundance, grain morphology, and surface textures help prospec- tors to determine their relative distance from the source (McClenaghan, 2005). There is overwhelming evidence that indicator minerals: (1) offer an ability to detect haloes much larger than the mineralized target including as- sociated alteration; (2) provide physical evidence of the presence of mineralization or alteration; (3) have the ability to provide information about the source (that traditional geochemical methods can- not), including nature of the ore, alteration, and proximity to source (Brundin & Bergstrom, 1977). Gold grains, pathfinder minerals and black sands help to support this conclusion. 242 Fredrick Martin MANGASINI, Michael MSABI, Athanas MACHEYEKI & Alex KIRA Gold grains Gold grain condition including grain abun- dance, size, shape, f latness and fineness is useful in the determination of availability of gold min- eralization and its proximity to the source. Based on gold grain characteristics, mineralogists have rated them as pristine, modified or reshaped (Mc- Clenaghan, 2005). They are brief ly discussed be- low and figure 2 indicates their appearance. (i) Pristine gold grains They maintain their primary shapes and sur- face textures; and appear to be undamaged dur- ing transport. They often occur as angular wires, rods and delicate leaves being casts of fractures they once in-filled. Two possibilities help to inter- pret transport history of pristine grains: (1) gold grains were eroded from a bedrock source nearby and transported to the site with little or no surface modification; and (2) gold grains were liberated from rock fragments during in situ weathering of transported sulphide grains containing gold. How- ever, discovery of pristine grains indicate that the sample is less than 500 meters from the source (McClenaghan, 2005; Sarala, 2015). (ii) Modified gold grains Comparable to pristine samples, the primary surface textures in modified gold grains are re- tained. However, all edges and protrusions are damaged because of transportation. They are stri- ated and the protrusions are crumpled, folded and curled; grain moulds and primary surface textures are preserved only on protected faces of grains. Samples that contain elevated concentrations of modified grains are generally proximal to the bed- rock source (Kelley et al., 2011). Experience shows that the discovery of modified gold grains indicate that the sample is less than 1,000 meters away from the source. (iii) Reshaped gold grains Important aspect of reshaped grains is that all primary surface textures have been destroyed mostly loosing the original grain shapes. They are f lattened to rounded as a result of repeated folding of leaves, wires and rods (Marquez-Zavalia et al., 2004). Grain surfaces may be pitted from impact marks from other grains. Although these grains can have a complex transport history, the presence of large numbers of reshaped grains is significant to prospectors. It shows that the grains have been transported more than a kilometer from the source (Averill, 1988). Reshaped gold grains are best in- dicators of placer deposits. a b c d e f Fig. 1. Geobiotic indicators (a) Ocimum centraliafricanum a plant tolerant to high levels of Cu in the soil used to search for Au, (b) Acacia mellifera up-taker and tracer of Au, (c) Eriogonum caespitosum grows in Cu, Pb, Au, Ag and U dispersion zones, (d) Monardella odoratissima grows in sandy rich in Au-Ag, Cu halos, (e) Debarked tree trunk indicate direction, size and depth of mineralized vein (f) Termitaria showing >30 cm of haematitic oxidation at base an indication of Fe enrichment from the underlying bed rock. Rocks rich in Fe-containing minerals are mostly host to Au mineralization. 243Alternative gold prospecting methods used by artisanal and small scale miners: A review Pathfinder elements Owing to their ability to form broader halos and their relative ease of detection by analytical methods, pathfinder elements are relatively easily found. Ag, Cu, Pb, Zn, Co, Ni, As, Sb, Te, Se and Hg are geochemical indicators for gold. However, for ASM only Cu and Ag are the familiar elements, and are therefore used to trace associated gold mineralization. A good example of this discovery by ASM are the mines near Nyakona Hill in the Musoma-Mara greenstone belt in northern Tanza- nia (Taylor, 2009). Gold was discovered when arti- sanal miners were working for copper ore Black sands The widely accepted explanation for black sand is that it comes from eroded volcanic mate- rial such as basalt and other dark-colored rocks and minerals. It is enriched in heavy minerals, including ilmenite (FeTiO3), rutile (TiO2), zir- con (ZrSiO4), monazite (Ce, La, Nd, Th)PO4 and xenotime (YPO4), and a mix of other iron-group minerals such as hematite (Fe2O3) and magnetite (Fe3O4) (Peristeridou et al., 2022). Gold found in black sand comes in the form of small nuggets and f lakes that are not attached to any of the minerals. Its abundance, shape and size helps ASM in the search of its source. ASM gold mines in the Mkuvia area along the Mbwemkuru river plateau, southern Tanzania is an example of a mineralization zone where gold is found in significant amounts in black sands (Hathout, 1983). Associate (Sulphide) minerals Pyrite, arsenopyrite, pyrrhotite and chalcopy- rite (copper sulphide) minerals form the common- est host ore minerals of gold (Yang et al., 2020). Gold may associate with these minerals in a varie- ty of ways. It may occur physically within the min- erals in coarse to submicroscopic sizes, chemically as gold compounds and in solid-solutions. Some of the gold may also occur in fractures, along cleav- ages and at mineral grain boundaries (Schwartz, 1944). Most of times it is uncommon to see sulphide minerals on the surface in tropical areas because of oxidation. However, Pseudomorphoses of pyrite and rarely pyrrhotite and chalcopyrite are com- mon, which the prospectors focus on while looking for gold mineralization (Taylor, 2011). Physical indicators Reports indicate that ASM have been able to discover gold mineralization through prospecting certain geologic features. Simply stated they in- clude extensions of known mineral areas, similar geologic areas nearby and consideration of the cor- rect topography. Extensions of known mineral areas Most small scale gold deposits have a linear component. It is fairly common that new deposits can be found along this linear zone of deposition by looking for extensions along the line of depo- sition (see figure 4). ASM usually use the idea of Fig. 2. Gold grains: (i) Pristine gold grains, (ii) Modified gold grains, and (iii) Reshaped gold grains (After Sarala, 2015; Kelley et al., 2011; McClenaghan, 2005). i ii iii Fig. 3. Examples of boxwork textures after sulphides (i) Boxwork texture after chalcopyrite contains orange zones of limonite, green colored mineral is malachite, (ii) Spongy boxwork after coarse grained pyrite, and (iii) Sponge-style gossan with boxwork that has developed directly over a pyrrhotite zone (After Taylor, 2011). i ii iii 244 Fredrick Martin MANGASINI, Michael MSABI, Athanas MACHEYEKI & Alex KIRA extension of known zones of mineralization to dis- cover new gold deposits, Similar geologic areas nearby If a certain rock type or geologic environment has been productive for gold in one area, and the same rock type or environment occurs a few kilo- meters away in the same mountain range, it is likely that mineralization of the first area can be found in the second. It is most likely that minerali- zation in these areas were caused by same regional geologic event (Kwelwa et al., 2018; Kuehn et al., 1990). This feature has locally been useful to ASM while looking for new gold deposits. Correct topography It is well known that most of the placers form in areas with moderate to f lat slopes. For example, al- luvial placers are formed by the deposition of gold particles at a site where water velocity remains be- low that required to transport them further. Typ- ical locations for alluvial gold placer deposits are on the inside bends of rivers and creeks; in nat- ural hollows; at the break of slope on a stream; the base of an escarpment, waterfall or other bar- rier. Stream placers are the most common types of placers prospected and mined by ASM in Tanzania (Shand & Jønsson, 2011; Dunn et al., 2019). Anthropogenic indicators These are indicators for places of gold mineral- ization based on previous human activities. They include old reports and mining remnants. Old reports In many places of the world, gold has been mined since ancient times. In Africa, the search for gold in the Sahara for example is reported be- ginning as early as 4000 BC (Klemm & Klemm, 2013; Miller et al., 2000). In northern Africa spe- cifically, reports indicate that between 1480–1340 BC many important gold mining sites in the east- ern Desert of Egypt and in the Nubian Desert were discovered and exploited (Klemm et al., 2001). In- formation in old reports, such as Olfert Dapper’s description of Africa, f irst published in Amster- dam in 1668 (Habashi, 2009), has helped many explorers to locate places of gold mineralization. Mining remnants In addition to old reports are the relics of old mine workings being mostly the development ex- cavations of old mines, especially adits and shafts; as well as preserved fragments of mining surface infrastructure consisting of buildings and ma- chinery. Although these features whenever found are considered archaeological items, hence are protected by heritage laws (Kaźmierczak et al., 2019), to ASM they indicate proximity to areas of potential mineralization. Conclusions ASM, although employs simple technology in its operations; and is limited from accessing formal financing for its activities related to gold explo- ration, has devised some prospecting techniques capable of locating zones of gold mineralization. The techniques are basically visual features of soil, rocks, biotic resources, mineralogical and elemental indicators as well as physical and hu- man-based indicators. The techniques are inex- pensive, quick and simple, centered on field ex- perience and minimal professional training. They can be widely applied by gold prospectors in most regions, particularly in low income societies. a b Fig. 4. Linear ASM Gold Deposits (a) A photography displaying a WNW–ESE trending ASM hardrock mining indicated by blue tarps used to cover ASM shafts, (b) Topographical image showing ASM workings along NE-SW trend (After Voormeij, 2021). 245Alternative gold prospecting methods used by artisanal and small scale miners: A review Interestingly, the techniques are supported by scientific explanations related to occurrences of gold mineralization. This implies that, detailed scientific research can be done to deduce theoreti- cal principles behind them. In addition, the techniques are in essence lim- ited to surface observations, and they cannot be used to explore concealed sub-surface resources that require application of modern technologies and advanced scientific techniques. Therefore, to enable ASM acquire such tools necessary for sys- tematic exploration, a study is being proposed on appropriate funding mechanisms beyond available traditional financing schemes to support ASM ex- ploration activities. Acknowledgements Authors are grateful to Prof. J. Ntalikwa and Prof. G. Kombe for their constructive suggestions upon im- provements in text clarity. The authors would also like to thank the anonymous reviewers and the editor for their constructive comments, which helped to improve the manuscript. References Adler, M. R., Bergquist, B.A., Adler, S.E., Gui- marães, J.R.D., Lees, P.S.J., Niquen, W., Ve- lasquez-López, P.C. & Veiga, M.M. 2013: Challenges to measuring, monitoring, and ad- dressing the cumulative impacts of artisanal and small-scale gold mining in Ecuador, Re- sources Policy, 38/4: 713–722. https://doi. org/10.1016/j.resourpol.2013.03.007 Alfonso, P., Anticoi, H., Yubero, T., Bascompta, M., Henao, L., Garcia-Valles, M., Palacios, S. & Yáñez, J. 2019: The Importance of Mineral- ogical Knowledge in the Sustainability of Ar- tisanal Gold Mining: A Mid-South Peru Case. Minerals, 9/6: 345. https://doi.org/10.390/ min9060345 Allen, B.L. & Hajek, B.F. 1989: Mineral Occur- rences in Soil Environments. In: Dixon, J.B. & Weed, S.B. (eds.): Minerals in Soil Environ- ments, 2nd ed, Soil Science Society America, Madison. Arhin, E. & Nude, P.M. 2010: Use of termitaria in surficial geochemical surveys: Evidence for >125-μm size fractions as the appropri- ate media for gold exploration in Northern Ghana, Geochemistry: Exploration, Envi- ronment, Analysis, 10: 401–406. https://doi. org/10.1144/1467-7873/09-004 Atindehou, M.M.L., Avakoudjo, H.G.G., Idohou, R., Azihou, F.A., Assogbadjo, A.E., Adomou, A.C. & Sinsin, B. 2022: Old Sacred Trees as Mem- ories of the Cultural Landscapes of Southern Benin (West Africa). Land, 11/4: 478. https:// doi.org/10.3390/land11040478 Averill, S.A. 1988: Regional variations in the gold content of till in Canada. In: Macdonald, D.R. & Mills, K.A. (eds.): Prospecting in Areas of Glaciated Terrain – 1988. Canadian Institute of Mining and Metallurgy: 271–284. Bowen, N.L. 1922: The Reaction Principle in Petrogenesis. The Journal of Geology, 30/3: 177–198. https://doi.org/10.1086/622871 Brundin, N.H. & Bergstrom, J. 1977: Regional prospecting for ores based on heavy minerals in glacial till. Journal of Geochemical Explo- ration, 7: 1–19. https://doi.org/10.1016/0375- 6742(77)90071-1 Bryceson, D., Jonsson, J., Kinabo, C. & Shand, M. 2012: Unearthing treasure and trouble: min- ing as an impetus to urbanisation in Tanza- nia. Journal of Contemporary African Studies, 30/4: 631–649. https://doi.org/10.1080/0258 9001.2012.724866 Cannon, H.L. 1960: Botanical Prospecting for Ore Deposits: How plant chemistry is being used to aid the geologist in his search for metals at home and abroad. Science, 132/3427: 591–598. https://doi.org/10.1126/science.132.3427.591 Cannon, H.L., Trimby, S., Harms, T.F. & Mosier, E.L. 1986: Some observations on plant assem- blages and elemental content of plants in min- eralized areas of the Walker Lake 1°×2° quad- rangle, US Dept. of Inter. Geological Survey, California-Nevada. Chaparro Ávila, E. 2003: Small-scale mining: a new entrepreneurial approach, Comisión Económica para América Latina (CEPAL), United Nations, Santiago, Chile: 82 p. Colin, F. & Vieillard, P. 1991: Behavior of gold in the lateritic equatorial environment: weath- ering and surface dispersion of residual gold particles, at Dondo Mobi, Gabon. Applied Geochemistry, 6/3: 279–290. https://doi. org/10.1016/0883-2927(91)90005-A Colin, F., Sanfo, Z., Faso, Brown, E., Bourlès, D. & Minko, A.E. 1997: Gold: A tracer of the dy- namics of tropical laterites. Geology, 25/1: 81– 84. https://doi.org/10.1130/0091-7613(1997) 025<0081:GATOTD>2.3.CO;2 Cowley, P.N. 2001: The discovery and develop- ment of the Geita gold deposits, Northern Tan- zania. New Gen Gold Conference 2001, Perth Australia: 123–135. Dunn, S.C., von der Heyden, B.P., Rozendaal, A. & Taljaard, R. 2019: Secondary gold mineraliza- 246 Fredrick Martin MANGASINI, Michael MSABI, Athanas MACHEYEKI & Alex KIRA tion in the Amani Placer Gold Deposit, Tanza- nia. Ore Geology Reviews, 107: 87–107. https:// doi.org/10.1016/j.oregeorev.2019.02.011 Dunn, S.C. & von der Heyden, B.P. 2021: Gold remobilization in gossans of the Amani area, southwestern Tanzania. Ore Geology Reviews, 131: 104033. https://doi.org/10.1016/j.oregeo- rev.2021.104033 Dunn, S.C., von der Heyden, B.P., Steele-MacInn- is, M., Kramers, J.D., St. Pierre, B., Erasmus, R. & Harris, C. 2021: Neoproterozoic cop- per-gold mineralization in the Amani area, southwestern Tanzania. Ore Geology Reviews, 132: 104070. https://doi.org/10.1016/j.oregeo- rev.2021.104070 Fielding, I.O.H., Johnson, S.P., Zi, J., Sheppard, S. & Rasmussen, B. 2018: Neighboring orogenic gold deposits may be the products of unrelated mineralizing events. Ore Geology Reviews, 95: 593–603. https://doi.org/10.1016/j.oregeor- ev.2018.03.011 Finkl, C.W. 1988: Soils and weathered materials, f ield methods and survey. In: General Geolo- gy. Encyclopedia of Earth Science. Springer, Boston, MA. https://doi.org/10.1007/0-387- 30844-X_107 Gibson, I.L., Milliken, K.L. & Morgan, J.K. 1996: Serpentinite-breccia landslide deposits gen- erated during crustal extension at the Iberia margin. In: Whitmarsh, R.B., Sawyer, D.S., Klaus, A. & Masson, D.G. (eds.): Proceedings of the Ocean Drilling Program, Scientific Re- sults, 149. Goldfarb, R.J., Groves, D.I. & Gardoll, S. 2001: Oro- genic gold and geologic time: A global synthe- sis. OreGeology Reviews, 18/1-2: 1–75. https:// doi.org/10.1016/S0169-1368(01)00016-6 Graham, R.C., Tice, K.R. & Guertal, W.R. 1994: The pedologic nature of weathered rock. In: Whole Regolith Pedology, D. L. Cremeens, R. B. Brown & J. H. Huddleston (eds.): Special Pub- lication, 34: 21–40. https://doi.org/10.2136/ sssaspecpub34.c2 Habashi, F. 2009: Gold in the ancient African kingdoms. De Re Metallica, 12: 65–69. Hastie, E.C.G., Kontak, D.J. & Lafrance, B. 2020: Gold Remobilization: Insights from Gold De- posits in the Archean Swayze Greenstone Belt, Abitibi Sub-province, Canada. Economic Ge- ology, 115: 241–277. https://doi.org/10.5382/ econgeo.4709 Hathout, S.A. 1983: Soil atlas of Tanzania. Tanza- nia Publishing House, Dar es Salaam, Tanzania. Heuzé, V. & Tran, G. 2015: Black thorn (Acacia mel- lifera). Feedipedia, a programme by INRAE, CIRAD, AFZ & FAO. https://www.feedipedia. org/node/347 (17.2.2023) Hawkes, H.E. 1957: Principles of geochemical prospecting, U.S. Geol. Survey Bull. 1000-F: 225–355. Henckel, J., Poulsen, K.H., Sharp, T. & Spora, P. 2016: Lake Victoria Goldfields. Episodes. 39/2: 135–154. https://doi.org/10.18814/epii- ugs/2016/v39i2/95772 Hentschel, T., Hruschka, F. & Priester, M. 2003: Artisanal and Small-Scale Mining: Challenges and Opportunities. Mining, Minerals and Sus- tainable Development Project, International Institute for Environment and Development, London: 94 p. Hester, B.W., Barnard, F. & Johnson, A. 1995: Opportunities for Mineral Resource Develop- ment: Tanzania. Ministry of Water, Energy and Minerals, United Republic of Tanzania, Knudsen Printing, Denver: 108 p. Hinton, J.J., Veiga, M.M. & Veiga, A.T.C. 2003: Clean artisanal gold mining: a utopian ap- proach? Journal of Cleaner Production, 11/2: 99–115. https://doi.org/10.1016/S0959- 6526(02)00031-8 Hinton, J. 2006: Communities and small scale mining: an integrated review for development planning. Report to the World Bank, Commu- nities and Small-Scale Mining (CASM) Initia- tive, Washington DC. Itamiya, H., Sugita, R. & Sugai, T. 2019: Analysis of the surface microtextures and morpholo- gies of beach quartz grains in Japan and im- plications for provenance research. Progress in Earth and Planetary Science, 6: 43. https:// doi.org/10.1186/s40645-019-0287-9 Kaźmierczak, U., Strzałkowski, P. & Lorenc, M.W. 2019: Post-mining Remnants and Revitaliza- tion. Geoheritage, 11: 2025–2044. https://doi. org/10.1007/s12371-019-00408-8 Kelley, K.D., Eppinger, R.G., Lang, J., Smith, S.M. & Fey, D.L. 2011: Porphyry Cu indicator miner- als in till as an exploration tool: Example from the giant Pebble porphyry Cu-Au-Mo deposit Alaska, USA. Geochemistry: Exploration, En- vironment, Analysis, 11: 321–334. https://doi. org/10.1144/1467-7873/10-IM-041 Kontak, D.J. & Kerrich, R. 1995: Geological and geochemical studies of a metaturbidite-host- ed lode gold deposit; the Beaver Dam deposit, Nova Scotia: II. Isotopic studies. Economic Ge- ology, 90: 885–901. https://doi.org/10.2113/ gsecongeo.90.4.885 Klemm, D., Klemm, R. & Murr, A. 2001: Gold of the Pharaohs – 6000 years of gold mining in Egypt 247Alternative gold prospecting methods used by artisanal and small scale miners: A review and Nubia. Journal of African Earth Sciences, 33/3–4: 643–659. https://doi.org/10.1016/ S0899-5362(01)00094-X Klemm, R. & Klemm, D. 2013: Gold and Gold Mining in Ancient Egypt and Nubia. Geoar- chaeology of the Ancient Gold Mining Sites in the Egyptian and Sudanese Eastern Deserts. Springer, Berlin-Heidelberg: 649 p. Kuehn, S. Ogola, J. & Sango, P. 1990: Region- al setting and nature of gold mineralization in Tanzania and southwest Kenya. Precam- brian Research, 46/1–2: 71–82. https://doi. org/10.1016/0301-9268(90)90067-Z Kwelwa, S., Manya, S. & Vos, I.M.A. 2013: Geo- chemistry and petrogenesis of intrusions at the Golden Pride gold deposit in the Nzega green- stone belt, Tanzania. Journal of African Earth Sciences, 86: 53–64. https://doi.org/10.1016/j. jafrearsci.2013.06.012 Kwelwa, S.D., Dirks, P.H.G.M., Sanislav, I.V., Blen- kinsop, T. & Kolling, S. 2018: Archaean Gold Mineralization in an Extensional Setting: The Structural History of the Kukuluma and Matandani Deposits, Geita Greenstone Belt, Tanzania. Minerals, 8/4: 171. https://doi. org/10.3390/min8040171 Lahiri-Dutt, K. 2004: Informality in mineral re- source management in Asia: Raising questions relating to community economies and sustain- able development. Natural Resources Forum, 28/2: 123–32. https://doi.org/10.1111/j.1477- 8947.2004.00079.x Marjoribanks, R.W. 1997: Prospecting and the Exploration Process. Geological Methods in Mineral Exploration and Mining, Springer, Dordrecht: https://doi.org/10.1007/978-94- 011-5822-0_1. Marquez-Zavalia, M.F., Southam, G., Craig, J.R. & Galliski, M.A. 2004: Morphological and chem- ical study of placer gold from the San Luis Range, Argentina. Canadian Mineralogist, 42: 169–182. https://doi.org/10.2113/gscan- min.42.1.169 McClenaghan, M.B. 2005: Indicator mineral meth- ods in mineral exploration. In: Geochemistry: Exploration, Environment, Analysis, 5: 233– 245. https://doi.org/10.1144/1467-7873/03- 066 McLennan, J.F. 1915: Quartz veins in lampro- phyre intrusions: Engineering Mining Jour- nal, 99: 11–13. McNeil, A.M. & Kerrich, R. 1986: Archean ampro- phyre dykes and gold mineralization, Mathe- son, Ontario: The conjunction of LILE en- riched mafic magmas, deep crustal structures, and Au concentration: Canadian Journal of Earth Sciences, 23: 324–343. Migoń, P. 2020: Geomorphology of conglomerate terrains – Global overview, Earth-Science Re- views, 208: 103302. https://doi.org/10.1016/j. earscirev.2020.103302 Miller, D., Desai, N. & Lee-Thorp, J. 2000: Indige- nous gold mining in Southern Africa: A review. South African Archeological Society, Goodwin Series, 8: 91–99. Myers, S.C. & Majluf, N.S. 1984: Corporate Fi- nancing and Investment Decisions when Firms Have Information that Investors Do Not Have. Journal of Financial Economics, 13: 187–221. https://doi.org/10.1016/0304- 405X(84)90023-0 Mykhailov, V., Andreeva, O. & Omelchuk, O. 2020: Model of the new gold deposit Mananila (Tan- zania). Geoinformatics: Theoretical and Ap- plied Aspects 2020, European Association of Geoscientists and Engineers, 11–14 May 2020, Kyiv, Ukraine. Paton, A.J., Bramley, G., Ryding, O., Polhill, R., Harvey, Y., Iwarsson, M., Willis, F., Phillipson, P., Balkwill, K., Lukhoba, C., Otiend, D. & Har- ley 2009: Lamiaceae (Labiatae). Flora of Trop- ical East Africa: 430 p. Peristeridou, E., Melfos, V., Papadopoulou, L., Kantiranis, N. & Voudouris, P. 2022: Mineral- ogy and Mineral Chemistry of the REE-Rich Black Sands in Beaches of the Kavala Dis- trict, Northern Greece. Geosciences, 12: 277. https://doi.org/10.3390/geosciences12070277 Petts, A.E., Hill, S.M. & Worrall, L. 2009: Ter- mite species variations and their importance for termitaria biogeochemistry: towards a robust media approach for mineral explora- tion. Geochemistry: Exploration, Environ- ment, Analysis, 9/3: 257–266. https://doi. org/10.1144/1467-7873/09-190 Rigobert, T., Jean-Claude, D., Marambaye, D. & Yannick, B. 2013: On the occurrence of gold mineralization in the Pala Neoproterozoic for- mations, South-Western Chad. Journal of Af- rican Earth Sciences, 84: 36–46. https://doi. org/10.1016/j.jafrearsci.2013.03.002 Rock, N.M.S., Groves, D.I., Perring, C.S. & Gold- ing, S.D. 1989: Gold, lamprophyres, and por- phyries: What does their association mean? In: Keays, R.R. Ramsay, W.R.H. & Groves, D.I. (eds.): The geology of gold deposits. Econom- ic Geology Monograph: 609–625. https://doi. org/10.5382/Mono.06.47 Rottier, B., Kouzmanov, K., Casanova, V., Bouvier, A., Baumgartner, L. P., Wälle, M. & Fontboté, 248 Fredrick Martin MANGASINI, Michael MSABI, Athanas MACHEYEKI & Alex KIRA L. 2018: Mineralized breccia clasts: a window into hidden porphyry-type mineralization un- derlying the epithermal polymetallic deposit of Cerro de Pasco (Peru). Miner Deposita, 53: 919–946. https://doi.org/10.1007/s00126- 017-0786-9 Sahoo, K.A., Krishnamurthi, R. & Sangurmath, P. 2018: Nature of ore forming f luids, wall rock al- teration and P-T conditions of gold mineraliza- tion at Hira-Buddini, Hutti-Maski Greenstone Belt, Dharwar Craton, India. Ore Geology Re- views, 99: 195–216 https://doi.org/10.1016/j. oregeorev.2018.06.008 Sarala, P. ed. 2015: Novel technologies for green- f ield exploration. Geological Survey of Finland, Special Paper, 57: 11–22 Schwartz, G.M. 1944: The host minerals of native gold, Economic Geology, 39/6: 371–411. Schwertmann, U. 1988: Occurrence and For- mation of Iron Oxides in Various Pedoenvi- ronments. In: Stucki, J.W., Goodman, B.A. & Schwertmann, U. (eds.): Iron in Soils and Clay Minerals. NATO ASI Series, 217. Springer, Dordrecht. https://doi.org/10.1007/978-94- 009-4007-9_11 Shand, M. & Jønsson, J.B. 2011: Tanzania gold mines and minerals map. University of Glas- gow, UPIMA project. Smee, B.W. 1998: A new theory to explain the formation of soil geochemical responses over deeply covered gold mineralization in arid en- vironments, Journal of Geochemical Explo- ration, 61: 149–172. https://doi.org/10.1016/ S0375-6742(98)00007-7 Sutarto, S., Idrus, A., Harijoko, A., Setijadji, L.D. & Meyer, F.M. 2015: Veins and hydrothermal breccias of the Randu Kuning porphyry Cu- Au and epithermal au deposits at Selogiri area, central Java Indonesia, Journal of Applied Ge- ology, 7/2: 80–99. https://doi.org/10.22146/ jag.26982 Timperley, M.H., Brooks, R.R. & Peterson, P.J. 1972: Trend analysis as an aid to the compar- ison and interpretation of biogeochemical and geochemical data: Econ. Geol., 67/5: 669–676. Taylor, M.J. 2009: Report on the Kibara Mineral Exploration Property of Tanzanian Royalty Exploration Corporation in the Bunda District, Mara Region of the United Republic of Tanza- nia, East Africa, unpublished report. Taylor, R. 2011: Boxworks and related features. In: Gossans and Leached Cappings: Springer, Ber- lin, Heidelberg. https://doi.org/10.1007/978- 3-642-22051-7_7 Taylor, R.D. & Anderson, E.D. 2018: Quartz-peb- ble-conglomerate gold deposits, U.S. Geolog- ical Survey Scientific Investigations Report 2010–5070–P, 34 p. https://doi.org/10.3133/ sir20105070P Veiga, M.M., Metcalf, S.M., Baker, R.F., Klein, B., Davis, G., Bamber, A., Siegel, S. & Singo, P. 2006: Manual for Training Artisanal and Small-Scale Gold Miners, GEF/UNDP/UNI- DO, Vienna, Austria: 144 p. Vila, T., Sillitoe, R.H., Betzhold, J. & Viteri, E. 1991: The porphyry gold deposit at Marte, northern Chile. Economic Geology, 86/6: 1271–1286. https://doi.org/10.2113/gsecongeo.86.6.1271 Vishiti, A., Etame, J. & Suh, C.E. 2019: Features of gold-bearing quartz veins in an artisanal mining-dominated terrain, Batouri gold dis- trict, Eastern region of Cameroon, Episodes, 42/3: 199–212. https://doi.org/10.18814/epii- ugs/2019/019016 Voormeij, D. 2021: Gold exploration in tropical landscapes. Fifth Edition. Mynah Exploration Inc. Williams-Jones, A.E., Bowell, R.J. & Migdis- ov, A.A. 2009: Gold in Solution. Elements 5/5: 281–287. https://doi.org/10.2113/gsele- ments.5.5.281 Wysocki, D.A., Schoeneberger, P.J. & Lagarry, H.E. 2005: Soil surveys: a window to the sub- surface. Geoderma, 126/1–2: 167–180. https:// doi.org/10.1016/j.geoderma.2004.11.012 Xu, D., Deng, T., Chi, G., Wang, Z., Zou, F., Zhang, J. & Zou, S. 2017: Gold mineralization in the Jiangnan Orogenic Belt of South China: Ge- ological, geochemical and geochronological characteristics, ore deposit-type and geo- dynamic setting. Ore Geology Reviews, 88: 565–618. https://doi.org/10.1016/j.oregeor- ev.2017.02.004 Yang, Y., Chen, J., Liu, W., Zhong, S., Ma, Y., Gao, X. & Chen, M. 2020: The impacts of pyrite/ pyrrhotite on aqueous arsenic species in ar- senopyrite pressure leaching: An XAS study, Minerals Engineering, 155: 106447. https:// doi.org/10.1016/j.mineng.2020.106447 Yuan, Y., Li, S., Peng, J., Si, J., Cheng, H., Sun, J., Wei, J. & Shao, J. 2019: An integrated ore pros- pecting model for the Nyasirori gold depos- it in Tanzania. China Geology, 2/4: 407–421. https://doi.org/10.31035/cg2018127 Zhu, Y., An, F. & Tan, J. 2011: Geochemistry of hydrothermal gold deposits: A review. Geo- science Frontiers, 2/3: 367–374. https://doi. org/10.1016/j.gsf.2011.05.006 © Author(s) 2024. CC Atribution 4.0 License Geologic structure and origin of the Zadlog karst polje Geološka zgradba in nastanek kraškega polja Zadlog Jože ČAR¹ & Ela ŠEGINA²* 1Beblerjeva 4, SI-5280 Idrija, Slovenija; e-mail: joze.car@siol.net 2Geološki zavod Slovenije, Dimičeva ulica 14, SI-1000 Ljubljana, Slovenija; *corresponding author: ela.segina@geo-zs.si Prejeto / Received 29. 2. 2024; Sprejeto / Accepted 20. 8. 2024; Objavljeno na spletu / Published online 16. 12. 2024 Key words: karst polje, thrust and fault tectonics, dolomite, hydrogeology, Zadlog, Zadloško polje Ključne besede: kraško polje, narivna in prelomna tektonika, dolomit, hidrogeologija, Zadlog, Zadloško polje Abstract In the wider Idrija area in western Slovenia, several large plains formed along the thrusts within the dolomite and at the contact of dolomite and limestone. The purpose of this paper is to present the detailed structural-geological background of one such plain, namely the Zadlog plain, and based on these findings, to provide new starting points for analyzing the genetic conditions of other karst poljes in Notranjska. The Zadloško polje was formed in a wider near-fault crushed zone at the contact of two structural units within the Upper Triassic Norian-Rhaetian dolomite, with the thrust crossing the polje in its central part. The initially lowered area at the thrust represented a morphological basis, and the crushed zones in the dolomite played a hydrological retention role inducing the stagnation of surface water and, as a result, the formation of the karst polje. Younger fault tectonics then established efficient drainage of surface water and the erosion of sediments to the karst underground. Besdies this, slope equilibration leads us to conclude that the karst polje capability of hydrologic retention is recently decreased. The example of Zadloško polje shows that the thrust structures and associated hydrological conditions are the key elements for the formation of karst poljes in the dissected karst surface. Further detailed structural-geological mapping will reveal whether similar structural-geological conditions are the basis for the formation of other karst poljes in the region. Izvleček Vzdolž narivov znotraj dolomita in narivov na kontaktu dolomita in apnenca so na Idrijskem v zahodni Sloveniji mestoma nastale večje izravnave. Namen tega prispevka je predstaviti podrobno strukturno-geološko ozadje ene takih izravnav, in sicer Zadloške uravnave in na podlagi teh ugotovitev podati nova izhodišča za prevetritev genetskih razmer tudi drugih kraških polj na Notranjskem. Zadloško polje je tako nastalo v razširjeni obprelomni zdrobljeni coni ob stiku dveh strukturnih enot znotraj zgornjetriasnega norijsko-retijskega dolomita, pri čemer narivnica prečka polje v njegovem osrednjem delu. Začetna obnarivna izravnava je predstavljala morfološko zasnovo, zdrobljeni coni v dolomitu pa sta imeli ključno vodno-zadrževalno vlogo pri zastajanju površinske vode in posledično pri nastanku kraškega polja. Mlajša prelomna tektonika je nato vzpostavila efektivno odvajanje voda in odnašanje sedimentov v kraško podzemlje. Prav tako opazujemo uravnavanje pobočij izravnave, zaradi česar menimo, da je vodno-zadrževalna sposobnost kraškega polja recentno zmanjšana. Primer Zadloškega polja kaže, da so narivna zgradba in z njo povezane hidrološke razmere ključni element za oblikovanje kraškega polja v razčlenjenem kraškem površju. Ali so podobne strukturno-geološke razmere osnova nastanka tudi ostalih kraških polj v regiji, bo razkrilo nadaljnje podrobno strukturno-geološko kartiranje. GEOLOGIJA 67/2, 249-271, Ljubljana 2024 https://doi.org/10.5474/geologija.2024.012 Introduction On the extensive Črni Vrh plateau, northwest of Črni Vrh above Idrija, lies a 2 km long and up to 800 m wide plain, which locals simply call Zadlog but sometimes also Zadloško polje (Fig. 1A, B). On the plain lies the dispersed settlement of Zadlog with many names for the different parts of the pol- je. The Zadlog plain is surrounded by higher eleva- Uvod Na obsežni Črnovrški planoti severozahodno od Črnega Vrha nad Idrijo leži 2 km dolga in do 800 m široka izravnava, ki ji domačini reče- jo preprosto Zadlog (v Zadlogu), včasih pa tudi Zadloško polje (sl. 1A, B). Na izravnavi leži raz- treseno naselje Zadlog, s številnimi imeni posa- meznih predelov polja. Zadloška izravnava je z 250 Jože ČAR & Ela ŠEGINA tions on all sides and is therefore often referenced as Zadloška kotlina (Zadlog basin) on geographical maps. Leaving aside different geographical defini- tions, the term Zadloško polje or just Zadlog will be used hereinafter. On a printed geological map of Idrija at the scale of 1:25000, the structure of the Zadloško polje area and its surroundings appears to be sim- ple and uncomplicated (Mlakar & Čar 2009, Fig. 1). The conditions are logically and, according to the figures, adequately explained. The geological structure of Zadlog seems very simple for the oth- erwise complex territory of Idrija. However, a quick geological examination of the central part of Zad- loško polje revealed that the geological conditions are quite different. This was indeed reason enough for a renewed, more detailed geological survey of Zadlog and its surrounding area. It revealed that Zadloško polje and its surroundings have a more complex structural-geological composition than previously believed, which is hardly recognizable due to the naturally level terrain, continuous farm- ing and extensive land improvement works. There are few discussions of the Zadlog polje: before the results of detailed fieldwork presented in this re- search and the identification of complex structur- al-tectonic conditions, Zadlog was on a geological map represented only in his general features. Al- though the hydrological conditions were general- ly known, no one had yet considered them in the wider hydrological context. The findings of the new structural-geological mapping presented here can be used to explain the position of the polje with- in the broader structural situation of the area, the formation of the karst polje, the position and for- mation of swallets, and to explain general hydro- logical and morphological features and how it fits into the broader geological structure of the Črni Vrh plateau and wider Idrija region. The formation of the initial plain of the karst polje is in the exist- ing karst literature often associated with tension conditions (Gams 1978, Vrabec, 1994; Gracia et al., 2003; Doğan et al., 2017), while the formation of the karst polje in the context of thrust tectonics has not yet been discussed. General features of Zadloško polje The geographical features of Zadloško polje were discussed in 1968 by Habič in his PhD thesis (Habič, 1968). Only some data from his work that is relevant to this discussion is summarised here. The extensive plain of Zadlog is located on the western edge of the Črni Vrh plateau at an alti- tude of between 716 and 720 m. To the north and east towards the Idrijca valley, Idrijski Log and vseh strani obdana z v išjim vzpetinami, zato je na geografskih kartah večkrat označena tudi kot Zadloška kotlina. Ne glede na različne geograf- ske opredelitve bomo v nadaljevanju uporabljali poimenovanje Zadloško polje, ali pa samo Zad- log. Pogled na natisnjeno idrijsko geološko karto v merilu 1 : 25.000 kaže, da ima območje Zad- loškega polja z okolico preprosto in enostavno zgradbo (Mlakar & Čar, 2009, sl. 1). Razmere so logično in, glede na podatke, primerno razlože- ne. Za sicer geološko zapleteno idrijsko ozemlje izgleda geološka zgradba Zadloga zelo enostavna. Vendar je že hiter geološki ogled osrednjega dela Zadloškega polja pokazal, da so geološke razmere očitno drugačne. Seveda je bil to zadosten razlog za ponovno, natančnejše geološko kartiranje Za- dloga in okolice. Pokazalo se je, da ima Zadloško polje z okolico bolj zapleteno strukturno-geološko zgradbo od predhodno razumljene, ki je zaradi naravne izravnave terena, stalnega kmetovanja in obsežnih melioracijskih del težje prepoznavna. O Zadloški izravnavi obstaja le malo razprav. Pred, v tej raziskavi predstavljenimi rezultati podrob- nega terenskega dela in ugotovitvijo zapletenih strukturno-tektonskih razmer, je bil Zadlog na geoloških kartah izrisan samo v svojih splošnih potezah. Hidrološke razmere so bile sicer v splo- šnem znane, toda nihče jih še ni obravnaval v širšem hidrološkem kontekstu. Na podlagi ugo- tovitev tukaj predstavljenih rezultatov struktur- no-geološkega kartiranja pa se da dobro razložiti lego polja v širši strukturni zgradbi ozemlja, na- stanek kraškega polja, lego in nastanek ponikev in pojasniti splošne hidrološke in morfološke zna- čilnosti ter vpetost v širšo geološko strukturo Čr- novrške planote in Idrijskega ozemlja. Nastanek začetne uravnave kraškega polja se v obstoječi krasoslovni literaturi pogosto povezuje z natezni- mi razmerami (Gams, 1978; Vrabec, 1994; Gracia et al., 2003; Doğan et al., 2017), medtem ko na- stanek kraškega polja v okviru narivne tektonike še ni bil obravnavan. Splošne značilnosti Zadloškega polja Geografske značilnosti Zadloškega polja je ob- ravnaval Habič v svojem doktoratu leta 1968 (Ha- bič, 1968). Iz njegovega dela povzemamo le nekaj, za naše razpravljanje pomembnih podatkov. Obsežna zadloška uravnava na zahodnem ob- robju Črnovrške planote leži na višini med 716 in 720 m. Na severu in vzhodu proti dolini Idrij- ce, Idrijskemu Logu in Koševniku je obrobljena z nižjim grebenom s številnimi manjšimi dolina- mi, ki se iztekajo na eni strani proti Zadlogu, na 251Geologic structure and origin of the Zadlog karst polje Koševnik, it is lined by a lower ridge with numer- ous smaller valleys leading towards Zadlog on one side and Idrijski Log on the other (Fig. 1A, B). The ridge, which runs only some 40 m above the pres- ent-day base of the plain, is interrupted by a num- ber of indistinct peaks rising up to no more than 100 m above the base of Zadloško polje. The lowest points of the ridge are the distinct pass close to the Podtisov Vrh peak at 724 m, where a forest road from the Belca valley leads to Zadlog, and the pass near Kočar (above Ivanšek) (735 m), where the road from Zadlog leads to Idrijski Log and Idrijska Bela. On the southern edge of Zadlog, there are steep and poorly dissected slopes with ca. 1100 m high peaks. The only notch in the slope is the Bukovska Rovna ledge (782 m) extending into a distinctly dry and heavily karstified lowered area towards Mrzli Log and the pass near Šoštar, where the main road leads to Črni Vrh. Here is also the lowest point of the edge of Zadloško polje at an altitude of 718 m. Given the above-mentioned data, Zadlog could in- deed be referred to as a shallow basin. Geographers and geologists alike write about how the Idrijca, the Belca and the Kanomljica once probably f lowed together across the Zad- loško polje, the Črni Vrh plateau and further along the Hotenjsko podolje valley system towards the Ljubljanica (Savnik, 1959; Melik, 1963; Mlakar, 2002). The f low of the watercourses in Idrija to- wards the Ljubljanica river was discussed in great detail and supported by geomorphological data by Mlakar (2002). Such an assessment is not sup- ported by any material evidence. Habič (1968) had already determined that on the Zadlog-Črni Vrh plateau and the Hotenjsko podolje area between drugi strani pa proti Idrijskemu Logu (sl. 1A, B). Greben, ki poteka le kakih 40 m nad današnjim dnom izravnave, je prekinjen z nekaj neizraziti- mi vrhovi, ki se vzpenjajo največ do 100 m nad dnom Zadloškega polja. Najnižji točki grebena sta izrazita prehod pri Podtisovem Vrhu na višini 724 m, kjer je na Zadlog speljana gozdna cesta iz doline Belce, in prelaz pri Kočarju (nad Ivan- škom) (735 m), kjer poteka cesta iz Zadloga proti Idrijskemu Logu in Idrijski Beli. Na južnem ob- robju Zadloga ležijo strma in slabo razčlenjena pobočja z vrhovi na višini okrog 1100 m. Zarezo v pobočju predstavlja le polica Bukovska Rovna (782 m), ki se podaljša v izrazito suho in močno zakraselo znižanje proti Mrzlemu Logu, ter pre- hod pri Šoštarju, kjer poteka glavna cesta proti Črnemu Vrhu. Tu je tudi najnižja točka obrobja Zadloškega polja na višini 718 m. Iz zgornjih po- datkov izhaja, da ima Zadlog značilnosti plitve kotline. O tem, da naj bi nekdaj Idrijca, Belca in Ka- nomljica združeno tekale čez Zadloško polje, Čr- novrško planoto in dalje po Hotenjskem podolju proti Ljubljanici, so pisali tako starejši geogra- f i kot tudi geologi (Savnik, 1959; Melik, 1963; Mlakar, 2002). Še posebej podrobno in podprto z geološkimi in morfološkimi podatki je pretok idrijskih vodotokov proti Ljubljanici obravna- val Mlakar (2002). Materialnih dokazov za tako mnenje ne navaja. Že Habič (1968) je ugotovil, da na Zadloško-Črnovrški planoti in Hotenjskem podolju med Godovičem in Hotedršico ni sledov rečne erozije ali prodov, ki bi vsekakor morali biti A B Fig. 1. A – Location and basic topographic features of the Zadloško polje area. B – View on Zadloško polje during floods (18. 12. 2009). Photo: Bojana Zagoda. Sl. 1. A – Lokacija in osnovne topografske značilnosti območja Zadloškega polja. B – Pogled na Zadloško polje v času poplav (18. 12. 2009). Foto: Bojana Zagoda. 252 Jože ČAR & Ela ŠEGINA Godovič and Hotedršica there are no traces of f lu- vial erosion or cobble, which should certainly have been preserved, even if only here and there and in marginal amounts. Zadloško polje is covered by an unevenly thick yellowish dolomitic clayey eluvium with rare, small and irregular millimetre-sized chert clasts showing no signs of transport. The clasts were not studied in detail, however, they represent sparingly soluble residue and certainly originate from the parent rock. The thickness of eluvium is locally increased in some lower parts of the terrain. The internal texture shows that it was transported for only a short distance. The entire Zadloško polje was artificially lev- elled (ameliorated) to a considerable extent. To get land for farming, the lower dolomite outcrops were mostly levelled out. At the northern and central parts of Zadloško polje, however, there are still do- lomite hummocks rising about 1.5 to some metres from the plain that mainly run northwest to south- east and are aligned with strata of dolomite. They are either bare or covered with shallow turf, shrub- bery, individual trees or sparse woods. Nowadays it is impossible to deduce how many dolines and other karst formations have been filled. Given the condi- tions elsewhere on the dolomitic part of the Črni Vrh plateau (Črni Vrh, Predgriže, Koševnik and Id- rijski Log), which has comparable structural com- position (Zagoda, 2004), it can be concluded that the Upper Triassic dolomite in Zadlog is also rela- tively poorly karstified, which is as well supported by geological mapping of the same kind of dolomite in a comparable structural position in Idrijski Log and Predgriže. However, there are some morpho- logically distinctive sinking areas with ponors on Zadloško polje. The inf luence of the Pleistocene glaciation on the morphology of Zadlog has not yet been studied and is currently unknown. Undoubtedly, such cold cli- matic conditions inf luenced the faster denudation of dolomites in the hinterland and more intense trans- port of the weathered material to the karst polje. Geological structure of Zadloško polje Earlier data Existing geological maps (Buser et al., 1967; Mlakar, 1969; Pleničar, 1970; Mlakar & Čar, 2009) suggest that the structure of Zadloško polje and its wider surroundings is very simple. The Posto- jna sheet from the Basic geological map (Osnovna geološka karta, OGK) and the interpreter to this sheet (Pleničar et al., 1970) show that Zadlog and its wider surroundings are made of thinly to mod- erately stratified Upper Triassic Norian-Rhaetian ohranjeni, pa čeprav le tu in tam in v neznatnih sledovih. Zadloško polje sicer prekriva neena- komerno debela dolomitna rumenkasta glinasta preperina z redkimi, majhnimi in nepravilnimi klasti roženca milimetrskih dimenzij, ki ne kaže- jo znakov premeščanja, saj so povsem nepravil- nih oblik. Klastov na tem mestu nismo razisko- vali, vendar predstavljajo težje topni ostanek in zagotovo izhajajo iz matične kamnine. Preperina je na nekaterih nižje ležečih predelih lokalno de- belejša. Notranja tekstura kaže, da je preložena le na kratko razdaljo. Celotno Zadloško polje je bilo s posegi v dobršni meri umetno izravnano (meliorirano). Za potrebe kmetovanja so bile izravnane predv- sem nižje dolomitne golice. V severnem in osred- njem delu Zadloškega polja pa še vedno štrle iz izravnave od 1,5 do nekaj metrov visoke dolo- mitne grbine, ki potekajo v glavnem v smeri se- verozahod – jugovzhod, skladno s slemenitvijo dolomitnih plasti. So gole ali pa pokrite s plitvo rušo, grmovjem, posameznimi drevesi ali red- kim gozdom. Koliko je v podlagi zasutih vrtač in drugih kraških oblik ni raziskano. Iz razmer drugod na dolomitnem delu Črnovrške planote (Črni Vrh, Predgriže, Koševnik in Idrijski Log), ki ima primerljivo strukturno zgradbo (Zagoda, 2004), lahko sklepamo, da je zgornjetriasni do- lomit tudi v Zadlogu razmeroma slabo zakrasel. To podpira tudi geološko kartiranje enakega do- lomita v primerljiv i strukturni legi v Idrijskem Logu in Predgrižah. Se pa na Zadloškem polju nahaja nekaj morfološko izrazitih ponikalnih območij. Vpliv pleistocenske poledenitve na morfologijo Zadloga še ni bil preučen in ga ta hip ne pozna- mo. Nedvomno pa so hladnejše podnebne raz- mere vplivale na hitrejšo denudacijo dolomitov v zaledju polja in intenzivnejše površinsko premeš- čanje preperine na izravnavo. Geološka zgradba Zadloškega polja Starejši podatki Pogled na dosedanje geološke karte (Buser et al., 1967; Mlakar, 1969; Pleničar, 1970; Mla- kar & Čar, 2009) pokaže, da naj bi bilo Zadlo- ško polje s širšo okolico zelo preprosto zgrajeno. Glede na OGK list Postojna in tolmača k temu listu (Pleničar et al., 1970) vidimo, da Zadlog s širšo okolico gradi tanko do srednje plastnati zgornjetriasni norijsko-retijski (ti. glavni) do- lomit. Dno zadloške uravnave v celoti pokriva- jo kvartarni sedimenti – nanosi rek in potokov (Pleničar et al., 1970). Od terciarne tektonike je 253Geologic structure and origin of the Zadlog karst polje dolomite (so-called main dolomite). The base of the Zadlog plain is entirely covered by quaternary sed- iments – river and stream deposits (Pleničar et al., 1970). Regarding tertiary tectonics, only the thrust line between the Lower Cretaceous limestone of the first ‘slice’ (today: Koševnik nappe slice) and the Upper Triassic dolomite of the second ‘slice’ (today: Čekovnik thrust slice) running north and east of Zadlog along the plain of Idrijski Log and Koševnik is delineated. No other potential tectonic elements have been identified. Zadloško polje was not remapped during the pro- duction of the new 1:25,000 scale geological map (Mlakar & Čar, 2009). The conditions thus remain nearly identical as when delineated and described by Mlakar on his 1969 geological map, while the new map includes corrections of thrust unit desig- nations. According to Placer’s (Placer, 1981, 2008) thrust dissection of western Slovenia and his recent oral proposal, the Hrušica nappe lies in the deeper bedrock of the territory of Idrija, and over it follow the Koševnik, Čekovnik and Kanomlje interjacent slice (nappe slice in this paper), covered by the Lower thrust block of Trnovo nappe, which is now- adays divided into four internal overthrust bodies (Mlakar & Čar, 2009; Čar, 2010; Čar et al., 2021). The entire Zadloško polje and its wider surround- ings consist of two thrust packages of Upper Trias- sic Norian-Rhaetian dolomite. The northern border of Zadloško polje and a large portion of the central part belong to the Čekovik nappe slice. The Upper Triassic dolomite has a normal stratigraphic posi- tion according to recent findings (Čar, 2010). The southern slopes towards Špičasti vrh (822 m), Mrzli Log and Špik also consist of the Norian–Rhaetian dolomite, but it belongs to the Trnovo nappe over- thrust unit, i.e. the Tičnica inner thrust sheet (Čar, 2010). The thrust line between the two units should run along the southern edges of Zadlog, the same way as it is delineated on Mlakar’s map (1969). Two fault lines are delineated on the map: the first one runs from Mrzli Log across Bukovska Rovna, inter- sects Zadloško polje and continues across Kotenjski rob (along the location Kot) into the Belca valley, while the second fault intersects the eastern part of Zadloško polje. It enters the polje in Plestenice and continues past Klančar and across Koševnik into the Idrijca valley. This map dating in 1969 also shows that the base of Zadloško polje is covered by alluvial deposits (Mlakar & Čar, 2009). Previous geological maps (Pleničar, 1970; Mlakar, 1969; Mlakar & Čar, 2009) did not take into account the hydrological conditions in Zad- log and the remarks on the coverage of the polje f loor already observed and written down by Habič izr isana le narivnica med spodnjekrednim ap- nencem prve luske (danes: Koševniška krovna luska) in zgornjetriasnim dolomitom druge lus- ke (danes: Čekovniška krovna luska), ki pote- ka severno in vzhodno od Zadloga po uravnavi Idrijskega Loga in Koševnika. Drugi tektonski elementi niso bili ugotovljeni. Pri izdelavi nove geološke karte v merilu 1: 25 000 (Mlakar & Čar, 2009). Zadloškega polja nis- mo na novo kartirali. Razmere zato ostajajo sko- raj enake, kot jih je izrisal in opisal Mlakar na svoji geološki karti iz leta 1969, vendar s poprav- ki poimenovanja narivnih enot. Soglasno s Pla- cerjevo narivno razčlenitvijo zahodne Slovenije in njegovim novejšim ustnim predlogom (Placer, 1981, 2008) leži v globlji podlagi Idrijskega ozem- lja Hrušiški pokrov, nad njim si sledijo Košev- niška, Čekovniška in Kanomeljska krovna luska, pokriva jih spodnji narivni blok Trnovskega po- krova, ki je danes razdeljen na štiri notranje na- rivne grude (Mlakar & Čar, 2009; Čar, 2010; Čar et al., 2021). Celotno Zadloško polje in njegovo širšo okolico gradita dva narivna paketa zgornje- triasnega norijsko-retijskega dolomita. Severno obrobje Zadloškega polja in velik delež osrednje- ga dela pripada Čekovniški krovni luski. Zgor- njetriasni dolomit ima po novejših ugotovitvah normalno stratigrafsko lego (Čar, 2010). Južna pobočja proti Špičastemu vrhu (822 m), Mrzlemu Logu in Špiku gradi prav tako norijsko-retijski dolomit, le da pripada narivni enoti Trnovskega pokrova in sicer Tičenski notranji narivni grudi (Čar, 2010). Narivnica med obema enotama naj bi potekala po južnem obrobju Zadloga, enako kot je izrisana na Mlakarjevi karti (1969). Na karti sta izrisani dve prelomni liniji: prva poteka iz Mrzle- ga Loga čez Bukovsko Rovno, seka Zadloško polje in se nadaljuje čez Kotenjski rob (po lokaciji Kot) v dolino Belce, drugi prelom pa seka vzhodni del Zadloškega polja. Na polje prihaja v Plestenicah in se nadaljuje mimo Klančarja in čez Koševnik v dolino Idrijce. Tudi na tej karti iz leta 1969 je izrisano, da prekrivajo dno Zadloškega polja alu- vialni nanosi (Mlakar & Čar, 2009). Pri izdelavi dosedanjih geoloških kart (Ple- ničar, 1970; Mlakar 1969; Mlakar & Čar, 2009) niso upoštevane hidrološke razmere v Zadlogu in pripombe o pokritosti dna polja, ki jih je ugoto- vil in zapisal že Habič (1968). To je bil povod za podrobnejše geološko kartiranje Zadloga z obrob- jem v merilu 1 : 5000. 