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0  INTRODUCTION

Injection molding process is very popular 
manufacturing process for production of plastic 
products. It offers production of complex shaped 
products with high tolerance requirements which 
is especially difficult with combination of different 
polymer material. Typical production cycle usually 
incorporate mold closing followed by injection of 
molten material into a cavity. After filling the cavity, 
the packing pressure is applied to compensate for 
the material shrinkage. Product has to be sufficiently 
cooled for mold opening and ejection of the part.

The major acoustic signal sources detected 
by nondestructive testing (NDT) are crack growth 
and plastic deformation of the steel [1]. Acoustic 
inspection offers determination of location and 
propagation of a crack during loading as already 
reported by many researchers that are working in 
various fields. Acquisition of acoustic emission (AE) 
signals during different production processes in 
different setups has become widely used because of 
high sensitivity and usefulness for online surveillance 
[2] to [4]. Cao et al. [5] investigated acoustic signals 
during four-point bending fatigue crack propagation 
in steel. In the first stage of fatigue damage process a 
dominant acoustic source was micro-crack initiation. 

During intermediate stage of crack growth, stacking 
and slipping of dislocations ahead of the crack 
tip are major acoustic sources. During final stage 
the predominant acoustic sources are shearing of 
ligaments and connectivity between dimples. They 
have set neural network model with input time domain 
parameters based on burst energy, peak amplitude, 
duration, and counts. Mukhopadhyay, et al. [6] 
analyzed these signals during fracture toughness tests 
with a compact tension (CT) specimens made of steel. 
During fracture toughness tests the signals have been 
attributed to the plastic zone formation at the crack tip 
and initiation and/or extension of crack. Drummond 
et al. [7] analyzed enhancement of proof and fatigue 
testing procedures for wire ropes with incorporation 
of measurement of AE signals. The results of their 
research showed that the most effective AE signal 
discriminators are peak amplitude and (cumulative) 
burst energy for differentiation between signals from 
wire breaks and other sources. For determination of 
the rope’s condition there is no need for continuous 
monitoring and also measurement of AE is indicative 
of the level of damage of the rope. Kim et al. [8] 
measured fatigue crack growth with standard CT 
specimens using a hydraulic loading machine. The 
result of their research was the development of a 
neural network based model used for the prediction 
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of stress intensity factor based on five parameters of 
acoustic emission signals (peak amplitude, energy, 
ring down count, rise time and event duration). Their 
results showed gradual increase of AE energy with 
the number of fatigue cycles. Change in the acoustic 
emission energy with the number of fatigue cycles was 
an effective parameter for estimation of the activity of 
the crack propagation and the stress intensity factor.

Acoustic emission monitoring offers a big 
potential for detailed in situ failure analysis of different 
materials. Measurement of AE signals provides 
information on sub-macroscopic failure phenomena 
and also on the overall damage accumulation [9] to 
[11]. Measured AE signals contain useful information 
on the damage mechanism in a broad spectrum of 
applications [12]. Measurement of AE signals during 
production processes or during loading of different 
structures usually generates a high number of detected 
signals. These signals can be associated to a patterns 
(vectors) composed of multiple relevant descriptors 
[13] to [16] with the intention to discriminate different 
damage mechanisms described with clusters. The 
patterns (vectors) can be classified into clusters 
according to their similarity by the use of multivariable 
data analyses based on pattern recognition algorithms 
[17].  Piezoelectric (PZT) sensors are usually used for 
inspection. They can measure ultrasound with a high 
sensitivity (̴~1 V/nm) as a displacement sensors and 
a few V/(mm/s) as a velocity sensors. Since they are 
sensitive only on dynamic events they automatically 
compensate low-frequency motion of measuring 
objects that can be caused by environmental 
vibrations. 

Low-frequency cutoff of PZT sensors is a 
consequence of the leakage of the accumulated charge 
and acts as a high-pass filter. The low-frequency 
cutoff is determined through a time constant given 
by the capacitance and resistance of the device [18]. 
Additionally to above mentioned advantages, PZT 
sensors are also insensitive to electromagnetic fields 
and radiation, enabling measurements under harsh 
conditions.

1  METHODS

Correlation of crack propagation in steel and basic 
acoustic burst signal parameters is well described in 
the literature but on the other hand the detection of 
tool damage in the literature didn’t gained sufficient 
coverage in the past.  