254 Jože ČAR & Ela ŠEGINA Prelomna tektonika Za lažjo razlago in boljše razumevanja na- rivnih in obnarivnih deformacij na Zadloškem polju in njegovem obrobju obravnavamo najprej prelomno tektoniko. Poimenovanje pretrtosti ob prelomih in narivih ter njihovo spreminjanje v horizontalni in vertikalni smeri je soglasno z no- menklaturo v Čarjevi razpravi (2018). Predsta- vljeni podatki so rezultat podrobnega struktur- no-geološkega kartiranja, ki je bilo izvedeno za namene te raziskave. V zahodnem delu Zadloškega polja sledijo od njegovega obrobja proti vzhodu Figarjev, Podti- sov in Zadloški prelom (sl. 2). Prelomi so des- no-zmični, različno močni in imajo smer seve- rozahod – jugovzhod. Združujemo jih v zahodni zadloški prelomni snop. Na skrajnem zahodnem obrobju Zadloškega polja poteka do 300 m ši- rok, iz štir ih ožjih zdrobljenih con in močnih vmesnih porušenih con zgrajen Figarjev pre- lom s splošnim vpadom 80° proti jugozahodu (sl. 2). Jugozahodni del prelomne cone prehaja v strmem pobočju južnega obrobja Zadloga v široko razpoklinsko cono, značilno za vzdolžno spreminjanje prelomnih con (Čar, 2018). Seve- rovzhodni del poteka vzdolž vznožja Špičastega vrha in se v nadaljevanju priključi na Zadloški prelom. Čez sedlo Podtisov Vrh poteka iz doli- ne Belce dvojni Podtisov prelom z okrog 150 m široko prelomno cono. Sedlo Podtisov Vrh se je oblikovalo v zdrobljenih conah z vpadom 80° proti jugozahodu (sl. 3A). Prelomna cona poteka čez zahodni del Zadloškega polja in se v nada- ljevanju priključi na močan Zadloški prelom, ki poteka iz doline Belce do roba Zadloškega polja pri Gozdniku in se nadaljuje čez polje do Buko- vske Rovne (sl. 2). Močna prelomna cona Zadlo- škega preloma je široka do 200 m in se nadaljuje proti Mrzlemu Logu in Kanjemu Dolu. V njej se je oblikovala poglobljena, morfološko razgiba- na, močno zakrasela in znižana cona, ki poteka med Bukovsko Rovno in Mrzlim Logom. Stopnja pretrtosti kamnin se vzdolž cone spreminja od zdrobljenih do širokih porušenih con, v zunanjih prelomnih conah opazujemo različno močne raz- poklinske cone. Tudi vzhodni del Zadloškega polja in njeno obrobje prav tako seka niz prelomov, združujemo jih v vzhodni zadloški prelomni snop. Od zahoda proti vzhodu si sledijo: Plesteniški, Klančarjev, Črnovrški, Abrahtov (ime po kmetiji) in močnej- ši Predgriški prelom (sl. 2). Plesteniški prelom je v severnem delu Zadloga usmerjen od severoza- hoda proti jugovzhodu, v nadaljevanju se pribli- žuje močni in široki coni Zadloškega preloma in (1968). This prompted a more detailed geologi- cal mapping of Zadlog and its edges at a scale of 1:5,000. Fault tectonics For an easier interpretation and a better under- standing of the thrust and thrust–shear deforma- tions on Zadloško polje and its edges, fault tectonics are discussed first. The fault and thrust fracturing nomenclature below and their variability in hori- zontal and vertical directions is in line with the one published in the discussion by Čar (2018). The data presented are the result of detailed structur- al-geological mapping, which was carried out for the purposes of the present research. In the western part of Zadloško polje, from its edges eastwards follow the Figar, Podtis and Za- dlog faults (Fig. 2). The faults are dextral strike- slips of varying strength and are oriented north- west–southeast. They are grouped together in the western Zadlog set of faults. The Figar fault is up to 300 m wide, consists of four narrow crushed zones and strong interjacent broken zones, has a general 80° dip to the southwest and runs over the far western edge of Zadloško polje (Fig. 2). The southwestern part of the fault zone transitions over the steep slope on the southern edges of Za- dlog into a wide fissure zone, which is typical of the longitudinal changes in fault zones (Čar, 2018). The northeastern part runs along the foot of the Špičasti vrh and later joins the Zadlog fault. The double Podtis fault with an approximately 150 m wide fault zone leads from Belca valley across the Podtisov Vrh saddle. The Podtisov Vrh saddle formed in crushed zones with an 80° dip to the southwest (Fig. 3 A). The fault zone runs across the western part of Zadloško polje and joins the strong Zadlog fault, which runs from the Belca valley to the edge of Zadloško polje at Gozdnik and then progresses across the polje all the way to Bu- kovska Rovna (Fig. 2). The strong fault zone of the Zadlog fault is up to 200 m wide and progresses towards Mrzli Log and Kanji Dol. Within this zone formed a deepened, morphologically dissected, strongly karstified and lowered zone which leads between Bukovska Rovna and Mrzli Log. The de- gree of rock fracturing varies along the zone from crushed to widely fractured, and fissured zones of varying strength can be observed in the outer fault zones. The eastern part of Zadloško polje and its edges are also intersected by a series of faults, grouped to- gether in the eastern Zadlog set of faults. Running from west to east: Plestenice, Klančar, Črni Vrh, Abraht (named after a farm) and stronger Pred- 255Geologic structure and origin of the Zadlog karst polje griže fault (Fig. 2). The Plestenice fault runs north- west to southeast in the northern part of Zadlog, and then it approaches the strong and wide Zad- log fault zone and joins it southeast of Mrzli Log outside of this map. Other faults have NNW-SSE direction in the northern part of the geologic map and later turn to NW-SE direction and predom- inantly appear as relatively wide broken and fis- sured zones in the dolomite. The fractured zones in both of the examined Zadlog set of faults are densely stacked with only 100 to 300 m distanc- es in-between on average. All faults are dextral strike-slips. The displacements along these faults would need to be determined more precisely, but we estimate that they are relatively small. se nanjo priključi jugovzhodno od Mrzlega Loga izven okvir ja naše karte. Ostali prelomi imajo na severnem delu geološke karte smer SSZ-JJV, nato pa povijejo v smer SZ-JV in se kažejo pred- vsem kot sorazmerno široke porušene in razpok- linske cone v dolomitu. V obeh obravnavanih prelomnih snopih se pretrte cone nizajo na go- sto, med njimi so razdalje v povprečju le od 100 do 300 m. Pri vseh prelomih gre za desne zmi- ke. Kakšni so premiki ob njih, bi bilo potrebno natančnejše ugotoviti, vendar ocenjujemo, da so relativno majhni. A B 20 20 90 80 90 Trebče Črni Vrh20 20 20 250/15 80 80 25 60 60 60 90 90 4030 80 90 80 80 90 90 90 70 60/90 60/90 Klančar Ivanšk Šoštar Plestenice Hudi kot Na Sredi ZADLOG Podtisov vrh Gozdnik Figar Špičasti vrh E DAC B 230/20 230/20 240/20 230/20 220/20 220/30 220/20 230/10 220/20 230/10 220/10 230/20 250/30245/10 230/30 200/20 220/20 215/10 210/20 230/30 210/20 270/45 250/20 270/20 250/25 250/30210/50 220/50 230/30 240/15 200/30 220/20 220/25 210/20 210/20 240/80 Mrzli Log 270/20 230/20 240/10 230/20 240/20 230/20 230/35160/25 220/15 210/20 220/10 Kot 250/10 220/15 2 2,3 2,3 3 3 Model zadloškega tlačnega klina/ Model of the Zadlog compression wedge δ1 δ1 P lesten iški p relo m /P lesten ice fau lt Zadloški prelom /Zadlog fault δ1 Legenda/Legend smer glavne napetosti/ direction of the main tension relativna smer zmika/ relative direction of the displacement smer premikanja/direction of movement dvignjeni blok/uplifted block reverzni prleom/reverse fault 240/30 KKL TP/1 ČKL 230/15 Zajeti izvir Predgriže Figarjev prelom / Figar fault Podtisov P le ste n iški p re lo m /P le ste n ice fa u lt K la n ča rje v p re lo m /K la n ča r fa u lt Č rnovrški prelom /Č rni V rh fault Abrahtov prelom /Abraht fault Predgriški prelom /Predgriže fault prelom Sušni vrh Mala Suša Kotenjski prelom /Kot fault Zadloški prelom /Zadlog fault Fig arj ev pre lom / Fig ar fau lt Po dt iso v pr el om / Po dt is fa ul t HP Za ho dn i z ad lo šk i p re lo m ni sn op / W es t Z ad lo g se t o f f au lts Vzh odn i za dloš ki p relo mni sno p/ Eas t Za dlog set of f ault s Ko te nj sk i s no p pr el om ov / Ko t s et o f f au lts Klo b u ča rje v p re lo m / K lo b u ča r fa u lt Kotenjski rob Bukovska rovna /Podtis fault /Tectonics /Stratigraphy /Hydrology /Thrust border between nappes /Thrust border between nappe slices /Major slip fault /Minor slip fault /Reverse fault /flisch /bright grey limestone /layered dolomite /layered dolomite with rare shaly intercalations /Temporary spring /Permanent spring /Water reservoir F Obseg maksimalnih poplav /Maximal flood extent 0 0.5 1 Km Zadloški prelom /Zadlog fault Idr ijsk i Lo g Občasno medplastno izvirno območje /Temporary interbed- ded inflow Fig. 2. Structural-geological map of Zadloško polje. The AB profile is shown in Figure 4. HP – Hrušica nappe, TP/1 – Lower thrust block of Trnovo nappe, ČKL – Čekovnik nape slice, KKL – Koševnik nappe slice. Ponor zones: A – Štefkova rupa, B – Ponikva, C – Ponor at Cigale farm, D – Štirnska rupa, E – no name ponor zone, F – Figar ponor zone. Sl. 2. Strukturno-geološka karta Zadloškega polja. Profil AB je prikazan na sliki 4. HP – Hrušiški pokrov, TP/1 – Spodnji narivni blok Trnovskega pokrova, ČKL – Čekovniška krovna luska, KKL – Koševniška krovna luska. Ponikalna območja: A – Štefkova rupa, B – Ponikva, C – Ponikva pri kmetiji Cigale, D – Štirnska rupa, E – ponikalno območje brez imena, F – Figarjevo ponikalno območje. 256 Jože ČAR & Ela ŠEGINA The central part of Zadlog, which is loctated between the Zadlog and Plestenice faults, is about 1300 m wide at the northwestern edge of the polje and gradually becomes narrower towards the south- east (Fig. 2). It encompasses Hudi Kot on the south- ern edges of the polje, the central part of the polje Na Sredi and the levelled extensions between numerous dolomite outcrops towards Sušni vrh, Mala Suša and Kot in the northwest. The faults intersecting the cen- tral part of Zadloško polje are genetically distinct. The eastern faults branch off the Plestenice fault in the area of Kot and Mala Suša, and lean on the approximately 300 m long area of the Zadlog fault at the Na Sredi site. This is the ‘Kotenjski niz’ (af- ter the hamlet of Kot) set of three morphologically less distinct, reverse faults in the north–south direc- tion. According to the geological data, they are the result of secondary pressure conditions between the Plestenice fault on the one hand and the Zadlog fault on the other. Both dextral strike-slip faults are rel- atively strong and, as already mentioned, converge and merge towards the southeast. A pressure wedge has formed between them where weak and branched reverse faults formed due to intense dextral strike- slips (Zadlog compression wedge model, Fig. 2). They dip about 60° to the east, which is in line with their origin. Along these there are slightly uplifted eastern blocks. The western set consists of several weaker branched out strike-slip faults of Kot with narrow fault zones. On the northwestern edges of Za- dloško polje they run in the NW–SE direction, then gently bend in the SSW–SSE direction, intertwine with eastern set of reverse faults zones at location Na Sredi and lean on the Zadlog fault at the same section as the reverse faults. The entwinement at Na Sredi shows that reverse faults are slightly older as they are intersected by strike-slip faults (Fig. 2). In- tersections of reverse and strike-slip fault zones are connected to the sinking zones at Na Sredi (Fig. 2). Thrust tectonics Ref lecting on the hitherto inconsistent desig- nation of the different types of thrust units, as well as the differing graphic tracing of thrust contacts between them on geological maps, a table with the subdivision and designation of individual thrust elements was presented in 2021 (Čar et al., 2021). The deeper bedrock of the Idrija territory con- tains Upper Cretaceous limestones and through ero- sion overlying Palaeocene-Eocene f lysch rocks of the Hrušica nappe (HP) (Fig. 4), which are visible at the southern margin of the Strug tectonic window. According to older literature, the above-mentioned thrust unit is believed to be native bedrock of the Idri- ja territory (Mlakar, 1969, Fig. 5; Placer, 1973, 1981). Osrednji del Zadloga med Zadloškim in Plesteniškim prelomom je na severozahodnem robu polja širok okrog 1300 m, proti jugovzhodu pa se postopno oži (sl. 2). Zaobjema Hudi Kot na južnem obrobju polja, osrednji del polja Na Sredi in izravnane podaljške med številnimi dolomitnimi izdanki proti Sušnemu vrhu, Mali Suši in Kotu na severozahodu. Prelomi, ki sekajo osrednji del Zadloškega polja, so genetsko raz- l ični. Vzhodni se odcepijo od Plesteniškega pre- loma na območju Kota in Male Suše, in se nasla- njajo v okrog 300 m dolgem območju na Zadloški prelom na lokaciji Na Sredi. Gre za Kotenjski (po zaselku Kot) niz treh morfološko manj izrazitih, reverznih prelomov v smeri sever-jug. Glede na geološke podatke ugotavljamo, da so rezultat sekundarnih t lačnih razmer med Plesteniškim prelomom na eni in Zadloškim na drugi strani. Oba desno zmična preloma sta razmeroma moč- na in se proti jugovzhodu, kot smo že omenili, približujeta in združita. Med njima je nastal t lačni klin, v katerem so ob intenzivnih desnih zmikih nastali šibki reverzni prelomi (Model zadloškega t lačnega klina, sl. 2). Vpadajo okrog 60° proti vzhodu, kar je v soglasju z njihovim nastankom. Ob njih so vzhodni bloki nekoliko dvignjeni. Zahodnejši snop sestavlja več šibkej- ših in razvejanih Kotenjskih zmičnih prelomov z ozkimi prelomnimi conami. Na severozaho- dnem obrobju Zadloškega polja potekajo v smeri SZ-JV, nato povijejo rahlo v smer SSZ-JJV. Na lokaciji Na Sredi se prepletejo s conami vzhod- nega reverznega prelomnega snopa in naslanjajo na Zadloški prelom na istem odseku kot reverzni prelomi. Pri prepletanju Na Sredi v idimo, da so reverzni prelomi nekoliko starejši, saj jih zmič- ni prelomi sekajo (sl. 2). Na sekanje omenjenih reverznih in zmičnih prelomnih con so vezana ponikalna območja Na Sredi (sl. 2). Narivna tektonika Ob premisleku o doslej neenotnem poimeno- vanju različnih tipov narivnih enot, kot tudi zara- di različnih grafičnih izrisov narivnih stikov med njimi na geoloških kartah smo leta 2021 podali preglednico razčlenitve in poimenovanje posame- znih narivnih elementov (Čar et al., 2021). V globlji podlagi idr ijskega območja ležijo zgornjekredni apnenci in erozijsko na njih pa- leocensko-eocenske f l išne kamnine Hrušiške- ga pokrova (HP) (sl. 4), ki se na obravnavanem območju pojavijo v južnem obrobju Tektonskega okna Strug. Po starejši l iteraturi naj bi bi la ome- njena narivna enota avtohtona podlaga idrijske- ga območja (Mlakar, 1969, sl. 5; Placer, 1973, 257Geologic structure and origin of the Zadlog karst polje In the Idrija area, Lower and Upper Cretaceous lime- stone of the Koševnik nappe slice (KKL) is thrust onto the rocks of the Hrušica nappe in a normal position and measures 100 to 500 m in thickness (Fig. 4). In view of the geological conditions in the Strug tectonic window and Idrijska Bela, the Koševnik nappe slice underneath Zadloško polje mainly consists of Upper Cretaceous limestone, but may deeper down already continuously transition into Lower Cretaceous lime- stones with rare intercalations of early diagenetic dolomite. Along the thrust line, soft f lysch rocks are often pushed out in such a way that Upper Creta- ceous limestones of the Hrušica nappe are directly overlain by Lower or Upper Cretaceous limestones of the Koševnik nappe slice (Fig. 4). The Koševnik nappe slice is covered by Norian-Rhaetian dolomite of the Čekovnik nappe slice (ČKL) in its normal posi- tion. The morphologically very distinctive thrust line between the two nappe units runs along the northern preiphery of Idrijski Log (Zagoda, 2004) (Fig. 2) and then crosses Predgriško polje east of Črni Vrh (Mlakar & Čar, 2009). The northern edges and northern part of Zadloško polje consist of Upper Triassic dolomite of the Čekovnik nappe slice. The remaining part of Zadlog as well as its southern and western edges con- sist of the Trnovo nappe Norian-Rhaetian dolomite (TP/1 – the Trnovo nappe underthrust block). High below the northern edge of Trnovski gozd (not shown in Fig. 2), the Norian-Rhaetian dolomite of the Trno- vo nappe is sliced by another thrust plane (Čar, 2010). Over it lies the Norian-Rhaetian dolomite with con- tinuous transitions to Jurassic limestones of the next thrust unit (TP/2 – Trnovo nappe overthrust block, outside Fig. 2). The Norian-Rhaetian dolomite has a normal po- sition and practically identical dip and strike in the Čekovnik nappe slice as well as in the lower part of the Trnovo nappe (TP/1). The strata dip from 10 to 30° to the southwest. The dolomite is generally medium to thick-bedded (10 to 30 cm), with thinner (10 cm) or thicker strata (up to one metre) only as an excep- tion. The dolomite is light to dark grey, here and there nearly white, and most often laminated or stromat- olitic. In some places, thinly coated f lat pebble con- glomerate can be observed on the top surface. In the Norian-Rhaetian dolomite sequence of the Čekovnik nappe slice, interbedded claystone intercalations and rare strata with fine oncoids occur in the lower part of the sequence in the Belca valley. Thin interbedded intercalations of shaly claystone and dolomitic marl- stone occur only above Carnian clastic rocks in the Norian-Rhaetian dolomite in the Idrija area. This in- dicates that the dolomite of the Čekovnik nappe slice is part of the lower Norian-Rhaetian dolomite se- quence. Within the Trnovo nappe, there are no shaly 1981). Na Idrijskem je na kamnine Hrušiškega pokrova narinjen spodnje in zgornjekredni apne- nec Koševniške krovne luske (KKL) v normalni legi in debelini od 100 do 500 m (sl. 4). Glede na geološke razmere v Tektonskem oknu Strug in Idrijski Beli gradi Koševniško krovno lusko pod Zadloškim poljem predvsem zgornjekredni apnenec, v globljih delih pa že lahko zvezno pre- haja v spodnjekredne apnence z redkimi vložki zgodnjediagenetskega dolomita. Ob narivnici so mehke f l išne kamnine pogosto izt isnjene tako, da na zgornjekrednih apnencih Hrušiškega po- krova ležijo neposredno spodnje ali zgornje- kredni apnenci Koševniške krovne luske (sl. 4). Koševniško krovno lusko prekriva norijsko-re- t ijski dolomit Čekovniške krovne luske (ČKL) v normalni legi. Morfološko zelo izrazita narivni- ca med krovnima enotama poteka po severnem obrobju Idrijskega Loga (Zagoda, 2004) (sl. 2), nato pa poteka čez Predgriško polje vzhodno od Črnega Vrha (Mlakar & Čar, 2009). Zgornjetr i- asni dolomit Čekovniške krovne luske gradi se- verno obrobje in severni del Zadloškega polja. Preostali del Zadloga in njegovo južno in za- hodno obrobje je iz norijsko-retijskega dolomi- ta Trnovskega pokrova (TP/1- spodnji narivni blok Trnovskega pokrova). Visoko pod severnim robom Trnovskega gozda (ni prikazano na karti sl. 2) reže norijsko-retijski dolomit Trnovskega pokrova še ena narivna ploskev (Čar, 2010). Nad njo leži norijsko-retijski dolomit z zveznimi pre- hodi v jurske apnence naslednje narivne enote (TP/2 - zgornji narivni blok Trnovskega pokro- va, izven okvir ja sl. 2). Norijsko-retijski dolomit ima v Čekovniški krovni luski, kot tudi v spodnjem delu Trnovske- ga pokrova (TP/1) normalno lego in praktično enak vpad. Plasti vpadajo od 10 do 30° proti jugo- zahodu. Dolomit je v splošnem srednje do debelo (od 10 do 30 cm) plastnat, le izjemoma opazujemo tanjše plasti (10 cm) ali debele do enega metra. Dolomit je svetlo do temno siv, tu in tam skoraj bel, največkrat laminiran ali stromatoliten. Po- nekod opazujemo na zgornji površini plasti tanke prevleke nadplimskega konglomerata. V zapored- ju norijsko-retijskega dolomita Čekovniške krov- ne luske se v spodnjem delu plasti v dolini Belce pojavljajo medplastni vložki glinavca in redke plasti z drobnimi onkoidi. Tanki medplastni vlož- ki skrilavega glinavca in dolomitnega laporovca se v norijsko-retijskem dolomitu na Idrijskem pojavljajo le nad karnijskimi klastiti. To kaže, da je dolomit Čekovniške krovne luske del spo- dnjega zaporedja norijsko-retijskega dolomita. V okviru Trnovskega pokrova v norijsko-retijskem A B Fig. 3. A – thrust-fault crushed zone in a quarry at Podtisov Vrh on the western perimeter of Zadloško polje. B – A thrust crushed zone in a sand quarry at Trebče near Črni Vrh, southeast of Zadloško polje. Photo: Jože Čar. Sl. 3. A – Narivno-prelomna zdrobljena cona v peskokopu pri Podtisovem Vrhu na zahodnem obodu Zadloškega polja. B – Narivna zdroblje- na cona v peskokopu v Trebčah pri Črnem vrhu, jugovzhodno od Zadloškega polja. Foto: Jože Čar. 258 Jože ČAR & Ela ŠEGINA marlstone intercalations in the Norian-Rhaetian do- lomite. The same dip of strata and strong lithologi- cal similarity between the dolomites of both thrust units were an important reason why the thrust line between the Čekovnik nappe slice and the Trnovo nappe was previously delineated along the southern edges of Zadloško polje (Mlakar & Čar, 2009). The thrust–shear deformations in the dolomites of both thrust units can be directly observed along the forest road Ipavšk–Podtisov Vrh on the slope of the Belca valley. The intensity and extent of the thrust–shear crushed zone varies, it is at least 10 to 15 m thick and gradually transitions to a several me- tres thick zone of less tectonically deformed dolomite. Within the crushed zone, the main thrust plane with a dip of 40 to 20° runs southwards. At Podtisov vrh (724 m), the thrust line veers to the western edges of Zadloško polje. An approximately 200 m wide zone of completely crushed dolomite has formed here as a result of a strong thrust–shear crushed zone inter- secting the Podtis fault zone (Fig. 3A). A thrust-fault crushed zone with a tectonic (cataclastic) structure of ‘meal, grit and detritus’ is exposed in the larger sand quarry, where an intricate interplay of thrust and fault zones can be observed. Due to fault-in- duced deformations, sections of the thrust plane dip 60° to the southwest (230/60°). The thrust zone continues beneath the anthropogenically levelled and ameliorated bedrock of Zadloško polje and can- not be observed directly. Indirectly, the thrust line can be traced based on a distinctively levelled sur- face with no bedrock outcrops. Thrust line crosses the complex zone of the Zadlog fault, intersects the less disturbed part of the polje between the Zadlog and the Plestenice fault, and continues to the Črni Vrh fault on the western edge of Zadlog. Its course dolomitu skrilavih laporastih vložkov ni. Prav enak vpad plasti in velika litološka podobnost med dolomitoma obeh narivnih enot je bil pomemben razlog, da je bila narivnica med Čekovniško krov- no lusko in Trnovskim pokrovom doslej izrisana po južnem obrobju Zadloškega polja (Mlakar & Čar, 2009). Obnarivne deformacije v dolomitih obeh na- rivnih enot lahko neposredno opazujemo ob goz- dni cesti Ipavšk – Podtisov Vrh na pobočju doline Belce. Intenzivnost in obseg obnarivne zdroblje- ne cone se spreminja; debela je vsaj 10 do 15 m in postopno prehaja v več metrov debelo cono manj pretrtega dolomita. Znotraj zdrobljene cone po- teka glavna narivna ploskev z vpadom 40 do 20° proti jugu. Pri Podtisovem Vrhu (724 m) se nariv- nica previje na zahodno obrobje Zadloškega polja. Tu je nastalo okrog 200 m široko območje pov- sem zdrobljenega dolomita, ki je rezultat močne obnarivne zdrobljene cone, ki jo seka cona Podti- sovega preloma (sl. 3A). Narivno-prelomna zdro- bljena cona s tektonsko (kataklastično) strukturo ’moka, zdrob in drobir’ je odprta v večjem pesko- kopu, kjer lahko opazujemo zapleteno prepletanje narivnih in prelomnih con. Zaradi obprelomnih deformacij vpadajo odseki narivne ploskve za 60° proti jugozahodu (230/60°). Narivna cona se na- daljuje pod antropogeno izravnanim in meliori- ranim dnom Zadloškega polja in jo neposredno ne moremo opazovati. Posredno lahko narivnici sledimo na podlagi izrazito uravnanega terena brez izdankov matične kamnine. Narivnica preč- ka zapleteno cono Zadloškega preloma, seka manj pretrti del polja med Zadloškim in Plesteniškim prelomom in se nadaljuje do Črnovrškega pre- loma na zahodnem obrobju Zadloga. Njen potek 259Geologic structure and origin of the Zadlog karst polje is also confirmed by the finding of pieces of cata- clastic rocks in the field west of the Črni Vrh fault. The thrust line reappears about a kilometre further south in the sand quarry near the hamlet of Trebče at Črni Vrh, on the western side of the Črni Vrh fault, i.e. in the same structural block as in Zadloško pol- je. Further towards Črni Vrh, the thrust zone runs parallel to the fault zone of the Črni Vrh fault. In the Trebče sand quarry, the thrust line dips 20° to the southwest (Fig. 3B) and has the same dip all the way to Črni Vrh (Fig. 2). Structural and hydrological conditions The structural conditions and associated hydro- logical features of Zadloško polje are evident from the attached cross-section (Fig. 4). In addition to the geological data directly from the line of the cross-section, the geological structure of the wider area of the Črni Vrh plateau has also been taken into account. The profile is a geologically typical cross-section of the Idrija overthrust structure. The cross-section starts at the Strug tectonic win- dow in the Idrijca valley, where the Idrijca riverbed already cuts into Upper Cretaceous limestone and the overlying Palaeocene-Eocene f lysch rocks of the Hrušica nappe. The cross-section then crosses the thrust contact between f lysch rocks and Cretaceous limestones of the Koševnik nappe slice. The thrust contact dips approx. 25° to the south and southwest. The Cretaceous limestone underneath Zadloško polje is, based on geological mapping at the Strug tectonic window in Idrijski Log and Predgriže, pre- sumed to be slightly folded into synclinals and an- ticlinals (Fig. 4). It is overthrust by Norian-Rhae- tian dolomite of the Čekovnik nappe slice (Mlakar, 1969; Zagoda, 2004; Mlakar & Čar, 2009; Čar, 2010) (Figs. 1 and 4) with the thrust plane dipping 10 to 15° to the southwest or south. The dolomite con- stitutes the higher northern edge of Zadlog and the northern part of the Zadloško polje plain, and then the section intersects the thrust line between the Čekovnik nappe slice and the Norian-Rhaetian do- lomite of the Trnovo nappe underthrust block. The thrust contact between the two dolomites dips ap- prox. 7° to 10° in general southwards. Southward of here, the geological cross-section continues in the slope of Špičasti vrh (1127 m) (Fig. 2). The cross-section shows that three strong hydro- logical retention-def lection structures follow each other vertically below Zadloško polje (Čar, 2018), i.e. f lysch rocks, a lithological hydrological retention-de- f lection zone (marked a in the profile), and two thrust–shear hydrological retention-def lection zones with several-metre-thick impermeable cataclastic dolomite rocks (marked b & c in the profile) (Fig. 4). potrjuje tudi najdba kosov kataklastičnih kamnin na njivi zahodno od Črnovrškega preloma. Nariv- nica se ponovno pokaže kak kilometer južneje v peskokopu pri zaselku Trebče pri Črnem Vrhu, na zahodni strani Črnovrškega preloma, torej v is- tem strukturnem bloku kot na Zadloškem polju. V nadaljevanju proti Črnemu Vrhu poteka nariv- na cona vzporedno s prelomno cono Črnovrškega preloma. V peskokopu v Trebčah vpada narivnica za 20° proti jugozahodu (sl. 3B) in ima enak vpad vse do Črnega Vrha (sl. 2). Strukturno-hidrološke razmere Strukturne razmere in nanje vezane hidrolo- ške značilnosti Zadloškega polja so vidne iz pri- loženega prereza (sl. 4). Poleg geoloških podatkov neposredno v liniji prereza je pri izrisu upošte- vana tudi geološka zgradba širšega območja Čr- novrške planote. Profil je v geološkem pogledu značilen presek idrijske narivne zgradbe. Presek poteka iz Tektonskega okna Strug v do- lini Idrijce, kjer je korito reke Idrijce že vrezano v zgornjekrednem apnencu in na njem ležečih pale- ocensko-eocenskih f lišnih kamninah Hrušiškega pokrova. Prerez nato prečka narivni kontakt med f lišnimi kamninami in krednimi apnenci Košev- niške krovne luske. Narivni stik vpada za okrog 25° proti jugu in jugozahodu. Iz razmer, s kar- tiranjem ugotovljenih v Tektonskem oknu Strug v Idrijskem Logu in Predgrižah sklepamo, da so kredni apnenci pod Zadloškim poljem rahlo sink- linalno in nato antiklinalno upognjeni (sl. 4). Nanj je narinjen norijsko-retijski dolomit Čekovniške krovne luske (Mlakar, 1969; Zagoda, 2004; Mla- kar & Čar, 2009; Čar, 2010) (sl. 1 in 4) z vpadom narivne ploskve od 10 do 15° proti jugozahodu ali jugu. Dolomit gradi višje severno obrobje Zadlo- ga in severni del izravnave Zadloškega polja. V nadaljevanju prerez seka narivnico med Čekovni- ško krovno lusko in norijsko-retijskim dolomitom spodnjega narivnega bloka Trnovskega pokrova. Narivni kontakt med dolomitoma vpada okrog 7 do 10° v splošnem proti jugu. Južno od tod se ge- ološki prerez nadaljuje v pobočju Špičastega vrha (1127 m) (sl. 2). Iz preseka v idimo, da si pod Zadloškim po- ljem v vertikali sledijo tr i močne hidrološke za- drževalno-zaporne strukture (Čar, 2018) in sicer f l išne kamnine kot l itološka hidrološka zadrže- valno-zaporna cona (na prof i lu oznaka a) ter dve obnarivno hidrološki zadrževalno-zaporni coni z več-metrskimi neprepustnimi kataklastičnimi dolomitnimi kamninami (na prof i lu oznaki b in c) (sl. 4). Flišne kamnine so ob narivnem stiku večkrat izt isnjene tako, da sta na več območjih 260 Jože ČAR & Ela ŠEGINA Several f lysch rocks are pushed out along the thrust contact in such a way that Upper Creta- ceous limestone of the Hrušica nappe and Creta- ceous limestone of the Koševnik nappe slice are in direct contact with each other. In such cases, wa- ter f lows almost unimpeded from one thrust unit to the other. Such conditions can be observed in several places in the Strug tectonic window and are most likely also present beneath the Črni Vrh plateau. A smoothed out thrust plane in the lime- stone in several places and an up to 20 m thick thrust–shear zone of completely crushed dolomite can be observed at the thrust contact between the limestone of the Koševnik nappe slice and the No- rian-Rhaetian dolomite of the Čekovnik nappe slice in Strug and Bevk tectonic windows (Fig. 4, mark b, Fig. 3B). The thrust–shear cataclastic rocks at the thrust contact of the two dolomites between the Čekovnik nappe slice and Trnovo nappe (Fig. 4, mark c) are from some metres up to 15 m thick, in some areas even thicker. Thrust–shear crushed zones may vary in thickness, but do not pinch out in the lateral direction. There is no direct data available on how deep underneath Zadloško polje the thrust contacts be- tween f lysch and limestone, as well as between the dolomite of the Čekovnik nappe slice and the low- er thrust block of Trnovo nappe, are located. The dip of the thrust plane between f lysch and Upper Cretaceous limestone of Čekovnik nappe slice, and its location underneath Zadloško polje may be in- ferred from the conditions observed in the Strug tectonic window and from the findings of mapped f lysch outcrops in Dolenje Lome east of Črni Vrh (Mlakar & Čar, 2009; Čar, 2010). In the tectonic window, the thrust plane dips 15 to 25° roughly to the south, and then the contact gradually rises and surfaces in expansive outcrops in Dolenje Lome. The course and nature of the thrust line between Cretaceous limestones of the Koševnik nappe slice and Norian-Rhaetian dolomite of the Čekovnik nappe slice were observed on the plain of Idrijski Log and 1.5 to 2 km east of Zadlog between Idrijski Log and Predgriže (Zagoda, 2004; Čar & Zagoda, 2005) (Fig. 2). The thrust line runs NW–SE and only drops by about 20 m over a distance of 3.5 km. The structural conditions beneath Zadloško polje are presumed to be similar. Taking into account the structural-geological data from the wider surround- ings, the thrust contact between limestone and do- lomite is only about 100–150 m below the surface of the polje. Based on the conditions in the vicinity of Črni Vrh and Predgriže, the thrust line gently de- scends towards the Na Sredi site (sinking zones A, B & C) (Fig. 2), and lifts up at reverse faults. neposredno v st iku zgornjekredni apnenec Hru- šiškega pokrova in kredni apnenec Koševniške krovne luske. Voda se v takih primerih skoraj nemoteno pretaka iz ene narivne enote v dru- go. Take razmere lahko opazujemo na več mes- t ih v Tektonskem oknu Strug in jih najver jetneje imamo tudi pod Črnovrško planoto. Na nariv- nem stiku med apnencem Koševniške krovne luske in norijsko-retijskim dolomitom Čekov- niške krovne luske (sl. 4, oznaka b) opazujemo v tektonskih oknih Strug in Bevk zglajeno narivno ploskev v apnencu in do 20 m debelo obnarivno cono povsem zdrobljenega dolomita. Obnarivne kataklastične kamnine na narivnem stiku dveh dolomitov med Čekovniško krovno lusko in Trnovskim pokrovom (sl. 4, oznaka c , sl. 3B) so debele od nekaj metrov do 15 m, ponekod lah- ko tudi več. Po debelini se obnarivno zdrobljene cone lahko spreminjajo, v horizontalni smeri pa se ne izklinjajo. Neposrednih podatkov, kako globoko pod Zadloškim poljem se nahajajo nar ivni st ik i med f l išem in apnencem, dolomitom Čekovniške krovne luske in spodnjega nar ivnega bloka Tr- novskega pokrova ter apnencem Koševniške in dolomitom Čekovniške krovne luske, nimamo. Na vpad nar ivne ploskve med f l išem in zgor- njekrednim apnencem Koševniške krovne lus- ke in njeno lego pod Zadloškim poljem lahko sk lepamo na podlagi opazovanih razmer v Tek- tonskem oknu Strug in ugotov itvah kart iranih izdankov f l iša v Dolenjih Lomeh vzhodno od Črnega Vrha (Mlakar & Čar, 2009; Čar, 2010). V tektonskem oknu vpada nar ivna ploskev od 15 do 25° pr ibližno proti jugu, nato se st ik pos- topno dviga in izdanja v obsežnih golicah v Do- lenjih Lomeh. Potek in značaj nar ivnice med krednimi ap- nenci Koševniške krovne luske in norijsko-re- t ijskim dolomitom Čekovniške krovne luske opazujemo na izravnavi Idr ijskega Loga ter od 1,5 do 2 km vzhodno od Zadloga med Idr ijskim Logom in Predgrižami (Zagoda, 2004; Čar & Zagoda, 2005) (sl. 2). Narivnica poteka v smeri SZ-J V in se na dolžini 3,5 km spusti le za okrog 20 m. Predpostavljamo, da imamo podobne strukturne razmere tudi pod Zadloškim poljem. Ob upoštevanju geološko-strukturnih podatkov iz širše okolice se nahaja nar ivni st ik med ap- nenci in dolomitom le kakih 100 do 150 m pod površjem polja. Sodeč po razmerah v okolici Čr- nega Vrha in Predgriž se nar ivnica proti lokaciji Na Sredi rahlo spušča (ponikalna območja A, B, in C) (sl. 2), ob reverznih prelomih pa je dv ig- njena. 261Geologic structure and origin of the Zadlog karst polje F ig . 4 . H yd ro ge ol og ic al c ro ss -s ec ti on o f Z ad lo šk o po lje . H P – H ru ši ca n ap pe , T P/ 1 – L ow er th ru st b lo ck o f T rn ov o na pp e, Č K L – Č ek ov ni k na pp e sl ic e, K K L – K oš ev ni k na pp e sl ic e. P on or z on es : A – Š te fk ov a ru pa , B – P on ik va . H yd ro lo gi ca l r et en ti on -d efl ec ti on s tr uc tu re s: a - li th ol og ic al h yd ro lo gi ca l r et en ti on -d efl ec ti on z on e in fl ys ch , b , c - th ru st – sh ea r hy dr ol og ic al r et en ti on -d efl ec ti on z on es . Sl . 4 . S tr uk tu rn o- ge ol oš ki p re se k Z ad lo šk eg a po lja s h id ro ge ol oš ki m i z na či ln os tm i. H P – H ru ši šk i p ok ro v, T P/ 1 – S po dn ji na ri vn i b lo k Tr no vs ke ga p ok ro va , Č K L – Č ek ov ni šk a kr ov na lu sk a, K K L – K o- še vn iš ka k ro vn a lu sk a. P on ik al na o bm oč ja : A – Š te fk ov a ru pa , B – P on ik va . H id ro lo šk e za dr že va ln o- za po rn e st ru kt ur e: a - li to lo šk a hi dr ol oš ka z ad rž ev al no -z ap or na c on a v fli šu , b , c - o bn ar iv ni h id ro lo šk i za dr že va ln o- za po rn i c on i. A B K K L 5 4 0 m 7 0 0 m Č K L T P /1 8 0 0 m S V /N E Te kt o n sk o o kn o S tr u g / Te ct o n ic w in d o w S tr u g Č e ko vn ik JZ /S W Id ri jc a Š te fk o va ru p a Z a d lo šk i p re lo m / Z a d lo g fa u lt K o te n js ki sn o p p re lo m o v/ K o t se t o f fa u lts 7 3 0 m c 7 1 6 m P ro je k c ija H a b e č k o v e g a b re z n a p rb l. 2 6 0 0 m v z h o d n o o d p ro fi la / P ro je c ti o n o f H a b e č e k s h a ft a p p . 2 6 0 0 m e a s t o f th e p ro fi le P c- E fli š/ fli sc h K K a p n e n e c/ lim e st o n e T d o lo m it/ d o lo m ite 1 2 ,3 3 p re lo m /f a u lt n a ri vn ic a m e d p o kr o vi /t h ru st b o rd e r b e tw e e n n a p p e s n a ri vn ic a m e d k ro vn im i l u sk a m i/t h ru st b o rd e r b e tw e e n n a p p e s lic e s o b n a ri vn a z d ro b lje n a c o n a v d o lo m itu /n e a r- th ru st f a u lt cr u sh e d z o n e in d o lo m ite o b n a ri vn a p o ru še n a c o n a v a p n e n ci h /n e a r- th ru st f a u lt cr u sh e d z o n e in li m e st o n e o b p re lo m n a co n a /c ru sh e d z o n e p o ru še n a ra zl ič n o g o st e ra zp o kl in sk e c o n e /fi ss u re d z o n e e ro zi js ka p o vr ši n a /e ro si o n s u rf a ce Š p ič a st i vr h 7 0 0 m 8 0 7 m P le st e n iš ki p re lo m / P le st e n ic e f a u lt D iv je j e z e ro 3 3 6 m 4 1 6 m b o b ča sn i n iv o p o d ta ln ic e / te m p o ra ry g ro u n d w a te r le ve l H P H P a K K L p o d la g a id ri js ke g a o ze m lja / b a se ro ck o f th e t e rr ito ry o f Id ri ja sp o d n ji n a ri vn i b lo k/ lo w e r th ru st b lo ck a b b a K K L Č K L T P /1 Č K L7 1 8 m o b n a ri vn a p re tr ta c o n a / n e a r- fa u lt fr a ct u re d zo n e c H P 11 2 8 m A B n iv o p o d ta ln ic e - v is e če v o d e / g ro u n d w a te r le ve l - h a n g in g a q u ife r K lo b u ča r 6 9 4 m p re d vi d e n s ta ln i n iv o p o d ta ln ic e / p re su m e d p e rm a n e n t g ro u n d w a te r le ve l p re d vi d e n b ča sn i n iv o p o d ta ln ic e / o p re su m e d t e m p o ra ry g ro u n d w a te r le ve l zd ro b lje n e k a m n in e /f ra ct u re d r o ck 22 55 00 55 00 00 77 55 00 11 00 00 00 mm 00 K o te n js ki p re lo m / K o t fa u lt n iv o p o d ta ln ic e / g ro u n d w a te r le ve l st a ln i n iv o p o d ta ln ic e - 3 m n a d n iv o je m D iv je g a je ze ra / p e rm a n e n t g ro u n d w a te r le ve l - 3 m a b o ve t h e le ve l i n D iv je je ze ro la ke Z a d lo šk o p o lje /Z a d lo g p o lje zg o rn ji n a ri vn i b lo k/ u p p e r th ru st b lo ck 1 2 0 0 m 2 262 Jože ČAR & Ela ŠEGINA More information is available on the thrust contact between the Norian-Rhaetian dolomites of the Čekovnik nappe slice and the lower part of the Trnovo nappe (TP/1). The thrust zone is visible in the slope above the Belca valley, in the sand quar- ry at Podtisov vrh and in the Trebče sand quar- ry (Fig. 3 B), and further towards Črni Vrh. From north to south the thrust line descends at a slight angle of 5 to 7° southward, then almost levels off or even rises slightly. The Norian-Rhaetian dolo- mite of the Trnovo nappe north of Štef kova rupa is estimated to be only 20 to 30 m thick, depend- ing on the dip of the thrust plane. Its thickness increases on the southwest side of the Zadlog fault. Hydrological and geomorphological conditions Weak and temporary springs with a small hydrological catchment area can be found on the southern slopes of Idrijski Log (Fig. 2) while Zad- loško polje has no permanent running wa ter. Morphological analysis of the surface of Zad- loško polje showed that its bottom is relatively well levelled out, and lies between 714 and 716 m above sea level. The entire bottom is covered by dolomite eluvium. The perimeter of the basin is covered by colluvium, indicating that the recent maximal f lood range is smaller than in the past. The inf luence of sediment transport from the dolomitic catchment area is most clearly visible in the form of the collu- vial fan at Plestenice on the southeastern edge of the basin (Fig. 8). A network of wide and shallow chan- nels formed in the otherwise f lat bottom of Zadloško polje. Up to several metres deep erosion ditches formed in fractured zones along the faults (Zadlog, Kot, Plestenice, Klančar faults), while more shallow ones evenly drain the relatively f lat bottom. The whole western part that formed in the wider Zadlog fault zone from Podtisov Vrh to the southern edge of the polje, the entire western part (to Plestenice fault towards the east) and the southern and southeast- ern part of the polje drain towards the ponor zones on the location Na Sredi, which confirms the ab- sence of similar drainage structures in the western and eastern parts of the polje. The NW–SE oriented strike-slip faults and the N–S oriented reverse faults in the central part of the polje that cross the out- er fault (crushed and fractured) zone of the Zadlog fault appear to be the key structures allowing water to drain from the major part of the polje to the un- derground. During heavy rainfall, the lower parts of the northern structural block of Zadlog quickly be- come partially f looded from the northern edge of the polje to the thrust line between the Čekovnik nappe slice and the lower thrust block of Trnovsko O narivnem stiku med norijsko-retijskima do- lomitoma Čekovniške krovne luske in spodnjim delom Trnovskega pokrova (TP/1) imamo več podatkov. Narivna cona je vidna v pobočju nad dolino Belce, peskokopu v Podtisovem Vrhu in peskokopu Trebče (sl. 3B) ter dalje proti Črnemu Vrhu. Od severa proti jugu se narivnica spušča pod blagim kotom od 5 do 7° proti jugu, nato skoraj izravna ali celo rahlo dviga. Debelina no- rijsko-retijskega dolomita Trnovskega pokrova je severno od Štef kove rupe, glede na vpad narivne ploskve, po oceni le 20 do 30 m. Na jugozahodni strani Zadloškega preloma se poveča. Hidrološke in geomorfološke razmere Na južnih pobočjih Idrijskega Loga se ob pre- lomnih conah pojavljajo večinoma občasni in šib- ki izviri z majhnim hidrološkim zaledjem (sl. 2). Zadloško polje pa nima stalne tekoče vode. Morfološka analiza površja Zadloškega polja pokaže, da je njegovo dno relativno dobro urav- nano, in sicer na v išini med 714 in 716 m nad morjem. Dno je med številnimi izdanki dolomita prekrito z dolomitno preperino, ki je nastajala v času ojezeritve. Obod kotline je prekrit s koluvi- jem, kar kaže na recentno manjši obseg poplav kot v preteklosti. Najbolj jasno se vpliv premeš- čanja sedimentov z dolomitnih pobočij kaže v ob- liki vršaja v Plestenicah na jugovzhodnem robu kotline (sl. 8). V sicer ravnem dnu Zadloškega polja se je oblikovala mreža širokih in plitv ih kanalov. Do nekaj metrov globoki jarki so na- stali v pretr t ih conah vzdolž prelomov (Zadlo- ški, Kotenjski, Plesteniški, K lančarjev prelom), plitvejši enakomerno drenirajo relativno ravno površino dna. Zahodni del polja, ki je oblikovan v širši coni Zadloškega preloma od Podtisovega Vrha do južnega obrobja polja, ves osrednji del polja (do Plesteniškega preloma proti vzhodu) ter južni in jugovzhodni del polja drenirajo pro- t i ponikvam na lokaciji Na Sredi, kar potr juje odsotnost podobnih odvodnih struktur v zahod- nem in vzhodnem delu polja. Kaže, da so zmični prelomi z or ientacijo SZ-JV in reverzni prelo- mi v smeri S-J osrednjega dela polja, ki sekajo zunanjo prelomno cono (porušena in razpoklin- ska cona) Zadloškega preloma ključne struktu- re, ki omogočajo podzemno odtekanje vode z ve- likega dela polja. Ob večjem deževju so nižji deli od severnega roba polja do narivnice med Čekovniško krovno lusko in spodnjim narivnim blokom Trnovskega pokrova razmeroma hitro delno poplavljeni. Gle- de na geološke podatke (sl. 2 in 4) imamo v tem delu Zadloškega polja nad hidrološko pregrado 263Geologic structure and origin of the Zadlog karst polje nappe. According to the geological data (Figs. 2 and 4), there is permanently hanging aquifer in this part of Zadloško polje above the hydrological barrier b. Based on the observations, its level rap- idly rises to the surface of the polje and f loods the lower parts and hollows on the polje (Fig. 1B). The conditions described also show that the dolomite of the Čekovnik nappe slice over the limestone of the Koševnik nappe slice is relatively thin, while the thrust–shear hydrological barrier b is largely impermeable and leaks only at the faults intersect- ing it. The hydrological conditions south of the thrust zone between the Čekovnik nappe slice and the Trnovo nappe (TP/1), are similar to the conditions to the north of it. We presume that the ground- water here also needs to stay quite high above the hydrological retention-def lection thrust zone c at all times, as it starts to relatively rapidly over- f low to the surface when it rains. Large amounts of groundwater f low onto Zadloško polje from the south during heavy rainfall (mostly along the lay- ers) due to the extensive and rugged catchment area of Mrzli log with its highest peak Špičasti vrh (1127 m). Several morphologically distinct, intermittent sinking zones are observed in Zadlog, which are shown in capital letters A to F on the Fig. 2. The largest one – Štefkova rupa (mark A, Fig. 6A, B) – is up to 13 m deep, at the Na Sredi site in the central part of Zadlog. From the large sinkhole Šte- f kova rupa (mark A), a narrow, some 200 m long valley or rather an erosion ditch in the fault zone runs southsoutheastward along the strike-slip fault. A relatively strong temporary spring f lows to the surface at its southern part. The water f lows northnortheastward down the erosion ditch to the central sinking area Štef kova rupa. At low inf lows, the water gradually sinks already in the strike-slip fault zone and does not f low to the central large sinkhole. An extensive larger sinkhole formed at the junction of one of the reverse faults of Kot with the connecting strike-slip fault, which intersect the area between the Zadlog and Plestenice faults. Štef kova rupa does not have an open swallow hole (Fig. 6A, B), but has slightly deepened, bare sur- face in its NE part where substantial volumes of water sink through. The geological conditions sug- gest that, due to the uplift along the reverse fault, there are karstified and therefore highly permea- ble Upper Cretaceous limestones of the Koševnik nappe slice close to the surface. At high groundwa- ter level, the water outf lows even sideway from the sinkhole in the crushed zone of Zadlog fault and Kot set of faults. b stalno ujeto ali v isečo podtalnico. Na podla- gi opazovanj se njen nivo hitro dvigne in zalije nižje dele in kotanje na polju (sl. 1 B). Opisane razmere tudi kažejo, da je dolomit Čekovniške krovne luske nad apnencem Koševniške krovne luske sorazmerno tanek, obnarivna hidrološka pregrada b pa je v večini neprepustna in pušča le ob prelomih, ki jo sekajo. Južno od poteka narivne cone med Čekov- niško krovno lusko in Trnovskim pokrovom (TP/1) imamo podobne hidrogeološke razmere kot severno od nje. Domnevamo, da je podtal- nica nad hidrološko zadrževalno zaporno nariv- no cono c stalno dokaj v isoko, saj ob deževju začne razmeroma hitro iztekati na površje. Za- radi obsežnega in razgibanega zaledja Mrzlega loga z najv išjim Špičastim vrhom (1127 m) se ob izdatnejšem deževju z južne strani v glavnem medplastno stekajo na Zadloško polje velike ko- l ičine podtalnice. V Zadlogu opazujemo več morfološko izsto- pajočih, občasnih ponikalnih območij, k i so na sliki 2 označeni z velikimi črkami od A do F. Največje je do 13 m globoka Štef kova rupa (oznaka A, sl. 6A in B) na lokaciji Na Sredi v osrednjem delu Zadloškega polja. Iz ponikal- ne globeli Štef kove rupa (oznaka A) poteka ob zmičnem prelomu proti JJV okrog 200 m dolga ozka dolina, ali bolje, razšir jen erozijski žleb v prelomni coni. Na njegovem južnem delu je rela- t ivno močan občasni izv ir. Voda odteka po jarku proti SSZ k osrednjemu ponikalnemu območju Štef kove rupe. Ob nizkih pretokih voda posto- pno ponikne že v coni zmičnega preloma in ne priteče do osrednje ponikalne globeli. Obsežna ponikalna globel je nastala na stičišču enega izmed Kotenjskih reverznih prelomov z veznim zmičnim prelomom, ki seka območje med Zadlo- škim in Plesteniškim prelomom. V Štef kovi rupi ni odprtega požiralnika (sl. 6A in B), vendar je v njenem SV delu nekoliko poglobljeno golo ob- močje, skozi katerega poniknejo izredno velike količine vode. Glede na geološke razmere skle- pamo, da se zaradi dviga ob reverznem prelomu zakraseli in zato dobro prepustni zgornjekredni apnenci Koševniške krovne luske nahajajo blizu površja. Ob v išjih vodah se voda izteka iz globe- l i tudi bočno v pretr t i coni Zadloškega preloma in Kotovega prelomnega snopa. V podobnih geoloških razmerah sta nasta- l i tudi ponikalni območji Ponikva (oznaka B in sl. 5B) in ponikalno območje pri kmet iji Cigale (oznaka C) severozahodno od Štef kove rupe v osrednjem delu polja. Ponikalno območje Po- nikva je proti vzhodu povezano z erozijskim 264 Jože ČAR & Ela ŠEGINA The Ponikva sinking area (mark B and Fig. 5B) and the sinking area at the Cigale farm (mark C) northwest of Štefkova rupa in the central part of the polje formed under similar geological condi- tions. The Ponikva sinking area is connected to the erosion ditch of Štefkova rupa to the east and on the other side to the inf low area below Tomažon (Fig. 5B), and at high waters it connects to the springing/ sinking puddle Gregorcova lokev. This is an approx. 400 m long water channel which runs in the NW– SE direction and formed in the Zadlog fault zone. It ends in a large sinkhole where water also f lows into from the southeast from the Podgora farm. The extensive sinkhole (mark C) below the Cigale farm extends northward along the reverse fault and drains waters from the wide area under Podtisov Vrh north from the road Na Sredi – Figar and from the northern portion of the central part of the polje. Next is an approx. 15 m deep intermittent swallow hole (mark D) called Štirnska rupa. It lies between the two roads leading from the central part of Zad- log towards Šoštar at the crossing towards Črni Vrh (Fig. 2). It formed in the Plestenice fault zone and extends along the Plestenice fault in the NW–SE direction of the fault. Štirnska rupa is approximate- ly 200 m long and has a morphologically distinct swallow hole in its central part. Eastward lies an up to 6 m deep less pronounced sinking zone in the Klančar fault zone (mark E) with numerous sink- holes that are interconnected with shallow lowered passes. The extensive and morphologically less vis- ibly lowered sinking area in the wide broken zone of the Figar fault on the far western edge of Zadloško polje is also worth mentioning (mark F). During heavy rainfall or rise of the groundwa- ter level, Štefkova rupa fills up and water spills out into its wider surroundings. Gregorcova lokev fills up and water starts to f low along the distinctive and wide erosion ditch towards Ponikva, marked B. Strong temporary springs and water from several scattered interbedded inf lows from the wider area below Tomažon join together before the sinking area. Water f lows from the northwestern part of Zadloško polje into the wider fault zone of Zadlog and drains at Rovtar into the extensive sinkhole below Cigale. Excess water f lows on the southern side of the sink- hole further towards Štefkova rupa. The sinking areas D and E also fill up (Fig. 2). As the ground- water rises in the central and southern parts of the Zadloško polje, even weaker inf lows spring up along the permeable fault zones and along the stratifica- tion. In the poorly permeable lower parts of dolomite in the Čekovnik nappe slice and the Trnovo nappe water starts to stagnate and the impoundments on Zadloško polje grow and merge. The entire Zadloško jarkom Štef kovih rup, na drugi strani pa z do- točnim območjem pod Tomažonom (sl. 5B) in ob v išjih vodah z izv irno-ponikalno Gregorcovo lokvijo. To je okrog 400 m dolg jarek, ki pote- ka v smeri SZ-JV in je nastal v coni Zadloškega preloma. Zaključuje se z večjo globeljo, v kate- ro priteka voda tudi od jugovzhoda od kmetije Podgora. V obsežno ponikalno globel pod kme- t ijo pri Cigaletu (oznaka C), ki je razpotegnjena proti severu ob reverznem prelomu, se stekajo vode z obsežnega območja izpod Podtisove- ga Vrha severno od ceste Na Sredi – Figar in s severa osrednjega dela polja. Naslednji je ok- rog 15 m globok občasni požiralnik imenovan Št irnska rupa (oznaka D). Leži med obema ce- stama, ki vodita iz osrednjega dela Zadloga proti Šoštar ju na prehodu proti Črnemu vrhu (sl. 2). Nastal je v prelomni coni Plesteniškega preloma in je ob njem podaljšan v prelomni smeri SZ-JV. Štirnska rupa je dolga okrog 200 m z morfolo- ško izrazit im požiralnikom v osrednjem delu. Vzhodno od tod leži v prelomni coni K lančar- jevega preloma manj izrazito, do 6 m globoko ponikalno območje (oznaka E) s štev ilnimi glo- belmi, ki so povezane s plitv imi znižanimi pre- hodi. Omenimo še obsežno in morfološko manj izrazito znižano ponikalno območje v široki po- rušeni coni Figarjevega preloma na skrajnem zahodnem obrobju Zadloga (oznaka F). Ob močnejših naliv ih in dv igu podtalnice se Štef kova rupa napolni in voda se razlije v šir- šo okolico. Napolni se Gregorcova lokev in voda začne po izrazitem in širokem jarku odteka- t i proti Ponikv i z oznako B. Pred ponikalnim območjem se iz širšega območja pod Tomažo- nom prik ljučijo močnejši občasni izv ir i in voda iz štev i lnih razpršenih medplastnih dotokov. Iz severozahodnega dela Zadloškega polja se voda pretaka po širši coni Zadloškega prelo- ma in se pr i Rov tar ju izteka v ponikalno glo- bel pod Cigaletom. Višek vode odteka na južni strani ponikalne globeli naprej proti Štef kovi rupi. Napolnita se tudi ponikalni območji D in E (sl. 2). Z dv iganjem podtalnice se v osrednjem in južnem delu Zadloškega polja aktiv irajo še šibkejši dotoki ob prepustnih prelomnih conah in tudi vzdolž plastnatost i. V slabo prepustnih znižanjih na dolomitu Čekovniške krovne luske in Trnovskega pokrova začne voda zastajat i, za- jezitve na Zadloškem polju se večajo in združu- jejo. Postopno lahko poplav i celotno Zadloško polje tako, da nastane začasna ojezer itev (sl. 5A) ali , kot prav ijo domačini, nastane ’zadloško morje’ (Bajec, 2007). Ob iz jemnih hidroloških razmerah začne voda odtekati čez nizek prehod 265Geologic structure and origin of the Zadlog karst polje polje can gradually become f looded, forming a tem- porary impoundment (Fig. 5A) or the ‘sea of Zadlog’, as the locals call it (Bajec, 2007). Under exceptional hydrologic conditions, the water starts to f low over a low pass at Šoštar in the eastern part of Zadlog in the Črni Vrh fault zone towards Trebče at Črni Vrh. A particularly high lake impoundment formed in 1923, when the water f lowed for three hours over the pass at Šoštar towards Trebče (Bajec, 2007). All sinking areas are formed in the dolomite of the Trnovo nappe, where the impermeable thrust– shear def lector zone (thrust–shear and hydrolog- ical collector & def lecting structure c) between the Čekovnik nappe slice and the Trnovo nappe is intersected by faults. The favourable conditions are apparently the result of relatively weak reverse faults pulling fractured and highly soluble Lower Cretaceous limestones of the Koševnik nappe slice closer to the surface. These are the positions of the sinking zones A, B & C. The prerequisite for the formation of swallets at the Plestenice and Klančar faults are wide fault zones with sufficiently exten- sive broken and fissure zones. Water f lows from Zadloško polje underground to- wards the Divje jezero lake and Podroteja in the Id- rijca valley through Cretaceous limestones in which extensive cave systems have already formed, as con- firmed by cave diving surveys (Vrhovec, 1997). The permanent groundwater level below Za- dloško polje is now 336 m (Habe et al., 1955; Vrhovec, 1997), which is only 3 m above the stand- ing water level at Divje jezero. In f lood conditions, the groundwater level in the catchment area of Div- je jezero rises by 80 m, which was proven by the traces of stagnating water at the mentioned level in pr i Šoštar ju na vzhodnem delu Zadloškega polja v coni Črnovrškega preloma proti Trebčam pri Črnem Vrhu. Posebno v isoka ojezer itev je bi la leta 1923, ko je voda kar tr i ure tek la čez prelaz pr i Šoštar ju proti Trebčam (Bajec, 2007). Vsa ponikalna območja so oblikovana v do- lomitu Trnovskega pokrova in sicer na mestih, kjer neprepustno obnarivno zaporno cono (ob- narivno-hidrološka zadrževalno-zaporna struk- tura c) med Čekovniško krovno lusko in Trnov- skim pokrovom sekajo prelomi. Očitno so ugodni pogoji nastali ob sicer sorazmerno šibkih reverz- nih prelomih, ki so potegnili pretrte in dobro top- ne spodnje kredne apnence Koševniške krovne luske bliže površini. Tako lego imajo ponikalna območja A, B, in C. Pogoj za nastanek ponikev ob Plesteniškem in Klančarjevem prelomu sta široki prelomni coni z dovolj obsežnima porušenima in razpoklinskima conama. Iz Zadloškega polja voda odteka podzemno proti Divjemu jezeru in Podroteji v dolini Idrijce po krednih apnencih, v katerih so že oblikovani obsežni jamski rovi, kar so potrdile potapljaške raziskave (Vrhovec, 1997). Stalna gladina podzemne vode pod Zadlo- škim poljem se danes nahaja na koti 336 m (Habe et a l., 1955; Vrhovec, 1997), kar je le 3 m nad nivojem stoječe vode v Div jem jezeru. V poplavnih razmerah se podtalnica v zaledju Divjega jezera dv igne za 80 m, kar je bi lo doka- zano z znaki stagnacije vode na omenjeni v išini A B Fig. 5. A – Zadloško polje during temporary lake-formation (‚Zadlog sea‘), view to the west (Figar). Photo: Francka Zagoda B – Inflow into the sinking zone B (Fig. 2). Photo: Jože Čar. Sl. 5. A – Zadloško polje v času začasne ojezeritve (‚zadloško morje‘), pogled proti zahodu (Figar). Foto: Francka Zagoda B – Dotok v poni- kalno območje B (sl. 2). Foto: Jože Čar. 266 Jože ČAR & Ela ŠEGINA the Habečkovo brezno shaft (personal communica- tion). Nowadays, the hanging groundwater in ČKL occasionally f loods Zadloško polje to the north of the thrust line while the groundwater within the Trnovo nappe (TP/1) f loods the polje to the south of the thrust line only during heavy rainfall. Nu- merous dolomite outcrops that emerge from the sediment-covered bedrock have an average dip of 230/20–30°, which is consistent with the stratifi- cation of the underlying dolomites in the wider sur- rounding. The equilibration of slopes at the thrust front and the emergence of parent rock outcrops in the sinking areas are indicative of the recent de- creased capability of hydrologic retention of karst polje and intensive washing out of eluvium. The present hydrological conditions are therefore large- ly the result of leaching fault zones and clayey eluvi- um from the polje f loor, and the resulting increased drainage capacities. Instead of the accumulation and displacement of material, which took place dur- ing the formation of Zadloško polje sediment plain, we now observe a gradual leaching into the subsur- face as a result of the new hydrogeological condi- tions, as well as of the increased karsification and associated f low capacity of the karst subsurface. Conditions for the formation of Zadloško polje The detailed structural-geological mapping of Zadloško polje and the analysis of its morphologi- cal and hydrological conditions have provided some new insights and interesting benchmarks for fur- ther ref lection on the origins of karst poljes in the Dinaric Karst. The authors define the karst polje as a large-scale depression of tectonic origin, formed by the selective karstification of regional tecton- ic structures at the groundwater level, where the v Habečkovem breznu (ustni v ir). Danes v iseča podtalnica v ČKL občasno poplavlja Zadloško polje severno od nar ivnice, južno pa podtalni- ca v okviru Trnovskega pokrova (TP/1) tako, da poplav i polje le ob močnejšem dežev ju. Štev i lni dolomitni izdanki, k i izdanjajo iz s sedimen- t i pokritega dna, imajo vpad plast i povprečno 230/20-30°, kar je sk ladno s plastov itost jo do- lomitov v širši okolici. Pojav uravnovešanja po- bočij polja in pojav izdankov matične kamnine na ponikalnih območjih nakazujeta na recent- no zmanjšano vodno zadrževalno sposobnost izravnave in intenzivno izpiranje preper ine. Današnje hidrološke razmere so torej predvsem posledica izpiranja prelomnih con in glinene preper ine iz dna polja in zaradi tega povečanih odtočnih kapacitet. Namesto kopičenja in pre- meščanja mater ia la, k i sta potekala v času na- stajanja sedimentne uravnave Zadloškega polja, zdaj opazujemo postopno izpiranje v podzemlje, k i je posledica novih hidrogeoloških razmer, pa tudi povečane zakraselost i in s tem povezane pretočnosti kraškega podzemlja. Razmere za nastanek Zadloškega polja Podrobno strukturno-geološko kar t iranje Zadloškega polja in analiza njegovih morfo- loških in hidroloških razmer so podali nekaj novih vpogledov in zanimiv ih izhodišč za na- daljnje razmišljanje o nastanku kraških polj Dinarskega krasa. Av tor ja opredeljujeva kraško polje kot depresijo večjih dimenzij tektonskega nastanka, nastalo s selektivnim zakrasevan- jem regionalnih tektonskih struktur na gladi- ni podtalnice, pr i čemer se stopnja njene na- daljnje ojezer itve pr i lagaja danim razmeram v A B Fig. 6. A – The main larger sinkhole of Štefkova rupa. B – The inflow channel to Štefkova rupa formed along the connecting faults in the northeastern outer fault zone of Zadlog. Photo: Jože Čar. Sl. 6. A – Glavna ponikalna globel Štefkove rupe. B – Dotočni kanal v Štefkovo rupo, nastal ob veznih prelomih v severovzhodni zunanji coni Zadloškega preloma. Foto: Jože Čar. 267Geologic structure and origin of the Zadlog karst polje degree of its further capacity for surface water re- tention is adapted to the given conditions in the dynamic karst hydrological system (Šegina, 2021, 92), which also provides the basis for the formation of Zadloško polje and its evolution presented below. In accordance with the structural-geological conditions presented in the previous chapters, two types of thrusting were observed in the wider area of Zadloško polje, i.e. thrusts between different lith- ological units (thrusts of dolomite of the Čekovnik nappe slice onto the limestone of the Koševnik nappe slice) and thrusts within the same lithological unit (thrusts of dolomite of the Trnovo nappe (TP/1) onto the dolomite of the Čekovnik nappe) (Fig. 2). All three thrust packages present a specific, intrinsical- ly characteristicsurface morphology. The Koševnik nappe slice isdensely interspersed with small dolines with an average diameter of 30 m, the surface of the Čekovnik nappe slice is mostly the ref lection of de- nuded and with occasional surface runoff deepened tectonic structures, while the surface of the Trnovo nappe is more strongly dissected, interspersed with few large dolines with an average diameter of 60 m and intermediate conical peaks (Fig. 8). In the case of both the thrust within the dolo- mite (TP/1–ČKL) and dolomite thrust over lime- stone (ČKL–KKL) somewhat similar relief phenom- ena were observed. Both shall be considered for a better understanding of the impact of thrust struc- tures on the formation of the karst polje, albeit the interest of this research predominantly lies in the thrust within the dolomite in the area of Zadlog. At the thrust of the lower thrust block of the Trnovo nappe dolomite package onto the Čekovnik nappe slice, a thrust line formed with the corre- sponding thrust–shear crushed zone in the dolo- mite. Underneath the thrust front a thrust plain formed in the less permeable, thrust–shear crushed zone in the dolomite as a morphological basis for karst polje (Fig. 7A). This is where groundwater from the nappe block of the Trnovo nappe (TP/1) f lowed and stagnated on the surface due to the poor permeability of the crushed thrust–shear zone in the dolomite. During the lake-formation the bot- tom of the karst polje was covered by the sediment (Fig. 7B). The karts polje expanded laterally along the fractured crushed zone. The main direction of expansion was towards the thrust front, where the dolomite slopes adapted to slope erosion. The pe- rimeter of the hollow gradually cut into the dolomite of the Trnovo nappe southwest of the thrust zone and the Čekovnik nappe slice northeast of it (Fig. 7C). During the formation of fault structures in the NW-SE direction, underground drainage formed in the Trnovo nappe dolomite and the Čekovnik dinamičnem kraškem hidrološkem sistemu (Še- gina, 2021, 92), na čemer tudi temelji v nadal- jevanju predstavljen nastanek in razvoj Zadlo- škega polja. Soglasno s predstavljenimi strukturno-geo- loškimi razmerami v predhodnih poglav jih na širšem območju Zadloškega polja opazujemo dve vrst i nar ivov, in sicer nar iv med različnima l itološkima enotama (nar iv dolomita Čekovniš- ke krovne luske na apnenec Koševniške krovne luske) in nar iv znotraj iste l itološke enote (nar iv dolomita Trnovskega pokrova (TP/1) na dolomit Čekovniške krovne luske) (sl. 2). Vsi tr ije nar iv- ni paketi kažejo specif ično, zase znači lno mor- fologijo površja. Na Koševniški krovni luski so gosto posejane manjše vr tače premera povpreč- no 30 m, površje Čekovniške krovne luske je predvsem odraz denudiranih in z občasnim površinskim odtokom poglobljenih tektonskih struktur, medtem ko je površje na Trnovskem pokrovu močneje razčlenjeno, posejano z redki- mi večjimi vr tačami povprečnega premera 60 m in vmesnimi kopastimi vrhovi (sl. 8). Pri nar ivu tako znotraj dolomita (TP/1- ČKL), kakor tudi pr i nar ivu dolomita na apne- nec (ČKL-KKL) opazujemo do neke mere podob- ne reliefne pojave. Za boljše razumevanje vpliva nar ivnih struktur na oblikovanje kraškega polja bomo obravnavali oba, čeravno je v ospredju te raziskave nar iv znotraj dolomita na območju Zadloga. Ob nar ivu spodnjega nar ivnega bloka dolo- mitnega Trnovskega pokrova na dolomit Čekov- niške krovne luske se je oblikovala nar ivnica s pripadajočo obnarivno zdrobljeno cono v do- lomitu. V nar ivni coni se je v slabo prepustni, obnarivni zdrobljeni coni v dolomitu oblikova- la nar ivna izravnava kot morfološka zasnova za kotanjo (sl. 7A). Tja je zatekala podzemna voda iz krovninskega bloka Trnovskega po- krova (TP/1), kjer je zaradi slabe propustnosti zdrobljene obnarivne cone v dolomitu površin- sko zastaja la. V času ojezer itve je nastalo sko- raj povsem uravnano sedimentno dno (sl. 7B). Kotanja se je bočno šir i la po pretr t i zdrobljeni coni. Glavna smer šir jenja je bi la proti čelu na- r iva, kjer so se dolomitna pobočja pr i lagajala spodjedanju pobočij. Postopno je obod kotanje zarezal v dolomit Trnovskega pokrova jugoza- hodno od nar ivne cone in Čekovniške krovne luske severovzhodno od nje (sl. 7C). Ob nastan- ku prelomnih struktur v smeri SZ-J V se je na mestih prelomov v dolomitu Trnovskega pokro- va in Čekovniške krovne luske vzpostav i l pod- zemni odtok, nastali so ponori. Skozi oba paketa 268 Jože ČAR & Ela ŠEGINA nappe slice at the faults, and ponors emerged. Sur- face water drainage and sediment transport to the underground developed through both rock packag- es, which are now part of the basin f loor. This is why parent rock outcrops through the sediments covering the bottom of the karst polje. Similar con- ditions to those in Zadlog are present in the wider surroundings of Črni Vrh. The conditions were somewhat different when the dolomite package of the Čekovnik nappe slice was thrust over the limestone of the Koševnik nappe slice. Underneath the thrust front, there was a slopeward displacement of dolomite eluvium from the thrust front and eluvium of the thrust– shear crushed zone, with no water retention on the surface due to limestone contact. Water f lowed superficially over poorly permeable eluvium and percolated into well-karstified limestone. Due to erosion of the thrust–shear crushed zone, the slope of the thrust front gradually retreated and the slightly sloped surface covered with sediments spread towards the thrust front. Younger fault tec- tonics established subsurface drainage and small areas of ponors. The weak springs in the thrust front (rather than in the f loor of the plain) suggest that the entire sedimentary plain did not expand beyond the thrust–shear zone, as its potential for lateral expansion is limited only to the level- ling of the dolomite slope at the thrust front. Such conditions are present in the area of Idrijski Log and Predgriže. The karst which formed along the thrust belt of dolomite over limestone has its own features. This phenomenon has its specific char- acteristics which has not yet been explored sys- tematicall so far (Čar, 2001; Čar & Šebela, 2001; Zagoda, 2004; Čar & Zagoda, 2005). kamnine, k i zdaj gradita dno kot line, se je vzpo- stav i lo odtekanje površinskih voda in odnašan- je sedimentov v podzemlje, zaradi česar so sko- zi sediment, k i prekr iva kraško polje, pogledali izdanki matične kamnine. Podobne razmere kot v Zadlogu so tudi v širši okolici Črnega Vrha. Ob narivu dolomitnega paketa Čekovniš- ke krovne luske na apnenec Koševniške krovne luske so bile razmere nekoliko drugačne. Pod čelom nariva je potekalo pobočno premeščan- je dolomitne preperine s čela nariva in preperi- ne obnarivne zdrobljene cone, pri čemer zaradi kontakta z apnencem ni prišlo do površinskega zadrževanja vode. Voda se je po slabo propustni preperini pretakala površinsko in ponikala v dob- ro zakraselem apnencu. Zaradi erozije obnarivne zdrobljene cone se je pobočje čela nariva posto- poma umikalo in blago nagnjeno površje pokri- to s sedimenti se je širilo v smeri proti čelu na- riva. Mlajša prelomna tektonika je vzpostavila podzemni odtok in nastanek manjših ponornih območij. Šibki izviri v čelu nariva (in ne v dnu uravnave) kažejo na to, da se celotna sedimentna uravnava ni razširila izven obnarivne cone, saj je njen potencial za bočno širjenje povezan zgolj z uravnavanjem dolomitnega pobočja v čelu nariva. Takšne razmere so na območju Idrijskega Loga in Predgriž. Kras, ki je nastal ob narivnem pasu dolomita na apnenec, ima svoje značilnosti, ki pa zaenkrat še niso bile sistematično raziskane (Čar, 2001; Čar & Šebela, 2001; Zagoda, 2004; Čar & Zagoda, 2005). TP ČKL TP ČKL ČKL TP VZPOSTAVITEV POGOJEV ZA NASTANEK KRAŠKEGA POLJA ESTABLISHEMNT OF CONDITIONS FOR THE FORMATION OF KARST POLJE URAVNAVANJE IN ŠIRJENJE KRAŠKEGA POLJA LEVELLING AND PROPAGATION OF KARST POLJE DEGRADACIJA KRAŠKEGA POLJA DEGRADATION OF KARST POLJE A B C Fig. 7. Formation of a karst polje along a dolomite thrust. A – Thrust tectonics. B – Peneplanation and lake-formation on the poorly perme- able fault-induced crushed zones in the dolomite, and lateral expansion of the plain. C – Expansion of the plain into the dolomite, younger fault tectonics and the formation of subsurface drainage of surface water and sediments. Sl. 7. Razvoj kraškega polja ob narivu v dolomitu. A – Narivna tektonika. B – Uravnavanje in ojezeritev slabo prepustne obprelomne zdroblje- ne cone v dolomitu in bočno širjenje uravnave. C – Razširitev uravnave v dolomit, mlajša prelomna tektonika in vzpostavitev podzemnega odtoka površinske vode in sedimentov. 269Geologic structure and origin of the Zadlog karst polje The Figure (Fig. 8) shows a typical profile of the dolomite-dolomite thrust and dolomite-limestone thrust, illustrating the characteristic and unique features of surface evolution along thrust struc- tures (Fig. 8). Under the given conditions, steep slopes with an inclination of more than 30° formed at the thrust front between dolomite packages (Fig. 8, mark a). High inclinations facilitated occasion- al surface runoff along the fault structures where the removal of fractured dolomite on steep slopes led to the formation of mostly simple, rectilinear gullies. These have contributed additional deposits of dolomitic eluvium to the area of the thrust line. Slightly sloped sedimentary plains at the foot of the thrust block are nowadays made of dolomite eluvi- um from the thrust front that partially filled in the f lattened sedimentary bed along the edges (Fig. 8, mark b). In the expanded thrust–shear zone (Fig. 4), Na sliki 8 je prikazan značilen prof i l čez na- r iv dolomita na dolomit in dolomita na apnenec, ki ponazarja značilne in svojstvene značilnosti razvoja površja vzdolž narivnih struktur (sl. 8). V danih razmerah so se na čelu nariva med do- lomitnima paketoma oblikovala strma pobočja z naklonom nad 30° (sl. 8, oznaka a). Zaradi v i- sokih naklonov se je na njih občasno vzposta- vil površinski odtok vzdolž prelomnih struktur, kjer so se zaradi odnašanja pretr tega dolomita po strmih pobočjih oblikovale večinoma eno- stavne, premočrtne grape. Te so na območje narivnice prispevale dodaten vnos dolomitne preperine. Dolomitna preperina s čela nariva danes gradi rahlo nagnjene obode sedimentnih uravnav ob vznožju narivnega bloka, ki ob ro- bovih deloma prekrivajo uravnano sedimentno dno (sl. 8, oznaka b). V razšir jeni obnarivni coni TP/1 ČKL A B Črni vrh a a a b c Zadloško polje/Zadlog karst polje obnarivna cona dolomit-dolomit/ near-fault zone dolomite-dolomite obnarivna cona dolomit-apnenec/ near-fault zone dolomite-limestone A TP/1 ČKL KKL a b a c d Idrijski logb B d a Koluvialni vršaj ČKL TP/1 KKL HP d Narivnica med pokrovi Zadlog Smer vpada narivne ploskve Narivnica med krovnimi luskami Prelom b Izravnava ob narivu dol.-apn. Izravnava ob narivu dol.-dol. dolomit/ dolomite KKL Idr ijs ki log b fliš/ flisch ČKL KKL P redgriže dolomit/ dolomite dolomit/ dolomite dolomit/ dolomite dolomit/ dolomite apnenec/ limestone apnenec/ limestone apnenec/limestone apnenec/ limestone Thrust border between nappes Spring Ponor Strike of the thrust plane Thrust border between nappe slices Fault Colluvial fan Planation at the thrust dolomite-limestone Planation at the thrust dolomite-dolomite Sediment-covered floor Colluvial accumulation from the dolomite thrust front Outcrops of the dolomite baserock Izvir Ponor S sedimenti prekrito dno Koluvij z dolomitnega oboda I KKL Fig. 8. Thrust–shear surface morphology. Sl. 8. Obnarivna morfologija površja. 270 Jože ČAR & Ela ŠEGINA a sediment-covered levelled surface can be observed today (Fig. 8, mark c). The absence of outcrops to- wards the northern part of the polje marks the area of the thrust–shear zone and crushed rocks. There are springs and ponors along the younger faults in the extended bed of the karst polje, which extends beyond the thrust–shear zone. A steep slope in the dolomite also formed at the thrust front between the dolomite and limestone packages (Fig. 8, mark a), where the dolomite eluvi- um originates from, overlying the expanded area of the thrust–shear zone at a slight inclination (up to 7°) (Fig. 8, mark b). It transitions into a classically dissected, morphologically distinct karstified karst surface of the Koševnik nappe slice (Fig. 8, mark d). Temporary springs are located in the slope of the thrust front over the dolomite crushed zone. Ponors and dolines formed along the younger faults. Conclusion With detailed geological mapping on a scale of 1:5000, we found significantly different geologi- cal conditions in Zadlog and the surrounding area than those previously drawn on geological maps. Three hydrological retention-def lection levels and numerous, different fault zones intersecting these levels have been identified. The established lithological-structural elements determine the inf low and outf low conditions in Zadloško polje and provide the basis for the formation of karst polje, while present geomorphological and hydro- logical characteristics indicate recently reduced hydrologic-retention capability of the karst polje and intensive washing out of the eluvium. Denuda- tion, karstification and sediment transport to the underground are the principal processes that, at present, shape the Zadlog karst polje. Similar thrust and tectonic structures probably occur also in large karst poljes in the Notranjska region. What is the role of thrust tectonics in the formation of these karst poljes and what is the im- pact on their recent morphological and hydrogeo- logical characteristics will have to be verified with the detailed geological mapping in the future. Acknowledgement The research was funded by the Slovenian Research Agency through grants P1-0419 and project Mladi fo- rum which is co-funded by the Slovenian Research and Innovation Agency within the framework of DFP (De- velopmental funding pillar). (sl. 4) danes opazujemo s sedimentom prekri- to, uravnano površje (sl. 8, oznaka c). Odsot- nost izdankov proti severnemu delu polja naka- zuje na območje obnarivne cone in zdrobjenih kamnin. Ob mlajših prelomih v razšir jenem dnu kraškega polja, ki sega izven obnarivne cone, so izv ir i in ponori. Na čelu nariva med paketom dolomita in apnenca se je prav tako oblikovalo strmo pobo- čje v dolomitu (sl. 8, oznaka a), od koder izv ira dolomitna preperina, ki v blagem naklonu (do 7°) prekriva razšir jeno območje obnarivne cone (sl. 8, oznaka b). Ta prehaja v k lasično razčle- njeno, morfološko izraziteje zakraselo kraško površje Koševniške krovne luske (sl. 8, oznaka d). Občasni izv ir i se nahajajo v pobočju čela na- r iva nad dolomitno zdrobljeno cono. Ob mlajših prelomih so nastali ponori in vrtače. Zaključek S podrobnim geološkim kartiranjem v merilu 1: 5000 smo v Zadlogu in širši okolici ugotovili bistveno drugačne geološke razmere, kot so bile na geoloških kartah izrisane doslej. Ugotovljeni so bili tr ije zaporno-zadrževalni nivoji in števil- ne, različne prelomne cone, ki te nivoje sekajo. Ugotovljeni litološko-strukturni elementi dolo- čajo dotočne in odtočne razmere na Zadloškem polju ter dajejo osnove za oblikovanje kraške- ga polja, zatečene geomorfološke in hidrološke značilnosti pa kažejo recentno zmanjšano vodno zadrževalno sposobnost kraškega polja in inten- zivno izpiranje preperine. Denudacija, zakrase- vanje in odnašanje sedimenta v podzemlje so po- glavitni procesi, ki trenutno delujejo na območju Zadloškega kraškega polja. Podobne narivne in tektonske strukture se ver- jetno pojavljajo tudi na velikih kraških poljih na Notranjskem. Kakšna je njihova vloga pri nastan- ku, morfološkem oblikovanju in hidrogeoloških značilnostih bo potrebno preveriti z natančnej- šim geološkim kartiranjem. Zahvale Članek je bil sofinanciran s strani programske skupine P1-0419 in projekta Mladi forum, ki ga f inan- cira Javna agencija za znanstvenoraziskovalno in ino- vacijsko dejavnost Republike Slovenije v okviru razvoj- nega stebra (RSF). 271Geologic structure and origin of the Zadlog karst polje References Bajec, U. 2007: Matuckarjeva pot v Zadlogu. Idri- jski razgledi, 2: 100–119. Buser, S., Grad, K. & Pleničar, M. 1967: Osnovna geološka karta SFRJ 1:100 000. List Postojna. Zvezni geološki zavod, Beograd. Čar, J. 2001: Structural bases for shaping of do- lines – Strukturene osnove oblikovanja vrtač. Acta carsologica, 30/2: 239–256. Čar, J. 2010: Geološka zgradba idrijsko-cerkljan- skega ozemlja. Tolmač h geološki kart idrijs- ki- cerkljanskega hribovja med Stopnikom in Rovtami 1 : 25 000. Geološki zavod Slovenije, Ljubljana: 124 p. Čar, J. 2018: Geostructural mapping of karstified limestone – Strukturno-geološko kartiranje zakraselih apnencev. Geologija, 61/2: 133–162. https://doi.org/10.5474/geologija.2018.010 Čar, J. & Šebela, S. 2001: Kraške značilnosti na- rivnega stika apnenec-dolomit pri Predjami – Karst characteristics of thrust contact leme- stone-dolomite near Predjama. Acta carsologi- ca, 30/2: 141–156. Čar, J. & Zagoda, B. 2005: Strukturna lega Habečkovega brezna – Structural position of Habe shaft (Idrijsko, Slovenija). Acta carsolog- ica, 34/1: 113–133. https://doi.org/10.3986/ ac.v34i1.282 Čar, J., Jež, J. & Milanič, B. 2021: Strukturne razmere na stiku Južnih Alp in Dinaridov na zahodnem Cerkljanskem – Structural setting at the contact of the Southern Alps and Dinar- ides in western Cerkljansko region (western Slovenia). Geologija, 64/2: 189–203. https:// doi.org/10.5474/geologija.2021.011 Doğan, U., Koçyiğit, A. & Gökkaya, E. 2017: De- velopment of the Kembos and Eynif structural poljes: Morphotectonic evolution of the Upper Manavgat River basin, central Taurides, Tur- key. Geomorphology, 278: 105–120. https:// doi.org/10.1016/j.geomorph.2016.10.030 Gams, I. 1987: The polje; the problem of defini- tion; with special regard to the Dinaric karst. Zeitschrift für Geomorphologie, 22/2: 170– 181. Gracia, F. J., Gutiérrez, F. & Gutiérrez, M. 2003: The Jiloca karst polje-tectonic graben (Ibe- rian Range, NE Spain). Geomorphology, 52: 215–231. https://doi.org/10.1016/S0169- 555X(02)00257-X Habič, P. 1968: Kraški svet med Idrijco in Vipavo. Inštitut za geografijo SAZU, Ljubljana: 239 p. Habe, F., Hribar, F. & Štefančič, P. 1955: Habečko- vo brezno. Acta carsologica, 27–39. Janež, J., Čar, J., Habič, P. & Podobnik, J. 1997: Vodno bogastvo Visokega krasa. Ranljivost kraške podzemne vode Banjšic, Trnovskega gozda, Nanosa in Hrušice. Geologija d.o.o. Id- rija: 167 p. Melik, A. 1963: Slovenija, geografski opis 1., splošni del 1, Ljubljana. Mlakar, I. 1969: Krovna zgradba idrijsko žirovske- ga ozemlja = Nappe Structure of the Idrija-Žiri Region. Geologija, 12: 5–72. Mlakar, I. 2002: O nastanku hidrografske mreže in nekaterih kraških pojavih na Idrijskem. On theorigin of the hydrographic net and on some karst phenomena in the Idrija region. Acta car- sologica, 31/2: 9–60. https://doi.org/10.3986/ ac.v31i2.387 Mlakar, I. & Čar, J. 2009: Geološka karta idrijsko – cerkljanskega hribovja med Stopnikom in Rovtami 1: 25 000. Geološki zavod Slovenija. Placer, L. 1973: Rekonstrukcija krovne zgradbe id- rijsko žirovskega ozemlja = Reconstruction of the Nappe Structure of the Idrija-Žiri Region = Rekonstruktion des Deckenbaus des Idrija-Žiri gebietes. Geologija, 16: 317–334. Placer, L. 1981: Geološka zgradba jugozahodne Slovenije = Geologic structure of southwestern Slovenia. Geologija, 24/1: 27–60. Placer, L. 2008: Principles of the tectonic subdivi- sion of Slovenia = Osnove tektonske razčlenitve Slovenije. Geologija, 51/2: 205–217. https:// doi.org/10.5474/geologija.2008.021 Pleničar, M., Prestor, M., Rijavec J. & Šribar, L. 1970: Osnovna geološka karta SFRJ 1:100 000. Tolmač lista Postojna. Zvezni geološki za- vod, Beograd: 62 p. Savnik, R. 1959: Ob logaških vratih idrijske pokra- jine. Idrijski razgledi, IV/1: 7–9. Šegina, E. 2021: Spatial Analysis in Karst Geomor- phology: An Example from Krk Island, Croa- tia. Cham: Springer Nature, 183 p. https://doi. org/10.1007/978-3-030-61449-2 Vrabec, M. 1994: Some thoughts on the pull-apart origin of karst poljes along the Idrija strike- slip fault zone in Slovenia. Acta Carsologica, 23: 155–167. Vrhovec, T. 1997: Potapljaške raziskave v Habečk- ovem breznu. Naše jame, 39: 145–149. Zagoda, B. 2004: Karstification along the thrust contact between the dolomite and limestone in Idrijski Log and Koševnik - Zakrasevanje ob narivnem stiku dolomita in apnenca v Id- rijskem Logu in Koševniku. Acta carsolog- ica, 33/2: 55–74. https://doi.org/10.3986/ ac.v33i2.291 © Author(s) 2024. CC Atribution 4.0 License Molybdenum, lead and zinc mobility potential in agricultural environments: a case study of the Kočani field, North Macedonia Mobilnost molibdena, svinca in cinka v kmetijskih okoljih, primer Kočanskega polja (Severna Makedonija) Nastja ROGAN ŠMUC University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Geology, Aškerčeva c. 12, SI–1000 Ljubljana, Slovenia; e-mail: nastja.rogan@ntf.uni-lj.si Prejeto / Received 11. 7. 2024; Sprejeto / Accepted 15. 11. 2024; Objavljeno na spletu / Published online 16. 12. 2024 Key words: potential toxic elements, soil, mobility potential, environmental assessment, North Macedonia Ključne besede: potencialno strupeni elementi, tla, mobilnost, okoljska ocena, Severna Makedonija Abstract The research focuses on the assessment of potential toxic elements (PTEs) contamination of the soils of the Kočani field (North Macedonia) due to the surrounding past and current polymetallic mining activities. The Zletovska River drains the untreated wastewater from the Pb-Zn mine in the Zletovo-Kratovo region and is unfortunately used to irrigate the surrounding rice fields. Elevated levels of molybdenum (Mo) and especially lead (Pb) and zinc (Zn) were found in the soil samples from the rice fields near the Zletovska River (in the western part of the Kočani field), which are well above the limit and critical emission values for PTEs content in soils. In addition, Mo was consistently bound to water soluble, exchangeable and oxidizable fractions in all samples, while reducible and residual fractions were predominated by Pb and Zn. According to the sum of the water-soluble and exchangeable fractions, the mobility and environmental bioavailability potential of the investigated PTEs in the soil-plant system decreased in the following order: Mo > Pb > Zn. It is therefore very important to emphasize that when assessing the environmental impact of PTEs on the respective surroundings, not only the commonly considered trace and minor PTEs (such as Pb and Zn) that occur in geological materials should be taken into account, but also in lower contents (such as Mo). The translocation of PTEs within the ecosystem does not depend on their total content in the primary geological materials, but on their individual mobility and binding capacity. Izvleček Raziskava se osredotoča na onesnaženost tal s potencialno toksičnimi elementi (PTE) na območju Kočanskega polja (Severna Makedonija), ki se nahaja v bližini dveh še vedno aktivnih rudnikov, Sase-Toranice in Zletova-Kratova. V vzorcih tal riževih polj ob reki Zletovski smo odkrili povečane vsebnosti molibdena (Mo) in predvsem kritične vsebnosti svinca (Pb) ter cinka (Zn). Reka Zletovska odvaja neprečiščeno odpadno vodo iz rudnika Pb-Zn Zletovo-Kratovo, na območju Kočanskega polja pa se rečna voda uporablja za intenzivno namakanje riževih polj. S pomočjo rezultatov zaporedne ekstrakcijske analize smo ugotovili, da so deleži Mo večinoma topni v talni raztopini, izmenljivo vezani in vezani na organsko snov, medtem ko so deleži Pb in Zn večinoma vezani na Fe in Mn okside/hidrokside ter v preostanku. Nadalje smo določili mobilnostni potencial in biodostopnost preiskovanih PTE, ki se zmanjšujeta v naslednjem vrstnem redu: Mo > Pb > Zn. Posledično je pomembno poudariti, da pri ocenjevanju okoljskega vpliva PTE ne upoštevamo le splošno obravnavane PTE (kot sta Pb in Zn), temveč tudi tiste, ki se pojavljajo v kamninah, mineralih in tleh v manjših vsebnostih (kot je Mo). Premeščanje PTE v ekosistemu ni odvisna od njihovih celokupnih vsebnosti v primarnih geoloških materialih, ampak od njihovih individualnih lastnosti mobilnosti in vezave. GEOLOGIJA 67/2, 273-284, Ljubljana 2024 https://doi.org/10.5474/geologija.2024.013 Introduction Soil has always been important for people and their existence, especially as a resource that can be used for shelter and food production (Abrahams, 2002; Brevik et al., 2019). Agricultural land today accounts 45 % (48 million km2) of the world’s hab- itable land (Ritchie & Roser, 2019), and large parts of agricultural land are located near active mines (Wang et al., 2023a). Soil pollution with PTEs has therefore become a widespread global problem over the last four decades, posing a long-term threat to the health and quality of ecosystems (Matong et al., 2016; Wang et al., 2018; Wang et al., 2023a; Yin et al., 2020). The excessive accumulation of PTEs in agricultural soils is of great concern because soil, which contains various essential elements, is 274 Nastja ROGAN ŠMUC a primary nutrient carrier for plants. Food crops grown on contaminated agricultural soils can an accumulate elevated level of PTEs, indicating a po- tential health risk to the local population and to others if the crops are exported (Adriano, 2001; Pruvot et al., 2006; Wang et al., 2023a; Zhang et al., 2018a; Zhang et al., 2018b; Wang et al., 2023b). Consequently, numerous scientific stud- ies around the world report serious health risks to humans from soils and plants contaminated with PTEs, including Mo (Frascoli & Hudson-Edwards, 2018; Han et al., 2019; Wang et al., 2018; Yin et al., 2020), Pb and Zn (Arenas-Lago et al., 2014; Li et al., 2014; Liu et al., 2022; Zhang et al., 2018a; Wang et al., 2023a). Environmental risk assessment therefore re- quires the measurement of the total amount of PTEs in soils and the total amount of PTEs de- tected in the available/bioavailable fractions (Dean, 2007; Zhang et al., 2014; Kim et al., 2015). A widely used modified method for determining and evaluating the availability or binding forms of PTEs in soils is the sequential extraction method proposed by Tessier et al. (1979), in which the wa- ter-soluble and exchangeable fractions represent the most mobile fraction of the individual PTEs (Kabata-Pendias & Pendias, 2001; Dean, 2007). Compared to the Earth’s crust, the PTEs abun- dance (e.g. Pb and Zn) in various polymetallic ore deposits are generally very high. These naturally occurring elevated PTEs contents are transferred to the immediate surroundings of the ore depos- its, where they inf luence the chemistry of waters, sediments, soils, plants, etc. Primarily through the weathering of the geological background and secondarily through mining and extraction (Bradl et al., 2005; Liu et al., 2013; Zhang et al., 2018a; Wang et al., 2023a). The agricultural area of the Kočani field in North Macedonia, for example, is exposed to the environmental impact of two large mines nearby, Zletovo-Kratovo and Sasa-Toranica, where Pb and Zn have been continuously mined for over 45 years (Balabanova et al., 2014; Ro- gan Šmuc et al., 2009; Rogan Šmuc et al., 2010; Vrhovnik et al., 2013). Since the ore-mineral asso- ciation in both mines is very diverse (Rogan Šmuc, 2010) it is necessary to investigate also the pres- ence of other PTEs (for example Mo) and not only Pb and Zn. In this context, the spatial distribution and pos- sible translocation of Mo in comparison to Pb and Zn in the soils of the Kočani field are investigated. The main objectives of the present study are the following: (1) to estimate the distribution patterns of Mo, Pb and Zn in the soils of the Kočani field and (2) to assess the mobility and environmental bioavailability signature of Mo, Pb and Zn in soil samples. Materials and methods Study area The Kočani field is located in eastern Macedo- nia, about 32 km from the city of Štip and 115 km from the capital Skopje. With an average length of 35 km and a width of 5 km, the Kočani field is located in the valley of the Bregalnica River be- tween the Osogovo Mountains in the north and the Plačkovica Mountains in the south (Fig. 1). The wider region is known as an agricultural and mining province (Zletovo Kratovo Pb-Zn and Sasa Toranica Pb-Zn mine). The main agricultural products of the region are rice, corn, tomatoes, cu- cumbers, peppers and other vegetables. The Bregalnica River, together with its tribu- taries, represents the most important drainage system in the study area and is an important wa- ter supply for the irrigation of the surrounding rice fields. The main tributaries of the Bregalnica are the Kamenica River in the northeastern part of the study area and the Zletovska River in the west of the Kočani field (Fig. 1). The Kamenica drains the northeastern part of the Bregalnica catchment and f lows directly into the artificial Kalimanci Lake, which was constructed to irrigate the rice fields during the dry season. It also drains the untreat- ed mine wastewater from the Sasa Pb-Zn polym- etallic ore deposit. The Zletovska River originally drained the central part of the Zletovo-Kratovo volcanic complex as well as the untreated mine wastewater from the Zletovo Pb-Zn mine and its ore processing facilities. The local farmers use both rivers to irrigate the nearby rice fields. It was assumed that the soil mineral compo- nent of the Kočani field originated from a compos- ite material of sediments from igneous, metamor- phic and sedimentary rocks in the Kočani region (Dolenec et al., 2007; Aleksandrov et al., 1995). The sedimentary material was transported by the Bregalnica River and its tributaries and deposit- ed in the Kočani depression (Dolenec et al., 2007). The exposed lithologies of the Kočani field consist mainly of acidic to intermediate igneous rocks and to a lesser extent of metamorphic and sedimentary rocks, while the igneous basic lithologies (gabbros and basalts) were found only sporadically (Dole- nec et al., 2007; Aleksandrov et al., 1995). The mineral components of the Kočani soil are closely related to the acidic and intermediate rocks of the Kočani region and consist mainly of 275Molybdenum, lead and zinc mobility potential in agricultural environments: a case study of the Kočani field, North Macedonia the following minerals: quartz, plagioclase, mus- covite-illite, orthoclase and chlorite together with small amounts of amphibole and kaolinite, while traces of calcite and dolomite were found only sporadically (Dolenec et al., 2007). No signifi- cant changes in the main soil mineral composition were found throughout the area studied. In addi- tion, a number of secondary products of the soil were detected that originate from the surface-re- lated chemical degradation of the parent material and/or the remobilization of anthropogenic PTEs. These secondary minerals are bixbyite, anglesite, lanarkite, ferrihydrite, clinoclase and chrysocolla (Dolenec et al., 2007; Rogan Šmuc, 2010). Zletovo-Kratovo ore district The Zletovo-Kratovo Pb-Zn ore district is locat- ed 5 km northwest of the village of Zletovo and about 7 km from the town of Probistip (Fig. 1). It is located in the central part of the Zletovo-Kratovo volcanic complex. The Pb and Zn mineralization occurs in dacitic ignimbrites, the most common volcanic rocks in the area. Ore mineral association includes galena (main ore mineral) and sphalerite, with subordinate pyrite, minor amounts of sider- ite and chalcopyrite, and occasional pyrrhotite, marcasite and magnetite. Minor occurrences of U-mineralization have also been discovered (pitchblende). The Zletovo mine has an annual capacity of 400,000 tons of ore, with an average content of 8 % Pb + Zn within the ore (Tasev et al., 2019), and yields significant amounts of Ag, Bi, Cd and Cu (Tasev et al., 2019). The ore is concentrated during the f lotation process in Probistip, and the tailings are stored in two tailings ponds in the adjacent valleys (Alderton et al., 2005; Rogan Šmuc, 2010). Fig. 1. Study area, Kočani field, North Macedonia. Geological map simplified after Balabanova et al., 2016. 276 Nastja ROGAN ŠMUC Sasa-Toranica ore district The Sasa-Toranica ore district lies in the Osogo- vo Mountains, 10 km from the city of Makedonska Kamenica and Lake Kalimanci (Fig. 1). It is estab- lished as one of the largest ore districts within the Besna Kobila-Osogovo Tassos metallogenic zone and occupies an area of about 200 km2. The im- portant Pb and Zn ore bodies are usually found in quartz/muscovite/graphitic schists, green schists and marbles. The ore mineral association consists of sphalerite, galena, pyrrhotite, pyrite, chalcopy- rite, molybdenite, bornite, stibnite and locally cas- siterite, accompanied by a series of bismuth and silver minerals as well as non-ore minerals such as skarn minerals, calcites, Mn-calcites and quartz. The Sasa mine has been in production for over 45 years, yielding 90,000 tons of high quality Pb- Zn concentrate annually and 10 million tons of tailings material (Šajn et al., 2022). The f lotation processes in the mine are used to concentrate the ore, and the tailings are stored in a dam in a nar- row valley directly below the mine (Alderton et al., 2005; Vrhovnik et al., 2013). Sampling Soil samples were taken (year 2006) from 38 locations in seven profiles on the Kočani field (Fig. 2, sections I–VII). The profiles were organized according to the location of the rice fields, as we sampled not only the soil but also the rice. Since we sampled everything at the same time and the samples were agricultural soils, there were no gen- eral differences between them in terms of mois- ture content, soil properties, morphology... The near-surface paddy soils were taken from a depth of 0–20 cm. The soils were sampled with a plastic spade to avoid any metal contamination. Each soil sample consisted of five subsamples taken from an area of 1×1 m2. The soil samples were air-dried at 25°C for one week and sieved through a 2 mm thick polyethylene sieve to remove plant debris, pebbles and stones. The samples were then ground to a fine powder in a mechanical agate mill. Analyses The physical and chemical soil properties (pH, CEC and total organic carbon) were deter- mined at the Slovenian Agricultural Institute. The pH values were measured according to ISO 10390 and with a pH meter. CEC values were measured according to reference NF X31-108 and the Melich method modified according to Peechu et al. using f lame atomic absorption spectroscopy (to deter- mine exchangeable cations) and titration (to deter- mine total exchangeable soil acidity). Total organ- ic carbon values were measured using a UV/VIS spectrometer according to ISO 14235. All soil samples were analysed for Mo, Pb and Zn content in a certified (ISO/IEC 17025) com- mercial Canadian laboratory (Bureau Veritas Min- eral Laboratories, Vancouver, B.C., Canada) by one- hour extraction with 2-2-2-HCl-HNO3-H2O at 95 °C and ICP-MS. The accuracy and precision of the soil analysis was evaluated using international refer- ence material such as Canadian Certified Reference Material Project (CCRMP) SO-1 (soil) and United Fig. 2. Map of the locations of the soil samples. 277Molybdenum, lead and zinc mobility potential in agricultural environments: a case study of the Kočani field, North Macedonia States Geological Survey (USGS) G-1 (granite). The analytical precision and accuracy was better than ±5 % for the elements analysed (minor and trace elements), taking into account the results of dupli- cate measurements in 10 soil samples and duplicate measurements of the G-1 and SO-1 standards. Five randomly selected soil samples (I-3, II-6, III-5, VI-4 and VII-2) were also analysed using a sequential extraction procedure to decipher the Mo, Pb and Zn chemical bonding forms (Li et al., 1995; Tessier et al., 1979). The 1 g of each soil sample was placed in screw-capped test tubes. A duplicate pulp split and a control sample of WSA (water leach), ESL (Na-acetate), OSL (Na-py- rophosphate), MSL (weak hydroxylamine), or FSL (strong hydroxylamine) monitored the precision and accuracy of each batch of 32 samples. To each sample, 10 ml of leaching solution was added; then the caps were screwed on and the tubes were sub- jected to an extraction procedure (Bureau Veritas Mineral Laboratories, Vancouver, B.C., Canada). The samples was leached, centrifuged, decanted and washed; the residue was then leached again in a five-step procedure from the weakest to the strongest solution: water → ammonium acetate → sodium pyrophosphate → cold hydroxylamine hy- drochloride → hot hydroxylamine hydrochloride. A reagent blank was carried out in parallel with the leaching and analysis steps. The procedure and chemical fractions are listed in Table 1. After the sequential extraction procedure, the content of the analysed elements in the solution were measured using a Perkin Elan 6000 ICP-MS for the determi- nation of over 60 elements (Bureau Veritas Miner- al Laboratories, Vancouver, B.C., Canada). A QA/ QC protocol included a sample duplicate to moni- tor analytical precision. A reagent blank was used to measure background and an aliquot of in-house reference material was used to monitor precision. A British Columbia Certified Assayer reviewed the raw and final data. Basic statistical parameters for each element were calculated using Statistica VII. The Mo, Pb and Zn distribution maps were created with the Surfer 6 programme. Results and discussion The physico-chemical properties of the soil The physico-chemical characteristics of the soil are listed in Table 2. All soil samples were charac- terised by a slightly acidic pH (5.2–6). CEC values were relatively moderate, with an average value of 20.7 mmol/100g. Total organic carbon was be- tween 0.7 and 2.95 %. Mo, Pb and Zn content in the soil As there are many samples, I have divided them into three groups according to their Mo, Pb and Zn content. The first group (1) comprises the samples with the lowest Mo, Pb and Zn contents, the sec- ond group (2) the samples with the medium Mo, Pb and Zn contents and the last, third group (3) the samples with the highest Mo, Pb and Zn con- tents. Table 3 shows the contents of Mo, Pb and Zn determined in the soil samples from the Kočani f ield based on their descriptive statistical param- eters (minimum, maximum, mean, median and standard deviation (SD)) together with the Decree on the limit, warning and critical levels of hazard- ous substances in soil (Ur. l. RS No. 68/96) and with the Dutch Target and Intervention Values, 2000 (the new Dutch list). Table 3. Mo, Pb and Zn content (mg/kg) in the soil samples from the Kočani field together with their descriptive statistical parameters and with the proposed values for Mo, Pb and Zn in soil in the Decree on the limit, warning and critical lev- els of hazardous substances in soil (Ur. l. RS No. 68/96) and with the Dutch Target and Interven- tion Values, 2000 (the new Dutch list). The Mo content in the soils was between 0.3 and 1.8 mg/kg (Table 3) and thus far below the limit of 10 mg/kg proposed in Ur. l. RS No. 68/96 and below the target (3 mg/kg) and intervention (200 mg/kg) values proposed in the Dutch Target and Intervention Values, 2000 (the new Dutch list). The Pb content in the soils was between 10.5 and 983 mg/kg, while the Zn content was significantly higher at 53 to 1245 mg/kg (Table 3). The highest Pb and Zn values were predominantly measured in the soil samples from section VII, which had a Pb Tabela 1. Sequential extraction procedure with sequential fractions and chemical reagents. Step Fraction Chemical reagents 1 Water soluble Demineralized H2O 2 Exchangeable 1 M sodium acetate 3 Oxidizable 0.1 M sodium pyrophosphate 4 Reducible Cold 0.1 M hydroxylamine 5 Residual Hot 0.25 M hydroxylamine Table 2. Information about physico-chemical characteristics of the soil samples from Kočani Field. Number of measured samples (n) = 25. pH CEC (mmol/g) TOC (%) Range 5.2-6.0 11.4-38.6 0.70-2.95 Mean 5.5 20.7 1.70 278 Nastja ROGAN ŠMUC content of 295.7 to 983.1 mg/kg and a Zn content of 384 to 1245 mg/kg (Table 3). The Pb and Zn content of the soil in section VII exceeds all the levels specified in the Ur. l. RS No. 68/96 and the Dutch Target and Intervention Values, 2000 (the new Dutch list) (Fig. 3). The Kočani field is also surrounded by two large polymetallic mineralized areas, e.g. the Pb- Zn ore districts of Zletovo-Kratovo and Sasa-To- ranica. The soils in section VII, which is located near the Zletovska River and the Zletovo-Kratovo ore district, were exposed to a comparatively high- er input of anthropogenic PTEs than other parts of the Kočani area. The polymineralic zone of Zletovo Kratovo consists of the main Pb and Zn minerals, galena and sphalerite, while no main Mo mineral is present. In addition to the main minerals men- tioned, pyrite occurs in the Zletovo-Kratovo ore mineral association and, as reported by Hu et al. 2019 can also incorporate Mo into its crystal struc- ture. Slightly elevated Mo levels were detected in the soil samples. The difference between the Mo, Pb and Zn contents in section VII and the other sections is shown in box and whisker plots (Fig. 4). The pollution in section VII is undoubtedly related to the irrigation of rice fields with water from the Zletovska River; previous studies have confirmed that the water of the Zletovska River was contam- inated with PTEs from untreated mining waste- water (Alderton et. al, 2005; Dolenec et al., 2007; Rogan Šmuc, 2010). Repeated water samples from the Zletovska River showed marked f luctuations in Mo (0.3-0.9 μg/l), Pb (50-80 μg/l) and Zn (101- 1250 μg/l) (Alderton et al., 2005; Dolenec et al., 2007; Rogan Šmuc, 2010). Elevated levels of Pb and Zn were also found in other soil sections, es- pecially in sections V and VI. This increase is due to various sources, e.g. phosphate fertilisers (Zn) (Zhou et al., 2021; Alengebawy et al., 2021) and pesticides (Pb) in agriculture (Alengebawy et al., Table 3. Mo, Pb and Zn content (mg/kg) in the soil samples from the Kočani field together with their descriptive statistical parameters and with the proposed values for Mo, Pb and Zn in soil in the Decree on the limit, warning and critical levels of hazardous substances in soil (Ur. l. RS No. 68/96) and with the Dutch Target and Intervention Values, 2000 (the new Dutch list). Statistical data n Min Max Mean Median Std. Dev. Group/Element Mo Mo Mo Mo Mo Mo 1 12 0.3 0.7 0.48 0.5 0.13 2 20 0.3 1 0.57 0.6 0.14 3 6 0.9 1.8 1.47 1.5 0.34 All groups 38 0.3 1.8 0.68 0.6 0.39 Pb Pb Pb Pb Pb Pb 1 12 10.5 26.9 18.4 18.5 4.7 2 20 15.4 81.3 29.3 23 15.3 3 6 295.7 983.1 675.8 723.9 269.4 All groups 38 10.5 983.1 128 22.1 260.3 Zn Zn Zn Zn Zn Zn 1 12 53 74 67.6 68.5 5.6 2 20 76 162 95.7 94 17.9 3 6 384 1245 852.5 910.5 335.7 All groups 38 53 1245 206.3 87.5 309.8 Decree on the limit, warning and critical levels of hazardous substances in soil (Official Gazette of RS, No. 68/96) Element Limit levels (mg/kg) Warning levels (mg/kg) Critical levels (mg/kg) Mo 10 40 200 Pb 85 100 530 Zn 200 300 720 Target values and soil remediation intervention values soil/sediment for metals Dutch Target and Intervention Values, 2000 (the New Dutch List) Element National background concentration Target values (mg/kg) Intervention values (mg/kg) Mo 0.5 3 200 Pb 85 85 530 Zn 140 140 720 279Molybdenum, lead and zinc mobility potential in agricultural environments: a case study of the Kočani field, North Macedonia 2021; Bradl, 2005; Wang et al., 2023a) as well as urban and traffic-related sources (Pb, Zn) (Bradl, 2005; Wang et al., 2023a). It could also originate from the discharge of untreated municipal and do- mestic wastewater (Bradl, 2005) from the town of Kočani and the village of Orizari into the river sys- tems of the Kočanska and Orizarska rivers, both of which are used for irrigation purposes. Fig. 3. The spatial distribution of Mo, Pb and Zn content, clear- ly denoting the enrichment with the investigated elements in the section VII. 280 Nastja ROGAN ŠMUC Mobility potential and environmental bioavailability of Mo, Pb and Zn from soils A sequential extraction method was used to as- sess the mobility potential and environmental bi- oavailability of Mo, Pb and Zn in the investigated environment. No significant differences were not- ed in the distribution/partitioning of the elements within the selected samples originating from dif- ferent sites, but there is an obvious difference in the sequential fractions in which the elements are most abundant. The most abundant fraction for Mo was the oxi- dizable fraction, and the other important fractions for Mo were the residual and the water-soluble fractions (Fig. 5). This is supported by the find- ings of Kabata-Pendias & Pendias (2001), Wichard et al. (2009), Xu et al. (2013), Marks et al. (2015), Matong et al., (2016) and Alvarez-Ayuso & Abad- Valle (2017) that Mo in soil is predominantly as- sociated with organic matter (e.g. organometallic complexes). Pb and Zn were mainly bound to the residual fraction and the reducible fraction (Fig. 5). The re- sults of Riffaldi et al. (1976), Kabata-Pendias & Pen- dias (2001), Liu et al. (2013), Nemati et al. (2013), Arenas-Lago et al. (2014), Kennou et al. (2015), Matong et al. (2016) and Zhang et al. (2018) also indicate that Pb is mainly associated with the re- sidual fraction and Mn oxides as well as Fe and Mn hydroxides. The association of Zn with Fe and Mn hydroxides in soils was similarly demonstrated by Kabata-Pendias & Pendias (2001), Arenas-Lago et al. (2014) and Alvarez-Ayuso & Abad-Valle (2017). Rice cultivation in the Kočani rice fields general- ly requires frequent f looding. Different f looding conditions have different effects on the mobility and environmental bioavailability of PTEs. Fe and Mn oxides are important adsorbents for PTEs in soils under oxidising conditions (Lee, 2006). Un- der reducing conditions (f looded fields), however, a relatively high proportion of PTEs is detected in the exchangeable fraction, as the PTEs adsorbed on the Fe and Mn oxides release (Charlatchka & Cambier, 2000; Lee, 2006). As the soil samples were taken under oxidising conditions (non-f lood- ed fields), Pb and Zn are mainly associated within the reducible and residual fractions. The mobility and environmental bioavaila- bility of Mo, Pb and Zn in soils depends primar- ily on the nature of their binding forms in the soil. The water-soluble and exchangeable fractions are considered to be the most mobile and bioavaila- ble fractions, in contrast to the residual fractions, where the PTEs are strongly bound to the crystal- line structures of the minerals present in the soil matrix and are stable (Dean, 2007; Nemati et al., 2013). Mo was consistently bound to bioavaila- ble and leachable fractions (Fig. 5) in all samples, while Pb and Zn predominated in reducible and residual fractions (Fig. 5), indicating a relatively low mobility potential. The sum of the water-sol- uble and exchangeable fractions for Mo, Pb and Zn detected in the soils of the Kočani field shows that the potential mobility and environmental bi- oavailability of these elements for plants in the studied area decreases in the following order: Mo > Zn > Pb. It is very important to point out that in polymetallic areas exposed to the anthropogenic inf luence of several PTEs, environmental pollu- tion must be assessed not only for the PTEs that Fig. 4. Box and whisker plots of Mo, Pb and Zn for soil samples from the Kočani field. 