In this paper different aspects of mold (tool insert) 
integrity based on acquired AE signals are presented. 
In the section 3.1 description of tool insert integrity 

by time domain acoustic signal descriptors together 
with fractal algorithm using box counting method 
is presented. Section 3.2 describes implementation 
of acoustic signal analysis based on idea of box 
counting method in a way to divide the measured 
signals to “signal boxes“. Prediction of the tool insert 
damage is based on signal frequency characteristics 
and signal amplitude probability distribution into the 
decision criteria. The signal box can be an aggregate 
of information that is described by individual 
bursts. Section 3.3 thou describes the analysis of 
acquired acoustic signals in a form of bursts. The 
burst descriptors are stacked to form a feature 
(measurement) vector Z. After signal processing 
neural network pattern recognition of bursts during the 
full time of the injection molding cycle is presented.

2  EXPERIMENTAL

For injection molding one cavity tool for production 
of square test specimens with dimensions of 60 mm 
× 60 mm × 2 mm was used. These specimens can 
be used for variety of tests according to ISO 294-3 
standard [19]. For injection molding a polypropylene 
(PP) material isofil H40 C2 F NAT manufactured by 
Sirmax was used. Fig. 1 shows the used KraussMaffei 
KM 80 CX-SP 380 injection molding machine 
on which a mold with a steel mold insert made 
of OCR12VN steel is placed. Experiments were 
conducted using a new tool and a damaged tool, 
respectively. For generation of surface cracks on a 
damaged mold local laser surface hardening of the 
tool steel was used. Experiments were conducted 
on injection molding machine KraussMaffei KM 80 
CX-SP 380 with application of a broad spectrum of 

Fig. 1.  The used injection molding machine  
KraussMaffei KM 80 CX-SP for experimental trials
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injection molding process parameters. For acoustic 
measurements Vallen AMSY-5 system was used with 
two resonant piezoelectric AE sensors VS150-M with 
a measuring range between 100 kHz and 450 kHz and 
resonance at 150 kHz. Sensors are connected via AEP4 
preamplifiers with a gain of 40 dB. These sensors 
cover frequencies spectrum that is characteristic 
for the signals generated during fatigue and plastic 
deformation [20]. For measurement an 18-kHz high 
pass filter was used. The amplitude threshold was set 
at 40 dB and sampling frequency to 5 MHz. To protect 
sensors against high temperatures, fumes exhaled out 
of the mold and to prevent mechanical damage during 
operation by the operator, additional waveguides were 
used. 

3  RESULTS AND DISCUSION

3.1 Burst AE Signals during Injection Molding Production 
Cycle

Acoustic emission testing can detect dynamic 
processes associated with the degradation of structural 
integrity. During injection molding process a rapid 
increase of pressure during the filling and holding 
stage in mold occurs. This can stimulate defects in 
the mold that can result in release of AE signals in the 
form of burst. 

Basic AE parameters as peak amplitudes and 
energy of AE bursts measured during the production 
cycle of injection molding is shown on Fig. 2a and 
b for new mold and damaged mold. With a new 
intact mold absence of cracks offers us classifying 
detected acoustic signals as process orientated signals. 
Presence of damage in mold causes a considerable 
increase in the number of bursts especially during 
the filling and holding phase of the production 
cycle. Additional signals during these stages can 
consequently, be connected to active AE sources from 
mold defects. A rapid increase and high pressure in 
mold can stimulate plastic zone formation, slipping 
and stacking of dislocations in front of the crack tip 
and crack extension that can cause distinctive AE 
bursts [5], [6] and [21]. 

AE signal processing for evaluation of the defect 
in the injection mold can be achieved with fractal 
algorithm using box counting method. With this 
method acquired acoustic emission during injection 
molding cycle can be considered as time discrete 
signal. With setting time leg, also called ruler with 
different dimensions, the whole temporal window 
can be divided in an integer number of rulers (Fig. 
3). Whenever the time leg μ contains a burst with 
the amplitude above the specified threshold, we can 
add 1 to the counter G(μ). Richardson’s diagram 
incorporates interpolation line of G(μ) versus μ in a 
log-log diagram. Absolute value of the tan(φ) can be 
called fractal dimension that can be used as damage 
parameter.

Fig. 3. Temporal window of acquired acoustic emission can be 
divided in an integer number of rulers

Fig. 4 shows that the presence of damage in the 
mold influences the slope of the interpolating line 
at a box counting method (BCM). Interpolated line 
designated as process is calculated according to the 
time discrete signal measured during the injection 
molding cycle with a new mold whilst interpolated 
line designated as process + damage describes 

Fig. 2.  Peak amplitudes and energy of AE bursts during  
the manufacturing of test specimens produced with  

a) the new and b) damaged mold
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injection molding cycle with a damaged mold. With 
a use of neural network pattern recognition captured 
AE burst can be classified into classes and signals 
connected with a damage, can be extracted. More 
about that will be described in the chapter 3.3. If we 
extract signals connected with damage in the mold we 
can calculate interpolated line designated as damage.