281Molybdenum, lead and zinc mobility potential in agricultural environments: a case study of the Kočani field, North Macedonia are present in high total content, but also for those whose contents are not so high (Kabata-Pendias & Pendias, 2001; Dean, 2007). The mobility poten- tial and environmental bioavailability of PTEs do not depend on their content in the various miner- als, ore mineral, rocks, sediments and soils, but on their individual nature and their ability to bind in the different minerals, amorphous materials and organic matter. Conclusions The Pb and Zn contents determined in the Kočani soils from section VII were well above the maximum permissible values for the PTEs con- tent of soils (according to Slovenian legislation and new Dutch list). Although the Mo content was below the mentioned limits, its accumula- tion in the soil samples near the Zletovska River was conspicuous, which confirms the higher an- thropogenic PTEs contamination in this area. The mine’s wastewater is discharged uncontrolled into the Zletovska River, which therefore contains ex- tremely high concentrations of PTEs (Alderton et al., 2005), and is used to irrigate the nearby rice f ields. The Zletovska River is thus considered the most anthropogenically inf luenced part of the Kočani field. The very high contents of analysed PTEs in agricultural soils are most probably relat- ed to past and present mining activities, especially in the Zletovo-Kratovo ore district. According to the sum of the water-soluble (1) and exchangeable (2) fractions of Mo, Pb and Zn detected in the soils of the Kočani field, the mobil- ity potential and environmental bioavailability of the studied PTEs (from soils to plants) decreased in the following order: Mo > Zn > Pb. For this rea- son, it is very important to assess the potential mobility of all PTEs in areas exposed to multi-el- ement contamination, as mobility usually depends not only on the amount of PTEs in the minerals, ore mineral, rocks, sediments and soils, but also on their individual nature, their preferential bind- ing and their mobility potential. Acknowledgements The research was financially supported by the Slo- venian Research and Innovation Agency (ARIS), con- tract number 1000-05-310229 and as part of the ERC complementary scheme N1-0164. Fig. 5. Mo, Pb and Z binding forms in soil samples from sampling sites I-3, II-6, III-5, VI-4 and VII-2. 282 Nastja ROGAN ŠMUC References Abrahams, P.W. 2002: Soils: their implications to human health. Science of the Total Environ- ment, 291: 1–32. Adriano, D.C. 2001: Trace elements in terrestrial environments: biogeochemistry, bioavailabili- ty and risks of metals (2nd edition). Spring- er-Verlag, New York: 867 p. Aleksandrov, M., Serafimovski, T. & Markov, S. 1995: Major lead-zinc field at Sasa: Mineral associations and morpho-structural types. In: International Workshop, Unesco-IGCP Project 356, Stip Macedonia. Alengebawy, A., Abdelkhalek, S.T., Qureshi, S.R. & Wang, M.-Q. 2021: Heavy metals and pes- ticides toxicity in agricultural soil and plant: ecological risks and human health implica- tions. Toxics, 9: 42. https://doi.org/10.3390/ toxics9030042 Alderton, D.H.M., Serafimovski, T., Mullen, B., Fairall, K. & James, S. 2005: The chemistry of waters associated with Metal Mining in Mac- edonia. Mine water and the Environment, 24: 139–149. https://doi.org/10.1007/s10230- 005-0085-z Álvarez-Ayuso, E. & Abad-Valle, P. 2017: Trace element levels in an area impacted by old mining operations and their relationship with beehive products. Science of the Total Environment, 599-600: 671–678. http://dx. doi.org/10.1016/j.scitotenv.2017.05.030 Arenas-Lago, D., Andrade, M.L., Lago-Vila, M., Rodríguez-Seijo, A. & Vega, F.A. 2014: Sequen- tial extraction of heavy metals in soils from a copper mine: Distribution in geochemical frac- tions. Geoderma, 230–231: 108–118. http:// doi.org/10.1016/j.geoderma.2014.04.011 Balabanova, B., Stafilov, T., Šajn, R. & Bačeva An- dronovska, K. 2014: Variability assessment of metals distributions due to anthropogenic and geogenic impact in the lead-zinc mine and f lo- tation Zletovo environs (moss biomonitoring). Geologica Macedonica, 28/2: 101–114. Balabanova, B., Stafilov, T., Šajn, R. & Tӑnӑselia, C. 2016: Multivariate extraction of dominant geochemical markers for deposition of 69 el- ements in the Bregalnica River basin, Repub- lic of Macedonia (moss biomonitoring). En- vironmental Science and Pollution Research, 23: 22852–22870. https://doi.org/10.1007/ s11356-016-7502-7 Bradl, H.B. 2005: Heavy Metals in the Environ- ment: Origin, Interaction and Remediation. Elsevier Academic Press, Amsterdam-Boston: 282 p. Brevik, E.C., Pereg, l., Pereira, P., Steffan, J.J., Brugess, L.C. & Gedeon, C.I. 2019: Shelter, clothing and fuel: Often overlooked links be- tween solis, ecosystem services, and human health. Science of the Total Environment, 651: 134–142. https://doi.org/10.1016/j.scito- tenv.2018.09.158 Charlatchka, R. & Cambier, P. 2000: Inf luence of reducing conditions on solubility of trace metals in contaminated soils. Water Air and Soil Pollution, 118/1–2: 143–168. https://dx. doi:10.1023/A: 100519592087 Dean, J.R. 2007: Bioavailability, Bioaccessibility and Mobility of Environmental Contaminants. John Wiley and Sons Ltd., England: 292 p. Dolenec, T., Serafimovski, T., Tasev, G., Dobnikar, M., Dolenec, M. & Rogan, N. 2007: Major and trace elements in paddy soil contaminated by Pb–Zn mining: a case study of Kočani Field, Macedonia. Environemntal Geochemistry and Health, 29/1: 21–32. https://doi.org/10.1007/ s10653-006-9057-x Dutch Target and Intervention Values, 2000 (the New Dutch List). Annexes. Circular on Target Values and Intervention Values for Soil Remediation. https://support.esdat.net/Environmental%20 Standards/dutch/annexs_i2000dutch%20envi- ronmental%20standards.pdf Frascoli, F. & Hudson-Edwards, K. 2018: Geo- chemistry, Mineralogy and Microbiology of Mo- lybdenum in Mining-Affected Environments. Minerals, 8/2: 42. https://doi.org/10.3390/ min8020042 Han, Z., Wan, D., Tian, H., He, W., Wang, Z. & Liu, Q. 2019: Pollution assessment of heavy metals in soils and plants around a molybde- num mine in central China. Polish Journal of Environmental Studies, 28: 123–133. https:// doi.org/10.15244/pjoes/83693 Hu, K.-X., Tang, L., Zhang S.-T., Santosh, M., Spencer, C.J., Zhao, Y., Cao, H.-W. & Pei, Q.- M. 2019: In situ trace element and sulfur iso- tope of pyrite constrain ore genesis in the Shapoling molybdenum deposit, East Qinling Orogen, China. Ore Geology Reviews, 105: 123–136. https://doi.org/10.1016/j.oregeor- ev.2018.12.019 Kabata-Pendias, A. & Pendias, H. 2001: Trace El- ements in Soils and Plants (3rd edition). CRC Press, Boca Raton: 432 p. Kim, R.-Y., Yoon, J.-K., Kim, T.-S., Yang, J.E., Owens, G. & Kim, K.-R. 2015: Bioavailabil- ity of heavy metals in soils: definitions and practical implementation – a critical review. Environmental Geochemistry and Soils, 37: 283Molybdenum, lead and zinc mobility potential in agricultural environments: a case study of the Kočani field, North Macedonia 1041–1061. https://doi.org/10.1007/s.10653- 015-9695-y Kennou, B., El Meray, M., Romane A. & Arjouni, Y. 2015: Assessment of heavy metal availa- bility (Pb, Cu, Cr, Cd, Zn) and speciation in contaminated soils and sediment of discharge by sequential extraction. Environmental Earth Sciences, 74: 5849–5858. https://doi. org/10.1007/s12665-015-4609-y Lee, S. 2006: Geochemistry and partitioning of trace metals in paddy soils affected by met- al mine tailings in Korea. Geoderma, 135: 26–37. https://doi.org/10.1016/j.geoder- ma.2005.11.004 Li, Z., Ma, Z., van der Kuijp, T.J., Yuan, Z. & Huang, L. 2014: A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468-469: 843–853. https://doi.org/10.1016/j. scitotenv.2013.08.090 Liu, G., Tao, L., Liu, X., Hou, J., Wang, A., & Li, R. 2013: Heavy metal speciation and pollu- tion of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Prov- ince, China. Journal of Geochemical Explora- tion, 132: 156–163. https://doi.org/10.1016/j. gexplo.2013.06.017 Liu, H., Qu, M., Chen, J., G., X., Zhang, J., Liu, M., Kang, J., Zhao, Y. & Huang, B. 2022: Heavy metal accumulation in the surrounding areas affected by mining in China: Spatial distribu- tion patterns, risk assessment, and inf luenc- ing factors. Science of the Total Environment, 825: 154004. https://doi.org/10.1016/j.scito- tenv.2022.154004 Marks, J.A., Perakis, S.S., King, E.K. & Pett- Ridge, J. 2015: Soil organic matter regulates molybdenum storage and mobility in forests. Biogeochemistry, 125: 167–183. https://doi. org/10.1007/s10533-015-0121-4 Matong, J.M., Nyaba, L. & Nomngongo, P.N. 2016: Fractionation of trace elements in agricul- tural soils using ultrasound assisted sequen- tial extraction prior to inductively coupled plasma mass spectrometric determination. Chemosphere, 154: 249–257. https://doi. org/10.1016/j.chemosphere.2016.03.123 Nemati, K., Bakar, N.K.A., Abas, M.R.B., Sobhan- zadeh, E. & Low, K.H. 2013: Comparison of unmodified and modified BCR sequential ex- traction schemes for the fractionation of heavy metals in shrimp aquaculture sludge from Se- langor, Malaysia. Environmental Monitoring Assessment, 176/1–4: 313–320. https://doi. org/10.1007/s10661-010-1584-3 Pruvot, C., Douay, F., Herve, F. & Waterlot, C. 2006: Heavy metals in soil, crops and grass as a source of human exposure in the for- mer mining areas. Journal of Soils and Sed- iments, 6: 215–20. https://doi.org/10.1065/ jss2006.10.186 Ritchie, H. & Roser, M. 2019: Half of the world’s habitable land is used for agriculture. Internet: https://ourworldindata.org/global-land-for-agri- culture Riffaldi, R., Levi-Minzi, R. & Soldatini, G.E. 1976: Pb absorption by soils. Water, Air and Soil Pol- lution, 6: 119–123. Rogan Šmuc, N., Serafimovski, T., Dolenec, M., Tasev, G. & Dolenec, T. 2009: Heavy metal contamination of paddy soils and rice (Oryza sativa L.) from Kočani field (Macedonia). En- vironmental geochemistry and health, 31: 439–451. https://doi.org/10.1007/s10653- 008-9197-2 Rogan Šmuc, N. 2010: Heavy metal contamina- tion of soils and crops in tertiary basins: A case study of Kočani Field (Macedonia). Dok- torska disertacija. Univerza v Ljubljani, Nara- voslovnotehniška fakulteta, Ljubljana: 108 p. Šajn, R., Ristović, I. & Čeplak, B. 2022: Mining and metallurgical waste as potential secondary sources of metals – a case study for the West Balkan Region. Minerals, 12/5: 547. https:// doi.org/10.3390/min12050547 Tasev, G., Serafimovski, T., Dolenec, M. & Rogan Šmuc, N. 2019: Contribution to understand- ing of ore f luids in the Zletovo mine based on the f luid inclusion data. RMZ: Materials and Geoenvironment: periodical for mining, met- allurgy and geology, 66/2: 75–86. https://doi. org/10.2478/emzmag-2019-0008 Tessier, A., Campbell, P.G.C. & Bisson, M. 1979: Sequential extraction procedure for the spe- ciation of particulate trace metals. Analytical Chemistry, 51: 844–851. Uradni list RS, 68/96, 41/04 – ZVO-1 in 44/22 – ZVO-2: Uredba o mejnih, opozorilnih in kri- tičnih emisijskih vrednostih nevarnih snovi v tleh. https://pisrs.si/pregledPredpisa?id=U- RED114 Vrhovnik, P., Arrebola, J.P., Serafimovski, T., Dole- nec, T., Rogan Smuc, N., Dolenec, M. & Mutch, E. 2013: Potentially toxic contamination of sediments, water and two animal species in Lake Kalimanci, FYR Macedonia: Relevance to human health. Environmental Pollution, 180: 92–100. https://doi.org/10.1016/j.en- vpol.2013.05.004 284 Nastja ROGAN ŠMUC Wang, Z., Hong, C., Xing, Y., Wang, K., Li, Y., Feng, L. & Ma, S. 2018: Spatial distribution and sources of heavy metals in natural pas- ture soil around copper-molybdenum mine in Northeast China. Ecotoxicology and Envi- ronmental Safety, 154: 329–336. https://doi. org/10.1016/j.ecoenv.2018.02.048 Wang, C.-C., Zhang, Q.-C., Yan, C.-A., Tang, G.-Y., Zhang, M.-Y., Ma, L.Q., Gu, R.-H. & Xiang, P. 2023a: Heavy metal(loid)s in agriculture soils, rice, and wheat across China: Status assess- ment and spatiotemporal analysis. Science of the Total Environment, 882: 163361. https:// doi.org/10.1016/j.scitotenv.2023.163361 Wang, C., Zhang, Q., Kang, S., Li, M., Zhang, M., Xu, W., Xiang, P. & Ma, L.Q. 2023b: Heavy metal(oid)s in agricultural soil from main grain production regions of China: bioaccessibility and health risks to humans. Science of the To- tal Environment, 858/2: 159819. https://doi. org/10.1016/j.scitotenv.2022.159819 Wichard, T., Mishra, B., Myneni, S.C.B., Bellenger, J.P. & Kraepiel, A.M.L. 2009: Storage and bio- availability of molybdenum in soils increased by organic matter complexation. Nature Geo- science, 2: 625–629. https://doi.org/10.1038/ ngeo589 Xu, N., Braida, W., Christodoulatos, C. & Chen, J. 2013: A review of molybdenum adsorption in soils/bed sediments: speciation, mechanism, and model applications. Soils Sediment Con- tamination, 22: 912–929. https://doi.org/10.1 080/15320383.2013.770438 Yin, K., Shi, Z., Zhang, M. & Li, Y. 2020: Effects of mining on the molybdenum absorption and translocation of plants in the Luanchuan mo- lybdenum mine. PeerJ 8: e9183. https://doi. org/10.7717/peerj.9183 Zhang, C., Yu, Z., Zeng, G., Jiang, M., Yang, Z., Cui, F., Zhu, M., Shen, L. & Hu, L. 2014: Effects of sediment geochemical properties on heavy metal bioavailability. Environment Interna- tional, 73: 270–281. https://doi.org/10.1016/j. envint.2014.08.010 Zhang, J., Li, H., Zhou, Y., Dou, L., Cai, L., Mo, L. & You, J. 2018a: Bioavailability and soil-to-crop transfer of heavy metals in farmland soils: A case study in the Pearl River Delta, South Chi- na. Environmental Pollution, 235: 710–719. https://doi.org/10.1016/j.envpol.2017.12.106 Zhang, S., Song, J., Cheng, Y., Liu, G. & Wal- lace, A.R. 2018: Trace metal(oid)s exposure through soil-tobacco-human pathway: Avail- ability in metal-contaminated agricultural soil, transfer models and health risk assess- ment. Ecotoxicology and Environmental Safe- ty, 148: 1034–1041. https://doi.org/10.1016/j. ecoenv.2017.11.043 Zhou, S., Su, S., Meng, L., Liu, X., Zhang, H. & Bi, X. 2021: Potentially toxic trace element pollution in long-term feritlized agricultural soils in China: A meta-analysis. Science of the Total Environment, 789: 14967. https://doi. org/10.1016/j.scitotenv.2021.147967 © Author(s) 2024. CC Atribution 4.0 License Mineralogy, geochemistry and genesis of low-grade manganese ores of Anujurhi area, Eastern Ghats, India Mineralogija, geokemija in geneza revnih manganovih rud z območja Anujurhi, Vzhodni Gati, Indija Sujata PATTNAIK1* & Satrughan MAJHI2 1Geological Survey of India, Eastern Region, Bhu-Bijnan bhawan, DK-6, Karunamayee, Sector-2, Salt Lake, Kolkata-700091; *corresponding author: suji.pinky@gmail.com 2Geological Survey of India, State Unit: Odisha, Unit-8, Nayapalli, Bhubaneswar-751012 Prejeto / Received 18. 3. 2024; Sprejeto / Accepted 12. 11. 2024; Objavljeno na spletu / Published online 16. 12. 2024 Key words: Eastern Ghats Mobile Belt (EGMB), Anujurhi, manganese ore, supergene enrichment Ključne besede: Vzhodni Gati, Anujurhi, manganova ruda, supergena obogatitev Abstract The Anujurhi manganese ores occur in the high-grade gneisses of the Precambrian Eastern Ghats Supergroup in Odisha, India. They are characterized by conformable lenses containing minerals such as cryptomelane, romanechite, pyrolusite, todorokite, and pyrophanite, along with other opaque minerals like graphite, goethite and ilmenite. The gangue minerals associated with these ores include quartz, feldspar, garnet, kaolinite, apatite, sillimanite, zircon, biotite, alunite, and gorceixite. The primary elements present in the ore, Si, Mn, Fe, and Al, average at 16.20 %, 15.06 %, 11.94 %, and 6.6 % respectively. Additionally, trace amounts of P, K, Ti, Mg, Ca, and Na were detected. The average Fe/Mn ratio of 0.81 and the Si versus Al plot of the Anujurhi manganese ores suggest a hydrogenous-hydrothermal mixed source for the ferromanganese sediments. The characteristics of the manganese ore bands, absence of carbonate facies of ore, and geochemical association of Mn-Ba together with Na/Mg ratios and CaO-Na2O-MgO ternary plot of the manganese ores strongly indicate that the mineralization is a metamorphosed shallow marine-lacustrine deposit. Following deposition and diagenesis, the manganese minerals underwent at least two phases of Ultra High Temperature (UHT) and granulite facies metamorphism along with the host rocks. Tectonic uplift, erosion, extended exposure to atmospheric oxygen and percolation of meteoric water led to the supergene alteration and remobilization of the primary manganese minerals in a colloidal state, followed by epigenetic replacement along the structural weak planes of the granulite facies rocks, resulting in the formation of the current deposits. This is evidenced by the observed secondary replacement and colloidal textures in the Mn oxides. Izvleček Članek obravnava manganove rude, ki se pojavljajo znotraj visokometamorfnih gnajsov predkambrijske supergrupe Vzhodni Gati na območju Anujurhi v zvezni deželi Odisha, Indija. Zanje so značilne konformne leče, ki vsebujejo minerale, kot so kriptomelan, romanehit, piroluzit, todorokit in pirofanit, skupaj z drugimi neprozornimi minerali, kot so grafit, goethit in ilmenit. Jalovinski minerali v teh rudah vključujejo kremen, glinenec, granat, kaolinit, apatit, silimanit, cirkon, biotit, alunit in gorceiksit. Primarni elementi prisotni v rudi so Si (16,20 %), Mn (15,06 %), Fe (11,94 %) in Al (6,6 %). Dodatno so ugotovili sledne vsebnosti P, K, Ti, Mg, Ca in Na. Povprečno razmerje Fe/Mn, ki znaša 0,81, in diagram primerjave vsebnosti Si z vsebnostmi Al v rudi z območja Anujurhi nakazuje, da feromanganovi sedimenti izvirajo iz mešanih hidrotermalnih virov. Značilnosti manganove rude, kot so odsotnost karbonatnega faciesa rude in geokemična povezava Mn-Ba skupaj z razmerji Na/Mg ter tri komponentnim diagramom CaO-Na2O-MgO rud jasno kažejo, da gre za metamorfozirano plitvomorsko do jezersko nahajališče. Po odlaganju in diagenezi so manganovi minerali prestali vsaj dve fazi ultra visoke temperature (UHT) in metamorfizma granulitnega faciesa skupaj s prikamnino. Tektonski dvig, erozija, dolga izpostavljenost atmosferskemu kisiku in pronicanju meteorne vode so privedli do supergene spremembe in remobilizacije primarnih manganovih mineralov v koloidnem stanju, čemur je sledila epigenetska zamenjava vzdolž strukturno šibkih površin kamnin granulitnega faciesa, kar je povzročilo nastanek sedanjih ležišč. To dokazujejo opazovane sekundarne zamenjave in koloidne teksture v Mn oksidih. GEOLOGIJA 67/2, 285-300, Ljubljana 2024 https://doi.org/10.5474/geologija.2024.014 286 Sujata PATTNAIK & Satrughan MAJHI Introduction Manganese makes up about 0.1 to 0.2 % of the Earth’s crust, ranking as the 10 th most abundant element (Post, 1999). It exists in three different oxidation states in natural systems: +2, +3, and +4, leading to a variety of multivalent phases. Manganese oxide minerals have been utilized for many years by ancient civilizations for pigments and to clarify glass. By the mid-nineteenth centu- ry, manganese became a crucial component in the steel-making industry, which remains the main consumer of manganese ore. Manganese is the pri- mary component in LMO (Lithium manganese ox- ide) and NMC (Lithium nickel manganese cobalt) batteries due to its cost-effectiveness compared to other battery metals and its abundant supply (Parrotti et al., 2023). Over 30 manganese oxide/ hydroxide minerals are found in various geological settings (Post, 1999). The total resources/ reserves of manganese ore in India as of 2015 is 495.87 million tonnes. Odi- sha tops the total reserves/ resources with a 44 % share, followed by Karnataka at 22 % and Madhya Pradesh at 12 %. During 2018–19, the total pro- duction of manganese ore was 2.82 million tonnes with Madhya Pradesh as the leading producer of manganese ore at 33 %, followed by Maharashtra (27 %) and Odisha (16 %). Grade-wise, 68 % of the total production was of lower grade (below 35 % Mn), 21 % of medium grade (35–46 % Mn) and 10 % was of high grade (above 46 % Mn) (Indian Minerals Yearbook 2019). To fulfill the large supply-demand gap of man- ganese due to the splurge in demand in the steel industry; the limited availability of high-grade (+44 % Mn) manganese ores coupled with the lim- itations of the domestic manganese ore, made it obligatory for revision of the threshold value of manganese ores to 10 % Mn in exploration and to exploit low-grade manganese ores. For the de- velopment or upgradation of low-grade ores, it is important to characterize or know the nature of the low-grade ores of our country, including the chemistry, mineralogy and correlation that will serve the future industrial development (Manga- nese Ore: Vision 2020 and beyond, IBM, 2014). Fig. 1. Map of Odisha state showing the important domains (Cratons, Mobile belts and Quaternary sediment cover) and the known manga- nese occurrences (Map source- GSI, SU: Odisha). 287Mineralogy, geochemistry and genesis of low-grade manganese ores of Anujurhi area, Eastern Ghats, India In the state of Odisha, the manganese ore is found to occur in three stratigraphic horizons and spatially distributed wide apart i.e. Iron Ore Group in Bonai-Keonjhar belt (Roy, 2000), Gang- pur Group in Sundergarh district and Eastern Ghats Supergroup in Koraput-Rayagada-Kalahan- di-Balangir belt (Roy, 2000; Mishra et al., 2016). The manganese occurrences in the Eastern Ghat Mobile belt have been studied for their economic potential, mineralogical characteristics and evo- lutional history by several workers like Walker (1902), Dey (1942), Murthy et al. (1971), Narayan- swamy (1966, 1975), Acharya et al. (1994, 1997), Ramakrishna et al. (1998), Nanda & Pati (1991), Jena et al. (1995), Rao et al. (2000), Rickers et al. (2001), Dasgupta and Sengupta (2003), Dash et al. (2005), Bhattacharya et al. (2011), Chetty (2014), Karmakar et al. (2009) and others. The manganese deposits in the Anujurhi-Am- badala-Rukunibori-Loharpadar areas, collective- ly known as the Ambadala occurrence, confirm the presence of a continuous manganese ore zone spanning 150 km from the Kutinga-Nishikhal sec- tor in the Koraput district of Odisha to the Uch- habapalli-Kanaital sector in the Bolangir district of Odisha (Fig. 1). The explored manganese occur- rence is situated approximately 200 m east of Anu- jurhi village in the Rayagada district of Odisha and falls in Survey of India Toposheet no. 65M/5. This paper will provide an overview of the geology, mineralogy, and geochemistry of the manganese deposits in the Eastern Ghat Supergroup of rocks at Anujurhi, with a focus on characterizing the manganese ores as a potential future economic op- portunity. The results obtained will be compared with similar deposits to develop a genetic model that determines the source and formation process of manganese in the Eastern Ghat Mobile Belt. Geological Setting The Eastern Ghats Mobile Belt (EGMB) is a Mesoproterozoic collisional orogen (Chetty, 2014), that extends along the east coast of India for over 900 km with a varying width from 50 km in the south to a maximum of 300 km in the north. EGMB or Eastern Ghats Belt (EGB) denotes a contiguous terrain of granulite facies rocks bounded to the north, west and south by the Singhbhum, Bastar and Dharwar Cratons (Dasgupta, 2019), and to the east it disappears underneath alluvial plains and the Bay of Bengal. The EGB consists of an in- tensely deformed and metamorphosed assemblage of meta-sedimentary and meta-igneous granulite facies rocks, which were subsequently intruded by Proterozoic anorthosite, alkaline rocks and grani- toids. The metasedimentary rocks mainly include garnet-sillimanite gneiss (khondalite), quartzites and calc-granulites, while the meta-igneous rocks range from basic to felsic in composition and are essentially hypersthene-bearing charnockites (Chetty, 2014). The protoliths for the Khondalite Group is believed to be dominantly pelitic with subordinate arenaceous and calc- magnesian com- ponents (Ramakrishnan et al., 1998; Nanda, 2008) and is indicative of their formation in a shallow water stable shelf milieu (Roy, 2000 & 2006). The minimum age of sedimentation of the Khondalite Group points to an Archean event during 2.8 and 2.6 Ga from the available geochronological data (Roy, 2000). Ramakrishnan et al. (1998) divided the East- ern Ghats Mobile Belt into four lithotectonic do- mains longitudinally, viz. Western Charnockite Zone (WCZ), Western Khondalite Zone (WKZ), Central Migmatite Zone (CMZ) and Eastern Khon- dalite Zone (EKZ). A Transition Zone (TZ) at the contact with the Bastar craton to the west is also marked by a prominent frontal thrust (Dasgupta et al., 2013). Rickers et al. (2001) subdivided EGMB into four crustal domains viz. Domain 1(1A & 1B), Domain 2, Domain 3 and Domain 4, whose bound- aries do not match with those of Ramakrishnan et al. (1998) based on Nd-mapping carried out over EGMB. Nd-model ages presented contrasting protolith history in all four crustal domains with domain boundaries marked by prominent shear zones. Later, Dobmeier and Raith (2003) concep- tualized EGMB as a collage of four isotopic prov- inces having distinct geological histories viz. Jey- pore, Krishna, Eastern Ghats Province (EGP) and Rengali Province (Fig. 2). EGB played a dominant role in the configura- tions of at least three supercontinents Columbia (≈ 1.9-1.4 Ga) (Rogers and Santosh, 2002; Zhao et al., 2002, 2004; Karmakar et al., 2009), Rodin- ia (≈ 1.0–0.75 Ga) (Li et al., 2008) and Gondwa- na (≈ 0.55–0.30 Ga). The central domain or EGP (Dobmeier & Raith, 2003) witnessed a prolonged accretion–collision history initiated with rifting and consequent ocean opening and sedimenta- tion at ca. 1.50 Ga during the break-up of Colum- bia (Upadhyay, 2008; Karmakar et al., 2009) and culminated at ca. 0.90 Ga with the formation of supercontinent Rodinia. The latter united cratonic India with east Antarctica as a separate continent Enderbia that existed until about ca. 0.50 Ga (Kar- makar et al., 2009; Dasgupta, 2019). The metamorphic history of EGP was initiat- ed by a high-T/low-P progressive metamorphism and deformation that eventually led to UHT 288 Sujata PATTNAIK & Satrughan MAJHI (~1000 °C) peak (M1-D1) under deep-crustal conditions (8-9 kbar) (Karmakar et al., 2009) ranged from 1.03 Ga (Bose et al., 2011) to 1.13 Ga (Korhonen et al., 2013). A second granulite-grade metamorphism and associated deformation (M2- D2) strongly reworked the deep-crustal granulites and exhumed them to mid-crustal level as evident from decompression-dominated retrogressive segment (Dasgupta & Sengupta, 2003; Dobmeier & Raith, 2003) at 0.95–0.9 Ga with peak condi- tions of around 7 kbar, 850 oC (Bose et al., 2011; Padmaja et al., 2022). M3 is a weak amphibolite grade overprint and mostly localized along ductile shear zones (Karmakar et al., 2009) constrained at ≈0.55-0.50 Ma (Karmakar et al., 2009). Ther- mal imprint associated with M3 is manifested by emplacement of pegmatite crosscutting the M2-D2 foliation (Karmakar et al., 2009). Geology of the Anujurhi area The area forms a part of the Central Migma- tite Zone of Ramakrishnan et al. (1998), Domain 3 of Rickers et al. (2001) and EGP of Dobmeier and Raith (2003). The Khondalite Group comprises a sequence of garnet-sillimanite (+ graphite) schists and gneisses (khondalite senso-stricto) with rel- atively minor quartzite and calc-silicate rocks. The manganiferous horizon at Anujurhi is mainly restricted to the contact of quartz-feldspar-gar- net-sillimanite gneiss and garnetiferous quartzite. The manganese mineralization at Anujurhi is both lithologically and structurally controlled and extends for a strike length of about 900 m. The ore zone is continuous with detached outcrops showing varying width ranging from 5 m to 24 m. Five dis- tinct manganese ore lodes were established for the f irst time at 10 % manganese cut-off in Anujurhi area. The ore bands are narrow, discontinuous and lenticular in shape and parallel to the region- al trend of rocks i.e. N20oE–S20oW with moderate dips towards southeast. The area has undergone polyphase deformation with at least three gener- ation viz. F1 folds are tight to isoclinal folds ob- served in quartzite/manganiferous quartzite and calc-granulite. The S1 axial planar cleavage of F1 folds is parallel to the primary bedding S0. F2 folds are mostly open upright mesoscopic folds recorded in calc-granulite and manganiferous quartzite and F3 folds occur mainly as broad open warps in the khondalites and calc silicates. Materials and Methods As a part of the Annual Programme of Geo- logical Survey of India (GSI) during Field Season 2016–2018, the Anujurhi area was investigated for manganese mineralization by way of mapping in detail on 2000 RF in 2 square kilometers to work out the local stratigraphy, structure and disposi- tion of mineralized zones. Subsurface exploration by core drilling was carried out in eleven boreholes to establish the grade, extension and geometry of the ore bodies. Mapping was supported by labora- tory studies like whole rock geochemistry, miner- al chemistry and petrographic studies of samples from bedrock, pits, trenches and borehole cores. Bedrock samples from in-situ manganese ores and manganiferous quartzite were collected with ut- most care. Pits and trenches were cut perpendicu- lar to the strike of the ore zone to expose the bed- rock and samples were collected by preparing small channels of 50 cm to 1 m in length depending on the width of the zone and mineralogical variation. Fig. 2. (a) Geological map of EGB showing lithological divisions by Ramakrishnan et al. (1998), (b) Isotopic domains of EGB of Rickers et al., 2001, (c) Different provinces and domains of EGB by Dobmeier and Raith, 2003 (EGB- Eastern Ghats Belt, EGP- Eastern Ghats Province, KP- Krishna Province). 289Mineralogy, geochemistry and genesis of low-grade manganese ores of Anujurhi area, Eastern Ghats, India Fig. 3. Geological map of the Anujurhi area showing the manganiferous ore zones. 290 Sujata PATTNAIK & Satrughan MAJHI The core samples of the identif ied manganiferous zones were collected at a sample interval of 1 m from all the boreholes. Initially, the cores were split into half, half is preserved and the rest is sampled. All the samples collected from bedrock, pit, trench and borehole cores were then pow- dered manually using mortar and pestle to -120 mesh size. Two sets of samples are prepared by coning and quartering method where one set is submitted for analyses and a duplicate is pre- served for future use. Major element concentrations of 279 whole rock samples were determined through an X-ray f luorescence Spectrometer (Panalytical-ZETIUM) at the Chemical Laboratory, GSI, SU: Odisha by using the pressed pellet technique. The detection limits for this method range from 0.1 % for ma- jor and minor elements and 1.0 mg/L for trace elements. Samples from the manganiferous zones were studied under an optical microscope (Leica DM 2500P), the textures exhibited by the manga- nese ore are of secondary nature mainly replace- ment and colloform textures. To confirm the minerals identif ied in optical microscopy, ten samples from bedrock, trench and cores were analyzed for X-ray diffractometry (XRD), operating at 40 kV and 30 mA with Cu Kα radiation with 1.54 Å wavelength (PANalyti- cal, Model: X’Pert PRO XRD) at Mineral Physics Division, National Centre of Excellence in Geosci- ence Research, Geological Survey of India, Kolk- ata. Results are added in Supplementary material (Table 1). Quantitative chemical analyses of mineral phases have been undertaken at the National Cen- tre of Excellence in Geoscience Research, Geolog- ical Survey of India, Kolkata with an automated electron probe microanalyzer (SX 100 CAMECA) with five vertical spectrometers, operating at an acceleration voltage of 15 kV and beam current of 12 nA with beam size of 1 μm. Natural as well as synthetic standards were used during the analyses. Fig. 4. Disposition of manganese ore zones in Anujurhi area, (a) Folded and silicified manganese ore within quartzite, (b) Fracture filling ore showing parallel bands of manganese ore and silica east of Anujurhi, (c) Soft, friable manganese ore mainly pyrolusite associated with kaolinite east of Anujurhi, (d) Folded manganiferous quartzite. 291Mineralogy, geochemistry and genesis of low-grade manganese ores of Anujurhi area, Eastern Ghats, India Results Field Observations The ore exhibits a hard, lumpy texture char- acterized by alternating bands of silica, primarily in the form of recrystallized quartz infilling frac- tures. In contrast, where associated with clay min- erals (e.g. kaolinite) within khondalite, and inter- folded with quartzite, the ore becomes soft, friable and powdery. (Fig. 4a, b, c & d). Ore Petrography The petrographic analyses revealed a mineral assemblage composed of primary minerals such as quartz (40–50 %), and garnet (10–15 %) respec- tively followed by Mn-oxides (20–25 %), graphite (5–10 %), goethite (5–10 %), clay minerals (<5 %) and Fe/Mn-Ti oxides (<1 %). The XRD analyses confirm the mineralogy. The chief Mn oxides iden- tified in the area are cryptomelane, romanechite and pyrolusite with minor quantities of todorokite. Fig. 5. (a) Colloform bands of cryptomelane (Cy), romanechite (Rm) and goethite (Go), (b) Mosaic grains of quartz & feldspar with fracture filling romanechite (Ps) and flakes of graphite (Gr), (c) Romanechite (Ps) as fracture filling with quartz (Q) and garnet (Gn), (d) Cryptomelane (Cy), Romanechite (Ps) showing colloform banding with quartz (Q) and garnet (Gn) as gangue minerals, (e) Pyrolusite (Py) associated with clay minerals & (f) Pyrolusite (Py) as fracture filling. 292 Sujata PATTNAIK & Satrughan MAJHI The associated gangue minerals are quartz, gar- net, graphite, goethite, ilmenite, apatite and zir- con, etc. Since the Mn-oxides share very similar physi- cal and optical characteristics, their identification only with the aid of an optical microscope is dif- f icult, hence, the Mn-oxides were distinguished through EPMA. It is observed that pyrolusite is associated mainly with clay minerals like kaolinite and alunite due to alteration of the quartzo-feld- spathic garnet-sillimanite schist or migmatised khondalite. Similarly, a positive correlation is ob- served between cryptomelane and which is further corroborated by EPMA data. Garnet is generally found as equigranular, mosaic grains associated with quartz and Mn-oxides. The chief ore mineral occupying the intergranular spaces is cryptomel- ane which forms colloform banding with romane- chite and goethite (Fig. 5a, b, c & d). Pyrolusite is mainly confined to the cavity fillings and is often found associated with clay minerals (Fig. 5e & f ). Graphite occurs as scales and f lakes within the manganese ores. Goethite is found as gangue showing box work structure, grey with moderate to high ref lectivity. Fine crystals of apatite are found embedded in quartz, feldspar and garnet. Geochemistry Five representative samples of manganese ore and manganiferous quartzite underwent compre- hensive analysis using Electron Probe Microanal- ysis (EPMA). The results clearly demonstrate that the dominant ore minerals present in the miner- alized zones of the Anujurhi area are cryptomel- ane, romanechite and pyrolusite. Cryptomelane is essentially a potassium-bearing manganese oxide with minor amounts of Ba, Ca, Fe and Al. The K2O content ranges from 1.93 to 5.24 %. Romanechite occurs together with cryptomelane as a secondary product of alteration of the primary minerals (Fig. 6a & b). BaO content in romanechite is very high which ranges from 16.88 to 18.71 % and Mn con- tent ranges from 46.75 to 49.6 %. Pyrolusite is also present as veins in the host rock, i.e. quartz-feld- spar garnet sillimanite schist. Mn content ranges from 60.5 to 61.4 % with minor amounts of Ba, Al and Si. With the EPMA results, the chemical for- mulae are cryptomlenane–K0.62(Mn7.65,Fe0.05,Al0.09,- Si0.02)O16, romanechite–(Ba0.59,K0.01)(Mn4.55,Al0.04,- Si0.11)O10 and pyrolusite-(Mn0.97Si0.01 Al0.01Fe0.01)O2. The representative EPMA results for crypto- melane & pyrolusite, romanechite, garnet and F-Mn hydroxides are displayed in Table 1 to Ta- ble 3. Garnet is associated with quartz and contains large amounts of Mn (averages of 18.89 %) and Si (averages of 17.47 %). The average Fe and Ca contents were 3.11 wt% and 9.19 wt% respective- ly. There is an inverse relationship between Mn and (Fe + Ca) results from Mn substitution into spessartines, which have the chemical formulae [(Mn1.9, Fe0.5, Ca0.4) Al2 (SiO4)3] and is similar to the spessartine composition of supergene manganese occurrence at Southern Minas Gerais, Brazil (Par- rotti, 2023). Two compositional varieties of garnet are reported from the manganese deposits of the Anujurhi area, one variety is rich in spessartine garnet (max. 68 %) whereas the other variety is rich in grossular garnet (max. 46 %) as calculated from the EPMA data. Alteration of the garnet pro- ceeds along the grain boundaries and fractures, often leading to a distinct alteration rim with a Table 1. Electron microprobe analyses (wt%) of cryptomelane & pyrolusite. 1 2 3 4 5 6 7 8 9 10 11 SiO2 0.06 0.1 0.15 0.17 0.1 0.06 0.59 0.15 0.81 0.6 0.69 Al2O3 0.31 0.22 0.14 0.24 0.23 0.82 2.68 0.35 0.79 0.86 0.79 MnO 77.84 79.36 78.27 78.4 78.1 75.42 67.39 65.3 78.11 79.32 78.47 MgO 0.07 0.01 0.03 0.01 0.05 0.03 0.04 0.04 0.04 0.06 0.07 Na2O 0.06 0.17 0.1 0.11 0.07 0.02 0.03 0.13 0.04 0.03 0.02 P2O5 0 0 0 0 0 0 0 0 0 0 0 K2O 4.11 3.98 4.02 4.49 3.9 5.24 4.43 2.3 0.61 0.64 0.59 CaO 0.44 0.49 0.53 0.46 0.45 0.62 0.4 0.48 0.16 0.14 0.19 TiO2 0 0.02 0 0.02 0 0 0.01 0 0.02 0 0 FeO 0.11 0.11 0.1 0.09 0.2 0.25 3.47 0.02 0.66 0.7 0.53 Cr2O3 0 0 0.01 0 0 0 0.1 0 0.31 0.11 0.13 NiO 0 0 0.1 0 0.12 0.14 0.05 0 0.22 0 0.17 BaO 0.29 0.25 0.26 0.21 0.24 0.96 1.5 9.03 1.1 1.04 1.24 Cryptomelane-1 to 8, Pyrolusite-9 to 11 293Mineralogy, geochemistry and genesis of low-grade manganese ores of Anujurhi area, Eastern Ghats, India central core (Fig. 6c). In rare cases, complete al- teration of garnet is also observed. It alters to hy- drous oxides/hydroxides of iron and manganese and subsequently cryptomelane (Acharya et al., 1994). Goethite is a common secondary mineral de- rived from the alteration of other iron-rich min- erals, especially magnetite, pyrite, siderite and hematite under oxidizing conditions. Goethite contains considerable amounts of Al, Si, P and Mn. Phosphorus content is the highest, varying from 0.54 to 2.88 % P2O5. Lepidocrocite although less common, has the same origins and they often oc- cur together. Clay minerals are found in abundance in some sections as a result of deep weathering of host rocks. Gorceixite is a hydrated phosphate (BaAl3 (PO4) (PO3OH) (OH)6) that belongs to the alunite group of minerals. It is present as a weathering product of the host rocks like quartz-feldspar-gar- net sillimanite schist in the ore zone. In some of the samples, romanechite can be seen altered to gor- ceixite. P2O5 content ranges from 25.43 to 28.76 % and BaO content ranges from 19.1 to 24.47 %. The high amount of phosphorus in samples from Anujurhi can also be attributed to the presence of gorceixite in most samples. Representative EPMA data of gorceixite are given Supplementary mate- rial (Table 2). Pyrophanite in the Eastern Ghats Group of rocks from the Nishikhal area is also reported by Acha- rya et al. (1994) & in Ambadala area by Pradhan et al. (2016). Pyrophanite is a common accessory mineral associated with metamorphosed manga- nese-rich rocks. A zoned prismatic grain of ilmen- ite-pyrophanite is identified in BSE image within cryptomelane with TiO2 concentration reducing from the center outwards suggesting ilmenite be- ing replaced by Mn-oxides (Fig. 7d). Subhedral prismatic grain of zircons and apatite are rarely found. Representative EPMA data of gorceixite are given in Supplementary material (Table 3). 1 2 3 4 5 SiO2 0.29 0.64 4.4 0.31 0.47 Al2O3 0.46 0.37 0.3 0.51 0.23 MnO 64.06 61.26 61.03 63.85 61.47 MgO 0.05 0.04 0.04 0 0.06 Na2O 0 0.04 0.04 0.07 0.06 P2O5 0 0 0 0 0 K2O 0.07 0 0.01 0.12 0.15 CaO 0.16 0.25 0.29 0.25 0.38 TiO2 0 0 0 0 0 FeO 0.13 0.07 0.07 0.19 0.02 Cr2O3 0 0 0.2 0.05 0.03 NiO 0.07 0.02 0.01 0 0 BaO 16.88 18.71 17.93 17.2 17.02 Table 2. Electron microprobe analyses (wt%) of romanechite. Table 3. Electron microprobe analyses (wt%) of garnet & Fe-Mn hydroxides. 1 2 3 4 5 6 7 SiO2 37.53 37.08 37.61 37.25 2.68 1.17 1.51 Al2O3 20.97 20.51 21.31 20.62 2.95 2.1 1.47 MgO 0.22 0.25 0.24 0.9 0.07 0.03 0.03 Na2O 0.01 0 0.02 0.02 0.09 0.02 0.04 P2O5 0 0 0 0 0.54 1.89 2.88 K2O 0 0.01 0 0 0 0.04 0 CaO 15.99 12.26 18.41 4.8 0.27 0.12 0.04 TiO2 0.11 0.09 0.03 0.2 0.21 0.07 0.04 FeO 2.63 2.63 1.74 9.03 63.12 68.61 69.97 Cr2O3 0.02 0.04 0.03 0 0.07 0.12 0.06 NiO 0 0.02 0 0.1 0.09 0.54 0.22 BaO 0.07 0 0 0.09 0.56 0 0.11 MnO 22.05 27.38 19.45 28.68 7.68 0.9 1.35 Garnet-1 to 4, Fe-Mn hydroxides -5 to 7 294 Sujata PATTNAIK & Satrughan MAJHI Discussion Diagnostic elemental assemblages of major, minor, and trace metals can be utilized to differ- entiate manganese deposits formed in various ge- ological environments (Acharya, 1994 & 1997). Such an approach is well established in non-meta- morphosed ores (Nicholson, 1992 & 1997) but the application of such diagnostic geochemical signa- tures to metamorphosed sediments would assume that this signature has been preserved in the me- ta-sediments of EGB. This argument hinges on the assumption that the original sediment’s chemical composition has been retained despite the recrys- tallization of the mineral assemblage. However, due to the absence of data on minor and trace elements, it was not feasible to accurately define the diagnostic assemblages for different sources of manganese. Upon thorough examination of the chemical data pertaining to the major oxides pres- ent in the ores, exhaustive efforts were undertak- en to formulate a comprehensive genetic model for the manganese ores located in the Anujurhi area. The major elements present in the manganese ores of the study area are Si, Mn, Fe and Al, each averaging at 14.82 wt%, 16.60 wt%, 12.42 wt%, and 6.43 wt%, respectively (Table 4). Other ele- ments such as P, K, Ti, Mg, Ca and Na were found to be present in trace amounts (less than 1 wt %). Phosphorous content averaging 0.68 wt % is very high in comparison to other manganese depos- its e.g., Noamundi-Koira basin, Odisha (Alvi & Mohd., 2021), Tokoro belt, Japan (Choi & Hari- ya, 1992) and is a distinguishing property of the manganese ores of EGMB. Phosphorus is either present as definite mineral phases such as apatite, f luor-apatite which is evident from strong posi- tive correlation with Ca (Fig. 7) and gorceixite or in adsorbed state. In adsorbed state phosphorus also occurs within various manganese and asso- ciated iron mineral phases like cryptomelane and goethite (Rao et al., 2000). There is enrichment of Na-K-Ca-Mg in Anujurhi manganese ores which is diagnostic assemblage for marine manganese ox- ides (Nicholson, 1992). Fig. 6. Back-scattered electron images (EPMA) showing different textures (a) Romanechite (Rm) being altered by clay mineral gorceixite, (b) Romanechite (Rm) as fracture filling in brecciated quartz (qtz), (c) Garnet grains (dark grey) with alteration rims of oxides and/or hydroxides of manganese and iron, enclosed in a matrix of Romanechite (Rm) being altered to Gorceixite (Gx) & (d) ilmenite (Ilm)-pyrophanite (Pyp) zoning within Romanechite (Rm). 295Mineralogy, geochemistry and genesis of low-grade manganese ores of Anujurhi area, Eastern Ghats, India Genesis of manganese ores The four sources of material for sedimentary manganese deposits are hydrothermal, hydrog- enous, detrital, and diagenetic. Sea-f loor hydro- thermal crusts typically have fractionated Fe and Mn concentrations, resulting in either Fe-rich (Fe/Mn > 10) or Mn-rich (Fe/Mn < 0.1) deposits. On the other hand, the Fe/Mn ratio of hydroge- nous ferromanganese sediments, such as deep-sea manganese nodules, averages about unity (Crerar et al., 1982). The Anujurhi manganese ores have an average Fe/Mn ratio of 0.81, ranging from 0.06 to 3.48, suggesting that the major source is hy- drogenous ferromanganese sediments. Hydroge- nous deposits are formed by the slow precipitation of Fe and Mn from seawater and are characterized by Mn/Fe ratios between 0.5 to 5 and a relatively high content of trace metals (Bonatti, 1972; Glas- by, 1997), similar to that of the Nishikhal manga- nese ores (Acharya, 1997). The Si/Al ratio can be used to differentiate be- tween hydrothermal, hydrogenous, and detrital materials and sources (Crerar et al., 1982; Choi and Hariya, 1992). Hydrogenous ferromanganese Table 4. Representative chemical composition of manganese ores (wt%). Sample ANJ/1 ANJ/2 ANJ/3 ANJ/4 ANJ/5 ANJ/6 ANJ/7 ANJ/8 ANJ/9 ANJ/10 Si 12.53 17.37 16.56 20.35 14.52 15.11 8.69 5.40 17.12 14.91 Al 13.01 13.64 12.04 5.93 5.46 14.31 3.02 5.73 3.95 3.68 Mn 10.94 10.33 11.4 13.58 25.29 10.65 17.06 19.30 12.78 15.37 Fe (T) 8.64 6.35 8.37 11.54 4.03 6.69 27.25 24.54 16.61 18.26 Mg 0.16 0.19 0.20 0.14 0.20 0.14 0.07 0.22 0.02 0.03 Na 0.36 0.27 0.20 0.18 0.17 0.16 0.04 0.04 0.00 0.00 Ti 1.04 0.86 0.72 0.17 0.25 0.84 0.06 0.23 0.22 0.19 Ca 0.69 0.36 0.24 0.24 3.31 0.21 0.10 0.69 0.54 0.64 P 1.41 0.47 0.32 0.29 1.65 0.31 0.68 0.53 0.87 0.60 Mn/Fe 1.27 1.63 1.36 1.18 6.28 1.59 0.63 0.79 0.77 0.84 Si/Al 0.96 1.27 1.38 3.43 2.66 1.06 2.87 0.94 4.33 4.05 Fig. 7. Scatterplot correla- tion between major oxides of Anujurhi manganese ores of EGMB. 296 Sujata PATTNAIK & Satrughan MAJHI nodules typically have a Si/Al ratio of about 3, which is characteristic of marine sediment. Ferro- manganese crusts have a mean Si/Al ratio of 5.1, while iron-rich hydrothermal crusts exhibit excep- tionally high Si/Al ratios ranging from 600 to 900, suggesting an additional source of Si in these de- posits. Some hydrothermal manganese-rich crusts also show high Si/Al ratios, ranging from 10 to 20 (Toth, 1980). The Si/Al ratio in the studied man- ganese ore ranges from 0.82 to 37.76, with a mean ratio of 3.38 (Fig. 8). Most samples fall within the hydrogenous field, indicating a source from ferro- manganese crusts and marine sediments. Howev- er, a few samples with high Si/Al ratios fall within the hydrothermal field, suggesting a possible hy- drothermal source for some manganese ores. The significant presence of alumina in certain samples can be attributed to the abundant clay minerals re- sulting from the chemical weathering of host rocks. The scatter plots of Na against Mg clearly dis- tinguishes manganese oxides deposited in marine, shallow marine and freshwater environments (Ni- cholson, 1992). The plots of Na versus Mg (Fig. 9) lie in the freshwater field of Nicholson (1992) sim- ilar to the samples of Nishikhal & Kutinga areas (Acharya, 1994 & 1997). The association of Mn-Ba indicates a probable freshwater origin (Nicholson, 1992). Nonetheless, it’s crucial to acknowledge that Ba is also enriched in hydrothermal minerali- zation (Nicholson, 1992). The CaO-Na2O-MgO ternary plot (after Das- gupta et al., 1999) shows that the Mn oxide ores are associated to both marine sedimentary envi- ronments and freshwater sedimentation in lakes (Fig. 10). In the Anujurhi area, the prevalence of oxide facies without any manganese carbonate mineral further suggests that the ores were depos- ited in highly oxidizing environments in shallow water, near shore, or shelf settings (Roy, 1981; Dasgupta et al., 1993; Nicholson et al., 1997). Ad- ditionally, the Fe-Six2-Mn ternary plot after Toth, 1980 also indicates that manganese originated from Fe-Mn crusts and nodules (Fig. 11). Ti is typ- ically not mobile in hydrothermal solutions and is used to gauge the amount of clastic input (Choi & Hariya, 1992). A high concentration of Ti indicates the mixing of detrital material during precipita- tion, which is backed by a strong correlation be- tween aluminum (Al) and titanium (Ti) as shown in Figure 12. The khondalite succession consists mainly of shallow-water sediments including orthoquartz- ite-carbonate suite, arkoses, and semi-pelites, with manganese beds indicating a passive conti- nental margin assemblage (Acharya, 1997; Ram- akrishnan et al., 1998; Roy, 2006; Nanda, 2008). In the Anujurhi area, well-defined bands of man- ganese ore occur with the same strike and dip as the dominant foliation in the quartzite and quartz-feldspar-garnet-sillimanite gneiss. Addi- tionally, the similar imprints of different phases of folds in manganese ore bodies and the country rocks strongly suggest that the manganese ores have developed as a syngenetic part of the meta- sedimentary sequence of the Eastern Ghats com- plex. The sediments, primarily resulting from conti- nental weathering and containing iron and man- ganese, were transported to deposition sites such as lakes or shallow seas through various mecha- nisms. These include being carried as finely divided particles in river waters, as adsorbed compounds on clay particles, and as sols and gels. The pre- cipitation of iron and manganese in sedimentary Fig. 8. Plots of Aujurhi manganese ore samples in the Si vs Al graph (Choi & Hariya 1992). Fig. 9. Na vs Mg discrimination diagram of Nicholson (1992) showing Anujurhi manganese ore samples. 297Mineralogy, geochemistry and genesis of low-grade manganese ores of Anujurhi area, Eastern Ghats, India environments is significantly inf luenced by Eh- pH conditions. Manganese is soluble at low Eh and precipitates with increasing Eh (under strong- ly oxidizing conditions) at a pH ranging from 5–8, which corresponds to the pH of surface water to seawater (Maynard, 1983; Nicholson et al., 1997). Iron and manganese may have precipitated as iron and manganese hydroxides and oxides (Mn4+) in the presence of free oxygen. During early di- agenesis, Mn4+ oxides are reduced to Mn2+ oxides through anaerobic reduction. The model is supported by geochronologi- cal data indicating that the protolith ages of the meta-sedimentary rocks of Domain 3 in Eastern Ghats are approximately ≈ 2.2 Ga to 1.8 Ga (Rick- ers et al., 2001). This coincides with the worldwide f irst major deposition of sedimentary manganese during the early Paleoproterozoic era, lasting un- til 1.8 Ga, which occurred concurrently with the Great Oxygenation Event (GOE) between 2.45 Ga to 2.1 Ga (Spinks, 2018). These manganese ores have undergone multiple phases of deformation along with the host rocks, as evidenced by the folding of manganese ore bands and their parallel disposition to the S2 foliation. The manganese formations and associated host rocks have experienced at least two phases of ultra-high temperature (UHT) metamorphism at around 1100 Ma and granulite facies meta- morphism at approximately 950-900 Ma, which are related to the breakup of the Supercontinent Columbia and the assembly of the Superconti- nent Rodinia (Karmakar et al., 2009; Bose et al., 201; Dasgupta, 2019). With an increase in pres- sure and temperature during metamorphism, the manganese minerals of higher valency states were transformed into oxides of relatively lower valency (Roy, 1981; Acharya, 1997). After the post-metamorphic period around 950-900 Ma, the Eastern Ghats and Rayner Com- plex amalgamated during the formation of the Supercontinent Rodinia (Karmakar et al., 2009). This caused tectonic uplift and prolonged exposure to atmospheric oxygen and percolation of meteoric water, leading to the alteration of primary miner- als through supergene enrichment. The primary manganese oxide minerals were largely obliterat- ed, evident from the absence of primary manga- nese oxides and alteration of Mn- silicate like sp- essartine. Under these supergene conditions, the strong oxidation effects caused a transformation of the lower valency manganese oxides (primary minerals) into higher valency oxides such as cryp- tomelane, romanechite, and pyrolusite (Acharya et al., 1994). An intriguing example of this trans- formation is the development of romanechite and/ or cryptomelane and goethite from the manganese garnet (spessartine) i.e. supported by petrography and EPMA. The mineral-rich f luid may have jour- neyed through surface run-off or meteoric water to structurally weak planes like shear and fracture planes of the meta-sedimentaries, where Mn and Fig. 10. CaO-Na2O-MgO ternary plot after Dasgupta et al., 1999 shows majority samples falling in marine field for the manganese ore samples of Anujurhi, EGMB, Odisha. Fig. 11. Fe-Six2-Mn ternary plot after Toth, 1980 showing the manganese ore samples showing affiliation towards Fe-Mn crusts and nodules. Fig. 12. TiO2-AI2O3 diagram showing positive correlation for the Anujurhi samples. 298 Sujata PATTNAIK & Satrughan MAJHI Fe reprecipitated as cavity filling and replacement deposits, predominantly containing quartz and feldspar. The replacement and colloidal textures of the secondary manganese oxides provide compel- ling evidence for this origin. The remobilized supergene manganese ores occur as lensoidal ore bodies within the granulite facies of rocks of EGB, persisting for a significant strike length. These ore bodies have been con- f irmed to exist up to a depth of 30–35 m from the surface through drilling. The manganese content in these EGB ores, averaging around 15 %, is lower than that of the Iron Ore Group (Mohapatra et al., 2009) and can be classified as ferruginous man- ganese ore. The high phosphorus content in these ores presents a challenge for commercial recovery, as evidenced in the case of Kutinga-Nishikhal ores (Acharya et al., 1994 & 1997; Rao et al., 2000). However, characterizing these low-grade ores for their mineralogy and association could unlock promising prospects for future utilization. Hence, a thorough study of these ores in the future could be undertaken using Raman Spectroscopy in conjunction with Scanning Electron Microscope (SEM) studies, accompanied by trace element ge- ochemistry analysis. This approach is expected to provide detailed insights into the mineralogy and geochemical behavior of the processes involved during the supergene enrichment and subsequent mobilization to form commercially viable deposits. Acknowledgements The authors would like to express their gratitude to the Deputy Director General of the Geological Survey of India, State Unit: Odisha, for providing administrative and financial support to this work between 2016 and 2018. The study was conducted as part of the mineral exploration project (FSPID: ME/ER/ODS/2016/008 & M2AFGBM-MEP/NC/ER/SU-ODS/2017/12919). The authors are also thankful to Shri Bijay Kumar Sahu, Retired Deputy Director General, GSI, and Shri Manoj Kumar Patel, Retired Deputy Director General, GSI, for their suggestions, guidance, and supervision during f ieldwork. The authors express their appreciation to the personnel working in Petrological Lab of Odisha, the Chemical Lab of Eastern Region, Mineral Physics Divi- sion and EPMA lab of NCEGR at Central Headquarters, GSI, Kolkata, for their timely submission of results and cooperation during lab work. Conflict of interest The authors certify that there is no conf lict of inter- est with any individual or any organization. References Acharya, B.C., Rao, D.S. & Sahoo, R.K. 1997: Mineralogy, geochemistry and genesis of Ni- shikhal manganese ore deposit, South Orissa, India. Min. Deposita, 32, 79–93. https://doi. org/10.1007/s001260050074 Acharya, B.C., Rao, D.S & Sahoo, R.K. 1994: Min- eralogy and genesis of Kutinga manganese de- posit, South Orissa, India. J. Min. Petr. Econ. Geol. 89: 317–328. https://doi.org/10.2465/ ganko.89.317 Alvi, S.H. & Shaif Mohd. 2021: Geochemical sig- natures of manganese ores around Barbil, No- amundi-Koira basin, Singhbhum Craton, East- ern India. Geology, Ecology, and Landscapes, 5/4: 260–268. https://doi.org/10.1080/247495 08.2020.1720489 Bhattacharya, S., Kar, S., Saw, A.K., Das & P. 2011: Relative Chronology in High-Grade Crystal- line Terrain of the Eastern Ghats, India: New Insights. Int. Jour. Geosciences, 2: 398–405 Bhattacharya, A. & Gupta, S. 2001: A reappraisal of polymetamorphism in the Eastern Ghats belt – A view from north of the Godavari rift. Proc. Indian Acad. Sci, 110/4: 369–383. https://doi. org/10.1007/BF02702901 Bose, S., Dunkley, D.J., Dasgupta, S., Das, K. & Arima, M. 2011: India–Antarctica– Australia– Laurentia connection in the Paleo Mesoprote- rozoic revisited: evidence from new zircon U– Pb and monazite chemical age data from the Eastern Ghats Belt, India. Geol. Soc. of Ameri- ca Bulletin, 123: 2031–2049. Chetty, T.R.K. 2014: Deep crustal Shear Zones in the Eastern Ghats Mobile Belt, India: Gondwa- na correlations. J. Ind. Geophysics. Union, 18, 19–56 Choi, J.H. & Hariya, Y. 1992: Geochemistry and depositional environment of manganese oxide deposits in Tokoro belt, northeastern Hok- kaido, Japan. Econ. Geol. 87/5: 1265–1274. https://doi.org/10.2113/gsecongeo.87.5.1265 Crerar, D.A., Namson, J., Chyi, M.S., Williams, L. & Feigenson, M.D. 1982: Manganiferous Cherts of the Franciscan Assemblage: I. Gen- eral Geology, Ancient and Modern Analogues, and Implications for Hydrothermal Convection at Oceanic Spreading Centers. Economic Geol- ogy, 77/3: 519–540. https://doi.org/10.2113/ gsecongeo.77.3.519 Dash, C., Behera, S.N. & Patel, S.N. 2009: Delinea- tion of potential Manganese ore bands/bodies within the Manganiferous horizon of the cen- tral sector of the Eastern Ghats Granulite Belt in Orissa covering parts of Bolangir, Kalahan- 299Mineralogy, geochemistry and genesis of low-grade manganese ores of Anujurhi area, Eastern Ghats, India di and Rayagada districts (P-II). Unpublised G.S.I report (2003-2005). Dash, C. & Behera, S.N. 2009: Search for potential manganese ore bands/bodies within the man- ganiferous horizon of the eastern part of the Eastern Ghats granulite belt in Orissa covering parts of Angul and Boudh district s, (P - I). Unpublised G.S.I report. Dasgupta, H.C., Sambasiva Rao, V.V. & Krishna, C. 1999: Geology, geochemistry and genesis of the freshwater, precambrian manganese deposit of the iron ore group from Noamundi basin, East- ern India. Indian J. Geol., 71: 247–264 Dasgupta, S. & Sengupta, P. 2003: Indo-Antarc- tic correlation: a perspective from the Eastern Ghats Granulite Belt, India. In: Yoshida, M., Windley, B.F. & Dasgupta, S. (eds.): Proterozo- ic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, London, Spe- cial Publications, 206: 131–143. Dasgupta, S. 2019: Petrological evolution of the Eastern Ghats Belt- Current status and future directions. IUGS, 43/1: 124–131. https://doi. org/10.18814/epiiugs/2020/020007 Dasgupta. S., Bose, S. & Das, K. 2013: Tectonic evolution of the Eastern Ghats Belt, India. Prec. Res., 227: 247–258. https://doi.org/10.1016/j. precamres.2012.04.005 Dobmeier, C.J. & Raith, M.M. 2013: Crustal archi- tecture and evolution of the Eastern Ghats Belt and adjacent regions of India, Geol. Soc. Spec. Publ., 206: 145–168. https://doi.org/10.1144/ GSL.SP.2003.206.01.09 Glasby, G.P. 1977: Marine manganese deposits. Elsevier Oceanography Series, 15. New Zea- land: 45–52. Jena, S.K., Devdas, V. & Bhattacharya, S.K. 2001: Final report on the exploration for manganese ore in Kutinga block and adjoining areas of Ko- raput, Rayagada and Bolangir districts, Oris- sa. Unpublished G.S.I report Karmakar, S., Bose, S. & Dasgupta, S. 2009: Pro- terozoic Eastern Ghats Belt, India – a witness of multiple orogenies and its lineage with an- cient supercontinents. Journal of the Virtual Explorer, Electronic Edition, 32, paper 3. Korhonen, F.J., Clarke, C., Brown, M., Bhattacha- rya, S. & Taylor, R. 2013: How long-lived is ul- trahigh temperature (UHT) metamorphism? Constraints from zircon and monazite geo- chronology in the Eastern Ghats orogenic belt, India. Prec. Res. 234: 322–350. https://doi. org/10.1016/j.precamres.2012.12.001 Li, Z.X., Bogdanova, S.V., Collins, A.S., David- son, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K. & Vernikovsky, V. 2008: Assembly, configuration, and break- up history of Rodinia: A synthesis. Prec. Res., 160: 179–210. https://doi.org/10.1016/j.pre- camres.2007.04.021 Manganese Ore: Vision 2020 and Beyond 2014: In- dian Bureau of Mines, Govt. of India, Ministry of Mines. Maynard, J.B. 1983: Geochemistry of Sedimen- tary Ore Deposits. Springer-Verlag New York Inc.: 121–145 Nanda, J.K. 2008: Tectonic Framework of Eastern Ghats Mobile Belt. An Overview. Memoir Geo- logical Society of India, 74: 63—87. Nicholson, K. 1992: Contrasting mineralogical-ge- ochemical signatures of manganese oxides: Guides to metallogenesis. Economic Geology, 87/5: 1253–1264. Nicholson, K., Hein, J.R., Buhn, B. & Dasgupta, S. 1997: Manganese Mineralization: Geochemis- try and Mineralogy of Terrestrial and Marine Deposits. The Geological Society Special Pub- lication, 119. Padmaja, J., Sarkar, T., Sorcar, N., Mukherjee, S., Das, N. & Dasgupta S. 2022: Petrochronolog- ical evolution of Mg-Al granulites and associ- ated metapelites from the contact zone of the Archean Bastar Craton and Proterozoic East- ern Ghats Province, and its implications. Ge- osystems and Geoenvironment, 1/4: 100041. https://doi.org/10.1016/j.geogeo.2022.100041 Parrotti, D.D., da Conceição, F.T. & Navarro, G.R.B. 2023: The Mineralogy, Geochemistry and Or- igin of the Supergene Manganese Occurrenc- es in the Southern Minas Gerais, Brazil. Min- erals, 13/9: 1216. https://doi.org/10.3390/ min13091216 Post, J.E. 1999: Manganese oxide minerals: Crys- tal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA, 96/7: 3447–3454. https://doi.org/10.1073/ pnas.96.7.3447 Pradhan, S., Mishra, P.P., Dash, N., Mishra, P.C., Khaoash, S. & Mohapatra, B.K. 2016: Manga- nese mineralization in parts of Eastern Ghats around Ambadola, Rayagada District, Odisha. Vistas in Geological Research, Special Publica- tion in Geology, 14: 42–48. Ramakrishnan, M., Nanda, J.K. & Augustine, P.F. 1998: Geological evolution of the Proterozoic Eastern Ghats mobile belt. Proc. Workshop on Eastern Ghats Mobile Belt, Geol. Surv. Ind., Spec. Publ: 44. 300 Sujata PATTNAIK & Satrughan MAJHI Rao, D.S., Acharya, B.C., Sahoo & R.K. 2000: Role of mineralogy, mineral chemistry and geo- chemistry in mineral processing: A case study for high phosphorus manganese ores of Nishi- khal, South Orissa, India. Processing of Fines, 2: 25–40. Rickers, K., Mezger, K. & Raith, M.M. 2001a: Evo- lution of the continental crust in the proterozoic Eastern Ghats belt, India and new constraints for rodinia reconstruction: implications from Sm-Nd, Rb-Sr and Pb-Pb isotopes. Prec. Res. 112: 183–210. Rogers, J.J.W. & Santosh, M. 2002: Configuration of Columbia, a Mesoproterozoic superconti- nent. Gond. Res., 5: 5–22. Roy, S. 1981: Manganese Deposits. Academic Press, London. Roy, S. 2000: Late Archean initiation of manga- nese metallogenesis: its significance and envi- ronmental controls. Ore Geol. Rev., 17: 179– 198. Roy, S. 2006: Sedimentary manganese metallogen- esis in response to the evolution of the Earth system. Earth-Science Reviews, 77: 273–305. Spinks, S.C., Thorne, R.L., Sperling, E., White, A., Armstrong, J., leGras, M., Birchall, R. & Mun- day, T. 2018: Sedimentary Manganese as Pre- cursors to the Supergene Manganese Deposits of the Collier Group; Capricorn Orogen, West- ern Australia. CSIRO, Australia. EP18235. 36. Toth, J.R. 1980: Deposition of submarine crusts rich in manganese and iron. Geological Society of America Bulletin, Part I, V. 91: 44–57. https:// doi.org/10.1130/0016-7606(1980)91%3C44:- DOSCRI%3E2.0.CO;2 Upadhyay, D. 2008: Alkaline magmatism along the southeastern margin of the Indian shield: implications for regional geodynamics and constraints on craton-Eastern Ghats Belt su- turing. Prec. Res. 162: 59–69. https://doi. org/10.1016/j.precamres.2007.07.012 Walker, T.L. 1902: Geology of Kalahandi State, Central Provinces. Memoir, Geological Survey of India, 33: 1–22. Zhao, G., Cawood, P.A., Wilde, S.A. & Sun, M. 2002: Review of global 2.1-1.8 Ga orogens: implications for a pre Rodinia supercontinent. Earth Sci. Rev., 59/1–4: 125–162. https://doi. org/10.1016/S0012-8252(02)00073-9 Zhao, G., Sun, M, Wilde, S.A. & Li, S. 2004: A Paleo Mesoproterozoic supercontinent: as- sembly, growth and breakup. Earth Sci. Rev., 67: 91–123. https://doi.org/10.1016/j.earsci- rev.2004.02.003 © Author(s) 2024. CC Atribution 4.0 License Localised multi-hazard risk assessment in Kyrgyz Republic Ocena tveganja večkratnih nevarnosti v Kirgiški republiki Ruslan UMARALIEV1, Vitalii ZAGINAEV2, Daurbek SAKYEV3, Dimitar TOCKOV4, Madina AMANOVA3, Zarangez MAKHMU- DOVA1, Kydyr NAZARKULO1, Kanatbek ABDRAKHMATOV5, Abdurashit NIZAMIEV6, Rui MOURA7 & Kevin BLANCHARD1* 1United Nations World Food Programme, Country Office in the Kyrgyz Republic (UN WFP); *corresponding author: kevin. blanchard@wfp.org 2Mountain Societies Research Institute, University of Central Asia, Kyrgyz Republic (UCA) 3Emergency Monitoring and Forecasting Department, Ministry of Emergency Situations of the Kyrgyz Republic (MES) 4United Nations Office for Disaster Risk Reduction (UNDRR) 5Institute of Seismology of the National Academy of Sciences of the Kyrgyz Republic (ISNASKR) 6Osh State University, Kyrgyz Republic (OSU) 7University of Aveiro, Portugal (UAVR) Prejeto / Received 17. 9. 2024; Sprejeto / Accepted 21. 11. 2024; Objavljeno na spletu / Published online 16. 12. 2024 Key words: Natural hazard, Risk, Exposure, Vulnerability, disaster risk reduction, disaster risk management, Suzak district Ključne besede: Naravne nevarnosti, tveganje, izpostavljenost, ranljivost, zmanjševanje tveganja nesreč, obvladovanje tveganja nesreč, obmoje Suzak Abstract One of the key tasks in ensuring national security is the ability of the state and society to recognise and effectively assess the conditions for disasters, and to prevent them from threatening the sustainable development of the country. The Kyrgyz Republic is highly vulnerable to the inf luence of climate change, which in turn affects the frequency and intensity of disasters. The Kyrgyz Republic is exposed to almost all types of geological and man-made hazards, including earthquakes, landslides, debris f lows, f lash f loods, outbursts of mountain lakes, dam failures, avalanches, droughts, extreme temperature, epidemics and releases of hazardous substances. Analysis of information on existing risks and their control systems used to reduce their negative impact makes it possible to assess the degree of probability, the expected consequences of threats, determine the degree of risk, the adaptive potential of communities and select appropriate protective measures. Therefore, this study is conducted to assess the hazard, vulnerability and exposure of Suzak district (Jalal-Abad oblast) in order to quantify the risk of the study area using multi-parameter holistic assessment with field collecting of primary data and utilizing Index-based Risk Assessment approach based on applying INFORM Risk model. Collected data was used to downscale subnational INFORM Risk model for municipal and district level using a multi-layered structure. A risk score is calculated by combining 72 indicators that measure three main dimensions: hazard & exposure, vulnerability, and lack of coping capacity. These findings provide an opportunity to develop a more effective disaster risk management at the local and national levels, by prioritizing relevant actions and investments for municipalities – districts which are demonstrated relatively highest risk scores. Also, the possibility of applying localized risk assessment procedures provides an opportunity to obtain more accurate sub-national (district/oblast based) and national levels with effective assessing dynamics of risk. Izvleček Ena izmed ključnih nalog pri zagotavljanju nacionalne varnosti je sposobnost države in družbe, da prepoznata in učinkovito ocenita pogoje za nesreče ter preprečita, da bi te ogrozile trajnostni razvoj države. Kirgizistan je zelo ranljiv za vplive podnebnih sprememb, ki vplivajo na pogostost in intenzivnost nesreč. Izpostavljen je skoraj vsem vrstam geoloških nevarnosti in tudi nevarnostim, ki jih povzroči človek, vključno s potresi, zemeljskimi plazovi, blatnimi tokovi, hudourniki, izbruhi gorskih jezer, porušenji jezov, snežnimi plazovi, sušami, ekstremnimi temperaturami, epidemijami in sproščanjem nevarnih snovi. Analiza informacij o obstoječih tveganjih in njihovih nadzornih sistemih, ki se uporabljajo za zmanjšanje njihovega negativnega vpliva, omogoča oceno stopnje verjetnosti, pričakovanih posledic, določitev stopnje tveganja, prilagoditvenega potenciala skupnosti in izbiro ustreznih zaščitnih ukrepov. V tem članku prikazujemo oceno nevarnosti, ranljivosti in izpostavljenosti okrožja Suzak (v regiji Džalal-Abad) z namenom kvantificiranja tveganja z uporabo večparametrske celostne ocene z zbiranjem primarnih podatkov na terenu in uporabo pristopa ocenjevanja tveganja na podlagi indeksa INFORM. Zbrani podatki so bili uporabljeni za prilagoditev regionalnega modela tveganja INFORM za občinsko in okrožno raven z uporabo večplastne strukture. Ocena tveganja je izračunana s kombinacijo 72 kazalnikov, ki merijo tri glavne dimenzije: nevarnost in izpostavljenost, ranljivost in pomanjkanje sposobnosti obvladovanja. Ti rezultati omogočajo razvoj učinkovitejšega upravljanja tveganj nesreč na lokalni in nacionalni ravni, s prednostnim določanjem ustreznih ukrepov in naložb za občine – okrožja, ki imajo relativno najvišje ocene tveganja. Možnost uporabe lokaliziranih postopkov ocenjevanja tveganja omogoča pridobitev natančnejših ocen tveganja na regionalni (okrožni/območni) in nacionalni ravni z učinkovitim ocenjevanjem dinamike tveganja. GEOLOGIJA 67/2, 301-315, Ljubljana 2024 https://doi.org/10.5474/geologija.2024.015 302 UMARALIEV, ZAGINAEV, SAKYEV, TOCKOV, AMANOVA, MAKHMUDOVA, NAZARKULO, ABDRAKHMATOV, NIZAMIEV, MOURA & BLANCHARDI Introduction In recent years, many countries have experi- enced significant negative impacts from disasters related to the effects of climate change, particular- ly in the high mountain regions of Asia (Liu et al., 2021; Khanal et al., 2023; Havenith et al., 2017). The Kyrgyz Republic is affected by landslides, es- pecially in the southern regions (Golovko et al., 2017). Catastrophic debris and mud f lows affect communities in mountains and valleys, especially in the northern Tien-Shan (Erokhin et al., 2018; Zaginaev et al., 2019). The entire territory of the Kyrgyz Republic is located in a high seismic zone (Kalmetieva et al., 2009). The last major landslide (estimated volume was 106 m3) event in Aysai vil- lage (29.04.2017), Uzgen district (Osh oblast) dam- aged 7 houses and killed 24 people. Recent f lash f loods in the south of the Kyrgyz Republic (Jalal- Abad oblast) in May 2022 and 2024 damaged fa- cilities and eroded agricultural fields worth tens of thousands of USD. The occurrence of rockfalls and rockslides represents a significant risk to the stability of critical infrastructure, including road and railway networks. On all strategic roads with- in the Kyrgyz Republic, which connect the various regions, geological hazards present a considerable threat. The potential for rockslides in Boom Gorge on the Bishkek-Karakol road represents a particu- lar concern, given its role as the only direct route connecting the Issyk Kul and Chui oblast, and the potential impact on food security. To minimize potential losses from disasters, it is necessary to develop effective strategies for dis- aster risk reduction (DRR) and resilient systems based on risk assessment (Peduzzi et al., 2009). It is important to note that a large majority of worldwide disasters occur in developing countries, where the effect of disasters tends to cancel out real growth in the countries (Long, 1978). The importance of implementing effective risk reduction practices is confirmed by modern glob- al concepts of sustainable development and the Sendai Framework for Disaster Risk Reduction 2015-2030 in the climate change context (Kelman, 2015). By applying effective DRR practices, even countries with low levels of economic capacity can achieve tangible results in building resilience, en- suring the stability of effective growth even when disasters strike. At the same time, the resources, preserved from possible destruction are directed towards ensuring the most important sectors of development - healthcare, education, social pro- tection, etc., thereby protecting the development gains from the risk of disaster. To monitor the development of hazardous nat- ural processes in the Kyrgyz Republic, specialized work is regularly carried out by various scientific institutions and agencies within the system of in- tegrated disaster monitoring as part of the disaster risk management policy implemented by the Min- istry of Emergency Situations of the Kyrgyz Re- public (MES). However, a major challenge is the lack of sufficient information for comprehensive risk assessments at the local level, which hampers the implementation of preventive measures. In order to better understand and assess the risk, a comprehensive approach was taken to collect all locally available information for a pre-selected pilot site. The Suzak district of Jalal-Abad oblast was selected as the pilot site because it is the most exposed to natural hazards, both in terms of the number of disasters registered over the last 30 years and the frequency of occurrence. Consid- ering the population growth rate in the Fergana Valley (Rahmonov, 2022) and the lack of arable land, there is a risk that urban agglomerations will expand into the development zones of hazardous exogenous geological processes. Study site The Kyrgyz Republic (KR) is a mountainous, land-locked, lower-middle-income country in Central Asia that has abundant natural resources and potential for the expansion of its hydroelec- tricity production, agriculture sector, and tourism industry (UN WFP, 2020). The territory is located between two major mountain systems, the Tien Shan and the Pamir. The total area of Kyrgyz Re- public is about 199 900 km2. The Kyrgyz Repub- lic is bordered by Kazakhstan to the north, Uz- bekistan to the west, Tajikistan to the southwest, and China to the east. Approximately 94 % of the country is above 1,000 m elevation, and 40 % is above 3,000 m. Over 80 % of the country is within the Tian Shan Mountain chain and 4 % is perma- nently under ice and snow. The Kyrgyz Republic had a population of 7.3 million in 2023. Most of population lives in the foothills of the mountains and is centered around two urban conurbations, the capital Bishkek and Chuy Valley in the north, and in the south of the country between Osh and Jalal-Abad cities and the eastern edge of the Ferghana Valley. A widespread use of small-scale family-based farms coupled with land degradation makes the agricultural sector rather inefficient (UN ESCAP, 2018). As a result, the country faces moderate to severe food insecurity touching nearly 24 % of the total population and a high dependence on imports of basic food items (UN WFP, 2020). 303Localised multi-hazard risk assessment in Kyrgyz Republic Fig. 1. Susceptibility map by debris and mud floods and landslides of A. Kyrgyzstan, B. Jalal-Abad oblast (data from MES KR). 304 UMARALIEV, ZAGINAEV, SAKYEV, TOCKOV, AMANOVA, MAKHMUDOVA, NAZARKULO, ABDRAKHMATOV, NIZAMIEV, MOURA & BLANCHARDI The Kyrgyz Republic is highly susceptible to natural hazards such as debris and mud f loods, landslides, avalanches and earthquakes. Accord- ing to different estimates, the total absolute mul- ti-hazard Average Annual Loss (AAS) for the Kyr- gyz Republic is between USD 92.68 million (UN ESCAP, 2018) and USD 146 million (World Bank, 2011). Of this total multi-hazard AAS, earth- quakes contribute 67.54 % and riverine f loods 32.46 %. The multi-hazard AAL is heavily concen- trated in the southern part of the country - in Osh and Jalal-Abad oblasts (provinces) that together account for almost 50 % of the total multi-haz- ard AAL (28.86 % and 20.49 % respectively), fol- lowed by the Chuy oblast (13.91 %) and Bishkek (10.27 %). Kyrgyz Republic’s aggregate loss as a percentage of gross national income is the highest among all Central Asian countries (World Bank, 2011). Figure 1 A shows a map of Kyrgyzstan with zones based on the occurrence of emergency situ- ations (the most common hazard processes: mud- f lows and landslides) for the period from 1991 to 2023. The zones with the highest density of debris and mud f lows and landslides are located in the southern part of the country: Jalal-Abad and Osh oblasts (Fig. 1 A). Figure 1B shows the events analysed for the Jalal-Abad oblast. The most affected district in Jalal-Abad oblast is Suzak district, total area of Suzak district is about 3 019 km². To analyze the existing hazard and risk assess- ment mechanisms at the local and national levels, a study was conducted to analyze the range of en- vironmental conditions in one of the most haz- ard-prone regions of the Kyrgyz Republic - Suzak district (Jalal-Abad oblast) on Figure 2, located in the foothills surrounding the Fergana Valley on Fig. 2. A. Location of Suzak district; B. Municipalities of Suzak district. 305Localised multi-hazard risk assessment in Kyrgyz Republic the northeast. In the spectrum of hazards, the ter- ritory of the district is most exposed to mudf lows and landslides, these are the most developed types of hazards and disasters for the Kyrgyz Republic (in terms of the cases, damage, and losses). In Figure 3, can be observed that all the settle- ments (grey blocks) are located in the most haz- ardous landslide and debris and mudf low areas. The study area is also characterized by the highest underlying vulnerability indicators - large population, high density, and poverty levels - that increase the level of risk. Material and methods This work was carried out in three stages, with the initial f ield collection and preliminary quan- titative analyses of several indicators character- izing hazard, exposure and vulnerability (based on the current methodological experience of the MES), and the subsequent selection of the most relevant indicators that can integrally represent each risk factor (based on the INFORM Risk mod- el (Marin-Ferrer, 2017) developed by the Europe- an Union Joint Research Centre (EU JRC)). The INFORM Risk model was chosen for adaptation in this study - as one of the most informative and vis- ually effective methods of presenting data, based on the classical principles of risk assessment and having a well-developed principle of demonstrat- ing and visualizing the risk assessment mecha- nism. However, the study collected baseline data and compiled a database of 73 different risk com- ponents on municipal level within one district. Data were collected in various ways (ground ob- servations, measurements and mapping using UAVs, instrumental measurements, various mod- elling techniques, statistical data analysis). Based on these data, an initial quantitative assessment of hazard, exposure, and vulnerability have been conducted. As part of these actions, the existing level of understanding and practice of risk as- sessment and its main factors in the state system (Ministry of Emergency Situations (MES) and lo- cal self-government bodies), the technical capabil- ities of the state system to ensure rapid and cen- tralized collection of the necessary data to produce centralized analysis of multi-risk data were also assessed. Over the past decade, several quantitative and index-based approaches to risk assessment have been developed. All these approaches are based on the conceptual disaster risk equations developed by Blaikie (Blaikie, 2014), Alexander (Alexander, 2000), Dilley (Dilley, 2005), Van Westen (Van Westen. 2009), Umaraliev (Umaraliev, 2020) and the risk assessment principles of the European Commission (EU strategy, 2009) and the United Nations (UNISDR, 2015). The applied conceptual equation of disaster risk was considered as a func- tion of hazard, vulnerability and exposure: Risk=Hazard (H) x Vulnerability (V) x Exposure (Ex) (1) Alternatively, considering the contribution of resilience (UNISDR, 2015), this equation less common than (1): Risk= Hazard (H ) x Vulnerability (V) x Exposures (Ex) (2) Resilience (Rs) The INFORM Risk model also has three dimen- sions: Hazard & Exposure, Vulnerability and Lack of Coping Capacity. Each dimension includes dif- ferent categories, which are user-driven concepts related to the needs of humanitarian and resilience actors. The INFORM Risk Model is based on the risk concepts described above and includes three dimensions of risk: Hazards & Exposure, Vulner- ability and Lack of Coping Capacity. They are con- ceptualized in a reciprocal relationship: the risk of what (natural and human hazards) and the risk to what (population). Fig. 3. A. landslide hazard B. Debris and mudflow hazard (Suzak district, Jalal-Abad oblast). 306 UMARALIEV, ZAGINAEV, SAKYEV, TOCKOV, AMANOVA, MAKHMUDOVA, NAZARKULO, ABDRAKHMATOV, NIZAMIEV, MOURA & BLANCHARDI The INFORM Risk model balances two major forces: the hazard & exposure dimension on one side, and the vulnerability and the lack of coping capacity dimensions on the other side. Hazard de- pendent factors are treated in the hazard & expo- sure dimension, while hazard independent factors are divided into two dimensions: the vulnerability dimension that considers the strength of the in- dividuals and households relative to a crisis situ- ation, and the lack of coping capacity dimension that considers factors of institutional strength. The INFORM Risk model adopts the three aspects of vulnerability ref lected in the UNDRR defini- tion. The aspects of physical exposure and phys- ical vulnerability are integrated in the hazard & exposure dimension, the aspect of fragility of the socio-economic system becomes INFORM Risk’s vulnerability dimension while lack of resilience to Table 1. Overview of localised (municipality level) Risk for Suzak district components and indicators under the Hazard and Exposure dimension. Category Component Indicators Source Natural Earthquakes Number of significant earthquakes in the last 10 years MES, Field-works, UAV assessment Floods Coastal erosion in the last 10 years, quantity Coastal erosion in the last ten years, km Debris and mud flows Landslides Landslide (area) Landslide (number) Activity of mudflow-prone rivers WFP/MES Study on “Conducting a set of research works on vulnerability and hazard assessment in or- der to integrate effective principles of disaster risk as- sessment into the national disaster monitoring system of Suzak district of Jalal-Abad oblast” Presence of forest plantations on landslide-prone slopes Presence of floodplain forests Rockfalls and rockslides, in the last 10 years, number MES statistic, Field-works, UAV assessment Avalanches, in the last 10 years, number Climate change Climatic water deficit FAO Eath Map Aridity Index Wildfires Incidence of wildfires (including forest fires) MES statistic Total number of people dead due to forest fires Population Presence of dangerous infections (plague, cholera, anthrax, malaria) WFP/MES Study on “Conducting a set of research works on vulnerability and hazard assessment in or- der to integrate effective principles of disaster risk as- sessment into the national disaster monitoring system of Suzak district of Jalal-Abad oblast” Population density (people per sq. km of land area) National Statistical Committee of Kyrgyzstan Average household size Children under 5 (% of total population) Availability of educational institutions in the mu- nicipality in case of emergency WFP/MES Study on “Conducting a set of research works on vulnerability and hazard assessment in or- der to integrate effective principles of disaster risk as- sessment into the national disaster monitoring system of Suzak district of Jalal-Abad oblast” Human Transport accidents Transport accidents in the last 10 years MES statistic People dead due to transport accidents in the last 10 years Technological hazards Number of dumpsites Zoï Environmental Network Approximate air distance from pesticides dumpsite Potential Hazardous Lakes MES statistic Presence of industries that may pose risks of cli- mate change WFP/MES Study on “Conducting a set of research works on vulnerability and hazard assessment in or- der to integrate effective principles of disaster risk as- sessment into the national disaster monitoring system of Suzak district of Jalal-Abad oblast” 307Localised multi-hazard risk assessment in Kyrgyz Republic cope and recover is treated under the lack of coping capacity dimension. The split of vulnerability in three components is particularly useful for track- ing the results of disaster reduction strategies over time. Disaster risk reduction activities are often localized and address particular community-level vulnerabilities and capacities. To accommodate the INFORM Risk methodolo- gy, where the vulnerability variable is split among three dimensions, the equation is updated to: Risk = Hazard&Exposure1/3 × Vulnerability1/3 × Lack of coping capacity1/3 (3) This is a multiplicative equation where the risk equals zero if any of the three dimensions is zero. Theoretically, in case of debris and mudf lows there is no risk if there is no likelihood of a debris f lows to occur or/and the hazard zone is not populated or/and if the population is not vulnerable (e.g., all people have high level of education and live in high level of health and livelihood condition as well as they can afford protective houses/livelihoods) or/ and if the resilience of the country to cope and re- cover is ideal. Hazard & Exposure The hazard & exposure dimension ref lects the probability of physical exposure associated with specific hazards. There is no risk if there is no physical exposure, no matter how severe the haz- ard event is. Therefore, the hazard and exposure dimensions are merged into hazard & exposure dimension. As such it represents the load that the community has to deal with when exposed to a hazard event. The disaster risk analysis based on a large number of studies, data and sources, includ- ing such key indicators as exposure - the location of people, infrastructure, housing, production fa- cilities and other tangible human assets in areas prone to threats, vulnerability - conditions that increase the susceptibility of a person, communi- ty, property or systems to the impact of threats, long-term statistics of emergencies that resulted in loss of life, harm to human health or the environ- ment, significant economic damage and disruption of human life conditions, indicate that the prevail- ing risk disasters for the population. The dimen- sion comprises two categories: natural hazards and human-induced hazards, aggregated with the geometric mean, where both indexes carry equal weight within the dimension. The Natural Haz- ard category encompasses physical exposures to primary disasters like earthquakes, f loods, land- slides, climate change, and wildfires. Conversely, the Human Hazard category quantifies risks using normalized values from transport and industrial accidents. The table below provides an overview of the components and indicators used to populate the localised Risk Index for Suzak district, specif- ically for the hazard and exposure dimension, as well as the calculation of INFORM categories and dimensions (Table 1). Vulnerability Humanitarian organizations primarily focus on people, who constitute the ‘at-risk ’ element in the Risk composite index. The impact of disasters on people in terms of number of people killed, in- jured, and made homeless is predominantly felt in developing countries while the economic costs of disasters are concentrated in the industrialized world. The Vulnerability dimension addresses the intrinsic predispositions of an exposed population to be affected, or to be susceptible to the damaging effects of a hazard, even though the assessment is made through hazard independent indicators. So, the vulnerability dimension represents economic, political and social characteristics of the commu- nity that can be destabilized in case of a hazard event. Physical vulnerability, which is a hazard de- pendent characteristic, is dealt with separately in the hazard & exposure dimension. There are two categories aggregated through the geometric aver- age, socio-economic vulnerability and vulnerable groups. Socio-economic component incorporates components of Development & Deprivation, Gen- der Inequality, Agriculture and Economy to calcu- late the normalized index. The indicators used in each category are different in time variability and the social groups considered in each category are the target of different humanitarian organizations. The second category of the applied Vulnerability assessment includes Children under five, Disaster preparedness, Uprooted people, Other vulnera- ble groups, and Food Security. If the first catego- ry refers more to the demography of a country in general, the vulnerable group category captures social groups with limited access to social and health care systems. The following table present an overview of components and indicators used for filling the Risk Index for Suzak district indexes (vulnerability dimension adopted from INFORM Risk model), and calculation of risk categories and dimensions (Table 2). 308 UMARALIEV, ZAGINAEV, SAKYEV, TOCKOV, AMANOVA, MAKHMUDOVA, NAZARKULO, ABDRAKHMATOV, NIZAMIEV, MOURA & BLANCHARDI Table 2. Overview of localized (municipality level) Risk components and indicators under the Vulnerability dimension piloted in target district. Category Component Indicators Source Socio-Economic Vulnerability Development & Deprivation Share of population that has income below the poverty line Ministry of Labour, Social Security and Migration of the Kyrgyz Republic (MLSSM) Gender equality Share of women (as % of total population) National Statistical Committee of Kyrgyzstan (NSC) Women educational attainment Agriculture Energy and energy efficiency Index WFP/MES Study on “Conducting a set of resear- ch works on vulnerability and hazard assessment in order to integrate effective principles of disaster risk assessment into the national disaster monito- ring system of Suzak district of Jalal-Abad oblast” Number of households dependent on the condition of pastures as a percentage Number of households dependent on soil conditions (farming) Adequacy of sown areas Water sufficiency for irrigation Economy Availability of tourist places and de- stinations to accommodate tourists in the municipality WFP/MES Study on “Conducting a set of resear- ch works on vulnerability and hazard assessment in order to integrate effective principles of disaster risk assessment into the national disaster monito- ring system of Suzak district of Jalal-Abad oblast” Rainfall in summer destroys pasture infrastructure Heavy snowfalls block passes and roads, limiting life support and access to medical care Unemployment rate (people unemployed in total population) Ministry of Labour, Social Security and Migration of the Kyrgyz Republic (MLSSM) Dependency of population from remittances WFP/MES Study on “Conducting a set of resear- ch works on vulnerability and hazard assessment in order to integrate effective principles of disaster risk assessment into the national disaster monito- ring system of Suzak district of Jalal-Abad oblast” Vulnerable Groups Children U5 Child Mortality National Statistical Committee of Kyrgyzstan (NSC) Disaster preparedness Victims or deaths in the municipality as a result of disasters WFP/MES Study on “Conducting a set of resear- ch works on vulnerability and hazard assessment in order to integrate effective principles of disaster risk assessment into the national disaster monito- ring system of Suzak district of Jalal-Abad oblast” Number of large-scale emergency situations in the last 10 years MES Uprooted people Number of migrants (internal and external) National Statistical Committee of Kyrgyzstan (NSC) Other vulnerable groups Number of families with disabled people Ministry of Labour, Social Security and Migration of the Kyrgyz Republic (MLSSM) Food Security Food availability score WFP Food access score Food utilization score Food stability score institutional and infrastructural. The difference between the categories is in the stages of the dis- aster management cycle that they are focusing on. The ‘Institutional’ category focuses on DRR pro- grams targeting mitigation and the preparedness/ early warning phases, while the ‘Infrastructural ’ category assesses capacities for emergency re- sponse and recovery. Institutional category incor- porates components of Governance, Disaster risk reduction and humanitarian, while Infrastructure category is consistent of: Communication, Physical Lack of Coping Capacity For the coping capacity dimension, the question is which issues the government has addressed to increase the resilience of the society and how suc- cessful their implementation is. The coping capac- ity dimension measures the ability of a country to cope with disasters in terms of formal, organized activities and the effort of the country’s govern- ment as well as the existing infrastructure which contribute to the reduction of disaster risk. It is aggregated by a geometric mean of two categories: 309Localised multi-hazard risk assessment in Kyrgyz Republic Connectivity, Water and Sanitation, Access to health care and Ecology. The table below presents an overview of the components and indicators used to populate the localised Risk Index for Suzak district, specifically focusing on the lack of coping capacity dimension, along with the calculation of risk categories and dimensions adopted from IN- FORM Risk model (Table 3). Results Hazard and Exposure of the municipalities of Suzak district The territory of Suzak district is primarily as- sociated with earthquakes, f loods, mudf lows, droughts, landslides, industrial and transport ac- cidents, large fires, epidemics, mass infectious dis- eases of people. The greatest number of victims, as well as significant material losses, are caused by droughts, f loods and earthquakes, as well as massive infectious diseases of people (for example, the COVID-19 pandemic, limiting the coping ca- pacities of the healthcare systems throughout the district), however the epidemics effect is measured indirectly by measuring mortality and health ca- pacity across municipalities (included in Popula- tion component). The results of assessment repre- sented in Table 4. Based on the assessment results - Kyz-Kel face the highest risk due to very high risk in the natu- ral and human category of the hazard and expo- sure dimension. When broken down by compo- nents, Kyz-Kel exhibits very high risk across the board, except in the areas of transport accidents, wildfires, and population-related factors. Barpy experiences high risk primarily from the natural hazard category, notably from high earthquake exposure. Conversely, Kegart’s high risk stems from the human hazard category, due to numerous dumpsites, proximity to the country’s largest pes- ticide dumpsite, and nearby potentially hazardous lakes. Kara-Daryia and Kurmanbek face medium Table 3. Overview of localised (municipality level) Risk components and indicators under the Lack of Coping Capacity dimension piloted in target district. Category Component Indicators Source Institutional Governance Self-organization and potential of the local community WFP/MES Study on “Conducting a set of resear- ch works on vulnerability and hazard assessment in order to integrate effective principles of disaster risk assessment into the national disaster monitoring system of Suzak district of Jalal- Abad oblast” Share of population covered by emergency training Availability of qualified emergency personnel and training centers DRR Availability of recommendations from the MES and whether work is being done to improve safety Emergency response exercises Humanitarian Availability of local volunteer teams Infrastructure Communication Individuals using the Internet (% of population) Mobile cellular subscriptions (per 100 people) Physical Connectivity Road density coefficient Roads’ density (field and muddy roads) Roads density (automobile roads) Water and Sanitation Frequency of power outages Availability of a central water supply system Quality of drinking water Sufficiency of water supply sources Interruptions in drinking water Access to health care Availability of healthcare services (availability of primary care facilities) Staffing with medical workers Mortality of the population Ecology Greening of the locality Presence of forest shelterbelts along roads and highways Air quality in the municipality (winter) Air quality in the municipality (summer) Street lighting 310 UMARALIEV, ZAGINAEV, SAKYEV, TOCKOV, AMANOVA, MAKHMUDOVA, NAZARKULO, ABDRAKHMATOV, NIZAMIEV, MOURA & BLANCHARDI levels of hazard and exposure risk. Kara-Dary- ia’s risk is elevated due to technological accidents, while Kurmanbek experiences the highest climate change risk among the municipalities, driven by high exposure to climatic water deficits. Other municipalities experience varying levels of risk, ranging from low to very low, in both human and natural hazard categories. Table 4. Localized (municipality level) indexes of Hazard and Exposure. E ar th qu ak es F lo od s L an ds lid es C lim at e ch an ge W ild fir es Po pu la ti on N at u ra l Tr an sp or t ac ci de nt s Te ch no lo gi ca l ha za rd s H u m a n H A Z A R D & E X P O S U R E Municipalities (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) Bagysh 1.7 6.1 3.1 8.7 4.5 3.8 4.7 3.9 3.1 3.5 4.1 Barpy 10.0 6.7 2.7 7.2 4.5 5.0 6.3 3.9 2.8 3.4 5.0 Kara-Alma 0.0 0.0 1.1 1.7 4.5 5.0 1.4 3.9 7.4 5.9 4.0 Kara-Daryia 0.0 3.4 3.0 5.0 4.5 6.3 2.9 3.9 7.2 5.8 4.5 Kegart 0.8 0.8 3.5 8.6 4.5 3.8 3.8 3.9 8.1 6.5 5.3 Kurmanbek 0.0 2.8 4.0 7.6 4.5 5.0 3.7 3.9 6.2 5.2 4.5 Kyz-Kel 10.0 5.8 6.3 6.5 4.5 3.8 6.5 3.9 6.2 5.2 5.9 Kyzyl-Tuu 0.8 1.2 3.8 5.9 4.5 3.8 3.0 3.9 6.2 5.2 4.2 Lenin 0.0 0.5 2.7 5.8 4.5 3.8 2.6 3.9 2.7 3.3 3.0 Saipidin-Atabek 0.0 2.2 3.9 0.0 4.5 6.3 2.0 3.9 3.2 3.6 2.8 Suzak 0.0 0.0 2.5 5.7 4.5 7.5 2.4 3.9 2.4 3.2 2.8 Tash-Bulak 1.7 2.2 3.2 6.1 4.5 3.8 3.2 3.9 4.5 4.2 3.7 Yrys 0.0 3.3 1.9 3.6 4.5 6.3 2.4 3.9 2.3 3.1 2.8 Table 5. Localized (municipality level) indexes of Vulnerability. D ev el op m en t & D ep ri va ti on G en de r eq ua lit y A gr ic ul tu re E co no m y S o ci o -E co n o m ic V u ln er ab il it y C hi ld re n U 5 D is as te r pr ep ar ed ne ss U pr oo te d pe op le O th er v ul ne ra bl e gr ou ps Fo od S ec ur it y V u ln er ab le G ro u p s V U L N E R A B IL IT Y Municipalities (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) Bagysh 0.0 6.7 4.2 6.0 4.2 5.6 1.5 7.8 5.7 3.8 5.2 4.7 Barpy 0.0 7.2 7.4 7.2 5.5 5.6 5.0 3.1 3.3 5.0 4.5 5.0 Kara-Alma 10.0 6.7 4.8 5.3 6.7 5.6 5.0 5.2 10.0 5.0 6.9 6.8 Kara-Daryia 9.8 2.2 4.8 7.1 6.0 5.6 5.0 8.6 2.0 6.3 5.9 6.0 Kegart 2.1 7.2 5.3 4.8 4.9 5.6 3.8 8.0 5.3 3.8 5.5 5.2 Kurmanbek 4.6 6.7 5.2 4.5 5.3 5.6 5.0 8.1 5.0 5.0 5.9 5.6 Kyz-Kel 7.5 5.0 6.6 5.4 6.1 5.6 8.3 0.0 0.0 3.8 4.4 5.3 Kyzyl-Tuu 1.5 6.7 5.3 3.7 4.3 5.6 10.0 1.4 0.0 3.8 5.7 5.0 Lenin 1.4 6.7 6.4 4.8 4.8 5.6 1.3 0.0 8.8 3.8 4.8 4.8 Saipidin-Atabek 5.4 2.2 3.0 2.8 3.4 5.6 0.0 10.0 5.7 6.3 6.6 5.2 Suzak 10.0 5.0 2.0 7.2 6.1 5.6 3.8 6.0 8.3 7.5 6.5 6.3 Tash-Bulak 1.5 5.5 5.7 3.4 4.0 5.6 5.0 10.0 10.0 3.8 8.0 6.4 Yrys 3.2 7.2 2.7 8.0 5.3 5.6 3.8 8.4 6.1 6.3 6.3 5.8 311Localised multi-hazard risk assessment in Kyrgyz Republic Vulnerability of the municipalities of Suzak district Based on assessment results - Kara-Alma face the highest vulnerability risk due to both, so- cio-economic and vulnerable groups categories high risk. High proportion of people below pov- erty line in the socio-economic category and high proportion of families living with disability were among the main contributors to elevated risk. At the same time, Kara-Daryia, Kurmanbek, Su- zak and Tash-Bulak municipalities face high risk due to individual factors. While all vulnerability components contributed to the high risk in Kur- manbek, the high risk in Kara-Daryia is a result of elevated risk in the poverty and uprooted peo- ple components. High risk in Tash-Bulak and Su- zak municipalities, from other side is a result of increased risk of uprooted people and disability, coupled with economic risk (low number of tourist places and rainfall damages) in Suzak municipal- ity. The rest of the municipalities face medium to low risk, although notably higher than in the rest of the dimensions (hazard and exposure and cop- ing capacity). A higher proportion of people facing poverty, unemployment, or disability, in addition to higher risk of child mortality has contributed to the higher risk in the vulnerability dimension (Table 5). Coping capacity of the municipalities of Suzak district Based on assessment results, the risk in the coping capacity dimension is the lowest in com- parison to the other dimensions, due to low risk in the communications, water and sanitation and DRR components. However, Tash-Bulak faces very high coping capacity risk due to increased insti- tutional risk (lack of emergency response exercis- es, training and low self-organizational capacity), while the risk in the infrastructure category miti- gated the further increase of overall coping capac- ity risk. Kara-Alma and Kyzyl-Tuu face somewhat high risk among the municipalities due to poor ac- cess to health care (staffing of medical facilities and availability of healthcare facilities), coupled with poor road connectivity in Kara-Alma and lack of sufficient emergency response exercises in Kyzyl-Tuu (Table 6). Risk of the municipalities of Suzak district Risk Index for municipalities of Suzak district provide a risk overview by ranking the municipal- ities in the district from very low to very high risk, based on cluster analysis. Based on the analysis, most of the municipal- ities face medium risk (5 municipalities: Barpy, Kurmanbek, Saipidin-Atabek, Yrys and Suzak), Table 6. Localized (municipality level) indexes of Coping capacity. G ov er na nc e D R R H um an it ar ia n In st it ut io na l C om m un ic at io n Ph ys ic al C on ne ct iv it y W at er a nd S an it at io n A cc es s to h ea lt h ca re E co lo gy In fr as tr u ct u re L A C K O F C O P IN G C A PA C IT Y Municipalities (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) (0-10) Bagysh 4.0 7.8 0.0 3.9 0.0 10.0 2.0 4.4 2.7 5.6 4.8 Barpy 7.0 0.3 0.0 2.4 0.0 7.2 4.3 2.9 2.3 3.4 2.9 Kara-Alma 3.3 0.0 8.3 3.9 0.0 10.0 2.8 8.3 3.9 6.7 5.5 Kara-Daryia 3.3 0.0 0.0 1.1 0.0 6.2 4.8 1.5 0.0 1.6 1.4 Kegart 0.0 0.0 10.0 3.3 0.0 6.7 0.0 5.0 0.8 4.4 3.9 Kurmanbek 0.0 0.0 10.0 3.3 0.0 1.1 4.8 1.5 6.0 1.7 2.5 Kyz-Kel 3.3 0.0 0.0 1.1 0.0 2.3 8.0 3.2 5.1 2.0 1.6 Kyzyl-Tuu 4.6 8.8 3.3 5.6 0.0 3.3 0.0 6.7 4.3 5.5 5.6 Lenin 1.1 0.5 0.0 0.5 0.0 3.3 1.2 0.0 1.6 0.9 0.7 Saipidin-Atabek 5.2 0.5 5.3 3.7 0.0 2.6 0.0 8.9 0.8 5.6 4.7 Suzak 1.9 7.3 0.0 3.1 0.0 7.6 2.0 6.1 2.4 5.7 4.5 Tash-Bulak 8.7 5.5 10.0 8.1 0.0 2.4 5.3 6.5 5.4 3.9 6.5 Yrys 9.5 0.0 0.0 3.2 0.0 6.0 2.0 5.6 3.3 4.1 3.7 312 UMARALIEV, ZAGINAEV, SAKYEV, TOCKOV, AMANOVA, MAKHMUDOVA, NAZARKULO, ABDRAKHMATOV, NIZAMIEV, MOURA & BLANCHARDI 2 of the municipalities face low (Kyz-Kel and Ka- ra-Daryia) while one municipality (Lenin) very low risk. Very low to medium overall risk is a re- sult of very low risk in the coping capacity dimen- sion, even though Kyz-Kel and Barpy face high hazard risk. Vulnerability risk is elevated in al- most all municipalities, contributing to increase of overall risk across all municipalities. Three of the municipalities face high risk: Kegart (due to high risk in the hazard and exposure and vulnerabil- ities dimensions), Kyzyl-Tuu (due to high coping capacity and vulnerability risk), while in Bagysh the high risk is a result of elevated risk in all of the dimensions of INFORM. At the same time, Ka- ra-Alma and Tash-Bulak face the highest risk due to very high risk in the lack of coping capacity and vulnerability dimensions (Table 7). Based on the results of the calculated indexes, thematic maps were prepared at the district level (Figure 4) for the risk and three main calculated indicators (hazard and exposure, vulnerability and lack of coping capacity) based on the collected field material and available generalised data. Table 7. Localized (municipality level) indexes of Risk. H A Z A R D & E X P O S U R E V U L N E R A B IL IT Y L A C K O F C O P IN G C A PA C IT Y R IS K R IS K C L A S S Municipalities (0-10) (0-10) (0-10) (0-10) (V.Low-V.High) Bagysh 4.1 4.7 4.8 4.5 High Barpy 5.0 5.0 2.9 4.2 Medium Kara-Alma 4.0 6.8 5.5 5.3 Very High Kara-Daryia 4.5 6.0 1.4 3.4 Low Kegart 5.3 5.2 3.9 4.8 High Kurmanbek 4.5 5.6 2.5 4.0 Medium Kyz-Kel 5.9 5.3 1.6 3.7 Low Kyzyl-Tuu 4.2 5.0 5.6 4.9 High Lenin 3.0 4.8 0.7 2.2 Very Low Saipidin-Atabek 2.8 5.2 4.7 4.1 Medium Suzak 2.8 6.3 4.5 4.3 Medium Tash-Bulak 3.7 6.4 6.5 5.4 Very High Yrys 2.8 5.8 3.7 3.9 Medium Fig. 4. A. Hazard and exposure B. Vulnerability, C. Lack of coping capacity D. Integrated risk assessment. 