Fig. 4.  Richardson’s diagram for a new mold and damaged mold

3.2  Analysis of Acquired Signals with Defined Time Length 
(AE Signal Boxes)

The decision about the acceptability of a damaged 
mold with a small crack based basic AE parameters, 
burst rate and cumulative number of signal bursts 
is difficult. It is therefore reasonable to introduce 
additional features of detected signals during the 
production cycle in a form of acoustic signal frequency 
characteristics and amplitude probability distribution.

In our research we used the idea of box counting 
method in a way to divide the measured signals to 
“signal boxes” with defined time length (duration). 
Definition of signal boxes with defined time duration 
reduces computational complexity. For signal boxes 
we defined time length of 52.4 ms to cover also long 
bursts or burst cascades expected during cycle. Signal 
box represents signal vector X = (x1, x2, …, xn) where 

n = 262144. We used 3.2 ms rearm time and 3.1998 
ms duration discriminant time. 

For signal boxes we calculated power spectrums 
using fast Fourier transform (FFT) with  adjusted 
amplitude values below 1 unit and a frequency step 
of 19 Hz. FFT is the most popular method for spectral 
analysis in digital signal processing [22] and [23]. 
Power spectral density is a measure of energy at 
various frequencies and is calculated based on FFT 
and the complex conjugate of FFT. We used Eq. (3) 
to calculate the PL parameter to characterize the lower 
part of the power spectrum (a = 90 kHz, b = 190 kHz). 
The higher part of power spectrum (a = 250 kHz, b = 
350 kHz) is characterized with parameter PH, while PS 
covers all power spectrum frequencies (a = 50 kHz, 
b = 550 kHz). The parameters PL, PH and PS give 
information about the energies at various frequencies 
inside of measured frequency spectrum.

	 g y yi
mi = , 	 (1)

	 m = ⋅( )max ,Y Y 	 (2)

	 P gL
a

b

i=
=

=

∑
90

190

. 	 (3)

In above equations Y = (y1, y2, …, yn) is the vector 
of discrete Fourier transform using FFT. 

Additional parameters describing the amplitude 
distribution of recorded signals like the kurtosis K and 
skewness S were introduced to improve the prediction 
of mold integrity. K is a measure of the “peakedness” 
of the probability distribution while S is a third central 
moment and is a measure of asymmetry about the 
mean amplitude value of X.

We have set 5-dimensional feature vector with 
real-valued explanatory variables V = (PH, PL/PH, 
PL/PS, K, S). V represents points in appropriate 
multidimensional space and offers characterization 

          
Fig. 5.  Damaged mold definition based on feature vector V
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of the process. Fig. 5 show characterization of the 
injection molding (IM) process regarding the presence 
of mold  defects. Hollow black markers represent 
vectors V during production using the new and 
damaged mold, where the mold pressure is relatively 
low and is below activation level of defects in the tool 
steel. Red markers (–, ×, + and *) on Fig. 5 represent 
the vectors V during production with the damaged 
mold, where the mold pressure is above the activation 
level of defects in the steel. Vectors V that indicate the 
presence of damage are positioned in encircled region.

Definition of signal boxes with defined time 
duration reduces computational complexity during 
measurement and simplifies the analysis of acquired 
signals during monitoring. For example in a case 
of injection molding individual AE signal box can 
simultaneous carry information closely linked with a 
process step  together with the information of injection 
mold integrity. AE signal box can thus represent 
mixture of information that can be with an individual 
AE signal burst analysis additionally dismembered.

3.3  Burst Analysis

Above mentioned disadvantage of the signal boxes 
analysis that can simultaneous carry information 
closely linked with a process step  together with the 
information of mold integrity can overcome signal 
burst analysis. Within the scope of this method we 
used signal bursts for derivation of signal descriptors 
that are stacked to form a feature vector Z = (z1, z2, …, 
z73).  The union of feature vectors is acquired during 
different phases of process. Together with already 
described features that represent signal frequency 
characteristics and signal amplitude probability 
distribution in feature vector V in paragraph 3.2, 
additional time-domain features are added in a 
feature vector Z, like Ap, (peak amplitude), Rt (rise 
time), d (duration) and RA value (ratio of Rt nad Ap). 
To overcome pitfalls of Fourier analysis, Wavelet 
analysis is applied for processing signals during cycle. 
The wavelet packet analysis decomposes signal into 
several levels in the whole measured frequency band 
[24] and [25]. To improve frequency resolution the 
detail of the signal is decomposed as well [26]. The 
wavelet packet corresponds to some frequency band 
and includes information on signal in different time 
windows at different resolutions. For the analysis 
some packets contain important information while 
other packets are relatively unimportant. 