313Localised multi-hazard risk assessment in Kyrgyz Republic Discussion A deeper understanding of the risk mechanism allows us to establish and develop effective models for its management, which will generally ensure risk reduction, community resilience, and more effective rates of development. Despite the impor- tance of modern knowledge about disaster risk, and the definition of disaster risk, unfortunate- ly current concepts for considering and studying disasters in the Kyrgyz Republic are still predom- inantly based on the old paradigm of risk where the “risk” is considered equal to “hazard”. Fur- thermore, descriptive and qualitative assessment methods dominate over mathematical and quan- titative models, making them less evidence-based and less compelling for the interdisciplinary com- munity of disaster management specialists. An- other important disadvantage of the existing ap- proaches to risk and hazard assessment applied in national practices in the Kyrgyz Republic is the absence or separate consideration of vulnerabili- ty processes (in which the components of hazard are centrally analyzed by the MES, and the com- ponents of vulnerability by the MLSSM). This sit- uation complicates the process of adequate per- ception and understanding of risk - as potential disaster losses, in lives, health status, livelihoods, assets, and services, which could occur to a par- ticular community or a society over some specified future time and complicates identify effective dis- aster risk reduction mechanisms. The risk indexes calculated for the smallest ad- ministrative units can significantly enhance gov- ernance. They support land use planning, disaster insurance, anticipatory actions, disaster prepared- ness, and DRM-DRR and civil protection policies. In addition, data from localized risk assessment (municipality based) will provide valid and accu- rate assessment results at the subnational (district, oblast) and national levels. Using our target area as an example, the risk level of Suzak district can be taken as the average risk of all municipalities, which will be 4.2. However, the risk value of an oblast will make sense if the assessment fully cov- ers all municipalities and districts of one adminis- trative oblast. The same procedure can be applied to oblasts, when many risk values of oblasts will form a reasonable risk index of the entire country for comparisons of its risk level with other coun- tries in the region and the world - in system of unified principles. This set of works is planned to be implemented during next stage of research. It is envisaged that the authors of this paper will present the assess- ment results to the Kyrgyz government as a model for potential integration into the national ‘Concept for the Development of a Unified Integrated Disas- ter Monitoring and Forecasting System in the Kyr- gyz Republic until 2030’. The model will be devel- oped considering possible replication and scaling at the national level. The introduction of this mechanism into the na- tional DRM system should also be accompanied by the development of initiatives aimed on improve- ment of digital data exchange mechanisms. It is also important to note that the identified risk pa- rameters are not constant, they could be changed in the future due to various reasons, including en- vironmental, social, or technical factors (disasters, climate change, industrial activities, the change in DRR education, reconstruction, wear and tear of the facilities, mitigation measures etc.). Therefore, to assess the real status of risk, it would be impor- tant to implement risk assessment periodicity. The quantitative multi-risk assessment approach also clearly illustrates the interaction between physi- cal, environmental, and social factors of disaster risk and how they contribute to the risk values (Umaraliev, 2020). Thus, outcomes of research also contributed to raising awareness that the dis- asters could, in fact, be reduced, if not even pre- vented (Birkmann & Pelling, 2006) and created a suitable basis for formulating effective strategies for mitigation of their impact on people, commu- nities, and economies. The quantitative multi-risk assessment proce- dures can also be effectively integrated into disaster risk financing systems and particularly into disas- ter insurance programs. Thus, disaster insurance programs occupy an increasingly important place in the structure of DRR because they are strength- ening financial resilience (ensure that national financial system and population are financially protected in the disaster events) and because they reduce dependence on post-disaster external aid (or improve the effectiveness of governance). Unfortu- nately, the disaster insurance sector is one of the least developed DRR mechanisms in Central Asia (CA). In modern times (after the Collapse of the Soviet Union in 1991), in the Kyrgyz Republic the national disaster insurance program was only initi- ated in 2015 (Law of KR, 2016). Development of an index-based insurance policy is very important in developing countries with limited resources, weak governance, systemic corruption, and high poverty, where big differences in incomes between different socio-economic groups and geographical areas ex- ist and the Kyrgyz Republic is one of those regions, where these environmental and socio-economic is- sues are particularly acute (UNISDR, 2010). 314 UMARALIEV, ZAGINAEV, SAKYEV, TOCKOV, AMANOVA, MAKHMUDOVA, NAZARKULO, ABDRAKHMATOV, NIZAMIEV, MOURA & BLANCHARDI Conclusion The study results highlighted practitioners’ un- derstanding of ‘risk ’ and ‘disaster’ concepts, spe- cifically their ability to differentiate the critical risk dimensions: hazard, exposure, and vulnera- bility. The localized Risk model for Suzak district uses subnational level indicators of INFORM Risk model applied for 13 municipalities. The national and UN data sources used to construct the model meet four basic criteria: (1) the data is free, public- ly available and transparent, (2) the data provides sufficient municipality coverage, (3) the data is re- liable (4) and the data allows comparison between municipalities. The study revealed that the MES’s standard monitoring procedures lack a methodological basis for comprehensive risk identification. They focus solely on hazard and exposure without consider- ing their interrelationships or including vulnera- bility analysis. In this context, current research practice mainly provides a statement of the situa- tion but cannot provide information on the use of which will reduce risk and build resilience. The localised Risk index for Suzak district rep- resents a final stage of piloting the institution- alization of local risk assessment procedures in Kyrgyz Republic. The Index gathered data from 13 municipalities of Suzak district, Jalal-Abad oblast. A total of 72 indicators have been collected and indexed by following the INFORM Risk model (26 indicators – hazard and exposure, 22 – vulnera- bility, 24 – lack of coping capacity). The process of development in collaboration between central and local governments, international and research in- stitutions. The risk score combines 72 indicators across three dimensions–hazard and exposure, vulnerability, and lack of coping capacity–to cal- culate each municipality’s risk level. Every munic- ipality has a rating between 0 and 10 for risk and all of its dimensions, categories, and components. The low values of the index represent a better con- dition (e.g. lower risk / strong or good resilience), and the high values of the index represent a worse condition (e.g. higher risk / weak or bad resil- ience). The indexes allow a relative comparison of the risk and components between municipalities and of different components within a municipali- ty. Of the 13 municipalities, 2 demonstrated very high risk indexes (Kara-Alma, Tash-Bulak) and 3 are high risk indexes (Bagysh, Kegart, Kyzyl-Tuu) and only one municipality is demonstrated very low risk index (Lenin). At the next stage of our study, we plan to apply INFORM Risk model with its adaptation to the lo- cal context at the level of other rural (Aiyl Aimak) or urban (town administration) municipalities of the Kyrgyz Republic. Adaptation of this method will be developed through the following stages: • Determination of the optimal set of risk criteria (based on INFORM Risk model standards and the capabilities of the national data and statis- tics system). Сlarifying the existing risk crite- ria (the form of their mathematical-numerical representation). • Normalization of risk criteria (categories and components) in a unified system and index standard. • Calculation of risk components with subse- quent assessment of the Risk index. • Risk mapping and providing information for end-users. Acknowledgment This work was supported by the Swiss Agency for Development and Cooperation and implemented by the UN World Food Programme (UN WFP) in close collab- oration with the United Nations Office for Disaster Risk Reduction (UNDRR), local authorities and research in- stitutions with the participation of experts and based on the request of the Ministry of Emergency Situations of the Kyrgyz Republic. References Alexander, D. 2000: Confronting catastrophe: new perspectives on natural disasters. Liverpool University Press: 288 p. Birkmann, J. & Pelling, M. 2006: Measuring vul- nerability to natural hazards: towards disaster resilient societies. United Nations University: 688 p. Blaikie, P., Cannon, T., Davis, I. & Wisner, B. 2004: At risk: natural hazards, people’s vulnerability and disasters. (2nd Edition). Routledge: 496 p. Dilley, M. 2005: Natural disaster hotspots: a glob- al risk analysis. World Bank Publications. 5: 148 p. Golovko, D., Roessner, S., Behling, R. & Klein- schmit, B. 2017: Automated derivation and spatio-temporal analysis of landslide prop- erties in southern Kyrgyzstan. Natural Haz- ards, 85: 1461–1488. https://doi.org/10.1007/ s11069-016-2636-y Erokhin, S.A., Zaginaev, V.V., Meleshko, A.A., Ruiz-Villanueva, V., Petrakov, D.A., Cherno- morets, S.S. & Stoffel, M. 2018: Debris f lows 315Localised multi-hazard risk assessment in Kyrgyz Republic triggered from non-stationary glacier lake outbursts: the case of the Teztor Lake com- plex (Northern Tian Shan, Kyrgyzstan). Land- slides, 15: 83–98. https://doi.org/10.1007/ s10346-017-0862-3 Havenith, H.B., Umaraliev, R., Schlögel, R., & Torgoev, I. 2017: Past and Potential Future Socioeconomic Impacts of Environmental Hazards in Kyrgyzstan. In: Perry. O.A. (ed.): Kyrgyzstan: political, economic and social is- sues. NOVA Science Publishers, NY, USA. 2: 63–113. Kalmetieva, Z.A., Mikolaichuk, A.V., Moldobekov, B.D., Meleshko, A.V., Jantaev, M.M., Zubovich, A.V. & Havenith, H.B. 2009: Atlas of earth- quakes in Kyrgyzstan. CAIAG, Bishkek:76 p. Kelman, I. 2015 Climate change and the Sendai framework for disaster risk reduction. Inter- national Journal of Disaster Risk Science, 6: 117–127. https://doi.org/10.1007/s13753- 015-0046-5 Khanal, S., Tiwari, S., Lutz, A.F., Hurk, B.V.D. & Immerzeel, W.W. 2023: Historical climate trends over High Mountain Asia Derived from ERA5 reanalysis data. Journal of Applied Me- teorology and Climatology, 62/2: 263–288. https://doi.org/10.1175/JAMC-D-21-0045.1 Law of Kyrgyz Republic 2016: On compulsory in- surance of residential premises against fire and natural disasters. Liu, J., Wu, Y. & Gao, X. 2021: Increase in occur- rence of large glacier-related landslides in the high mountains of Asia. Scientific Reports, 11/1: 1635. https://doi.org/10.1038/s41598- 021-81212-9 Long, F. 1978: The Impact of Natural Disasters on Third World Agriculture.American Journal of Economics and Sociology, 37/2: 149–163. ht tps://doi .org/10.1111/j.1536 -7150.1978. tb02809.x Marin-Ferrer, M., Vernaccini, L. & Poljansek, K. 2017: INFORM Index for Risk Management, Concept and Methodology. Publications Office of the European Union: 90 p. Peduzzi, P., Dao, H., Herold, C. & Mouton, F. 2009: Assessing global exposure and vulnerability towards natural hazards: The Disaster Risk Index. Natural Hazards and Earth System Sci- ence, 9/4:1149–1159. https://doi.org/10.5194/ nhess-9-1149-2009 Rahmonov, E.A. 2022: Factors affecting the so- cio-economic condition of the population in the Fergana valley in the years of independence. American Journal of Research in Humanities and Social Sciences, 7: 71–74. UN WFP, Annual Country Reports – Kyrgyzstan. 2020: Internet: https://www.wfp.org/publica- tions/annual-country-reports-kyrgyzstan UN ESCAP, Kyrgyz Republic: Risk Profile, 2018: Internet: https://www.unescap.org/sites/ defau l t/f i le s/Ky r g y z s t a n%20D i s a s ter %20 Risk%20Profile.pdf Umaraliev, R., Moura, R., Havenith, H.-B., Almei- da, F. & Nizamiev, A. 2020: Disaster Risk in Central Asia: Socio-Economic Vulnerability Context and Pilot-Study of Multi-Risk Assess- ment in a Remote Mountain Area of Kyrgyz Republic. European Journal of Engineering Research and Science, 5/3: 234–244. https:// doi.org/10.24018/ejeng.2020.5.3.1772 Van Westen, C.J. 2009: Multi-hazard risk assess- ment. UNU-ITC DGIM. Internet: http://www. itc.nl/EU strategy for supporting disaster risk reduction in developing countries. 2009: In- ternet: https://eur-lex.europa.eu/LexUriServ/ LexUriServ.do?uri=COM:2009:0084:FIN:EN: PDF UNISDR (United Nations International Strategy for Disaster Reduction). 2015: Sendai frame- work for disaster risk reduction 2015–2030. Internet: http://www.wcdrr.org/uploads/Sen- dai_Framework_for_Disaster_Risk_Reduc- tion_2015-2030.pdf. Accessed Apr 2015. UNISDR, In-depth Review of Disaster Risk Re- duction in the Kyrgyz Republic, 2010: In- ternet: https://www.preventionweb.net/ f i le s/14 436 _14 436I NDEP T HR E V IEWOF- DRRINKRfinal1.pdf World Bank, Kyrgyz Republic: Vulnerability, Risk Reduction, and Adaptation to Climate Change. 2011: Internet: https://climateknowledgepor- tal.worldbank.org/sites/default/files/2018-10/ wb_gfdrr_climate_change_country_profile_ for_KGZ.pdf Zaginaev, V., Falatkova, K., Jansky, B., Sobr, M. & Erokhin, S. 2019: Development of a potential- ly hazardous pro-glacial lake in Aksay Valley, Kyrgyz range, Northern Tien Shan. Hydrolo- gy, 6/1: 3. https://doi.org/10.3390/hydrolo- gy6010003 © Author(s) 2024. CC Atribution 4.0 License Geokemična porazdelitev elementov v okoljskih medijih iz okolice degradiranih območij površinskih kopov Geochemical distribution of elements in the environmental media from the surroundings of open pit areas Špela BAVEC1*, Sonja CERAR1, Martin GABERŠEK1 & Željko POGAČNIK2 1Geološki zavod Slovenije, Dimičeva ulica 14, SI-1000 Ljubljana, Slovenija; *corresponding author: spela.bavec@geo-zs.si 2Georudeko d.o.o., Anhovo, SI-5210 Deskle, Slovenija Prejeto / Received 9. 10. 2024; Sprejeto / Accepted 2. 12. 2024; Objavljeno na spletu / Published online 16. 12. 2024 Ključne besede: geokemična porazdelitev, tla, matična podlaga, potočni sediment, površinska voda, površinski kop Key words: geochemical distribution, soil, bedrock, stream sediment, surface water, open pit Izvleček Predstavljeni so rezultati geokemičnih preiskav v okolici površinskih kopov Kopriva (nahajališče naravnega kamna- apnenec) in Lipovški vrh (nahajališče apnenca za industrijske namene). Izvedli smo jih v okviru evropskega projekta LIFE IP RESTART. V sklopu omenjenega projekta se na degradiranih površinah omenjenih kopov, z namenom njihove revitalizacije, predvideva vzpostavitev testnih območij vgradnje sekundarnih materialov (mešanice recikliranih materialov in mineralnih surovin). Glavni cilj te študije je opredeliti izhodiščno stanje geokemične porazdelitve elementov v okoljskih materialih (kamninah, tleh, potočnih sedimentih in površinskih vodah) pred vzpostavitvijo testnih območij. Določene vsebnosti elementov bodo podlaga za spremljanje morebitnih okoljskih vplivov vgrajenih sekundarnih materialov. Rezultati so pokazali, da v kamninah zaradi geološke sestave (pretežno apnenec) med elementi prevladuje vsebnost Ca. Glede na zakonodajne smernice za tla smo ugotovili preseganja vsebnosti Pb v enem vzorcu (izvor je lahko antropogen ali naraven) in Ni v dveh vzorcih (predvidoma naraven izvor) v Koprivi. Na območju Lipovškega vrha so v Suhem potoku v dolvodnem sedimentu vsebnosti za elemente Mg, Na, Sr, Ca, Mn in S višje kot v gorvodnem sedimentu. Višje vsebnosti pripisujemo povečanemu antropogenemu doprinosu karbonatnega materiala vzdolž potoka (izpiranje materiala iz bližnjega kamnoloma in cest). V površinski vodi Suhega potoka smo ugotovili višje vsebnosti elementov S, Sr, B, U in Zn, ki niso presegle zakonodajnih smernic. Abstract The results of geochemical investigations - carried out within the framework of the European project LIFE IP RESTART - in the degraded areas of the Kopriva (deposit of natural stone-limestone) and Lipovški vrh (deposit of limestone for industrial purposes) open pits are presented. There test sites of the installation of secondary raw materials (a mixture of recycled materials and mineral raw materials) with the aim of revitalizing degraded surfaces are planned. The main goal of this study is to define the baseline geochemical distribution of elements in environmental materials (rocks, soil, stream sediment and surface water) for the purpose of monitoring the potential environmental impacts of installed secondary raw materials. In rocks Ca content predominates due to the geological setting (predominantly limestone) of the studied areas. According to the legislative guidelines for soil, exceedances have been found for Pb in one sample (origin can be natural or anthropogenic) and Ni in two samples (presumably natural origin) from the area of Kopriva. In the area of Lipovški vrh in the stream Suhi Potok, higher contents of Mg, Na, Sr, Ca, Mn and S occur in the downstream sediment compared to upstream sediment. It is assumed higher contents occur due to anthropogenic contribution of carbonate material along the stream (washing of materials from nearby open pit and road). In the surface water of Suhi Potok, higher concentrations of S, Sr, B, U and Zn were determined. However, the concentrations did not exceed the legislative guidelines. GEOLOGIJA 67/2, 317-332, Ljubljana 2024 https://doi.org/10.5474/geologija.2024.016 318 Špela BAVEC, Sonja CERAR, Martin GABERŠEK & Željko POGAČNIK Uvod Geokemična sestava površinskih materialov vpliva na biosfero, zato je njeno poznavanje ključ- no za razumevanje kroženja kemičnih prvin v oko- lju (Darnley et al., 1995). Porazdelitve elementov v površinskih materialih geosfere so opredeljene z njihovimi naravnimi variabilnostmi oziroma geokemičnim ozadjem (Darnley et al., 1995; Sal- minen et al., 2005; Gosar et al., 2019; Gassama et al., 2021). Poznavanje geokemičnega ozadja je sprva služilo predvsem odkrivanju novih mineral- nih nahajališč (Hawkes, 1957). Kasneje je postalo bistvenega pomena za opredelitev in identif ika- cijo virov onesnaženja ter za vzpostavitev zanes- ljivih okoljskih meril kakovosti za tla, sedimen- te in površinske vode (Gałuszka & Migaszewski, 2011). Kakovost površinskih materialov skozi čas ugotavljamo z okoljskim monitoringom, ki pred- stavlja ključno orodje za zaščito okolja in zdravja biosfere, vključno s človekom (Artiola & Brusseau, 2006). Med najpomembnejše antropogene dejav- nosti, ki povzročijo degradacijo naravnih okolij, spada izkoriščanje mineralnih surovin (Koščová et al., 2018). Slednje povzroča številne negativne vplive na okoliško krajino in prebivalstvo, kot so onesnaženje zraka, vod in tal (Šajn & Gosar, 2004; Bavec et al., 2015; Bavec & Gosar, 2016; Miler & Gosar, 2019; Miler et al., 2022). Z namenom pre- učitve možnih negativnih vplivov na okolje, ki bi lahko bili posledica nekdanjih rudarskih dejavno- sti, je bil za Slovenijo izdelan inventar, ki vključuje informacije o 33 rudnikih kovin, 43 premogovni- kih, 51 rudnikih nekovinskih mineralnih surovin, 156 odlagališčih odpadkov iz rudnikov kovin in 18 odlagališčih odpadkov iz premogovnikov (Gosar et al., 2020). Reševanje negativnih posle- dic zaprtih in opuščenih rudnikov ostaja v večji meri breme države (Uradni list SRS, št. 5/88; Ura- dni list RS, št. 26/05 – uradno prečiščeno bese- dilo, 43/10, 49/10 – popr., 40/12 – ZUJF, 25/14, 46/14, 82/15, 84/18 in 204/21; Uradni list RS, št. 26/05 – uradno prečiščeno besedilo; Uradni list RS, št. 22/06 – uradno prečiščeno besedilo). V letu 2022 je bilo aktivnih skupno 158 nahajališč s 180 pridobivalnimi prostori z rudarsko pravico za izkoriščanje 24 različnih mineralnih surovin, med katerimi prevladujejo prod in pesek ter teh- nični in naravni kamen (Senegačnik et al., 2023). Dokončna sanacija okolja in odprava posledic ru- darskih del aktivnih rudnikov je zakonsko urejena (Uradni list RS, št. 14/14 – uradno prečiščeno be- sedilo, 61/17 – GZ, 54/22 in 78/23 – ZUNPEOVE in 81/24) in v celoti bremeni nosilca rudarske pra- vice. Sanacija vključuje zapolnitev degradiranih površin z lastno inertno jalovino in odkrivko ter materiali (zemeljski izkop in umetno pripravljena zemljina), ki so skladni z merili okoljske zakono- daje. Ker materialov za sanacijo primanjkuje, se v sozvočju s prehodom na krožno gospodarstvo za zapolnitev degradiranih površin uporabljajo tudi t.i. geotehničnimi kompoziti iz recikliranih od- padkov (Turk et al., 2020; Đurić et al., 2023). Le ti lahko ob neustrezni izvedbi vplivajo na okolje v obliki emisij potencialno nevarnih snovi (Cerar & Bavec, 2019). Razvoj okoljsko sprejemljivih t.i. sekundarnih materialov za zapolnitev degradiranih površin pri- dobivalnih prostorov je ena izmed nalog projekta LIFE IP RESTART. Namen omenjenega projekta je premostiti ovire povezane z recikliranjem odpad- kov v Sloveniji, vključno s pomanjkanjem uskla- jene zakonodaje, nezadostnimi zmogljivostmi za recikliranje ter nizko družbeno sprejemljivostjo postopkov recikliranja in nastalih proizvodov (In- ternet 1). Testna območja vgradnje sekundarnih materialov z namenom revitalizacije degradiranih površin bodo vzpostavljena na območjih površin- skih kopov Kopriva in Lipovški vrh. Glavni cilj tega prispevka je določitev izhodišč- nega stanja geokemične porazdelitve elementov v kamninah, tleh, potočnih sedimentih in površin- skih vodah iz okolice degradiranih površin prido- bivalnih prostorov Kopriva in Lipovški vrh pred vzpostavitvijo testnih območij. Izhodiščne vseb- nosti elementov v obravnavanih materialih bodo osnova za dolgoročno spremljanje morebitnih okoljskih vplivov vgrajenih sekundarnih surovin. Metode Študijsko območje Kopriva Površinski kop Kopriva (sl. 1) se nahaja v ob- čini Sežana približno 1,5 km severno od naselja Kopriva, ki leži približno 60 km jugozahodno od Ljubljane na nadmorski višini okoli 285 m. V pri- dobivalnem prostoru Kopriva ter Kopriva 2 so iz- koriščali oz. izkoriščajo naravni kamen-apnenec (Senegačnik et al., 2023). Glede na Geološko karto Krasa 1:100.000 (Jurkovšek, 2013) širše območje kamnoloma gradijo plastnati mikritni apnenci z roženci in pelagičnimi mikrofosili Repenske for- macije. Sam kamnolom in območje južno od njega gradi člen Repen/Kopriva, sestavljen iz masivnega apnenca, ki vsebuje zdrobljene lupine mehkužcev, pretežno rudistov. Glede na digitalno Pedološko karto 1:25.000 (TIS/ICPVO, 1999-2010) se v ožji okolici površinskega kopa pojavljajo rendzina na apnencu in dolomitu ter rjava pokarbonatna tla na 319Geokemična porazdelitev elementov v okoljskih medijih iz okolice degradiranih območij površinskih kopov Pridobivalni prostor s koncesijo - Kopriva 2 Quarry with concession - Kopriva 2 Pridobivalni prostor s poteklo koncesijo - Kopriva Quarry with expired concession - Kopriva Testno območje Test site Vzorčna mesta Sampling sites kamnina rock tla soil LEGENDA LEGEND Sl. 1. Prikaz obravnavanega območja (Kopriva) skupaj z lokacijami vzorčnih mest in predvideno lokacijo testnega območja (Podlage: Ortofoto (Geodetska uprava Republike Slovenije); Linijski podatkovni sloj hidrografije – površinske vode (Ministrstvo za okolje podnebje in energijo, Direkcija Republike Slovenije za vode); meje pridobivalnega prostora (Zbirka rudarskih podatkov)). Fig. 1. Display of study area (Kopriva) together with sampling locations and foreseen test site location (Layers: Ortophoto Geodetic admin- istration of Slovenia); Line data layer of hydrography - surface waters (Ministry of the Environment, Climate and Energy, Slovenian Water Agency); Quarry boundaries (Mining data registry)). apnencu in dolomitu. Skladno z enotno državno evidenco o dejanski rabi zemljišč (MKGP, 2022) tla v ožji okolici površinskega kopa glede na rabo uvr- ščamo med trajne travnike, kmetijska zemljišča, porasla z gozdnim drevjem ali v zaraščanju, dreve- sa in grmičevje ter gozd. Območje kamnoloma Kopriva je del vodnega te- lesa podzemne vode »VTPodV 5019 Obala in Kras z Brkini« in vodonosnega sistema »50621 Bresto- vica – Timav«. Po IAH hidrogeološki klasifikaciji leži na območju lokalnega vodonosnika ali vodo- nosnika s spremenljivo izdatnostjo, ali obširnega 320 Špela BAVEC, Sonja CERAR, Martin GABERŠEK & Željko POGAČNIK vendar največ srednje izdatnega vodonosnika (II.b). Vodonosnik gradi zgoraj omenjeni zgornje- kredni člen Repen/Kopriva. Gre za hidrodinamsko odprt kraško-razpoklinski vodonosnik z dobro do zelo dobro vodoprepustnostjo dobro zakraselih ka- mnin. Gladina podzemne vode zaradi kraško-raz- poklinske poroznosti ni zvezna, globina do pod- zemne vode na ožjem območju zaradi odsotnosti vrtin in vodnjakov ni znana. Podzemna voda se na tem območju pojavlja na globini okoli 200 m pod površjem (ustni vir: Jasmina Rijavec). Napajalno zaledje vodonosnika predstavlja območje seve- rovzhodno od obravnavanega območja. Generalna smer toka podzemne vode na območju vodonosni- ka Brestovica – Timav je od severovzhoda proti zahodu – jugozahodu. Glavno napajanje vodonos- nika predstavljajo padavine (Mali et al., 2023). Ker gre za kraško območje, površinska voda v okolici kamnoloma ni prisotna. Lipovški vrh Površinski kop Lipovški vrh (sl. 2) se nahaja približno 500 m severno od naselja Briše v obči- ni Zagorje ob Savi, ki leži približno 30 km seve- rovzhodno od Ljubljane na nadmorski višini oko- li 480 m. V pridobivalnem prostoru Lipovški vrh izkoriščajo apnenec za industrijske namene (Se- negačnik et al., 2023). Širše območje kamnoloma sestavljajo miocenske sedimentne kamnine (apne- no-kremenovi konglomerati, ki prehajajo v pešče- njak, laporovci in apnenci) ter sedimenti (prod, pesek, melj in glina), ki so se odlagali v plitvem Panonskem bazenu. Ožje območje kamnoloma gradijo srednjemiocenske (badenijske) Laške pla- sti, pretežno litotamnijski apnenec ter apnenčevi peščenjaki in laporovci (Premru, 1980; Križnar & Mikuž, 2014; Pogačnik, 2022). Glede na digital- no Pedološko karto 1:25.000 (TIS/ICPVO, 1999- 2010) se v ožji okolici površinskega kopa pojavljajo evtrična rjava tla na različnih bazičnih kamninah in distrična rjava tla na miocenskih peskih, pešče- njakih in konglomeratih. Skladno z enotno držav- no evidenco o dejanski rabi zemljišč (MKGP, 2022) tla v ožji okolici površinskega kopa glede na rabo uvrščamo med trajne travnike, njive, neobdelana kmetijska zemljišča, drevesa in grmičevje ter gozd. Območje kamnoloma Lipovški vrh je del vo- dnega telesa podzemne vode »VTPodV 1008 Po- savsko hribovje do osrednje Sotle« in vodonosne- ga sistema »12320 Od Litije do Zidanega mostu«. Po IAH hidrogeološki klasifikaciji leži na območju lokalnega vodonosnika ali vodonosnika s spre- menljivo izdatnostjo, ali obširnega vendar največ srednje izdatnega vodonosnika (II.b). Severno in južno so manjši vodonosniki z lokalnimi ali ome- jenimi viri podzemne vode (III.a). Vodonosnik gradijo srednjemiocenske (badenijske) Laške pla- sti, pretežno litotamnijski apnenec ter apnenčevi peščenjaki in laporovci. Gre za hidrodinamsko odprt kraško-razpoklinski vodonosnik s srednje do slabšo vodoprepustnostjo. Gladina podzemne vode zaradi kraško-razpoklinske poroznosti ni zvezna, globina do podzemne vode pa zaradi po- manjkanja podatkov (vrtin/vodnjakov) ni znana. Napajalno zaledje vodonosnika predstavlja obmo- čje hriba Vrhlja, severno od obravnavanega obmo- čja. Glavno napajanje vodonosnika so padavine. V neposredni bližini obravnavanega območja tečeta potoka Kolovratščica na zahodu in Medija na jugu ter občasni vodotok (Suhi potok) na vzhodni strani kamnoloma. Kota struge potoka Kolovratščica je glede na podatke Atlasa okolja okoli 370 m n.v., ši- rina struge je 2–5 m. Vodotok je stalen. Severoza- hodno od kamnoloma potok teče po naravni strugi površinsko. Ob zahodnem robu kamnoloma, vse do izliva v potok Medija, teče ob vznožju hribov- ja skozi pokrit kanal ob cesti. Odsek Kolovratščice je po kategorizaciji urejanja vodotokov uvrščen v 2. razred, tj. med sonaravno urejene vodotoke. Južno od kamnoloma teče stalen potok Medija v katerega dolvodno od naselja Briše doteka tudi občasen vodotok (Suhi potok), ki teče vzhodno od kamnoloma. Vzorčenje Da bi ugotovili izhodiščno geokemično poraz- delitev vsebnosti elementov v okoljskih materialih, smo na obeh območjih vzorčili matično podlago in tla, na območju Lipovškega vrha pa še potočni sediment in površinsko vodo. Karbonatno matič- no podlago, ki je podrobneje opisana v prejšnjem poglavju, smo vzorčili z odvzemom svežih ko- sov kamnin znotraj obeh kamnolomov (v Koprivi vzorčno mesto KK2, v Lipovškem vrhu vzorčni mesti LK1, LK2). V Koprivi bo testno območje lo- cirano ob obstoječem odprtem kopu, na manjšem odlagališču karbonantnega jalovinskega materia- la, zato smo kose kamnin vzorčili tudi znotraj tega območja (vzorčno mesto KK1). V okolici površinskega kopa Kopriva smo dve vzorčni mesti za tla (KT1 in KT2) (sl. 1) določili v neposredni bližini testnega območja, kjer pri- čakujemo, da bodo morebitni vplivi (potencialno onesnaženje predvsem zaradi delovanja vetra in padavin) najbolj izraženi. V okolici površinskega kopa Lipovški vrh smo določili tri vzorčna mesta za tla (LT1, LT2 in LT3) ter gorvodno in dolvodno vzorčno mesto (glede na lokacijo kamnoloma) potočnih sedimentov in po- vršinskih vod v vodotokih Suhi potok (LS1/LV1, 321Geokemična porazdelitev elementov v okoljskih medijih iz okolice degradiranih območij površinskih kopov LS2/LV2) in Kolovratščica (LS3/LV3 in LS4/LV4) (sl. 2). Vzorčnih mest za tla v neposredni bližini testnega območja ni bilo mogoče vzpostaviti, saj je testno območje predvideno znotraj opuščenega območja pridobivalnega prostora, kjer so bila tla odstranjena zaradi pridobivanja mineralnih su- rovin. Zaradi tega smo vzorčne lokacije določili v bližnji okolici (sl. 2), kjer predvidevamo možnost potencialnega onesnaženja. Slednje je kratkoročno gledano možno tekom transporta in vgradnje se- kundarnih materialov, dolgoročno pa zaradi delo- vanja vremenskih dejavnikov. Pridobivalni prostor s koncesijo - Lipovški vrh Quarry with concession - Lipovški vrh Testno območje Test site Vzorčna mesta Sampling sites kamnina rock tla soil sediment površinska voda surface water LEGENDA LEGEND Sl. 2. Prikaz obravnavanega območja (Lipovški vrh) skupaj z lokacijami vzorčnih mest in predvideno lokacijo testnega območja (Podlage: Ortofoto (Geodetska uprava Republike Slovenije); Linijski podatkovni sloj hidrografije – površinske vode (Ministrstvo za okolje podnebje in energijo, Direkcija Republike Slovenije za vode); meje pridobivalnega prostora (Zbirka rudarskih podatkov)). Fig. 2. Display of study area (Lipovški vrh) together with sampling locations and foreseen test site location (Layers: Ortophoto Geodetic administration of Slovenia); Line data layer of hydrography - surface waters (Ministry of the Environment, Climate and Energy, Slovenian Water Agency); Quarry boundaries (Mining data registry)). 322 Špela BAVEC, Sonja CERAR, Martin GABERŠEK & Željko POGAČNIK Tla smo vzorčili na površinah travnikov, z iz- jemo vzorčnega mesta KT1 (območje Koprive), ki je bilo izvedeno na dnu vrtače, poraščeno z gos- tim grmičevjem. Skladno s smernicami SIST ISO 18400-205:2019 in SIST ISO 18400-104/2019 smo odvzeli prostorske kompozitne vzorce v ena- komerni vzorčni mreži. Na ta način smo pridobili informacije o povprečnih geokemičnih lastno- stih tal v ožji okolici preiskovanih območij. Na vzorčnih mestih KT1 in KT2 (območje Kopriva), kjer se glede na Pedološko karto Slovenije pojavlja rendzina na apnencu in dolomitu, ter LT1 (obmo- čje Lipovški vrh), kjer se glede na Pedološko karto Slovenije pojavljajo evtrična rjava tla na različnih bazičnih kamninah, smo izkopali po 3 talne profile (do globine 40 m) v medsebojni razdalji 5 m. Vzor- čili smo dve globini, in sicer zgornji sloj tal (0– 10 cm; oznaka G1) ter spodnji sloj tal (20–30 cm; oznaka G2), pri čemer smo posamezne sloje iz treh talnih profilov združili v skupni vzorec. Dve glo- bini smo vzorčili z namenom ugotavljanja varia- bilnosti parametrov z globino. Na vzorčnih mestih LT2 in LT3 (območje Lipovški vrh) smo ugotovili, da so tla antropogena in plitva, zato smo odvzeli le zgornji sloj tal (0–5 cm), pri čemer smo v skupni vzorec združili podvzorce iz 6 lokacij v medsebojni razdalji 5 m. Pod tlemi se nahaja antropogeno na- sutje (karbonaten gramoz). Organski horizont Oh smo pred vzorčenjem odstranili. Odvzeli smo 5 kg posameznega vzorca tal. Potočni sediment smo vzorčili na istem vzorčnem mestu kot površinsko vodo. Odvzet je bil kompozitni vzorec, število podvzorcev je bilo odvisno od naravnih danosti, to je količine posa- meznih žepov drobnozrnatega sedimenta znotraj struge. Podvzorci so bili odvzeti s plastično lopat- ko do 10 m po strugi navzdol od lokacije vzorče- nja površinske vode. Odvzem vzorcev površinske vode smo izvedli skladno s standardom SIST ISO 5667-10:1996, upoštevajoč potrebna določila SIST EN ISO 5667-6:2015. Pred vzorčenjem smo izvedli meritve terenskih fizikalno-kemičnih parametrov vode (temperatura vode, pH, specifična električna prevodnost, raztopljeni kisik, nasičenost s kisikom in redoks potencial) z uporabo vodoodpornega multimetra HI98194 proizvajalca HANNA instru- ments Inc (Hanna instruments, 2020a). Točnost meritev terenskih parametrov, ki je podana v pri- loženem gradivu o lastnostih uporabljenega in- strumenta (Hanna instruments, 2020a) znaša za pH ± 0,02, za temperaturo vode ± 0,15 °C, za elek- trično prevodnost ± 1 %, raztopljeni kisik oziroma nasičenost s kisikom ± 1,5–3 %, in redoks poten- cial ± 1 mV. Vzorce tal in potočnih sedimentov smo shranili v 3 L polietilenske (PE) posode, vzorce površinske vode pa v steklenice, plastenke in viale različnih dimenzij, pri čemer so bile za določene parame- tre dodane ustrezne tekočine (kisline ali baze) za stabilizacijo. Vzorce vod smo na terenu vseskozi hladili v hladilnih torbah. Vzorce vod smo do poši- ljanja v laboratorij hranili v hladilniku, vzorce ka- mnin, tal in sedimentov pa v temnem prostoru na temperaturi < 10 °C. Priprava vzorcev in kemijske analize Priprava vzorcev in kemijske analize so bile opravljene v akreditiranem laboratoriju ALS Czech Republic, s.r.o. Kvaliteta analitike v laboratoriju ALS Czech Republic s.r.o. je skladna z ISO/IEC 17025:2017. Za določitev vsebnosti elementov v trdnih ma- terialih so bili vzorci pripravljeni z razklopom z zlatotopko (HNO3:HCl=1:3). Za določitev mobil- nih vsebnosti elementov v trdnih materialih so bili pripravljeni vodni izlužki v razmerju 10 litrov vode na 1 kg vzorca v skladu s standardom za izlužek odpadka (EN 12457-4). Vzorci površinskih vod so bili pred analizo filtrirani (0,45 µm) in homo- genizirani ter mineralizirani z dušikovo kislino v avtoklavu pod visokim pritiskom in temperaturo. Vsebnosti elementov (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, S, Sb, Se, Sn, Sr, Te, Ti, Tl, V W, Zn in Zr) v vzorcih kamnin, tal in potočnih sedimentov po razklopu z zlatotopko in v vodnem izlužku (EN 12457-4) so bile izmerjene z metodo ICP-OES (Induktivno sklopljena plazma z optično emisijsko spektroskopijo) oziroma ICP-MS (Induk- tivno sklopljena plazma z masno spektroskopijo). Z omenjenima metodama so bile izmerjene tudi vsebnosti elementov v raztopljeni obliki in v ob- liki trdnih delcev v površinski vodi. Vrednosti Hg so bile v vseh vzorcih izmerjene z AFS (atomska f luorescentna spektrometrija). Vsebnosti Cr(VI) so bile določene z ionsko kromatografijo s spektro- fotometrično detekcijo in izračunom trivalentnega kroma iz izmerjene vrednosti. Kvaliteta analize je bila sledeča. Vsebnosti v slepih vzorcih so bile za- nemarljive oziroma pod mejo določljivosti. Točnost (izkoristek %) analitike vseh obravnavanih vzor- cev po razklopu z zlatotopko, v vodnih izlužkih, kot tudi v raztopljeni obliki in obliki trdnih delcev v vodi, je bila dobra (90–110 %). Ponovljivost (re- lativna odstotna razlika oziroma RPD) je bila za večino elementov ter za Cr(VI) v vseh obravnava- nih materialih dobra (<10 %). Izjeme so Ba, Ca, Li, P, Sr, S in V v trdnih materialih po razklopu z zlatotopko ter Ba in Zn v vodnih izlužkih, kjer je 323Geokemična porazdelitev elementov v okoljskih medijih iz okolice degradiranih območij površinskih kopov bila ponovljivost zadovoljiva (<20 %). Ponovljivost je bila slaba za Zn v obliki trdnih delcev v površin- ski vodi (44 %). Vrednotenje rezultatov Izmerjene vsebnosti v tleh smo primerjali z medianami in geokemičnimi zgornjimi mejami naravne variabilnosti (P97,5 oz. 97,5. percentil) (Gosar et al., 2019). Geokemična zgornja meja na- ravne variabilnosti se uporablja za določitev ob- močij z nenavadno visokimi vsebnostmi elemen- tov. Z geokemičnimi zgornjimi mejami naravne variabilnosti izdvojimo območja tal, ki zahtevajo večjo pozornost in morda nadaljnje analize in štu- dije (Reimann et al., 2018). Za oceno stanja tal smo rezultate celokupnih vrednosti ovrednotili z opozorilnimi in kritičnimi imisijskimi vrednostmi nevarnih snovi v tleh, ki so določene v Prilogi 1 Uredbe o mejnih, opozorilnih in kritičnih imisij- skih vrednostih nevarnih snovi v tleh (Ur. l. RS št. 68/96, 41/04-ZVO-1 in 44/22 – ZVO-2). Opo- zorilna imisijska vrednost (v nadaljnjem besedilu: opozorilna vrednost) je gostota posamezne nevar- ne snovi v tleh, ki pomeni pri določenih vrstah rabe tal verjetnost škodljivih učinkov ali vplivov na zdravje človeka ali okolje. Kritična imisijska vred- nost (v nadaljnjem besedilu: kritična vrednost) je gostota posamezne nevarne snovi v tleh, pri kateri zaradi škodljivih učinkov ali vplivov na človeka in okolje onesnažena tla niso primerna za pridelavo rastlin, namenjenih prehrani ljudi ali živali ter za zadrževanje ali f iltriranje vode. V uredbi (Ur. l. RS št. 68/96, 41/04-ZVO-1 in 44/22 – ZVO-2) so si- cer podane tudi mejne vrednosti, pri katerih se ne poslabšuje kakovost podzemne vode ter rodovit- nost tal oz. so učinki ali vplivi na zdravje človeka ali okolje še sprejemljivi, zato teh vrednosti nismo vključili v obdelavo podatkov. Razliko vsebnosti elementov v potočnih sedi- mentih in v površinski vodi na dolvodni lokaciji v primerjavi z gorvodno lokacijo smo izračunali kot obogatitveno razmerje (ER), in sicer s količnikom med vsebnostjo v potočnem sedimentu oziroma površinski vodi dolvodno in koncentracijo v potoč- nem sedimentu oziroma površinski vodi gorvod- no. Za vrednosti pod mejo določljivosti merilne metode (LOQ) smo za izračun uporabili polovično vrednost LOQ. Za oceno stanja površinske vode smo rezultate ovrednotili glede na najvišje dovoljene koncentra- cije okoljskega standarda kakovosti (NDK-OSK), ki so določene z Uredbo o stanju površinskih voda (Ur. l. RS št. 14/09, 98/10, 96/13, 24/16 in 44/22 – ZVO-2). Rezultati in razprava Vrednosti, ki so bile izmerjene > LOQ so poda- ne v tabelah, in sicer v tabeli 1 za kamnine, tabeli 2 za tla, v tabeli 3 za potočne sedimente, v tabeli 4 za površinske vode in v tabeli 5 za izlužke kamnin, tal in potočnih sedimentov. Geokemična porazdelitev elementov Na območju Koprive so vsebnosti elementov v kamninah (tabela 1), ki so bile odvzete iz odlaga- lišča jalovine, kjer je predvideno testno območje, podobne vsebnostim elementov v svežih vzorcih kamnin iz pridobivalnega prostora. Analize po- trjujejo, da je material v podlagi, na katerem bo vzpostavljeno testno območje, jalovina iz prido- bivalnega prostora. Vsebnosti elementov so si po- dobne tudi v obeh vzorcih na območju Lipovškega vrha. V vzorcih kamnin iz Koprive in Lipovškega vrha vsebnosti Ca znatno prevladujejo (tabela 1). Geološko podlago obravnavanih območij pretežno gradijo apnenci (Repen/Kopriva masivni apnenec v Koprivi in Litotamnijski apnenec ter apnenčevi peščenjaki in laporovci v Lipovškem vrhu). Anali- ze vodnih izlužkov so pokazale, da se iz kamnin v vodo izlužujejo Ca, Mg, Sr, Al, Ba, V in Zn (tabe- la 5). Iz kamnin iz območja Koprive se izlužuje še Na, iz kamnin iz Lipovškega vrha pa K. V vzorcih tal so na splošno na obeh obravnava- nih območjih vsebnosti elementov višje od median za slovenska tla (Gosar et al., 2019), z izjemo Hg v vseh vzorcih (z izjemo vzorčnega mesta LT2G1), P v vseh vzorcih (z izjemo vzorčnega mesta LT2G1) in Mg v vzorcih iz Koprive, katerih izmerjene vseb- nosti so nekoliko nižje. Glede na zgornje meje naravne variabilnosti za Slovenijo (Gosar et al., 2019) so izmerjene vred- nosti na območju Koprive višje na vzorčnem mes- tu KT1 in KT2 v obeh slojih za elementa Al in Li, ter za Be in Fe v KT2. Fe in K sta povišana tudi v spodnjem sloju KT1. V zgornjem sloju KT2 sta po- višana Cr in Pb. V Lipovškem vrhu so vsebnosti na vzorčnem mestu LT1 višje za Li v obeh slojih in La v spodnjem sloju. Na vzorčnem mestu LT2 je po- višan B in na vzorčnem mestu LT3 je povišan Sr. Na obeh obravnavanih območjih se iz tal v vodo izlužujejo Al, Ba, Ca, Fe, Hg, Mg, Mn, Na in Sr (ta- bela 5). V posameznih vzorcih so bili v vodnem izlužku zaznani tudi Cu (KT1G1, LT1G1, LT3G1), K (LT1G1, LT2G1, LT3G1), V (KT2G2, LT2G1) in Zn (KT2G1, KT2G2, LT1G1). Za vsa zgoraj navedena preseganja elementov (z izjemo Pb v Koprivi in B v Lipovškem vrhu) predvi- devamo, da so naravnega izvora, na kar nakazuje- jo naslednja dejstva. Vsi obravnavani vzorci tal na območju Koprive ter vzorec tal na vzorčnem mestu 324 Špela BAVEC, Sonja CERAR, Martin GABERŠEK & Željko POGAČNIK Element Enota / Unit LOQ 1 Kopriva Lipovški vrh KK1 KK2 LK1 LK2 Al % 0,0001 0,02 0,03 0,22 0,23 As mg/kg 0,50 3×) ele- mentov kažejo na povečan doprinos karbonatnega materiala vzdolž Suhega potoka na vzhodni strani pridobivalnega prostora. Glede na to, da se geolo- ška sestava v zaledju in vzdolž potoka bistveno ne spremeni, višje vsebnosti pripisujemo antropoge- nim vplivom (izpiranje materiala iz pridobivalne- ga prostora in cest). V površinski vodi Suhega po- toka so bili na dolvodni lokaciji (LV2) v raztopljeni obliki višji naslednji elementi: S (21×), Sr (7,5×), B (4,8×), U (3,4×) in Zn (3,1×). V obliki trdnih del- cev so bili povišani S (18,1×), Ba (4,5×) in B (4,4×). Elementa B (vzorčno mesto LT2) in Sr (vzorčno mesto LT3) sta višja tudi v tleh drenažnega zaledja Suhega potoka. Elementa Sr in S sta višja tudi v dolvodnem sedimentu Suhega potoka. V potoku Kolovratščica je v sedimentu večina vsebnosti elementov na dolvodni lokaciji (LS4) nižja. V površinski vodi Kolovratščice (LV3, LV4) je bil na dolvodni lokaciji (LV4) višji samo Zn (4,7×) v raztopljeni obliki. Vrednosti raztopljenih elementov v površinski vodi so v obeh obravnavanih vodotokih pod mej- nimi vrednostmi za ekološko stanje površinskih voda (Ur. l. RS, št. 14/09, 98/10, 96/13, 24/16 in 44/22 – ZVO-2). Analiza vodnih izlužkov je pokazala, da se v obeh vodotokih iz gorvodnega in dolvodnega se- dimenta v vodo izlužujejo Al, Ba, Ca, Fe, K, Mg, Mn, Na, Sr, V in Zn. Iz gorvodnih sedimentov se izlužuje še Cu v obeh vodotokih in B ter P v Suhem potoku (LS1). V dolvodnem sedimentu Suhega po- toka se izlužuje S. Rezultati osnovnih fizikalno-kemijskih pa- rametrov površinske vode (tabela 6) so pokaza- li, da je bila temperatura površinske vode v času vzorčenja na obeh vodotokih med 10,8 in 12,5 °C. Voda je imela pH vrednost med 7,6 in 8,5. Izmer- jene vrednosti so v okviru sprejemljivih vrednosti za vode naravnega okolja. Prav tako so pri izmer- jeni temperaturi vode razmere s kisikom oksida- tivne. Izmerjene vsebnosti raztopljenega kisika so bile med 9,69 (LV1) in 10,53 (LV2) mg/L O2. Tabela 6. Rezultati terenskih meritev v površinski vodi. Table 6. Results of field measurements in surface water. Parameter Enota / Unit LV1 LV2 LV3 LV4 Temperatura vode °C 10,8 11,9 12,5 10,8 Električna prevodnost mS/m 50,7 83,0 49,9 49,0 pH vrednost - 7,58 8,06 8,48 7,85 Oksidacijsko-redukcijski potencial mV -46 -38 -55 -37 Raztopljen kisik mg/L 9,69 10,53 9,93 10,14 Nasičenost s kisikom % 91,3 101,1 96,6 95 Motnost NTU 0,2 0,38 1,5 1,07 330 Špela BAVEC, Sonja CERAR, Martin GABERŠEK & Željko POGAČNIK Električna prevodnost, kot merilo raztopljenih ionsko aktivnih snovi, je bila na obeh vzorčnih mestih na vodotoku Kolovratščica ter na gorvod- nem vzorčnem mestu L1 na občasnem vodotoku na vzhodni strani kamnoloma podobna in je zna- šala okoli 50,0 mS/cm. Izjema je dolvodno vzorč- no mesto LV2 na občasnem vodotoku na vzhodni strani, kjer je bila izmerjena električna prevodnost nekoliko višja, 83,0 mS/cm. Povišana vrednost električne prevodnosti na vzorčnem mestu LV2 je posledica višjih koncentracij karbonatnih kompo- nent (Ca, Mg, HCO3 -) ter Na, K in SO4 v površinski vodi. Razlog za višje vrednosti ionov je lahko geo- gen (karbonatno zaledje), možni so tudi površinski dotoki iz dovoznih površin (ceste), njiv in travni- kov v zaledju. Zaključek Na območju Koprive porazdelitev elementov v vzorcih kamnin kaže, da podlago, kjer bo vzpo- stavljeno testno območje, sestavlja jalovina iz pri- dobivalnega prostora. V vzorcih kamnin iz obeh območij prevladuje vsebnost Ca. Vsebnosti večine elementov v tleh so na obeh območjih višje od me- diane za slovenska tla. Glede na primerjavo z zgor- njimi mejami naravne variabilnosti, so v tleh na območju Koprive povišani Al, Be, Fe, Li in K, na območju Lipovškega vrha pa Li, La, Sr in B. Sled- nje je posledica naravnih danosti (razvoj tal na karbonatni matični podlagi). Glede na zakonodaj- ne smernice (opozorilne vrednosti) so bile na ob- močju Koprive v travniških tleh zaznane povišane vsebnosti Pb v zgornjem sloju, ter Ni v zgornjem in spodnjem sloju. Za povišane vsebnosti Pb smat- ramo, da so lahko antropogenega ali naravnega izvora. Višje vsebnosti Ni pripisujemo naravnemu izvoru. V potoku Kolovratščica je bila porazdeli- tev elementov v sedimentih in površinski vodi na dolvodni in gorvodni lokaciji podobna. V Suhem potoku smo v dolvodnem sedimentu ugotovili višje vsebnosti za elemente (Mg, Na, Sr, Ca, Mn in S), kar kaže na povečan antropogen doprinos karbo- natnega materiala vzdolž potoka (izpiranje karbo- natnega materiala iz bližnjega kamnoloma in cest). V površinski vodi Suhega potoka smo ugotovili višje vsebnosti elementov S, Sr, B, U in Zn, ki pa niso presegle zakonodajnih smernic. Zahvala Raziskave smo izvedli s f inančno podporo evrops- kega projekta LIFE20 IPE/SI/000021 - LIFE IP RE- START “Boosting waste recycling into valuable products by setting the environment for a circular economy in Slovenia” in Javne agencije za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije (ARIS) preko raziskovalnega programa »Podzemne vode in geokemija (P1-0020)«. Literatura Artiola, H.F. & Brusseau, M.L. 2006: Environmen- tal & pollution science. In: Pepper, I.D., Gerba, C.P. & Brusseau, M.L. (eds.): The Role of En- vironmental Monitoring in Pollution Science, second edition Chapter 12: 170–182. Bavec, Š., Gosar, M., Biester, H. & Grčman, H. 2015. Geochemical investigation of mercury and other elements in urban soil of Idrija (Slo- venia), Journal of Geochemical Exploration, 154: 213–223. https://doi.org/10.1016/j.gexp- lo.2014.10.011 Bavec, Š. & Gosar, M. 2016: Speciation, mobility and bioaccessibility of Hg in the polluted ur- ban soil of Idrija (Slovenia), Geoderma, 273: 115–130. https://doi.org/10.1016/j.geoder- ma.2016.03.015. Cerar, S. & Bavec, Š. 2019: Analiza vpliva vgra- jenega sanacijskega materiala na rekultivaci- jo opuščenega peskokopa. Acta agriculturae Slovenica, 114/2: 293–311. http://www.dlib. si/?URN=URN:NBN:SI:DOC-MY5QDWC2 Darnley, A.G., Björklund, A., Bølviken, B., Gus- tavsson, N., Koval, P.V., Plant, J.A., Steenfelt, A., Tauchid, M., Xuejing, Xie., Garrett, R.G. & Hall, G.E.M. 1995: A Global Geochemical Da- tabase for Environmental and Resource Man- agement. Recommendations for International Geochemical Mapping – Final Report of IGCP Project 259. Earth Science Report 19. UNE- SCO Publishing, Paris: 122 p. https://www. globalgeochemicalbaselines.eu/dataf iles/f ile/ Blue_Book_GGD_IGCP259.pdf Đurić, M., Zalar Serjun, V. Mladenovič, A., Mauko Pranjić, A., Milačič, R., Ščančar, J., Urbanc, J., Mali, N., Pavlin, A., Turk, J. & Oprčkal, P. 2023: Environmental Acceptability of Geotechnical Composites from Recycled Materials: Compa- rative Study of Laboratory and Field Investiga- tions. Int. J. Environ. Res. Public Health, 20/3: 2014. https://doi.org/10.3390/ijerph20032014 EN 12457-4:2002: Characterisation of waste - Le- aching - Compliance test for leaching of gra- nular waste materials and sludges - Part 4: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 10 mm (without or with size reduction). Gałuszka A. & Migaszewski, Z. 2011: Geochemical background - an environmental perspective. 331Geokemična porazdelitev elementov v okoljskih medijih iz okolice degradiranih območij površinskih kopov Mineralogia, 42/1: 7–17. https://doi. org/10.2478/v10002-011-0002-y Gassama, N., Curie, F., Vanhooydonck, P., Bourra- in, X. & Widory, D. 2021: Determining the Re- gional Geochemical Background for Dissolved Trace Metals and Metalloids in Stream Waters: Protocol, Results and Limitations—The Upper Loire River Basin (France). Water, 13/13: 1845. https://doi.org/10.3390/w13131845 Gosar, M. 2007: Porazdelitev slednih prvin v treh kraških talnih profilih v Sloveniji = Trace ele- ment distribution in three karst soil profiles from Slovenia. Geologija 50/1: 147–156. htt- ps://doi.org/10.5474/geologija.2007.012 Gosar, M., Šajn, R., Bavec, Š., Gaberšek, M., Pezdir, V. & Miler, M. 2019: Geochemical background and threshold for 47 chemical elements in Slo- venian topsoil. Geologija, 62/1: 7–59. https:// doi.org/10.5474/geologija.2019.001 Gosar, M., Šajn, R., Miler, M., Burger, A. & Ba- vec, Š. 2020: Overview of existing information on important closed (or in closing phase) and abandoned mining waste sites and related mi- nes in Slovenia. Geologija, 63/2: 221–250. htt- ps://doi.org/10.5474/geologija.2020.018 Hawkes, 1957: Principles of geochemical prospec- ting. Bulletin 1000-F: 225-355. https://doi. org/10.3133/b1000F Jurkovšek, B. 2013: Geološka karta Krasa = Geo- logical map of Kras (Slovenia). Ljubljana, Geo- loški zavod Slovenije. Koščová, M., Hellmer M., Anyona, S. & Gvozdko- va, T. 2018: Geo-Environmental Problems of Open Pit Mining: Classification and Solutions. E3S Web of Conferences, 41: 01034. https:// doi.org/10.1051/e3sconf/20184101034 Križnar, M. & Mikuž, V. 2014: Kamnolom Lipovica in njegove paleontološke zanimivosti. Scopo- lia, 82: 1–120. http://www.dlib.si/?URN=UR- N:NBN:SI:doc-A2JZF7YE Kumar Das, A. & Purkait, A. 2020: Boron dyna- mics in soil: classification, sources, factors, fractions, and kinetics. Communications in Soil Science and Plant Analysis, 51/22: 2778– 2790. https://doi.org/10.1080/00103624.2020 .1849261 Mali, N., Urbanc, J., Serianz, L., Lapanje, A., Pe- pelnik, T., Meglič, P., Levičnik, L., Pestotnik, S., Peternel Rikanovič, R., Koren, K., Novak, M., Milanič, B., Mencin Gale, E., Jež, J., Puci- har, B. & Šolar, J.T. 2023: Hidrogeološka kar- ta Slovenije 1: 25.000. Območje Brestovica: tolmač. Geološki zavod Slovenije, Ljubljana: 120 p. Miler, M. & Gosar, M. 2019: Assessment of contri- bution of metal pollution sources to attic and household dust in Pb-polluted area. Indoor Air, 29/3: 487–498. https://doi.org/10.1111/ ina.12548 Miler, M., Bavec, Š. & Gosar, M. 2022. The envi- ronmental impact of historical Pb-Zn mining waste deposits in Slovenia. Journal of Envi- ronmental Management, 308: 114580. https:// doi.org/10.1016/j.jenv-man.2022.114580 MKGP, 2022: Grafični podatki RABA za celo Slovenijo (Enotna državna evidenca o dejanski rabi zemljišč). Ministrstvo za kmetijstvo, goz- darstvo in prehrano; Služba za register kmeti- jskih gospodarstev, Ljubljana. https://rkg.gov. si/vstop/ Pogačnik, Ž. 2022: Opis geoloških razmer v oko- lici površinskega kopa Lipovški vrh. Dopis GeoRudEko d.o.o. št. 778-1140/2022-GRE: 10 p. Premru, U. 1980: Osnovna geološka karta SFRJ 1:100.000. Tolmač za list Ljubljana. Zvezni ge- ološki zavod Beograd: 75 p. Pučko, E., Žibret, G. & Teran, K. 2024: Compar- ison of elemental composition of surface and subsurface soils on national level and identifi- cation of potential natural and anthropogenic processes inf luencing its composition, Jour- nal of Geochemical Exploration, 258: 107422. https://doi.org/10.1016/j.gexplo.2024.107422 Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., Oorts, K., Matschul- lat, J., de Caritat, P., Albanese, S., Anderson, M., Baritz, R., Batista, M.J., Bel-Ian, A., Cicchella, D., De Vivo, B., De Vos, W., Dinelli, E., Ďuriš, M., Dusza-Dobek, A., Eggen, O.A., Eklund, M., Ernsten, V., Flight, D.M.A., Forrester, S. et al. 2018: GEMAS: Establishing geochemical background and threshold for 53 chemical el- ements in European agricultural soil, Applied Geochemistry, 88/B: 302–318. https://doi. org/10.1016/j.apgeochem.2017.01.021. Salminen R. (Chief Editor), Batista M.J., Bidovec M., Demetriades A., De Vivo B., De Vos W., Duris M., Gilucis A., Gregorauskiene V., Ha- lamic J., Heitzmann P., Lima A., Jordan G., Klaver G., Klein P., Lis J., Locutura J., Marsi- na K., Mazreku A., O’Connor P.J., Olsson S.Å., Ottesen R.T., Petersell V., Plant J.A., Reeder S., Salpeteur I., Sandström H., Siewers U., Steen- felt A. & Tarvainen T. 2005: FOREGS Geo- chemical Atlas of Europe, Part 1: Background Information, Methodology and Maps. Geolog- ical Survey of Finland, Espoo: 526 p. http:// www.gtk.fi/publ/foregsatlas/ 332 Špela BAVEC, Sonja CERAR, Martin GABERŠEK & Željko POGAČNIK Senegačnik, A., Burger, A. & Karničnik, B. 2023: Stanje na področju mineralnih surovin v Sloveniji v letu 2022. Mineralne surovine v letu 2022, 19/1: 12–22. https://www.geo-zs.si/ PDF/PeriodicnePublikacije/Bilten_2022.pdf SIST ISO 5667-10:1996: Water quality - Sampling - Part 10: Guidance on sampling of waste wa- ters. SIST EN ISO 5667-6:2015: Water quality - Sam- pling - Part 6: Guidance on sampling of rivers and streams. SIST ISO 18400-205:2019: Soil quality - Sampling - Part 205: Guidance on the procedure for in- vestigation of natural, near-natural and culti- vated sites. SIST ISO 18400-104/2019: Soil quality - Sam- pling - Part 104: Strategies. Šajn, R. & Gosar, M. 2004: An overview of some localities in Slovenia that became polluted due to past mining and metallurgic activi- ties. Geologija, 47/2: 249–258. https://doi. org/10.5474/geologija.2004.020 Šušteršič, F., Rejšek, K., Mišič, M. & Eichler, F. 2009: The role of loamy sediment (terra rossa) in the context of steady karst surface lower- ing. Geomorphology 106: 35–45. https://doi. org/10.1016/j.geomorph.2008.09.024 TIS/ICPVO, 1999–2010. Pedološka karta 1:25 000. Infrastrukturni center za pedologijo in varstvo okolja, Biotehniška fakulteta, Univerza v Ljubljani. Turekian, K.K. & Wedepohl, K.H. 1961: Distribu- tion of the Elements in Some Major Units of the Earth’s Crust. Geological Society of America Bulletin, 72/2: 175–192. https://doi.org/10.11 30/0016-7606(1961)72[175:DOTEIS]2.0.CO;2 Turk, J., Urbanc, J., Mladenovič, A., Pavlin, A., Oprčkal, P., Fifer Bizjak, K., Likar B., Brod- nik M. & Mali, N. 2020: Izgradnja lizimetrov za preučevanje izpiranja potencialno nevar- nih snovi iz gradbenih proizvodov. Geologija, 63/2: 271–280. https://doi.org/10.5474/ge- ologija.2020.020 Turniški, R., Zupančič, N. & Grčman, H. 2023: Geochemical evidence of illuvial processes in clay-rich soils on limestones in a humid tem- perate climate. Geoderma 429: 116266. https:// doi.org/10.1016/j.geoderma.2022.116266 Uradni list RS, št. 68/96, 41/04-ZVO-1 in 44/22 – ZVO-2. Uredba o mejnih, opozorilnih in kritičnih imisijskih vrednostih nevarnih snovi v tleh. https://pisrs.si/pregledPred- pisa?id=URED114 Uradni list RS, št. 14/09, 98/10, 96/13, 24/16 in 44/22 – ZVO-2. Uredba o stanju pov- ršinskih voda. https://pisrs.si/pregledPred- pisa?id=URED5010 Uradni list SRS, št. 5/88 in Uradni list RS, št. 3/22 – ZDeb. Zakon o zagotavljanju dela sredstev, potrebnih za postopno zapiranje Rudnika svin- ca in cinka v Mežici (ZZDSP) https://pisrs.si/ pregledPredpisa?id=ZAKO1741 Uradni list RS, št. 26/05 – uradno prečiščeno be- sedilo, 43/10, 49/10 – popr., 40/12 – ZUJF, 25/14, 46/14, 82/15, 84/18 in 204/21. Zakon o postopnem zapiranju Rudnika Trbovlje– Hrastnik in razvojnem prestrukturiranju regi- je (ZPZRTH). https://pisrs.si/pregledPred- pisa?id=ZAKO2053 Uradni list RS, št. 26/05 – uradno prečiščeno be- sedilo. Zakon o preprečevanju posledic rudar- jenja v rudniku živega srebra Idrija (ZPPPR). https://pisrs.si/pregledPredpisa?id=ZAKO157 Uradni list RS, št. 22/06 – uradno prečiščeno besedilo. Zakon o trajnem prenehanju izko- riščanja uranove rude in preprečevanju posl- edic rudarjenja v Rudniku urana Žirovski Vrh. https://pisrs.si/pregledPredpisa?id=ZAKO227 Uradni list RS, št. 14/14 – uradno prečiščeno besedilo, 61/17 – GZ, 54/22 in 78/23 – ZUNPEOVE in 81/24: Zakon o rudarst- vu (ZRud-1). https://pisrs.si/pregledPred- pisa?id=ZAKO5706ZRP ZRP (Zbirka rudarskih podatkov), 2024: Zbirka podatkov s področja rudarstva. Ministrstvo za naravne vire in prostor. Izdelal geološki zavod Slovenije. https://ms.geo-zs.si/ Zupančič, N. 2017: Inf luence of climate factors on soil heavy metal content in Slovenia. Journal of soils and sediments, 17: 1073–1083. https:// doi.org/10.1007/s11368-016-1614-z Zupančič, N., Turniški, R., Miler, M. & Grčman, H. 2018. Geochemical fingerprint of insol- uble material in soil on different limestione formations. Catena 170: 10–24. https://doi. org/10.1016/j.catena.2018.05.040 Electronic sources: Internet 1: https://life-restart.si/(26.11.2024) 333© Author(s) 2024. CC Atribution 4.0 License Izobraževalno-ustvarjalne delavnice: vključevanje ustvarjalnega izraza v geološke učne vsebine Educational-creative workshops: integrating creative expression into geological learning content Teja ČERU Geološki zavod Slovenije, Dimičeva ulica 14, SI–1000 Ljubljana; e-mail: teja.ceru@geo-zs.si Prejeto / Received 19. 11. 2024; Sprejeto / Accepted 12. 12. 2024; Objavljeno na spletu / Published online 16. 12. 2024 Ključne besede: geologija, izobraževanje, aktivno učenje, integracija umetnosti, ustvarjalnost, naravni pigmenti, akvarel Key words: geology, education, active learning, arts-integration, creativity, natural pigments, watercolour painting Izvleček Kako ohranjati otroško radovednost tudi v odrasli dobi, kako se stalno preizpraševati o naravi in okolju v katerem živimo in nenazadnje, kako ozaveščati javnost o geoloških vsebinah na razumljiv in zanimiv način? Vsa ta vprašanja so pripeljala do ideje in zasnove delavnice, ki združuje različne poglede na naravo, tako z znanstvenega, uporabnega in umetniškega vidika. V prispevku je predstavljena delavnica slikanja z naravnimi pigmenti, preko katere udeleženci spoznavajo različne geološke vsebine. V prvem delu delavnice udeleženci spoznavajo celoten proces izdelave pigmentov, ki vključuje določitev primernega minerala/kamnine za izdelavo pigmenta, proces izdelave pigmentov (drobljenje, mletje in sejanje) ter mešanje pigmentov z vezivom v dokončno barvo, ki se lahko uporabi in shrani. Ta del delavnice predstavlja pristope, ki so primerljivi znanstvenim. Udeleženci na praktičen način spoznavajo nekatere lastnosti kamnin in mineralov (barva, barva črte minerala, trdota, itd.) in metode priprave vzorcev. Drugi del delavnice je bolj umetniški oz. ustvarjalen, kjer udeleženci barvajo pobarvanke z geološkimi vsebinami ali prosto slikajo ter raziskujejo značilnosti pigmentov izdelanih iz različnih materialov ter nova učenja povezujejo še na izkustveni ravni. Eden izmed glavnih ciljev zastavljene delavnice je, da se izobraževalne in ustvarjalne vsebine medsebojno prepletajo in povezujejo s poudarkom na metodah aktivnega in eksperimentalnega učenja. V prispevku so orisane tudi prilagoditve delavnice glede na starost udeležencev in značaj dogodka (npr. javni dogodki). Abstract How can we nurture a childlike curiosity even in adulthood, how can we constantly question ourselves about nature and the environment we live in, and last but not least, how to raise public awareness of geology in an understandable and interesting way? All these questions led to the idea and design of a workshop that includes different views of looking at nature from a scientific, practical and artistic perspective. The article presents a workshop on painting with natural pigments through which participants learn about various geological contents. In the first part of the workshop, participants learn about the entire process of making natural pigments, which includes determining a suitable mineral/ rock for pigment, the pigment preparation process (crushing, grinding, and sieving), and mixing pigments with a binder into a final colour that can be used and stored. This part of the workshop introduces approaches that are comparable to scientific one. In a very practical way, participants will learn about some of the properties of rocks and minerals (colour, color of the mineral's streak, hardness, etc.) and sample preparation methods. The second part of the workshop is more creative, where participants use colouring books with geological motifs or paint freely. They explore the characteristics of pigments made from various materials, and connect new knowledge on an experiential level. One of the main aims of the workshop is to interweave and combine educational and creative content, focussing on active and experimental learning methods. The paper also shows the adaptations of the workshop to the age of the participants and the type of event (e.g. public events). GEOLOGIJA 67/2, 333-347, Ljubljana 2024 https://doi.org/10.5474/geologija.2024.017 334 Teja ČERU Uvod Povod za idejo in razmišljanja o različnih pristopih poučevanju Naravoslovne vsebine so bile v formalnem izo- braževanju velikokrat potisnjene v ozadje oz. se ni posvečalo pozornosti metodam poučevanja le-teh. Poučevanje naravoslovnih predmetov je dolgo te- meljilo na tradicionalnih metodah podajanja zna- nja, kar je vodilo v vse manjši interes otrok za naravoslovne predmete. Izsledki različnih razi- skav doma in v tujini kažejo, da raven notranje mo- tivacije za učenje naravoslovnih vsebin pri učencih skozi osnovno in srednjo šolo postopno upada (De- vetak et al., 2009; Potvin et al., 2009; Juriševič et al., 2012: več v Devetak & Metljak, 2014). Stro- kovnjaki Evropske komisije ugotavljajo, da je eden izmed vzrokov za pomanjkanje zanimanja mladih za naravoslovje v načinu poučevanja teh vsebin (Devetak & Metljak, 2014). Raziskave so pokaza- le, da so učencem vsebine naravoslovja dolgoča- sne in ne najdejo povezave vsebin z vsakdanjim življenjem, poleg tega je podajanje vsebin preveč abstraktno s pomanjkanjem eksperimentalnega učenja (Devetak & Metljak, 2014). Vse večje za- vedanje omenjenih dejstev je vodilo v premike pri poučevanju naravoslovnih vsebin, najprej na nivo- ju usposabljanja učiteljev in priprave učnih gradiv (npr. projekt PROFILES). Glavni namen omenje- nega projekta je bil, da različni pristopi poučeva- nja temeljijo na osnovi smiselnega in motivirane- ga poučevanja in da učenci razvijejo pozitivnejši odnos do naravoslovja in med svoje karierne cilje začnejo uvrščati različna naravoslovna področja. Poleg zavedanja po potrebah uvajanja inovativnih metod je tudi razvoj različnih tehnologij povzro- čil velike spremembe v načinu poučevanja, ki naj bi bile usmerjene k zagotavljanju različnih spret- nostih prilagojenim današnjim potrebam družbe (Delgado-Rodríguez et al., 2023). Zaradi razvoja družbeno-ekonomskih odnosov, znanosti in tehni- ke se tudi način preživljanja prostega časa in inte- res otrok v sodobnem času spreminja (Tori, 2012). Če hočemo mladim približati naravoslovne vsebi- ne, moramo poznati njihove potrebe ter vsebine in metodološke pristope prilagoditi njim in tudi po- trebam hitro se spreminjajoče današnje družbe. Pri sodobnih pristopih učenja, še posebej pri naravoslovju, je vse več poudarka na sami predsta- vitvi vsebine in na vključevanju dejavnosti, ki otro- ku omogočajo aktivno sodelovanje in raziskovanje (Petek, 2012). Ti pristopi pa niso pomembni samo v osnovnošolskih in srednješolskih učnih progra- mih, ampak tudi na nivoju visokošolskega izobra- ževanja. Poleg uvajanja različnih učnih pristopov pa so pomembne tudi kompetence učitelja. Ena izmed osnovnejših, a hkrati zelo zapostavljenih kompetenc, je učiteljeva zmožnost vodenja dialoš- kega pouka, ki med drugim obsega možnost odpr- tih vprašanj, čas za razmislek, pozorno poslušanje in pristen odziv na odgovore učencev, spodbuja- nje k spraševanju, diskusiji in ref leksiji (Marentič Požarnik, 2008; Marentič Požarnik & Plut Pregelj, 2009 v Polak et al., 2024). Poleg novih pristopov učenja, se dogajajo pre- miki tudi na povezovanju znanosti, tehnologije in umetnosti. Ameriški izobraževalni sistem že nekaj časa uspešno vpeljuje umetnost v učne sisteme znanosti, tehnologije in matematike, tako imeno- vano STEAM izobraževanje (Science, Technology, Engineering, Arts and Mathematics), ki spodbuja integriranje umetnosti v znanstveno učenje ter ce- lostni pristop procesov učenja (Green et al., 2019). Čeprav je definicij tovrstnega izobraževanja veli- ko, pa je glavni namen le-tega, da se področja med seboj ne obravnavajo ločeno, ampak kot celota in se dopolnjujejo tam, kjer so njihove stične točke. Tudi v Evropi se pojavljajo te vsebine, predvsem na nivoju izobraževanj v okviru različnih projektov za učitelje in tudi učence. STEAM pristop učencem omogoča, da povežejo svoje učenje na različnih področjih skupaj z umetniškimi praksami, ki so ključne pri spodbujanju ustvarjalnega reševanja problemov. Učenci se učijo, da se vse stvari povezu- jejo, tako v šoli kot tudi v vsakdanjem življenju, pri čemer se spodbuja njihovo raziskovanje, dialog in kritično razmišljanje. STEAM izobraževanje poleg tehničnega znanja poudarja tudi t.i. mehke veščine, kot so komunikacija, timsko delo, vodstvene spo- sobnosti in prilagodljivost. Poleg tega je kar nekaj metodoloških pristopov vezanih na učenje naravo- slovja v naravnem okolju s povezovanjem umetno- sti (Cone, 2014). In prav narava je tista, kjer lahko pri njenem proučevanju ključno povezujemo njen znanstveni in tudi estetski vidik. Pri obojem je po- membno natančno opazovanje in preizpraševanje, kjer gre za kreativno reševanje problemov, razisko- vanje in opisovanje narave (Nichols & Stephens, 2013), integracija obojega pa učencem omogoča videti naravo skozi oči znanstvenika in umetnika (Green et al., 2019). Nekatere raziskave so poka- zale, da lahko vključevanje umetnosti izboljša kre- ativnost, kritično razmišljanje, inovativnost ter tako vpliva na kognitivne sposobnosti, boljšo pro- storsko predstavo, večjo sposobnost abstraktnega in divergentnega razmišljanja, večjo odprtost za nove izkušnje in spodbujanje radovednosti (Liao, 2016; Swaminathan & Schellenberg, 2015). Kljub jasnim ciljem STEAM izobraževanja, pa ostaja ve- liko izzivov implementacije povezovanja različnih 335Izobraževalno-ustvarjalne delavnice: vključevanje ustvarjalnega izraza v geološke učne vsebine področij v praksi, predvsem vključevanje umetno- sti oz. ustvarjalnosti v ostala področja (Perignat & Katz-Buonincontro, 2019). Empirične raziskave kažejo, da gre predvsem za pomanjkanje metod, ki bi bile primerne za pedagoge, ki se z umetnostjo ne ukvarjajo in nimajo tovrstnih izkušenj (Lajevic, 2013; Liao, 2016). Empiričnih raziskav o učinkih in posledicah STEAM izobraževanja je še vedno premalo, da bi lahko podrobno analizirali in vre- dnotili spremembe tovrstnega izobraževanja (Ha- esen & Van De Put, 2018). Dejstvo je, da so učenja, ki vključujejo raznolike pristope in metode, uspe- šnejše, saj dosežejo veliko večino učencev, ki jim ustrezajo različni pristopi poučevanja. Kakorkoli, iz prakse vemo, da je dandanes težko pritegniti pozornost mladih in je zato uporaba različnih me- tod učenja, pri katerih opazimo boljši učni učinek, vedno dobrodošla. Ker je geologija pomemben del narave, na tem mestu sledi premislek, kako lahko predstavimo ge- ološke vsebine na način, da bomo udeležence mo- tivirali k razmišljanju o naravoslovnih vsebinah in da bodo pridobljena znanja povezovali z vsakdanjim življenjem. Glavno vprašanje, ki si ga zastavljam tudi sama je, kako ohranjati otroško radovednost in kako spodbujati otrokov interes za geološko znanje, kako sooblikovati njihove sposobnosti, potrebne za kritičen, razmišljujoč in odgovoren odnos do nara- ve in okolja. Koncepti niso preprosti in vključujejo vrsto različnih spretnosti in izzivov, s katerimi se moramo soočiti že pred začetkom snovanja delav- nice. Tovrstno poučevanje zahteva celosten pristop, pri čemer je zelo pomembno, da pri udeležencih vzbudimo motivacijo in zagotovimo, da nova učenja ref lektirajo in jih povežejo s predhodnim znanjem in izkušnjami (Devetak & Metljak, 2014). Glavni iz- zivi so, kako skozi odraščanje ohranjati prostor za kreativno razmišljanje, čudenje naravnim pojavov, preverjanje idej v praksi, raziskovanje za novim, če- mur v odrasli dobi nemalokrat pravimo tudi strast do dela. To je tista iskrica, ki nas žene v razisko- vanje, ne glede na to, ali smo otroci ali odrasli. In prav tu je pomembno, da spodbujamo otrokovo in- dividualnost razmišljanja, ki jo bo lahko ohranjal tudi v odrasli dobi in z njo ustvarjal nekaj novega. Strokovno takšnemu pristopu pravimo konstruk- tivizem, ki poudarja aktivno vlogo učenca pri iz- gradnji razumevanja in osmišljanja informacij (Pe- tek, 2012). Veje konstruktivizma kot je didaktični konstruktivizem in raziskovalni didaktični sistem pouka so v osnovi zelo podobne znanstveno-razi- skovalnemu mišljenju (Plut Pregelj, 2008). Ne glede na različna poimenovanja in pristope, ki se uveljav- ljajo v zadnjih 20 letih, pa je skoraj vsem skupno zavedanje, da je za otroka pomemben neposreden stik z naravo, jo doživljati z vsemi čutili, se ji ču- diti in opazovati njeno raznolikost. Dejstvo je, da je motivacija eden od glavnih faktorjev pri učenju naravoslovja (Ryan & Deci, 2000), ne glede na to, kateri inovativni poučevalni pristop izberemo. To pomeni, da učenje naravoslovja postane učenče- va želja in pride iz notranje motivacije. Holbrook & Rannikmae (2007) sta s tem namenom razvila takoimenovani alternativni poučevalni pristop »iz- obraževanje z naravoslovjem«, ki ima poudarek na motivacijski spodbudi, za katero se uporabi različ- na navezovanja na socio-naravoslovni, individual- no naravoslovni ali okoljsko-naravoslovni kontekst (Devetak & Metljak, 2014). Na področju popularizacije geoloških vsebin v Sloveniji se je v zadnjem času naredilo veliko v okviru različnih tematskih geoloških delavnic tudi v naravi, informativnih tabel, vsebin v muzejih in geoparkih, izobraževanj, učil in učnih pripomoč- kov (učnih listov, aplikacij, učnih modelov, itd.) (nekaj primerov: Rman, 2010; 2013; Novak, 2017; Žvab Rožič, 2017; Popit et al., 2019; Brajkovič & Žvab Rožič, 2019). Geologi se vse bolj zavedamo in trudimo, da vsebine javnosti približamo na eno- staven in zanimiv način v skladu s potrebami da- našnje družbe. Glavni namen predstavljene delavnice je pre- izkusiti nov način spoznavanja geoloških vsebin s poudarkom aktivne vključenosti udeležencev de- lavnice preko ustvarjalnega izraza. Delavnica je bila v prvotni obliki zastavljena za predšolske in šolske otroke prve triade z namenom bolj kreativ- nega pristopa pri spoznavanju različnih vej geolo- gije. V okviru delavnice smo poleg raziskovalnega pristopa, ki je značilen za znanstveno delo, žele- li otrokom odpreti tudi prostor za ustvarjalen in bolj intuitiven izraz, s čimer bi znanje in izkušnjo delavnice otroci lahko bolj ponotranjili in znanje lažje integrirali. Na osnovi prvotno zastavljene de- lavnice, smo le-to prilagodili za različne starostne skupine in za način izvajanja v okviru manjših skupin oz. večjih dogodkov. Vsebina osnovne delavnice Delavnica je v osnovi zasnovana iz dveh delov, ki pa med seboj nista strogo ločena in se medse- bojno prepletata. Oba dela sta zasnovana na pod- lagi metod aktivnega in eksperimentalnega učenja. Uvodni del delavnice je namenjen razmišljanju o glavni tematiki delavnice in udeležence motiviramo z vprašanji kot so: iz česa so lahko narejene barve, ki jih uporabljamo v vsakdanjem življenju, iz česa so jih pridobivali nekoč in kakšen je proces izde- lave pigmenta in barve? Uvodu nato sledi predsta- vitev vseh teh vsebin, kjer udeležence spodbujamo 336 Teja ČERU z vprašanji, sami pa opazujejo, preizkušajo in se seznanijo z nekaterimi raziskovalnimi metodami priprave vzorcev, ki jih uporabljamo pri laboratorij- skih pripravah v geologiji, kot so drobljenje v teril- nici, sejanje in mletje različnih vzorcev kamnin in tal. Prvi del delavnice temelji na spoznavanju znan- stvenih pristopov, kjer udeleženci aktivno sodeluje- jo pri določevanju različnih lastnosti kamnin/mi- neralov (barva, oblika, trdnost, barva črte, itd.), ki vplivajo na to, ali je material primeren za izdelavo pigmenta in kako vpliva na samo pripravo in last- nosti pigmenta. Udeleženci spoznajo celoten proces izdelave barv, vse od priprave pigmenta iz različ- nih geoloških materialov do izdelave barv, ki se jih lahko shrani (sl. 1). Drugi del delavnice je namenjen ustvarjanju, kjer udeleženci barvajo pripravljene ge- ološke motive ali pa prosto slikajo. V tem delu ude- leženci povezujejo pridobljeno znanje s prvega dela delavnice še preko ustvarjanja, ko barve preizkušajo, a hkrati spoznavajo njihove lastnosti in pri barvanju vnaprej določenih motivov raziskujejo še različne ge- ološke vsebine. Na tak način prepletamo strokovne in kreativne vsebine skozi celoten drugi del delav- nice, kjer udeleženci razvijajo tudi psihomotorične spretnosti. S prostim slikanjem udeleženci razvijajo domišljijo in raziskujejo lasten ustvarjalen izraz. Zasnova delavnice poleg omenjenih učnih vse- bin omogoča dodajanje različnih geoloških vsebin glede na osrednjo tematiko delavnice oziroma gle- de na interes in starost ciljne skupine (več o pri- lagoditvah delavnice v nadaljevanju). Tako lahko vzporedno prepletamo geološke vsebine o lastno- stih in nastanku mineralov in kamnin, ki so pri- merni za pigmente, nahajališč le-teh v Sloveniji in svetu, in kako njihove kemijske in fizikalne last- nosti vplivajo na proces izdelave pigmenta in v končni fazi na lastnosti pigmenta. Tako se tekom delavnice spoznajo z različnimi vejami geologije (mineralogija, petrologija, rudna geologija, mine- ralne surovine, itd.). Nekaj primerov vprašanj, s katerimi lahko vzpodbujamo aktivno vključenost in motivacijo udeležencev tekom delavnice. - Iz česa so izdelane barve, ki jih uporabljajo doma ali v vrtcu/šoli? Pri tem vprašanju spodbudimo otroka k razmisle- ku, iz česa pravzaprav so barve in kje vse jih upo- rabljamo. - Ali kamen riše? Pri tem vprašanju otroci spoznavajo različne mi- nerale in kamnine, njihovo barvo in preverijo, kakšno barvo sledi pušča mineral/kamen. Otroci spoznavajo, tipajo, raziskujejo različne geološke materiale in opazujejo ter opisujejo njihove podob- nosti in razlike. - Kako pridobimo pigmente iz kamnin/mineralov? Otroke preko izkustvenega učenja popeljemo sko- zi proces izdelave pigmentov (drobljenje, sejanje) od surove kamnine ali minerala do pigmenta, ki je primeren za izdelavo barve. - Katera barva je najbolj intenzivna/prekrivna? Preko ustvarjalnosti otroci preizkušajo različne barve in s tem odkrivajo različne lastnosti pigmen- tov kot so, intenzivnost, prekrivnost, obstojnost in teksturo, mešanje pigmentov, zrnavost, itd. Skozi lastno ustvarjalnost raziskujejo in povezujejo last- nosti geoloških materialov in barv iz njih. Preko postavljenih vprašanj skozi delavnico ot- roci iščejo odgovore in raziskujejo ter preverjajo svoje domneve, teorije in zamisli. Vprašanja so se- veda prilagojena tudi osrednji tematiki, ki jo lahko spreminjamo. Delavnica je lahko usmerjena v spo- znavanje mineralov in otroci se na zelo neposreden način in skozi ustvarjanje seznanijo z različnimi oblikami mineralov, ki jih najprej vidijo v živo, nato pa njihove oblike še barvajo in rišejo. Spoz- navajo različne geometrijske oblike preko barvanja kristalov, lahko celo s pigmentom tega minerala, če je to možno (malahit, kalcit, azurit, itd.). Na tak način otrokom abstraktne vsebine na subtilen na- čin približamo in jih navdušimo nad raznolikimi oblikami različnih mineralov. Materiali za izvedbo delavnice V nadaljevanju so našteti osnovni materiali za izvedbo delavnice. Glede na prilagoditve delavnice se le-ti lahko ustrezno poenostavijo oz. dopolnijo. - Nabor različnih mineralov, kamnin, tal in pre- moga (limonit, hematit, malahit, azurit, apne- nec, tuf, premog, grafit, itd.) - Pripadajoči zmleti pigmenti presejani pod ve- likost 0,063 mm - Poleg naravnih pigmentov imamo lahko za primerjavo tudi nekaj umetnih pigmentov in barv - Terilnica in sito za prikaz procesa drobljenja in sejanja materialov - Sestavine in veziva za pripravo akvarelnih barv (gumiarabika, glicerin, med) - Barvne palete s pripravljenimi akvarelnimi barvami, čopiči - Akvarelne pobarvanke z geološkimi motivi, prazni akvarelni listi - Plakati z opisanimi vsebinami glede na osred- njo tematiko delavnice: npr: naravni pigmenti skozi zgodovino slikarstva, toksični pigmenti v zgodovini, itd. - Knjige o naravnih pigmentih (primerno za odrasle) 337Izobraževalno-ustvarjalne delavnice: vključevanje ustvarjalnega izraza v geološke učne vsebine Sl. 1. Cikel izdelave naravnih pigmentov od kamna do barve. Fig. 1. The process of making natural pigment from stone to paint. 338 Teja ČERU Prilagoditve delavnice V nadaljevanju so opisane prilagoditve delavni- ce glede na starost ciljne skupine in značaj dogod- ka (manjše oz. večje skupine na javnih dogodkih). Delavnica za predšolske otroke Pristop k spoznavanju geologije za predšolske ot- roke se razlikuje od prenosa znanj otrokom v osnov- ni in srednji šoli. Vsebine morajo biti predstavljene Sl. 2. Delavnica v vrtcu Litija. (Fotografije: Mateja Jemec Auflič, Ivanka Mlakar). Fig. 2. Workshop at the kindergarten in Litija. (Photos: Mateja Jemec Auflič, Ivanka Mlakar). 339Izobraževalno-ustvarjalne delavnice: vključevanje ustvarjalnega izraza v geološke učne vsebine na preprost in nazoren način, pri čemer je po- membno, da nova znanja zaznavajo in odkrivajo tudi z uporabo vseh čutil. Predšolski otroci imajo močan domišljijski svet, a ga že začnejo razlikova- ti od realnega. Prav zato je pomembno, da tekom delavnice z aktivnimi vprašanji otrokom omogo- čimo prostor, da so pri odgovorih kreativni in do- puščamo, da uporabljajo svojo domišljijo. Nekatere vsebine osnovne delavnice so za predšolske otroke prezahtevne in preveč poglobljene, zato smo jih prilagodili. Eden izmed načinov je ta, da barvanje in ustvarjanje prepletemo znotraj izbrane geološke tematike brez podrobnih vsebin o izdelavi pigmen- tov in barv (sl. 2). Glavne prilagoditve - več slikovnega gradiva in učnih pripomočkov - vodenje delavnice mora vključevati več aktiva- cijskih vprašanj, s katerimi pritegnemo pozor- nost in držimo motivacijo skupine otrok - delavnica mora biti vsebinsko dinamična in vključevati mora vsebine, pri katerih bodo otro ci aktivno in skupinsko sodelovali - prevladujejo metode eksperimentalnega uče- nja pri spoznavanju strokovnih vsebin - zaradi zahtevnosti akvarelne tehnike so eno- stavne pobarvanke primernejše od prostega slikanja - trajanje delavnice: max. do 1 ure Primer izvajanja delavnice V sklopu delavnice za predšolske otroke, kjer so bili osrednja tema dinozavri, so bili geološki kon- cepti predstavljeni na enostaven in eksperimen- talen način. Otroci so dinozavre spoznavali preko igrač, jih vzeli v roke in opisovali njihova opažanja glede na aktivacijska vprašanja tekom delavnice. Spoznavali so različne vrste dinozavrov, njihovo velikost, kako se lahko skozi čas ohranijo njiho- vi fosilni ostanki, itd. Velikost zob nekaterih di- nozavrov smo ponazorili npr. z velikostjo bana- ne. Njihove velikosti stopinj pa s prikazom realne stopinje, na katero so nalepili odtise svojih nog, ki so jih pobarvali z naravnimi pigmenti. Spoznava- li smo tudi, kako se ohranijo stopinje dinozavrov in to ponazorili z odtisi rok v mivki, pri čemer so otroci opazovali, kako se njihove dlani odtiskujejo v mivki (sl. 3). Delavnico spoznavanja dinozavrov smo na koncu dopolnili z barvanjem dinozavrov z naravnimi pigmenti. Zelo poenostavljeno smo si pogledali tudi nekaj različnih kamnov in pripada- joče pigmente. Otroci so imeli na voljo 4 različne vrste dinozavrov s pripadajočimi izrezanimi stopi- njami, ki smo jih spoznavali v začetku delavnice. Za izbranega dinozavra so morali najti ustrezno stopinjo in nato dinozavra še pobarvati. Kot je raz- vidno iz opisanega, smo ustvarjalni del delavnice prepletali z raziskovanjem strokovnih vsebin, kar pripomore k večji motivaciji, večji vključenosti in boljši pozornosti otrok pri usvajanju novih vsebin. Delavnica za osnovnošolske otroke Izvedba delavnice in vsebine za osnovnošolske otroke so primerne na način kot je zapisano pri osnovnem opisu delavnice. Glede na starost skupi- ne se vsebine ustrezno prilagaja in glede na interes otrok poglablja in razširja. Pri podajanju vsebin se še vedno poslužujemo metod aktivnega in ekspe- rimentalnega učenja, pri čemer lahko dodajamo tudi nekaj več teoretičnih vsebin in kompleksnej- ših strokovnih vsebin. Poleg predstavitve eksperi- mentalnega dela delavnice, lahko delavnico prip- ravimo tako, da otroci pridobijo znanja, s katerimi lahko sami izdelajo pigmente s pripomočki, ki jih najdejo doma. Uporabijo lahko tla iz svoje okolice, jih zdrobijo s kladivom, presejejo skozi kuhinjsko cedilo in za vezivo uporabijo jajce. Glavne prilagoditve - uporaba metod aktivnega in eksperimentalne- ga učenja - otroci so aktivno vključeni v sam proces izde- lave pigmentov in barv z ustreznim vodenjem - poleg pripravljenih pobarvank, lahko otro- ke spodbudimo, da prosto slikajo v akvarelni tehniki - za ustvarjanje namenimo vsaj polovico časa celotne delavnice - vodenje delavnice vključuje aktivacijska vpra- šanja, s katerimi mentor odpira prostor, da otroci izrazijo lasten interes za vsebine ter na podlagi tega delavnico prilagaja - dodajanje strokovnih vsebin za višje razrede: kako nastajajo minerali, kamnine, kje jih naj- demo pri nas in v svetu, kakšna je njihova po- gostost, kako so se barve skozi čas spreminjale v povezavi s slikarstvom - trajanje delavnice: 2-3 ure Primer izvajanja delavnice Delavnica v Knjižnici Medvode je obsegala manjšo skupino otrok starosti med 5 in 12 let. Zaradi različne starosti in različnega predhodne- ga znanja je bil prvi del delavnice prilagojen vsa- kemu posamezniku. Starejši otroci so veliko več spraševali sami, medtem ko je bilo mlajše otroke potrebno vzpodbujati z aktivacijskimi vprašanji. Prednost dogodkov v manjših skupinah je ta, da 340 Teja ČERU otroci lahko ustvarjajo dlje časa, saj se je izkazalo, da se med barvanjem/slikanjem sprostijo in umi- rijo. Ob ustvarjanju so imeli otroci čas za dodatna vprašanja in ref leksijo. Delavnica za odrasle Delavnica za odrasle je bila vsebinsko struk- turirana drugače. Uvodni del je bil namenjen obsežni, poglobljeni in sistematični predstavitvi naravnih pigmentov iz različnih materialov skozi zgodovino slikarstva. Predstavljeni so bili materi- ali, lastnosti njihovih pigmentov in obdobja, ko so bili ti najbolj v uporabi. Udeleženci so tako spoz- nali naravne materiale, ki so se uporabljali vse od prazgodovinskih poslikav, preko antike, srednjega veka, renesanse, baroka in vse do danes, ko nad naravnimi pigmenti začnejo prevladovati sintetič- no izdelani pigmenti. Na primerih umetnin naj- večjih slikarskih mojstrov so spoznavali, katere pigmente in kombinacije le-teh so uporabljali za želen učinek in odtenek končne slike. Enourni teo- retični predstavitvi in diskusiji je sledila enourna delavnica prostega slikanja (sl. 4). Delavnico lahko zastavimo tudi tako, da prvemu teoretičnemu delu namesto slikanja, sledi delavnica izdelave pigmen- tov in barv, ki zahteva več časa za samo pripravo in tudi izvedbo. Sl. 3. Delavnica v manjši skupini otrok v Knjižnici Medvode (22. 11. 2023). Fig. 3. Workshop in a small group of children at the Medvode Library (November 22, 2023). 341Izobraževalno-ustvarjalne delavnice: vključevanje ustvarjalnega izraza v geološke učne vsebine Glavne prilagoditve - več teoretičnih vsebin - večji poudarek na povezavi vsebin naravnih pigmentov in slikarstva - poudarek na prostem slikanju - za ustvarjanje namenimo vsaj polovico časa celotne delavnice - trajanje delavnice: 2-3 ure Splošna javnost (naključni obiskovalci na javnih dogodkih) Priprava delavnice na večjih dogodkih, kjer so obiskovalci naključni in vseh starosti, zahteva svojevrstno pripravo. Ker udeleženci na tovrstne dogodke večinoma ne pridejo namensko, smo pri takšnih dogodkih dali poudarek tudi na vizualen vidik delavnice. Ta je pomemben, da pritegnemo posvetli in poravnava slik S. 4. Utrinki s predavanja o naravnih pigmentih v zgodovini slikarstva in ustvarjalna delavnica (Knjižnica Medvode, 19. 3. 2024, fotografije: Mirjam Slanovec, Anja Torkar, Teja Čeru). Fig. 4. A glimpse from the lecture and workshop on natural pigments in the history of painting (Medvode Library, 19 March, 2024., photos: Mirjam Slanovec, Anja Torkar, Teja Čeru). 342 Teja ČERU pozornost udeleženca tudi na samo vsebino de- lavnice. S tem namenom smo uporabili nekatere pripomočke, kot na primer slikarska stojala z ne- katerimi najbolj znanimi slikami, pobarvanke ge- oloških motivov, itd. Za odrasle smo pripravili pla- kate s podrobnejšimi opisi o barvah in pigmentih za odrasle. Za otroke pa smo imeli različne pobar- vanke in demonstracijo izdelave pigmentov iz raz- ličnih kamnin in mineralov. Dinamika predajanja strokovnih vsebin je zelo raznolika, saj gre za kon- stantno prilagajanje različnim izkušnjam in inte- resom mimoidočih, zato je na tovrstnih dogodkih dobrodošlo tudi večje število strokovnega osebja. Glavne prilagoditve - priprava vsebin za vse starosti - večji poudarek na estetskem vidiku delavnice - številna aktivacijska vprašanja, da pritegnemo pozornost mimoidočih - večje število mentorjev, ki delavnico vodijo - strnjene in krajše strokovne vsebine, saj je čas mimoidočih na prizorišču delavnice relativno kratek Primeri izvedbe delavnic Delavnica je bila prvič predstavljena v okviru projekta NočMoč, kjer je bila na dogodku Evrop- ska noč raziskovalk in raziskovalcev jeseni 2023 (sl. 5) tudi prvič predstavljena javnosti (Čeru et al., 2023). Prav tako je bila delavnica izvedena v okviru sejma mineralov in fosilov Slovenije (MINFOS 2024) z vsebinskimi prilagoditvami v skladu s st- rokovnim fokusom, ki je bil letos namenjen fosilni f lori in sulfidnim mineralom. S tem namenom smo izdelali pobarvanke s kristali sulfidnih mineralov in fosilne rastline Lepidodendron. Izobraževalna vsebina delavnice je bila predstavljena z dvema plakatoma in vitrino, kjer smo predstavili sulfidne minerale in pigmente iz njih ter predstavili njiho- vo uporabo skozi zgodovino. Ta del delavnice je bil namenjen starejšemu delu obiskovalcev. Za odra- sle in otroke so bili na mizi predstavljeni različni geološki materiali, pigmenti iz njih in predstavl- jen celoten cikel priprave barv (sl. 6). Nad veliko ustvarjalno mizo, kjer so udeleženci slikali, so bili plakati, ki so predstavljali nekdanja okolja z bogato f loro, z namenom prikazati vzdušje velikih rastlin, ki so nekoč rastle tudi na našem območju. Poleg tega smo imeli na slikarskih stojalih predstavljene tri slike nekdanjih slavnih umetnikov s pripada- jočimi informacijami o pigmentih, ki so jih upora- bili na slikah. Narava dogodka in velika površina za ustvar- janje je omogočala, da je lahko več udeležencev hkrati ustvarjalo (sl. 7). Prednost tovrstnih do- godkov z večjim prostorom za izvajanje delavnic je, da si udeleženci lahko vzamejo več časa za ustvarjanje. Večje število mentorjev na delavnici omogoča, da se vsakemu posamezniku poglobljeno posvetimo glede na njihov interes. Sl. 5. Pripravljena delavnica na dogodku Evropska noč razisk- ovalk in raziskovalcev 2023 (Fotografija: Aleksandra Tren- chovska). Fig. 5. Prepared workshop for the event European Research- ers‘ Night 2023 (Photo: Alek- sandra Trenchovska). 343Izobraževalno-ustvarjalne delavnice: vključevanje ustvarjalnega izraza v geološke učne vsebine Sl. 6. Pripravljena delavnica v skladu s strokovnim fokusom 50. MINFOS-a: Sulfidni minerali in fosilna flora (Fotografije: Staša Čertalič, Aleksandra Trenchovska, Zala Zarkovič). Fig. 6. A workshop prepared in accordance with the expert focus of the 50th MINFOS: Sulfide minerals and fossil flora (Photos: Staša Čertalič, Aleksandra Trenchovska, Zala Zarkovič). 344 Teja ČERU Sl. 7. Utrinki z izobraževalno-ustvarjalne delavnice na 50. MINFOS (Fotografije: Zala Zarkovič). Fig. 7. Snapshots from the educational and creative workshop at the 50th MINFOS (Photos: Zala Zarkovič). 345Izobraževalno-ustvarjalne delavnice: vključevanje ustvarjalnega izraza v geološke učne vsebine Zaključki in razmišljanja za delo v prihodnje Predstavljeni primeri izvajanja delavnice so eden izmed načinov popularizacije oz. ozavešča- nja geoloških vsebin javnosti na malce drugačen način. Vsak dogodek posebej od nas zahteva tako strokovne prilagoditve kot tudi prilagoditve v me- todah poučevanja le-teh. Za učinkovito poučeva- nje smo soočeni s številnimi izzivi, ki pa jih lahko uspešno rešujemo le na podlagi stalnega izobra- ževanja ne samo strokovnih, ampak tudi pedago- ških vsebin. Poleg tega pa največ štejejo različne izkušnje, ki jih imamo na področju popularizacije stroke ter naša odprtost za enakovreden dialog s splošno javnostjo in prilagodljivost glede na raz- lične potrebe in znanja ciljne skupine. Gre za izme- ničen proces, kjer se ne učijo le učenci, ampak tudi mi ter na podlagi odzivov ljudi znanja nadgrajuje- mo in izboljšujemo. Na podlagi odziva udeležencev na različnih dogodkih, lahko zaključim, da so delavnice doži- vele veliko zanimanja in da je podajanje vsebin z metodami aktivnega in eksperimentalnega učenja veliko bolj uspešno od tradicionalnih metod uče- nja. Prav tako se je izkazalo, da je ustvarjalen del delavnice zelo zanimiv za otroke in nemalokrat tudi za odrasle in da doprinese k celi izkušnji spo- znavanja novih vsebin. Z nekaj truda se da uspeš- no povezovati različna področja in udeleženci so imeli možnost geološke vsebine integrirati še pre- ko ustvarjalnega izraza. Delavnica ima poleg opi- sanih prilagoditev še veliko prostora za navezave na različne geološke vsebine, ki tu niso bile pred- stavljene. Poleg tega bi bila zanimiva tudi izvedba delavnice v naravi, kjer bi bili udeleženci vključeni v celoten proces izdelave pigmentov, od iskanja tal in kamnin, do postopkov mletja, sejanja in izdela- ve barv. Tako bi na neposreden način spoznali delo geologa na zabaven in raziskovalen način. Namen raziskovalnega poučevanja je namreč v odkriva- nju novega in v uvajanju otrok v metode in tehnike znanstvenoraziskovalnega mišljenja. Ker sama naravo dojemam tako z znanstvene- ga kot tudi umetniškega vidika, bom zaključila z mislijo Alberta Einsteina, ki je dejal: “Najlepše, kar lahko doživimo, je skrivnostno. Je vir prave umetnosti in znanosti”. Na stičišču znanosti in umetnosti je narava. Tu imamo geologi srečo, saj imamo veliko prostora, kako lahko geološke vse- bine predstavimo na zanimiv in igriv način, ki je posamezniku blizu v vsakdanjem življenju. V marsikaterih pogledih se znanost in umetnost res razhajata, a skupno obema je čudenje, raziskova- nje ter skrivnostnost neznanega. Znanost pri tem temelji na znanstvenih metodah, preverljivosti, dokazljivosti, medtem ko pri umetnosti ni meja, temveč svobodni izraz. In prav ta brezmejni pros- tor v umetnosti daje prostor za razmišljanja izven okvirjev v znanosti, kjer se porodijo nove ideje. Tudi v novih pristopih učenja različnih področij, gre vse v to smer, da se področja povezujejo in obravnavajo celostno. Seveda je v teoriji vse bolj enostavno kot v praksi, lahko pa v tej smeri razmi- šljamo in delamo majhne korake in se prepustimo kreativnosti pri ustvarjanju vsebin za namen po- pularizacije geologije. Zahvala Začetna ideja se je realizirala v okviru projekta NočMoč 2022–2023, prva izvedba delavnice na dogod- ku Noč raziskovalk in raziskovalcev. Ideja je bila nato realizirana na dogodku MINFOS in v okviru drugih manjših delavnic, tako da gre zahvala vsem, ki so ideji dali prosto pot in omogočili njeno izvedbo. Posebno bi se zahvalila Barbari Čeplak za pomoč pri mletju vzorcev in pripravi barv in Staši Čertalič za vso izvedbo krei- ranja pobarvank, plakatov in idej postavitve delavnic v sklopu različnih dogodkov. Zahvala tudi vsem, ki so prispevali kakšen kos kamnine, kakorkoli pomagali na dogodkih in avtorjem fotografij, ki so ujeli trenutke iz različnih delavnic. Literatura Brajkovič, R. & Žvab Rožič, P. 2019: KamenCheck - učna aplikacija za prepoznavanje kamnin. Konkrecija: revija Društva prijateljev mineral- ov in fosilov Slovenije, 8: 100–101. Cone, C.S. 2014: Using Art to Teach Students Science Outdoors: How Creative Science In- struction Inf luences Observation, Question Formation, and Involvement. Thesis, Science Teaching, Portland State University: 71 p. https://doi.org/10.15760/etd.2096 Čeru, T., Čeplak, B. & Čertalič, S. 2023: Didaktični pristop pri spoznavanju geoloških vsebin za otroke: primer barvanja geoloških motivov z nar- avnimi pigmenti. In: Rožič, B. (ed.): Razprave, poročila = Treatises, reports: 26. posvetovanje slovenskih geologov = 26th Meeting of Sloveni- an Geologists, Oktober 2023. Univerza v Lju- bljani, Naravoslovnotehniška fakulteta, Oddel- ek za geologijo, Geološki zbornik, 26/1: 12–15. Delgado-Rodríguez, S., Domínguez, S.C. & Gar- cia-Fandino, R. 2023: Design, Development and Validation of an Educational Methodol- ogy Using Immersive Augmented Reality for STEAM Education. J. New Approaches Educ. Res., 12: 19–39. https://doi.org/10.7821/ naer.2023.1.1250 346 Teja ČERU Devetak, I. & Metljak, M. (eds.) 2014: Inovativno poučevanje naravoslovja in spodbujanje nara- voslovne pismenosti v osnovni in srednji šoli (na spletu), Pedagoška fakulteta, Ljubljana: 109 p. http://pefprints.pef.uni-lj.si/2603/ (12. 11. 2024). Devetak, I., Drofenik Lorber, E., Juriševič, M. & Glažar, S.A. 2009: Comparing Slovenian year 8 and year 9 elementary school pupils’ knowl- edge of electrolyte chemistry and their intrin- sic motivation. Chemistry Education Research and Practice, 10/4; 281–290. https://doi. org/10.1039/B920833J Green, K., Trundle, K. C. & Shaheen, M. 2019: Integrating the arts into science teaching and learning: A literature review. Journal for Learning through the Arts, 14/1: unpaginated. https://doi.org/10.21977/D914140829 Haesen, S. & Van De Put, E. 2018: STEAM Ed- ucation in Europe: A Comparative Analysis Report, EuroSTEAM, 82 p. http://www.eu- rosteamproject.eu http://www.eurosteampro- ject.eu (13. 11. 2024). Holbrook, J. & Rannikmae, M. 2007: The Nature of Science Education for Enhancing Scientif- ic Literacy. International Journal of Science Education, 29/11: 1347–1362. https://doi. org/10.1080/09500690601007549 Juriševič, M., Vrtačnik, M., Kwiatkowski, M. & Gros, N. 2012: The interplay of students’ moti- vational orientations, their chemistry achieve- ments and their perception of learning within the hands-on approach to visible spectrome- try. Chemistry Education Research and Prac- tice, 13/3: 237–247. https://doi.org/10.1039/ C2RP20004J Lajevic, L. 2013: Arts Integration: What Is Real- ly Happening in the Elementary Classroom? Journal for Learning through the Arts, 9/1: unpaginated. http://escholarship.org/uc/ item/9qt3n8xt Liao, C. 2016: From Interdisciplinary to Trans- disciplinary: An Arts-Integrated Approach to STEAM Education. Art Education, 69/6: 44– 49. https://doi.org/10.1080/00043125.2016.1 224873 Nichols, A.J. & Stephens, A.H. 2013: The scientif- ic method and the creative process: Implica- tions for the K-6 classroom. Journal for Learn- ing through the Arts, 9/1: 1–14. https://doi. org/10.21977/D99112599 Marentič Požarnik, B. 2008: Konstruktivizem na poti od teorije spoznavanja do vplivanja na ped- agoško razmišljanje, raziskovanje in učno prak- so. Sodobna pedagogika, 59/4: 28-51. https:// w w w.dl ib.si/stream/UR N:NBN:SI:doc-TQ - JF0V FP/979159d1-921e - 423b -b0e7- db7b - b48454e8/PDF Marentič Požarnik, B. & Plut Pregelj, L. 2009: Moč učnega pogovora. Ljubljana: DZS Novak, M. 2017: Geološki sprehod po Ljubljani kot primer izobraževanja na prostem. In: Rožič, B. (ed.): Razprave, poročila = Treatises, re- ports. 23. posvetovanje slovenskih geologov = 23rd Meeting of Slovenian Geologists, Lju- bljana, marec 2017. Univerza v Ljubljani, Nar- avoslovnotehniška fakulteta, Oddelek za ge- ologijo, Geološki zbornik, 24: 121–125. Petek, D. 2012: Zgodnje učenje in poučevanje nar- avoslovja z raziskovalnim pristopom. Revi- ja za elementarno Izobraževanje, Pedagoška fakulteta, 5/4: 101–114. Perignat, E. & Katz-Buonincontro, J. 2019: STEAM in practice and research: An integra- tive literature review. Thinking Skills and Cre- ativity, 31: 31–43. https://doi.org/10.1016/j. tsc.2018.10.002 Plut Pregelj, L. 2008: Ali so konstruktivistične te- orije učenja in znanja lahko osnova za sodoben pouk? Sodobna pedagogika, 59/4: 14–27. Polak, A., Gradišek, P. & Marentič-Požarnik, B. 2024: Kakšen naj bo učitelj prihodnos- ti? Prispevek h kritičnemu premisleku ob prenovi slovenskega izobraževanja. Sodobna pedagogika, 75/1: 49–68. http://www.dlib. si/?URN=URN:NBN:SI:DOC-1LFXGS83 Popit, T., Žvab Rožič, P., Verbovšek, T., Pušnik, N., Petek, T., Tomažič, M., Mušič, M., Rome, T., Vodušek, J., Ostruh, P., Gajšek, M., Kos, U., Šantl, L. & Kokalj, M. 2019: Podajanje ge- oloških vsebin v osnovnih in srednjih šolah preko interaktivnih učnih listov (EDUGEO, PKP). In: Rožič, B. (ed.): Razprave, poročila = Treatises, reports. 24. posvetovanje slovenskih geologov Ljubljana: Univerza v Ljubljani, Nar- avoslovnotehniška fakulteta, Oddelek za ge- ologijo. Geološki zbornik, 25: 95–99. Potvin, G., Hazari, Z., Tai, R. H. & Sadler, P.M. 2009: Unraveling bias from student evalua- tions of their high school science teachers. Sci- ence Education, 93/5: 827–845. https://doi. org/10.1002/sce.20332 Rman, N. 2010: Geological workshop for primary schools. Geologija, 53/1: 93–96. https://doi. org/10.5474/geologija.2010.007 Rman, N. 2013: How to use an educational sand-box model to enhance the knowledge groundwater dynamics. Geologija, 56/2: 257–264. https:// doi.org/10.5474/geologija.2013.017 347Izobraževalno-ustvarjalne delavnice: vključevanje ustvarjalnega izraza v geološke učne vsebine Ryan, R.M. & Deci, E.L. 2000: Intrinsic and Extrinsic Motivations: Classic Definitions and New Directions. Contemporary Educa- tional Psychology, 25/1: 54–67. https://doi. org/10.1006/ceps.1999.1020 Swaminathan, S. & Schellenberg, E.G. 2015: Arts education, academic achievement and cogni- tive ability. In: Tinio, P.P.L. & Smith J.K. (eds.): The Cambridge Handbook of the Psychology of Aesthetics and the Arts, Cambridge Univer- sity Press: 364–384. https://doi.org/10.1017/ CBO9781139207058.018 Tori, M. 2012: Prosti čas mladih. Diplomsko delo. Univerza v Ljubljani, Fakulteta za družbene vede, Ljubljana: 99 p. http://dk.fdv.uni-lj. si/diplomska/pdfs/tori-martina.pdf (15. 11. 2024) Žvab Rožič, P. 2017: Šolske učne geološke zbirke. In: Rožič, B. (ed.): Razprave, poročila = Trea- tises, reports. 23. posvetovanje slovenskih ge- ologov. Univerza v Ljubljani, Naravoslovnoteh- niška fakulteta, Oddelek za geologijo, Geološki zbornik, 24: 214–217. Letošnje leto je od 27. do 31. maja v Podčetrtku, v kongresnem centru term Olimje potekalo jubilej- no 10. neogensko srečanje NCSEE (Workshop of the Neogene of Central and South-Eastern Euro- pe) (sl. 1). Srečanje je organiziral Geološki zavod Slovenije (GeoZS) v sodelovanju s Paleontološkim inštitutom Ivana Rakovca ZRC SAZU. Tovrstno srečanje poteka vsaki dve leti in se ga udeležijo raziskovalci s področja sedimentologije, paleon- tologije, stratigrafije in strukturne geologije, ki se ukvarjajo z razvojem Panonskega bazena, Central- ne in Vzhodne Paratetide ter tudi Mediterana. Dogodka se je udeležilo 58 registriranih ude- ležencev iz enajstih držav. Vse skupaj je bilo 49 predstavitev, od tega 27 predavanj in 22 poster- jev. Struktura udeležencev je bila zelo raznolika, od študentov in mladih raziskovalcev na začetku svoje kariere do uveljavljenih raziskovalcev in sta- rejših, že upokojenih udeležencev, ki še vedno z ve- seljem delijo svoje znanje z mlajšimi generacijami. Dogodek je vključeval predavanja, predstavitve plakatov, paleontološko delavnico ter dve ekskur- ziji. V ponedeljek je potekala registracija udeležen- cev, ki ji je sledila torkova uradna otvoritev sre- čanja. Po otvoritvenem dogodku so se pričela ple- narna predavanja. Najprej je dr. Jure Atanackov z Geološkega zavoda Slovenije predstavil strukturni pregled vzhodne Slovenije, nato pa je dr. Michal Kováč z Oddelka za geologijo in paleontologijo Univerze Comenius v Bratislavi predstavil stare in nove koncepte stratigrafije, geodinamike in paleo- geografije v Dunajskem bazenu, ki so temeljile na Sl. 1. Vhod v kongresno dvorano Kongresnega centra v Olimjah. Sl. 2. Predavanje dr. Michala Kováča v polni predavalnici. Sl. 3. Debate pri posterski sekciji. GEOLOGIJA 66/2, 349-351, Ljubljana 2024 Poročila in ostalo - Reports and More Poročilo o mednarodnem neogenskem srečanju NCSEE (Neogene of Central and South-Eastern Europe) Kristina IVANČIČ Geološki zavod Slovenije, Dimičeva ulica 14, SI–1000 Ljubljana, Slovenija; e-mail: kristina.ivancic@geo-zs.si 350 re-evaluaciji obstoječih podatkov (sl. 2). Srečanje se je nadaljevalo s kratkimi predavanji, predvsem na temo sedimentologije, stratigrafije in paleonto- logije. Dan se je zaključil s predstavitvijo posterjev (sl. 3). V sredo smo izvedli medkonferenčno ekskur- zijo. Ta je potekala v okolici Rogaške Slatine in Podčetrtka, obiskali smo štiri točke. Pri prvi točki smo si ogledali profil egerijskih in eggenburgij- skih plasti v Dreveniku. Zaporedje je sestavljeno iz bazalnih konglomeratov in breč, peščenjakov ter meljastega laporja. Druga točka je bila v Me- stinjah, kjer v markantni antiklinali izdanjajo bi- okalkareniti, ter peščena, meljasta in laporanata badenijska zaporedja (sl. 4). Pot nas je nato vodila v okolico Podčetrtka, kjer smo si na Plohovem bre- gu ogledali debelo skladovnico egerijskih peskov z vmesnimi peščenjaki ter meljastimi laporovci, ter v stratigrafsko višjem delu tudi badenijski kalka- renit. Profil se zaključi s sarmatijskimi meljastimi laporji. Zadnji postanek je bil v Imenski gorci, kjer izdanjajo plasti drobnozrnatih panonijskih sedi- mentov bogatih z ostrakodi. Naslednji dan smo nadaljevali s predstavitvami. Plenarna predavanja je otvoril dr. Dan V. Palcu z Nacionalnega inštituta za morsko geologijo in geo- ekologijo v Bukarešti, ki je predstavil predavanje z naslovom Dediščina Tetide. Sledilo je plenarno predavanje dr. Valentine Hajek-Tadesse (Hrvaški Geološki inštitut), ki je predstavila srednjemio- Sl. 4. Skupinska fotografija udeležencev kongresa pred znamenito antiklinalo v Mestinjah. Sl. 5. Kongresna delavnica: predstavitev neogenskih mak- rofosilov z območja SV Slovenije Sl. 6. Paleontološka delavnica. 351 Zadnji dan je potekala pokonferenčna ekskurzi- ja. Tokrat je bila zaradi obilnega deževja turistično obarvana, saj smo bili zaradi vremena primora- ni spremeniti prvotni plan. Tako smo se namesto ogleda geološke učne poti Paškega Kozjaka odpra- vili na okušanje magnezijeve vode v Rogaški Slati- ni, kjer je bil kljub vsemu najbolj zanimiv kamnit tlak (sl. 7 in 8). Nato smo odšli na ogled razgibane neogenske pokrajine z višine, in sicer s stolpa Kri- stal v Rogaški Slatini. Ekskurzijo smo zaključili z ogledom slikovitega Minoritskega samostana v Olimju in obiskom Čokoladnice Olimje. Informacije o desetem neogenskem srečanju NCSEE so dostopne na spletni strani https:// www.geo-zs.si/ncsee/#, kjer je na voljo tudi knjiga povzetkov, okrožnice ter celoten program. censke endemične mehkužce Dinarskega jezerske- ga sistema z območja Bosne in Hercegovine. Sre- čanje se je nadaljevalo s kratkimi predavanji, ki so bila precej paleontološko obarvana. Nato je sledila paleontološka delavnica, ki se je na takem srečanju odvijala prvič. Na njej so si udeleženci lahko ogle- dali zbirko makrofosilov neogenske starosti, značil- nih za območje Slovenije, ki jih je predstavil Matija Križnar (Prirodoslovni muzej Slovenije) (sl. 5). Po- leg tega, so bili na ogled postavljeni tudi ostrakodi, najdenih na območju zahodne Centralne Parateti- de, ki jo je vodila dr. Valentina Hajek Tadesse (HGI) skupaj z Mihom Marinškom (GeoZS). Ogledali smo si lahko tudi kenozojske foraminifere, ki jih je predstavila dr. Katica Drobne (sl. 6) in nanoplank- tonske fosile iz okolice Podčetrtka, ki sta jih prip- ravila dr. Miloš Bartol (GeoZS) in dr. Stjepan Ćorić (Geosphere). Dan se je zaključil s postersko sekcijo. Sl. 7 in 8. Po-konferenčna ekskurzija. Okušanje Mg vode :). 352 Nacionalna delavnica o izotopih: Izboljšanje zmogljivosti upravljanja z vodnimi viri Klara ŽAGAR1, Katja KOREN PEPELNIK2, Nina RMAN2 & Polona VREČA1 1Institut "Jožef Stefan", Odsek za znanosti o okolju, Jamova cesta 39, SI–1000, Ljubljana, Slovenija; e-mail: klara.zagar@ijs.si; polona.vreca@ijs.si; 2Geološki zavod Slovenije, Dimičeva ulica 14, SI–1000 Ljubljana, Slovenija; e-mail: katja.koren@geo-zs.si; nina.rman@geo-zs.si V okviru nacionalnega IAEA projekta NC SLO7001 - Izboljšanje zmogljivosti upravljanja z vodnimi viri je bila 2. oktobra 2024 na Geološkem zavodu Slovenije (GeoZS) v sodelovanju z Insti- tutom "Jožef Stefan" (IJS) organizirana delavnica na področju upravljanja z vodnimi viri v Sloveni- ji. Udeležilo se je je 39 upravljavcev vodnih virov, raziskovalcev, strokovnjakov in študentov, ki upo- rabljajo podatke o izotopski sestavi kisika in vo- dika v raziskavah vodnega kroga, v naravnih in urbanih okoljih Slovenije. Cilj nacionalne delavni- ce je bila izmenjava izkušenj in dobrih praks, dol- goročni cilj projekta pa je vzpostavitev mreže sis- tematičnih opazovanj izotopske sestave vodnega kroga v Sloveniji in javne baze tovrstnih podatkov. Dogodek se je pričel z uvodnimi nagovori in pozdravi predstavnikov GeoZS (dr. Miloš Bavec), Uprave Republike Slovenije za jedrsko varnost (g. Igor Sirc), Direktorata za vode Ministrstva za na- ravne vire in prostor (dr. Stanka Koren), Stalne- ga predstavništva Republike Slovenije pri OZN, OVSE in drugih mednarodnih organizacijah na Dunaju (mag. Melita Župevc), Ministrstva za zu- nanje in evropske zadeve (ga. Tanja Miškova) ter IJS in Mednarodne podiplomske šole Jožefa Ste- fana (prof. dr. Milena Horvat). V nagovorih so poudarili pomen naše vodne diplomacije, saj je Slovenija zelo aktivna pri zaščiti vodnih virov in zagotavljanju dostopa do vode kot temeljne člo- vekove pravice ter promociji takšnega pristopa v mednarodnem okolju. Zaradi odvisnosti od global- nih vodnih virov je voda prepoznana kot ključno vprašanje miru in varnosti, pri čemer naše aktivno mednarodno povezovanje prispeva k stabilnosti v svetu. Izpostavljena je bila dolga tradicija miro- ljubne uporabe jedrskih tehnik ter sodelovanje z IAEA, kjer Slovenija prispeva k razvoju medna- rodnih standardov, usposabljanju strokovnjakov in izboljšanju upravljanja vodnih virov. Poseben poudarek je bil na izkušnjah z uporabo stabilnih izotopov kisika in vodika, ki omogočajo napredne raziskave za trajnostno upravljanje z vodnimi viri. Sl. 1. Predstavitve na nacionalni delavnici. 353 IAEA (International Atomic Energy Agency – Mednarodna agencija za jedrsko energijo) je ena od agencij Združenih narodov, ki deluje na podro- čju jedrske varnosti, uporabe jedrske energije v miroljubne namene in tehnološkega razvoja. Njeno poslanstvo zajema podporo državam pri reševanju okoljskih izzivov, med katere sodi tudi upravljanje vodnih virov. IAEA zagotavlja tehnično pomoč, f inanciranje opreme in izgradnjo kompetenc, kar državam omogoča dostop do naprednih razisko- valnih tehnik, kot je uporaba stabilnih izotopov vodika in kisika v vodi. Te metode so ključne za razumevanje dinamike in sestave vode v različnih komponentah vodnega kroga in njegovih spre- memb tako v naravnih kot v urbanih okoljih. V prvem delu delavnice so bile izpostavljene možnosti in obstoječe prakse mednarodnega so- delovanja. Tako je predsedujoči v biroju Vodne konvencije, dr. Aleš Bizjak iz Direktorata za vode Ministrstva za naravne vire in prostor predsta- vil Cilj 6 Agende ZN 2030 Vodne konvencije in priložnosti za posredovanje slovenskega znanja v svet. Širše ozadje, pomen in možnosti za prijave in sodelovanje v IAEA projektih so predstavili Mayumi Yamamoto (regionalna koordinatorka NC SLO7001 projekta, IAEA), dr. Oliver Kra- cht (tehnični koordinator NC SLO7001 projekta, IAEA) in doc. dr. Nina Rman (vodja NC SLO7001 projekta, GeoZS). Drugi del delavnice je vseboval predstavitve domačih in tujih strokovnjakov na temo rabe, iz- kušenj in potreb po podatkih o izotopski sestavi kisika in vodika v vodi. Svoje izkušnje so predsta- vili dr. Peter Frantar in dr. Urša Pavlič - Agencija RS za okolje, dr. Sonja Cerar - GeoZS, dr. Polona Vreča in dr. Sonja Lojen – IJS, dr. Petra Žvab Ro- žič - Naravoslovnotehniška fakulteta, mag. Bran- ka Bračič Železnik - JP VOKA-SNAGA d.o.o., dr. Jože Ratej - IRGO Consulting, mag. Miha Pavšek - Geografski inštitut Antona Melika ZRC SAZU, dr. Tom Levanič - Gozdarski inštitut, doc. dr. Vesna Zupanc - Biotehniška fakulteta Univerze v Ljublja- ni in Žiga Begelj - Fakulteta za gradbeništvo in geodezijo v Ljubljani. Mednarodni pridih so dali gostje iz Madžarske in Malte, dr. István G. Hatva- ni in dr. Zoltán Kern - Institute for Geological and Geochemical Research in HUN-REN Research Centre for Astronomy and Earth Sciences, Budim- pešta, ter Ella Busuttil - Maltese Energy & Water Agency, Qormi. Prijavni obrazec na nacionalno delavnico je vključeval vprašalnik s sedmimi vprašanji, da bi laže ocenili stanje izkušenj, izzivov in potreb v Slo- veniji (sl. 2). Skupno število izpolnjenih vprašalnikov je bilo 23, kar pomeni 59 % udeležencev z delavnice. Ve- čina udeležencev, ki so odgovorili na vprašalnik, je bila v preteklih sedmih letih vključena v razis- kave, kjer so bili uporabljeni podatki o izotopski sestavi kisika in vodika v vodi. Približno polovica takšne podatke tudi trenutno vključuje v raziska- ve, večina pa jih že sodeluje z drugo organizacijo oz. inštitutom na tem področju oziroma bi si že- leli sodelovati tudi v prihodnje. Zbirke podatkov o izotopski sestavi kisika in vodika v vodi v Slo- veniji so trenutno razpršene in individualne, zato je do arhivskih podatkov razmeroma težko priti. Analize izotopske sestave kisika in vodika v vodi se trenutno izvajajo na dveh institucijah v Slove- niji, in sicer na IJS in GeoZS. Še vedno se veliko analiz izvede v drugih laboratorijih po svetu, tudi zato ker v Sloveniji ni akreditiranega laboratorija Sl. 2. Grafični prikaz odgovorov na sedem vprašanj. Na vprašalnik je odgovorilo 23 udeležencev (59 % vseh udeleženih). 354 za tovrstne analize, zato je nujna nadgradnja na- cionalnih laboratorijskih kapacitet. Ob izboljšanju infrastrukture je pomembno tudi praktično izo- braževanje, ki temelji na rezultatih raziskav in omogoča izmenjavo mnenj in razvoj za reševanje zapletenih izzivov. Z izvedbo delavnice smo dobili vpogled v tre- nutno stanje področja v Sloveniji, kar predstavl- ja izhodišče za načrtovanje bolj sistematičnega razvoja izotopske hidrologije. Ugotovili smo, da že imamo izkušnje z opazovanjem izotopske sestave v skoraj celotnem vodnem krogu, ne le v padavinah (vseh oblik), ampak tudi v talni, površinski in pod- zemni vodi, v antropogenih vodah (odpadne vode in podobno) in vodo v biosferi (drevesa, ekosiste- mi), potrebno pa je še nekaj truda za ureditev dos- topa do številnih že zbranih podatkov in sčasoma uvedba enotne javne podatkovne baze. Dvoletni nacionalni projekt NC SLO7001 predstavlja dobro osnovo, saj krepi sodelovanje institucij na področju pridobivanja in rabe podatkov o izotopski sestavi vode, s posebnim poudarkom na pripravi osnov za dolgoročno vključitev teh informacij v nacionalno opazovalno mrežo Agencije RS za okolje. Za boljši prenos znanja v prakso ter k upravljanju vodnih virov in področij trajnostnega razvoja pa krepimo tudi sodelovanje strokovnjakov in odločevalcev, ki, kot je bilo poudarjeno na delavnici, prepoznavajo potrebe po izboljšanju informacij. Zahvala Projekt se izvaja na podlagi protokola o sodelovanju Geološkega zavoda Slovenije v programu tehnične po- moči in sodelovanja z Mednarodno agencijo za atom- sko energijo. Kot slovenski projektni partner sodeluje tudi Institut "Jožef Stefan". Sofinanciranje projekta NC SLO7001 zagotavljata raziskovalna programa št. P1-0020 Podzemne vode in geokemija in P1-0143 Kro- ženje snovi v okolju, snovna bilanca in modeliranje okoljskih procesov ter ocena tveganja, ki ju f inancira Javna agencija za znanstvenoraziskovalno in inovaci- jsko dejavnost Republike Slovenije iz državnega pro- računa. Urnik delavnice in informacije o projektu so na voljo na https://www.geo-zs.si/?option=com_con- tent&view=article&id=1506. 355 From a Birthday Conference to an Apricot Plantation - An unusual business trip to Kyrgyzstan and Tajikistan (with a lot of food) October 6th to 19th, 2024 Gisela DOMEJ Geološki zavod Slovenije, Dimičeva ul. 14, SI-1000 Ljubljana, Slovenija e-mail: gisela.domej@geo-zs.si In this report, we find out how the most unusu- al setup for a business trip comes to the most sat- isfying results. Why? Because Central Asia is the place where “everything possible and impossible comes out of the oil lamp” – even in the countries that don’t have oil. They replace it with cooking oil because after all, the essential aspect of Central Asian culture is hospitality. In short, the trip was planned long before I joined GeoZS in September 2024, and – happy with my new employment – we decided to add a bit of GeoZS f lavor to it: a MASPREM poster and openness for new cooperation. It paid off! Kyrgyzstan: Always a reason to celebrate The saying goes, if Central Asia was an apart- ment, then Kyrgyzstan was the courtyard: there is always something going on, people meet, and thereby new ideas, strategies, opportunities, and institutions are created. Some of them were new already decades ago, and so it happened that the Central Asian Institute of Applied Geosciences (CAIAG) celebrated its 20 th anniversary in 2024 by holding a birthday confer- ence on the occasion. The institute was founded by the Government of Kyrgyzstan and the German Research Centre for Geosciences (GFZ) to conduct research in the fields of geodynamics, geohazards, climate change, hydrology, geoecology, resource protection, and many more. Most of those disci- plines were represented on the 8th and 9 th of Octo- ber in various sessions by presentations and post- ers at the International University of Kyrgyzstan (IUK) with the overall topic “Past achievements and future challenges of applied geosciences in Central Asia” and “Five Years of Action for Sus- tainable Development of Mountain Regions (2023- 2027)” (CAIAG, 2024; GFZ, 2024). Researchers, experts, governmental officials, and students from over 15 countries participated in the event; amongst them were colleagues from Kyrgyzstan, Uzbekistan, Kazakhstan, Tajikistan, Russia, Swit- zerland, Italy, Germany, Japan, and me represent- ing Slovenia with two contributions (Fig. 1a-b): - CataEx: How to quickly start the Google Earth Engine with JavaScript? (Domej & Pluta, 2024) - MASPREM – the Slovenian Landslide Fore- casting and Warning System (Peternel et al., 2024) Originally, the content of my presentation drew from another project at my previous place of work as a post-doctoral researcher at Adam Mickiew- icz University (AMU) in Poznan, Poland, where we looked for ways to map landslide debris falling on glaciers (Domej et al., 2023). One outcome was, Fig. 1. Conference hall at the International University of Kyrgyzstan (IUK) where I presented my Google Earth Engine code (a) and our MASPREM poster (b); I also met Dr. Isakbek Torgoev (c). 356 more broadly, a routine coded in JavaScript that performs a variety of useful computations in the Google Earth Engine such as retrieving satellite imagery from the Google Earth Engine Catalog, masking clouds on the images, pixel statistics, index computation, export to other GIS software, and several different tasks. Although initially de- signed to serve for specific purpose in the Polish project, we found that applications can be much broader, which was ref lected by vivid questions from colleagues working in fields ranging from climatology via resource prospection to environ- mental protection. As I found out the day after my presentation, my session had been filmed by the Kyrgyz broadcaster ELTR (2024) and besides Dr. Bolot Moldobekov, the director of CAIAG, I had the chance to appear with some birthday wishes living up to the Slovenian motto “yes, we can!”. The same day, the poster session took place, and against our expectations, the poster on the Slove- nian landslide early-warning system MASPREM (GeoZS, 2024) attracted even more attention than my presentation. How smart that we decided to bring along some GeoZS spice to the trip! Visitors at our poster were numerous, I brought back a stack of new visit cards, and the stock of GeoZS booklets had disappeared rather quickly. By chance, I also met Dr. Isakbek Torgoev (Fig. 1c), one of the best landslide scientists in Central Asia. He promptly offered me his new book on the topic as a gift. Later that day, the actual birthday party was held on the premises of CAIAG, and like the con- ference itself, the organization was impressive – the food and music alike (Fig. 2). While visiting the fast-changing city center of Bishkek with its fancy high-rise buildings between the typical monumental structures that link histo- ry back to the Soviet Union (Fig. 3a-b), I got a call from my colleague Dr. Ruslan Umaraliev (author of an article in this issue of Geologija) a disaster risk specialist working at Osh State University (Osh- GU) and the unit of Disaster Risk Reduction and Management of the World Food Program (WFP). He told me he would be coming to Bishkek, and that we should meet for a project dinner. No soon- er said than done, and over some delicious Kyrgyz shashlik we concluded that we could set up a pro- ject as landslide early-warning stands at the very top of the governmental agenda of Kyrgyzstan for the next years. He would connect to the Ministry of Emergency Situations (MES) of the Kyrgyz Re- public. Handshake, “Yes we can!”. Uzbekistan: Tovarna bovdenov in plastike Saturday 12th was the day to travel to Tajik- istan, where I would carry out a mapping job for the NGO Hilfswerk International (HWI). More precisely: in the very north of Tajikistan, to where no connection by plane exists from Bishkek. There- fore, the solution was to f ly to Tashkent, the capi- tal of Uzbekistan, travel by car southwards to the Fig. 2. Traditional Kyrgyz orchestra in the gardens of the Central Asian Institute of Applied Geosciences (CAIAG). Fig. 3. Historic timeline of Kyrgyzstan on Ala-Too Square in cen- tral Bishkek – prehistoric times documented in the State History Museum (a-b), the national hero Manas on his horse, Lenin as a representative for the communist past of the country, the flag of the independent Kyrgyz Republic since 1991. 357 border crossing at Oybek and then onwards to Khujand, the capital of the Tajik Viloyat Sughd (Fig. 4). As such, this plan seemed very feasi- ble, not too long, and quite comfortable, as HWI booked all segments of transportation and accom- modation – had there not been a day-long confu- sion about my origin. While at Bishkek Airport, everybody was re- laxed, passport controls in Tashkent took it al- ready to a different level: - Passport! Look camera! - (So, I looked into the camera.) - You first time in Uzbekistan? - No, it’s the third time. - What you do? - I’m a geologist. - Where you from? - I’m from Austria. - No, where you from today? - I came from Bishkek. - You not have return ticket. Where you go? - Tonight, I travel to Oybek and exit to Tajik- istan. Maybe the precise location convinced him, and very energetically I got my passport stamped. Out- side the terminal, my driver was waiting and we set off south on the sparsely illuminated motor- way, which interestingly has bus stops and zebra crossings. Around 10:30 pm, we reached a slightly more lit-up parking lot in front of an iron gate, the location the furthest the driver could go. Behind the gate started the border zone, where – to my surprise – had accumulated hundreds of people with their belongings all waiting in a queue to be admitted in groups to the Uzbek exit checkpoint. And the crowd even grew larger, as a yellow bus with a post horn arrived on whose front screen it showed “Der Deutsche Postbus fährt für Sie”. Just behind it parked his cousin, a truck from Tovar- na bovdenov in plastike (Fig. 5), a Slovenian cable producer. Fig. 5. A Slovenian second-hand truck at the Uzbek border post in Oybek (secretly photographed out of the queue; therefore blurred). Fig. 4. Travel route from October 6th to 19th, 2024, from Kyrgyzstan via Uzbekistan to Tajikistan. 358 While I was ref lecting on globalization, the selling of discarded vehicles from Europe to Cen- tral Asia, I eventually arrived at the passport con- trol after one long hour with a few stains of motor oil on my pants: - Passport! Camera! - (I looked at the camera again.) - Where you from? - From Bishkek. (Hoping that this time I gave the proper answer.) - No, not possible. Where you live? - In Slovenia. - But you have passport from Austria? - Yes, I’m Austrian. - You enter Uzbekistan when? - About four hours ago by plane. - And now you go out Tajikistan? - Yes. - Do what there? - It’s for a food project. - You not like here? Our food also good. Unsure if border officers are supposed to joke, I just confirmed that, yes, if Central Asia was an apartment, Uzbekistan would definitely be the kitchen, and he gave me the next stamp and sent me further. As there was nothing to be seen ex- cept for a pavement leading in the complete dark, I asked where to find the Tajik entry checkpoint just to receive the simple answer: “ dalshe, dalshe, po- dalshe”. With that prospect, I remembered well my f irst Slovenian word that I learned on day one of my employment – podaljšek (Slo. extension cable) – thinking that maybe the truck of Tovarna bovde- nov in plastike could have brought some of them to install a bit of light in that section of no-man’s- land. Another thought was that a four-wheel-drive car would be comfortable, but as car crossing is a hassle there, at least a suitcase should have a four- wheel-drive function. At the next streetlight the Tajik border post came in sight, and I prepared for the interview with all my previous knowledge: - Ba kamera nigared! - Sorry, do you speak Russian too? - You are not Tajik? Where are you from? - I’m Austrian, I live in Slovenia, and I traveled from Bishkek through Uzbekistan in one day. - Alone? At night? As a woman!? - Yes, a driver is waiting outside for me. - What will you do here in the north? - I’m a tourist. - But what would you visit here? - A fruit plantation. - Plantation? - Yes, zardolu (Taj. apricot). I like fruit. The officer threw me a skeptical glance and hit the fourth stamp of the day into my passport. Outside I met the second driver who would take me to Khujand, where the local colleagues of HWI proceeded to the official beginning of my stay – to a dinner at 1 am because hospitality cannot be food-less. Lessons learned from the day: 1. We Europeans have the luxury of extremely powerful passports. We are so pampered and used to crossing borders with minimal effort, that we have forgotten that for most people crossing borders is an experience worse than mine that day. 2. Even though the experience was lengthy, I could still see it with humor because, with my privileged passport, I was sure to be able to cross, whereas for others a long wait with several hurdles does not automatically result in the allowance to enter another country. Being a geologist, and traveling the world for work, sometimes teaches aspects of life, and al- though the trip was overall a very happy time with celebrations every few days, it was this 1 km in the no-man’s-land between two countries that ex- emplified the fact that some travel for leisure, and some others it is an uncomfortable necessity. Tajikistan: How to transport 7 kg of fruit as a hand luggage “We need our geologist because we are not sci- entific enough.” Sometimes I feel that reasoning amongst the HWI Team, although I don’t agree with its justification. All our team members have an academic background. The question is just how to combine tasks properly to achieve good results. Initially, I came to know the Austrian NGO in 2011 during my Master’s project at the University of Natural Resources and Life Sciences (BOKU) in Vienna, Austria. Back then, the representative of- fice in Central Asia in Dushanbe, the capital of Ta- jikistan, assisted us in implementing the EU-fund- ed natural-hazard project PAMIR (HWI, 2024a) in the Gorno-Badakhshan Autonomous Region in Eastern Tajikistan, which eventually allowed me to successfully write my diploma thesis (Domej et al., 2019) and finish my degree. Since then, we have always been in close contact, and over time I grew into the activities of HWI on a voluntary basis, having a hand in web administration, data management, and a variety of other tasks that need a little scientific input such as the current ef- forts to map production areas of different sorts of fresh and dried agricultural products. 359 What is here then geologic? Not so much, ad- mittedly. But the ambitions of HWI deserve sup- port and acknowledgment. Over the last decade, it engaged in a series of EU projects in the field of farming, food production and processing, food safety standards, export of goods, and the support of small and medium-sized enterprises in the four countries of Tajikistan, Kyrgyzstan, Uzbekistan and Kazakhstan (HWI, 2024b). With dedication and constant endeavor, new strategies find their consideration nowadays in government agendas and a specifically created working group – the Central Asian Working Group (CAWG) – is recog- nized by the United Nations Economic Commis- sion for Europe (UNECE) in Geneva, Switzerland. One of the newest undertakings driven by HWI and the CAWG is the branding of local food prod- ucts with registered geographical indications (GI), that link a product to a specific origin – similar to Styrian Pumpkin Seed Oil from Austria. And where an area of production is strictly defined, an accurate map is needed. That’s where someone would like to borrow a geologist! While last year, we mapped the area of produc- tion of the Khorezm Melon in the Xorazm Region and the Autonomous Republic of Karakalpakstan in Uzbekistan, this year, we targeted the Ashtak Dried Apricot in Tajikistan’s northernmost district Asht in the Tajik Fergana Valley. As the area of production is located on a single slope and, therefore, considera- bly smaller than the one of the melons, our task con- sisted of visiting the plantations and drawing a clear distinction between Ashtak Apricots and other sorts. With a bunch of modified satellite imagery cre- ated with the Google Earth Engine Code I had pre- sented a few days earlier at the CAIAG’s birthday conference in Bishkek, we hit the road up north from Khujand to a plateau resembling the Planet Mars not only due to its reddish gravel but also due to the complete emptiness in terms of infrastruc- ture. The expression “hitting the road” turned out to be taken very seriously, although, for most of the time, it remained unclear whether we hit the road or the other way around (Fig. 6). The herd of goats, that appeared out of nowhere during a heavy rainstorm, was – however – handled with the best care possible. Once having passed the plateau, plantations started to emerge throughout the rough terrain. Ravshan Hasanov, an irrigation specialist, and I took action for the day: he driving, I mapping – or more precisely, stopping at farmers’ plantations, visiting processing units including a giant fridge (Fig. 7a), conducting interviews (Fig. 7b), snack- ing here and there dried apricots and other fruit, counting irrigation canals and roads which serve as addresses in the area, refusing more snack in- vitations but accepting more dried apricots in various formats of packaging as take-home-gifts, crossing through gardens (Fig. 7c) and carefully navigating over canal embankments to the max- imum extents of the Ashtak plantations (Fig. 7d). The day had two highlights: the topographic one at the top end of the plantation slope with a breathtaking view into the valley above (Fig. 8a), and the other – how could it be different – a culi- nary one in the form of an extended lunch in the town of Shaydon, the capital of the Asht District, which seemed not to have changed much since Soviet times: decorated citizens are displayed be- neath an impressive mosaic (Fig. 8b), and even the entire irrigation system is a result of industrial- ized agriculture from decades ago. Here, having Ravshan as a guide turned out to be perfect. Dur- ing the hours of driving through barren but fas- cinating landscapes (Fig. 9), I learned a lot about recent local history and agricultural practices. He also made an extra detour before returning to Khujand to show me the Kayrakkum Reservoir on the Syr Darya which partly forms the border be- tween Tajikistan and Uzbekistan a little further up north (cf. border in Fig. 4). While driving over the dam crest, we met another cousin of the German Postbus: a FlixBus from Poland. Fig. 6. Welcome monument to the Asht District on the road from Khujand to Shaydon. 360 Fig. 7. Fieldwork to map the Ashtak plantations in the Asht District – fresh apricots (a), interviews with producers (b), comparing satellite images with plantation lots (c), irriga- tion canal embankments used as connection roads between lots (d). Fig. 8. Valley above Shaydon (a) with different fruit plantations; mosaic remaining from Soviet times advertising farming activities and a wall of honor for decorated citizens (b). Fig. 9. Return trip to Khujand with a mountain ridge resembling a colorful puff pastry; in these countries, not even the landscape can escape culinary art. 361 For once, the following day was not about oil, but about a derivative of it: kerosene. The previous day, the HWI office called us in Asht asking wheth- er I preferred to f ly to Dushanbe instead of going by car – as it turned out later with a Tajik Boeing 737. At the check-in, the ground staff insisted on taking my 7 kg of apricot gifts with me into the salon rather than sending it into the hold luggage. Although I tried my best to explain, that I had al- ready two pieces of hand luggage, the final answer was: “Better take it, the apricots might get wet, it’s raining today.” I pushed away the idea that rain could penetrate the plane and strolled into a waiting area, where it became immediately clear that a total of 15 kg of hand luggage was still quite modest. – Conclusion of the f light: the most children on all my f lights, one of the shortest f lights ever (i.e., only about 40 minutes), not a single turbulence, but the luggage was indeed delivered wet. Everything is possible, also with kerosene in the oil lamp. Arriving in Dushanbe was a real time travel. Not only is the contrast between Khujand (Fig. 10a-c) and Dushanbe quite striking, but the city had also changed enormously since my last vis- it in 2011. High-rise buildings f lank the streets, sparkle at night like in the Gulf States, and many old Soviet-style panel houses gave way to gigantic new buildings and monuments that difficultly find lookalikes in Europe (Fig. 11a-d). If Central Asia was an apartment, Tajikistan could cover even two elements: the balcony with its high Pamir Moun- tains as well as the reception hall to impress guests. As a geologist, I just wondered whether those fascinating constructions could resist strong earthquakes. In October 1948, an earthquake of magnitude 7.3 heavily destroyed Ashgabat (Mar- shall et al., 2024), the capital of Turkmenistan, and so did another one of magnitude 5.2 in April 1966 in Tashkent (Kulahmatovich & Bohodirovich, 2021). Several decades later, after a rapid increase in population and infrastructure in big cities, such high magnitudes could cause tremendous damage. Unfortunately, this seems to be a real threat for Dushanbe, as the city is located in close vicinity to two active fault systems with which magnitudes as high as 7.5 (Bindi et al., 2012) are associated. The head of HWI in Tajikistan picked me up from the airport, just to announce to me that they had organized a brand-new apartment of 60 m² in such a high-rise block: € 40 per night, and a supermarket in the basement, where a liter of milk Fig. 10. City center of Khu- jand – mausoleum of Sheikh Muslihiddin next to the central mosque on Panjshanbe Square (a), cable car over the Syr Dar- ya to the northern part of the city (b), public display of sta- tistics on cotton farming (c). 362 imported from Kazakhstan costs about € 2.20. Quite a price in a country where the average salary amounts to roughly 2300 Somoni (i.e., roughly € 200; CEIC, 2024)! It made me think. The rest of the week was quite enjoyable. Usu- ally, I spent the day with the HWI colleagues in the office, post-processing the data of the field mission and drawing the map for the GI registra- tion process for the Ashtak Dried Apricot (Fig. 12). Curiously, the Ashtak plantation area is limited to the gently inclined slope above the main road and to the shape of a fan approximately corresponding to the channel of Shaydon. Farmers reported in our interviews that not only the drying time was shorter compared to apricot sorts growing fur- ther downslope between the road towards the Syr Darya and the salt pan (cf. Solonchak Aksikon in Fig. 12), but also the taste is considerably differ- ent. One suspicion for my part could be an inf lux of specific minerals through the channel into the plantation fan. As it happens, the channel catch- ment includes a geologic unit of conspicuous red rock (cf. northwestern corner in Fig. 12), presuma- bly containing iron as its stone fragments are sur- prisingly heavy. The stream passes right through this unit at the catchment outlet, before discharg- ing with seasonal intensities onto the fan below. Perhaps another field mission including geologic sampling could solve the mystery! In the early evenings, I had time to visit the city, which definitely can compete with any other capi- tal; I found a Kärcher Shop, the Segafredo Zanetti Café, and fortunately, the Rohat Choikhona dating from 1958 (Fig. 11d), one of Tajikistan’s oldest and most famous tea houses for which petitions were held to prevent its destruction (eurasianet, 2022). And finally, how could it be different? The last office day we had a little cooking party. The head of HWI himself took action and prepared a feast: tender meat with ¼ kg of butter (instead of oil) – and a toast on our mission of this year. Apricots for dessert! Hopefully, next year we will map ap- ples in Kazakhstan or honey in Kyrgyzstan. The aftermath With certainty, the trip was one of the most unusual business trips in my career, but also one of the most exciting, impressive, and instructive. Maybe even one that led to new dynamics faster than after other trips. On the 22nd of November, we held a kick-off meeting for cooperation on landslide susceptibility and early-warning between GeoZS, the MES of the Kyrgyz Republic, and WFP as agreed during the business dinner with the handshake with Ruslan. As if mutual interest and six dedicated presenta- tions were not yet enough, GeoZS was asked if members of the Kyrgyz Ministry could visit in the Fig. 11. Sparkling Dushan- be – the newly constructed parliament (a) and the high- rise triplets displaying news about the president (b) on Rudaki Avenue, the inde- pendence monument dis- playing Tajikistan’s history (c), the tea house Rohat (d). 363 framework of a study tour and members of the Ge- oZS were invited to join a conference on landslide monitoring in February 2025 in Bishkek. Myself, I held a seminar on JavaScript coding in the Google Earth Engine on the 28th of November in a hybrid format for GeoZS and Vilnius University in Lithuania. After discovering the interest of the audience during the conference in Bishkek, I decid- ed to design a 4-hour seminar including practical exercises, that can help colleagues not specialized in GIS and remote sensing to acquire satellite data in a relatively simple way. The seminar could later be held for other audiences in Slovenia or abroad. Likewise, HWI (i.e., the headquarters in Aus- tria and the representative office in Tajikistan) emphasized their interest in future cooperation with GeoZS. Playing the role of project implemen- tors and facilitators without thematic limitations, it is open to topics such as environment and cli- mate change, livelihood preservation, and safety against natural hazards. In this context, HWI pos- itively commented on the proposition of GeoZS to cooperate with the Kyrgyz Government on land- slide susceptibility and early-warning, mentioning that the subject could be likewise applicable to Ta- jikistan with its mountainous areas covering more than 90 % of the country (FAO, 2012). Acknowledgments First, I would like to thank GeoZS for having closed an eye on me going on a mission only one month after having accepted my position, the f lexibility of handling this exception, and the positivity towards future coop- eration with Central Asia. Fig. 12. Plantations of Ashtak (by courtesy of Hilfswerk International (HWI)). Fig. 13. A little lunch (a) and the last selfie before returning to Slovenia (b). 364 I also would like to mention the company and sup- port of GFZ, particularly by Dr. Oliver Bens and Dr. Si- grid Roessner, and the fact that I could join the GFZ Team in all activities during the f irst week in Bishkek almost as if I belonged to GFZ myself. Particularly, I thank the HWI Team (Fig. 13a-b): Umed Aslanov for the organization of the Uzbek-Tajik part of my trip, Shuhrat Qodirov for the excellent ac- commodation in Dushanbe and being my late-night taxi to the airport, Gulbarg Lalbekova for her kind support with administration, and Ravshan Hasanov for the f ield mission to Asht. References Bindi, D., Abdrakhmatov, K., Parolai, S., Muc- ciarelli, M., Grünthal, G., Ischuk, A., Mikhailo- va, N. & Zschau, J. 2012: Seismic hazard as- sessment in Central Asia: Outcomes from a site approach. Soil Dynamics and Earth- quake Engineering, 37: 84–91. (https://doi. org/10.1016/j.soildyn.2012.01.016) CAIAG, 2024: Conference dedicated to the 20th anniversary of CAIAG. Online at: https:// www.caiag.kg/en/news/888-conference-ded- icated-to-the-20th-anniversary-of-caiag (last accessed in November 2024) CEIC, 2024: Tajikistan Average Monthly Sal- ary. Online at: https://www.ceicdata.com/ en/tajik istan/average-monthly-salar y/aver- age-monthly-salary (last accessed in Novem- ber 2024) Domej, G., Aslanov, U. & Ischuk, A. 2019: Geophys- ical investigations on the contribution of irri- gation channels to landslide activity in Tusion, Tajikistan. Journal of Himalayan Earth Scienc- es, 52/2: 161–177. (https://www.researchgate. net/publication/341608914_Geophysical_in- vestigations_on_the_contribution_of_irriga- tion_channels_to_landslide_activity_in_Tu- sion_Tajikistan) Domej, G., Ewertowski, M., Tomczyk, A. & Małecki, J. 2023: Landslide-covered glaciers: towards a new global geodatabase. Poster & Research Abstract, EGU23-11262, EGU General Assem- bly 2023, Vienna. (http://dx.doi.org/10.13140/ RG.2.2.19902.36169) Domej, G. & Pluta, K., 2024: CataEx: How to quickly start the Google Earth Engine with JavaScript? Talk & Abstract, Congress of the CAIAG 20th anniversary – Past achievements and future challenges of applied geoscienc- es in Central Asia, Central Asian Institute for Applied Geosciences, Bishkek. (http://dx.doi. org/10.13140/RG.2.2.36624.62728) ELTR, 2024: Climate Week, 20th Birthday of CAIAG (YouTube Video). Online at: https://www.you- tube.com/watch?v=NnBHog-zl-0&t=93s (last accessed in November 2024) Eurasianet, 2022: Tajikistan: Dushanbe’s Rohat teahouse saved from wrecking ball. Online at: https://eurasianet.org/tajikistan-dushan- bes-rohat-teahouse-saved-from-wrecking-ball (last accessed in November 2024) FAO, 2012: Country profile – Tajikistan. Food and Agriculture Organization of the United Nations, AQUASTAT Report, 21 p. (https://openknowl- e d ge . fao.or g/s er ver/api/c ore/ bi t s t re a m s/ c04b5ebe-7df5- 4235-a261-b52304ed2d63/ content) GeoZS, 2024: Masprem Pregledna plošča. Online at: https://masprem.geo-zs.si/ (last accessed in November 2024) GFZ, 2024: 20 years of CAIAG: GFZ co-oper- ation with Central Asia. Online at: https:// w w w.g f z - p o t s d a m .de/e n/pr e s s/ne w s/de - tails/20-jahre-zaiag-gfz-kooperation-mit-zen- tralasien (last accessed in November 2024) HWI, 2024a: Poverty Alleviation by Mitigation of Integrated High-mountain Risk. Online at: https://www.hilfswerk.tj/en/pamir-en/ (last accessed in November 2024) HWI, 2024b: Hilfswerk International in Tajikistan (and subpages for CANDY I-V, AgroDev, and HECAFS). Online at: https://www.hilfswerk. tj/en/ (last accessed in November 2024) Kulahmatovich, K.K. & Bohodirovich, I.M. 2021: The 1966 Tashkent earthquake and the people of Tashkent. Linguistics and Culture Review, 5(S2): 1439–1450. (https://doi.org/10.21744/ lingcure.v5nS2.1959) Marshall, N., Ou, Q., Begenjev, G., Bergman, E., Bezmenov, Y., Dodds, N., Gruetzner, C., Hud- son, T., Pierce, I., Mirzin, R., Rhodes, E., Walker, R.T. & Wordsworth P. 2024: Seismo- tectonic aspects of the Ms 7.3 1948 October 5 Aşgabat (Ashgabat) earthquake, Türkmeni- stan: right-lateral rupture across multiple fault segments, and continuing urban hazard. Ge- ophysical Journal International, 237/1: 315– 338. (https://doi.org/10.1093/gji/ggad488) Peternel, T., Jemec Auf lič, M., Krivic, M., Kumelj, Š., Domej, G. & Šinigoj, J. 2024: MASPREM – the Slovenian landslide forecasting and warn- ing system. Poster & Abstract, Congress of the CAIAG 20th anniversary – Past achievements and future challenges of applied geoscienc- es in Central Asia, Central Asian Institute for Applied Geosciences, Bishkek. (http://dx.doi. org/10.13140/RG.2.2.27187.44328) 365 Tea Kolar-Jurkovšek elected as Honorary Fellow of the Geological Society of America John E. Repetski (Research Geologist-Emeritus, U.S. Geological Survey) The Geological Society of America (GSA), founded in 1888, is a nonprofit organization ded- icated to the advancement of geosciences. It is headquartered in Boulder, Colorado, USA, and its membership has up to today grown to some ten thousand members. The main mission of GSA is to advance geoscience research and service to so- ciety by improving the professional growth of ge- oscientists thorough programs at all career levels. Publishing of scientific literature among others in- cludes peer-reviewed journals Geological Society of America Bulletin, and Geology, as well as sci- ence magazine GSA Today. GSA key activities are linked with sponsoring scientific meetings, of which organizing the an- nual meetings are of utmost importance. At the occasion of the Annual meeting Connects 2024 in Anaheim, California, in September several honors and awards have been presented, among them four new recipients of the GSA Honorary Fellowship. This award is intended for non-North American geoscientists with distinguished original scientific research and internationally recognized contribu- tions to science. Below is Citation for GSA International Honor- ary Fellow – Dr. Tea Kolar-Jurkovšek. It is a privilege and honor to award to Dr. Tea Kolar-Jurkovšek an Honorary Fellowship of the Geological Society of America, for her very sub- stantial scientific contributions over four decades. Tea Kolar-Jurkovšek is a scientific advisor at the Geological Survey of Slovenia, a geologist/bi- ostratigrapher, and a leader in the study of Pale- ozoic and Triassic conodonts (biostratigraphically important microfossils) and geology of the Euro- pean Dinarides. Her extensive field studies have resulted in many works on biostratigraphy, pale- ontology, and paleogeography. After graduate study at Ljubljana University and the University of Belgrade, she has been em- ployed as a researcher and program leader at the Geological Survey of Slovenia. Tea actively collab- orates in other scientific institutions, as member of the editorial board of a journal and as member of the IUGS International Commission on Trias- sic Stratigraphy, actively participating in several working groups. Her work has focused on paleontology and bi- ostratigraphy of Devonian, Carboniferous, Permi- an, but mainly Triassic, geology and conodonts of Slovenia and the wider Dinarides region. Her stud- ies include the definition of boundary stratotypes, stratigraphic correlations, geological mapping, mineral resource prospecting and tectonic studies of the region. Her achievements include work on the Permian/Triassic boundary, faunal zonation 366 and paleogeographic studies within the Triassic, and significant taxonomic advances. During the last forty years, her professional contributions include over 400 published works; she is among the most productive researchers at the Geological Survey of Slovenia, and in Europe. She collaborates with numerous leading in- ternational experts and has taken part in inter- national projects to solve biostratigraphic and paleogeographic issues in, for example, Romania, Oman, Kurdistan, China-Tibet, and she has trained master and doctoral students. Together with her geologist/husband Bogdan, she recently authored the monographs: “Cono- donts of Slovenia” (bilingual Slovene and English; 259 pp., 44 plates), “Fossils of Slovenia” (bilingual, 264 pp., 33 plates) and the comprehensive, well-il- lustrated book on the classic Slovenian Karst re- gion: “Geology of Kras” (also bilingual; 205 pp. 48 plates). These books, issued by Geological Survey of Slovenia and supplemented by original art il- lustrations, some by daughter Barbara, show her commitment to transfer her work to the general public. She also has organized exhibitions to high- light the value of fossils as part of the natural her- itage. Using conodonts as the leading fossil group Dr. Kolar-Jurkovšek has solved geologic problems and revised the ages of certain formations. She documented conodont faunas from the Alps in Slo- venia and in the Dinarides. She has assisted many geological surveys of the region, providing strati- graphic age assignments based on conodonts and solving important stratigraphical questions. Her notable achievements during her career include the recognition of several late Paleozoic conodont faunas and the introduction of Triassic conodont zonation of the area with documented difference with the standard zonation, distinguishing 34 conodont zones and two subzones. The Early Tri- assic zonation was recognized only more recently, of which some zones (late Griesbachian, Dienerian and Smithian) are based on euryhaline taxa, and their use is confirmed to be an important region- al biostratigraphic tool for the shallow shelf envi- ronments of the western Tethys (Kolar-Jurkovšek and Jurkovšek, 2015, 2019). The Middle and Late Triassic conodont zonation mainly corresponds to the standard zonation with the exception of two faunas that usually appear as monospecific fau- na, i.e. the Ladinian Pseudofurnishius murcianus Zone designating the Sephardic province, and the Nicoraella? budaensis Zone that is an important regional marker indicating the stressful condi- tions of the Carnian Pluvial Event. Moreover, she introduced the concept of multielement apparatus taxonomy in the region and made comprehensive taxonomic revisions to some Triassic conodont genera. More recently, her ongoing study, together with colleagues, is focused on a remarkable fossil record of Pseudofurnishius murcianus clusters in the Triassic of Slovenia and Bosnia that is large- ly based on the application of novel tomographic techniques. Her work on the Permian-Triassic Boundary (PTB) is also remarkable. During the last two dec- ades, in the areas of former Yugoslavia, she con- ducted extensive research of the PTB and Lower Triassic strata, enhanced with detailed sampling that revealed the recovery of Hindeodus parvus, the marker of basal Triassic. The Lukač section in Slovenia with an excellent successive conodont re- cord is the standard section to define the PTB in the entire Dinarides according to international stand- ards and the site has been added to a list of new natural value of national significance. Likewise, the Teočak section in Bosnia and Herzegovina that includes the PTB as well as the Induan-Olenekian Boundary strata with relatively large set of pale- ontological data represents an important contri- bution due to its relevance to the paleogeography of Western Tethys. In summary, Tea Kolar-Jurkovšek has been one of the most productive and inf luential geologist researchers in her country, establishing a network of researchers, international scientific exchanges and student supervisions. For those reasons, and close to her retirement, we honestly consider that Tea Kolar-Jurkovšek deserves the recognition for a lifetime of achievements in diverse studies of re- gional geology and palaeontology, and applying their relevance to society, and to be recognized as an Honorary Fellow of the GSA. 367 V spomin zaslužnemu profesorju dr. Simonu Pircu V novembru 2024 nas je za vedno zapustil naš dragi kolega, zaslužni profesor doktor znanosti Simon Pirc. Za njim bo ostala praznina, tako na strokovnem področju kot tudi v naših osebnih življenjih. Zaslužni profesor dr. Simon Pirc se je rodil 2. marca 1932, v Lipnici pri Kropi. Po kon- čani realni gimnaziji v Ljubljani, se je vpisal na Fakulteto za gradbeništvo, a je po letu dni postala in ostala njegova življenjska izbira geologija. Po diplomi leta 1961 se je kot ekonomski geolog zaposlil na Geološkem zavodu Ljubljana. Sodeloval je pri raziska- vah svinčevo-cinkovih rudišč ter urana v Sloveniji, in urana v Makedoniji. Verjetno so njegov nemirni duh, želja po novih izzivih in obvladovanje več svetovnih jezikov, prispevali k odločitvi, da se je priključil skupini Geološkega zavoda, ki je raziskovala rudišča v Alžiriji. Tam je prvič postavil temelje geokemičnemu kartiranju, metodi, ki se je takrat komaj začela uveljavljati v svetu. A žal se je delo v Alžiriji tragično končalo. Prometna nesreča mu je pustila tako hude posledice pri hoji, da je moral poiskati dru- gačno poklicno pot. Leta 1970 se je tako kot asistent zaposlil na Odseku za geologijo na Fakulteti za naravoslovje in tehnologijo, Univerze v Ljubljani. Kot asistent je sodeloval pri predmetih Mikroskopija rud in premogov ter Ocena in metode raziskav nahajališč mineralnih surovin. Pod mentorstvom prof. Matije Drovenika se je v magistrski nalogi, ki jo je zaključil 1975, posvetil Geoke- mičnim raziskavam v zahodnem delu posavskih gub. Zavedal se je, da je napredek v stroki mogoč le, če smo v stiku s svetovnimi dosežki. Za nadaljevanje na doktorski stopnji študija se je zato odločil za odhod v ZDA, na Pennsylvanijsko državno univerzo, kjer je pridobil nova znanja predvsem s področja geokemije pri prof. Rosu in statistike pri prof. Griffitsu. Leta 1979 je doktoriral s tezo o Porazdelitvi urana in drugih kemičnih prvin v devonski Catskillski formaciji v osrednji Pensilvaniji. Pridobljeno znanje je prenesel v Slovenijo predvsem z modernizacijo študijskega programa. Leta 1980 je bil izvoljen v naziv docenta, 1985 v izrednega in 1991 v rednega profesorja za področje geologije. Bogate izkušnje terenskega geologa in poznavalca rudišč je s študenti delil pri predmetu Ekonomska geologija. Vedno je poudarjal, da se geologija ne konča znotraj državnih meja in je zato pogosto organiziral ekskurzije v tujino. Študente je popeljal v Albanijo, Avstrijo, Češko, Italijo, Madžarko, Nemčijo in Polj- sko. Imel je izreden smisel za tuje jezike in jih več tudi odlično obvladal. Poleg tega je bil vedoželjen iskalec drugačnih pogledov in novega znanja. Predmet Uporaba tuje strokovne literature mu je bil zato pisan na kožo. Že na prvi uri nas je presenetil s kratkimi stavki, zapisanimi v različnih svetovnih jezikih, med drugimi tudi v japonščini in arabščini, in nam pokazal, da lahko strokovno besedilo smiselno razberemo že z zelo omejenim poznavanjem besedišča. Marsikomu od nas je tako premagani strah, odprl vrata v svet branja, in kasneje pisanja, mednarodnih objav. Študentom geotehnologije in rudarstva je predaval Tehnično geologijo in študentom krajinarstva Uvod v geologijo. Najpomembnejši doprinos prof. Pirca pa je zagotovo uvedba dveh novih predmetov – Geokemije in Statistike v geologiji. Kljub izredni razgledanosti in obvladovanju zelo različnih tematik tudi izven geologije, ali pa morda prav zato, njegova predavanja niso sledila klasičnim vzorcem. S hitrimi miselnimi preskoki in nepričakovanimi vprašanji, nas je spodbujal k razmišljanju, kritičnim dvomom in k samostojnemu iskanju odgovorov. Njegov odnos s študenti in sodelavci je bil pristen, odkrit, strpen in spoštljiv. V vsakem od nas je videl potencial in nam želel pomagati na naši poklicni pa tudi osebni poti. S svojo odprtostjo in človeškim odnosom je pritegnil številne študente. Tako je bil mentor pri 37 diplomah, 14 znanstvenih magi- sterijih in 6 doktoratih. Kot mentor je bil zahteven. A prav to nam je omogočilo, da so naša dela postala ne le strokovno, ampak tudi jezikovno in slogovno boljša. Prof. dr. Simon Pirc je bil vedno odprt za sodelovanje in videl možnosti za razvoj novih področij. Tako je bil tudi eden izmed pobudnikov in ustanoviteljev interdisciplinarnega doktorskega študija Varstva okolja na Univerzi v Ljubljani. Na raziskovalnem področju se je prof. dr. Simon Pirc usmeril predvsem v geokemično kartiranje in statistične tehnike repre- zentativnega vzorčenja. Uspešno je rešil probleme geokemičnega kartiranja na kraških področjih. Kot vzorčna sredstva je uvajal potočni in poplavni sediment, potočni mah in hišni prah. Možnost ugotavljanja in ločevanja geogenega in antropogenega vpliva je odprlo vrata še trem novim področjem – Okoljski geologiji, Geomedicini in Vojaški geologiji. Sodeloval je pri nastanku Geoke- mičnega atlasa Evrope. Pod njegovim mentorstvom so nastale tudi prve geokemične karte različnih delov Slovenije. Bil je avtor ali soavtor pri 17 znanstvenih člankih, treh monografijah in 18 kongresnih objavah. Prof. dr. Simona Pirca so visoko cenili tudi v mednarodni znanstveni skupnosti. Njegovi kolegi iz skupine evropskih geokemikov FORGES so v njem prepoznali ne le odličnega strokovnjaka, ki je znal preprosto razložiti zapletene probleme, ampak predvsem velikega človeka in dobrega prijatelja, ki je vedno pripomogel k pozitivnemu vzdušju. 368 Prof. dr. Simon Pirc je bil med prvimi slovenskimi geologi, ki je začel uvajati mednarodno sodelovanje in projektno delo. Bil je vodja skupnih projektov z ZDA, projektov Alpe – Jadran in IGCP projektov. Vodil je raziskovalni projekt Geokemija supergenih procesov v Sloveniji ter bil vodja programske skupine Geologija in geotehnologija, ki je poleg geologov, združila tudi sodelavce iz oddelka za Geotehnologijo in rudarstvo. Dvakrat je bil predstojnik Oddelka za geologijo in od 1998 predsednik in potem častni član slovenskega odbora IGCP za UNESCO. Bil je član uredniškega odbora in recenzent revij Geologija, RMZ Materiali in geookolje, Geologia Croatica in Journal of Geochemical Exploration. Zagovarjal je načelo, da recenzent ne sme biti uničujoč kritik, ampak tisti, ki avtorju pomaga, da jasneje predstavi svoje misli in omogoči bralcu lažje razumevanje. Tudi po upokojitvi leta 2002 ni opustil stika s stroko. S svojim bogatim znanjem in duhovitostjo je občasno popestril redna preda- vanja študentom. Prevajal je strokovna in znanstvena besedila ter sodeloval pri Slovenskem terminološkem slovarju. Za svoje delo je leta 2005 prejel Lipoldovo medaljo, leta 2006 pa je postal zaslužni profesor ljubljanske univerze. Zaslužni profesor dr. Simon Pirc v življenju ni bil le pronicljiv raziskovalec in razumevajoč pedagog temveč vedno in na prvem mestu človek. Kljub resnim zdravstvenim težavam, je ostal neizmeren optimist neutruden iskalec vedno novih znanj iz zelo raz- ličnih področij. Neizbrisno bo ostal zapisan v slovenski geologiji, njegovi učenci pa ga bomo s hvaležnostjo ohranili v trajnem spominu. Nina Zupančič G E O L O G I J A št.: 67/2, 2024 www.geologija-revija.si 193 Ivančič, K., Bartol, M., Marinšek, M., Kralj, P., Mencin Gale, E., Atanackov, J. & Horvat, A. A review of the Neogene formations and beds in Slovenia, Western Central Paratethys 217 Spahić, D., Simić, D., Barjaktarović, M. & Kurešević, L. Late Cretaceous turbidite systems of southern Belgrade outskirts: Constraints on the Santonian convergence onset, evidence from the Sava Suture Zone (Guberevac-Babe, northern Šumadija, Serbia) 237 Mangasini, F.M., Msabi, M., Macheyeki, A. & Kira, A. Alternative gold prospecting methods used by artisanal and small scale miners: A review 249 Čar, J. & Šegina, E. Geologic structure and origin of the Zadlog karst polje 273 Rogan Šmuc, N. Molybdenum, lead and zinc mobility potential in agricultural environments: a case study of the Kočani field, North Macedonia 285 Pattnaik, S. & Majhi, S. Mineralogy, geochemistry and genesis of low-grade manganese ores of Anujurhi area, Eastern Ghats, India 301 Umaraliev, R., Zaginaev, V., Sakyev, D., Tockov, D., Amanova, M., Makhmudova, Z., Nazarkulov, K., Abdrakhmatov, K., Nizamiev, A., Moura, R. & Blanchard, K. Localised multi-hazard risk assessment in Kyrgyz Republic 317 Bavec, Š., Cerar, S., Gaberšek, M. & Pogačnik, Ž. Geokemična porazdelitev elementov v okoljskih medijih iz okolice degradiranih območij površinskih kopov 333 Čeru, T. Izobraževalno-ustvarjalne delavnice: vključevanje ustvarjalnega izraza v geološke učne vsebine ISSN 0016-7789 2024 | št.: 67/2 20 24 | št .: 67 /2