For the computation of wavelet packet transform 
of signal X(t) we used algorithm described below:
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In above equations P tj
i ( )  represents ith packet on 

jth resolution, with time parameter t = 1, 2, …, 2J−j,  
i = 1, 2, …, 2j, j = 1, 2, …, J, J = log2N. Operators H and 
G are convolution sum defined as:
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In above equations h(t) and g(t) are a pair of 
quadrature mirror filters. A time parameter t is taken 
as a series of integers k (t → k = 1, 2, …).

To define the energy of wavelet packet we used:
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The energy of wavelet packet on selected 
resolution j is normalized as:
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For the description of AE bursts we have set the 
feature vector Z = (PH, PL/PH, PL/PS, K, S, Ap, Rt, RA, d, 
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But the dimension of feature vector should not be 
arbitrary large. Large vectors increase computational 
complexity, and causes a decrease of performance [27]. 
A small set of features can also give us satisfactory 
classification performance. Feature selection method 
offers selection of subset Fj(B) = {zb | b = 1, …, B} 
which surpass other subsets with dimension B as:

	 J(Fi(B)) ≥ J(Fj(B)) for all j ϵ {1, …, q(B)},	 (11)

where q(B) is the number of evaluations of 
performance measure J(Fj(B)). For reduction 
of dimension of feature vector we have applied 
sequential forward selection (SFS) method with 
k-Nearest Neighbor (k-NN) classification algorithm. 
With k-NN the input consists of the k = 3 closest 
training examples in the feature space. 

SFS method offered us selection of feature subset 
Zs with a size of 10. Zs is an input for neural network 
pattern recognition of acquired bursts during the IM 
production cycle. The most informative selected 
features based on SFS are stacked in feature subset as 
follows: Zs = ( R R R R R R d R R
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Vectors of the training data have been designated into 
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categories based on the time moment of their 
acquisition during the injection molding cycle and 
unsupervised fuzzy C means clustering (FCM) for 
vectors of the damaged mold. FCM clustering was 
found to be an effective algorithm for clustering of 
acoustic emission vectors composed of multiple 
features [28] and [29].

We introduced principal component analysis 
(PCA) for presentation of feature vectors Zs. Principal 
component analysis, as an unsupervised feature 
reduction method, is mathematically defined as an 
orthogonal linear transformation that transforms the 
data into a new coordinate system. Fig. 6 shows the 
distribution of feature vectors Zs where these vectors 
are divided into five classes. Class 1 represents vectors 
characteristic for the closing of the mold, Class 2 
vectors characteristic for the injection of the melt with 
maximum pressure, Class 3 vectors characteristic 
for the holding (packing) stage, Class 4 represents 
opening of the tool and Class 5 vectors characterizing 
damage of the mold.

Fig. 6.  The distribution of feature vectors Zs

For automatic classification of vectors Zs we 
introduced neural network pattern recognition. The 
network was set as feed-forward with 10 neurons 
in the hidden layer. The transfer function was F Tan 
Sigmoid function for the hidden and the output layer. 
Five output neurons are used, because of five target 
classes. Scaled conjugate gradient back-propagation 
was used for training the network.

Neural network pattern recognition offered us 
on average 91.6 % correctly classified vectors Zs. 
The lowest error E = 0.8 %, or best classification was 
for vectors of the Class 3. These represent  process-
orientated bursts during the holding (packing) phase. 
96.7 % correct was detection of damage (vectors of 
Class 5). The algorithm is not recommended for 
classification of mold closing with 81 % error, i.e. 
Class 1 vectors, and classification of mold opening 
vectors (Class 4) with 32 % error.

4  CONCLUSIONS

Results of AE monitoring during injection molding 
of polypropylene specimens are presented. Useful 
information about the presence of mold cracks in 
damaged mold area can be obtained by measuring 
time domain AE signal parameters during individual 
injection molding cycle phases. AE signal processing 
for evaluation of the defects in the injection mold 
can be achieved also with fractal algorithm using 
box counting method from time discrete signals. To 
improve the tool integrity prediction with smaller 
defects implementation of AE signal analysis based 
on idea of box counting method is used. Definition of 
feature vector of AE signal boxes with defined time 
duration reduces computational complexity during 
measurement, for example in production environment 
and simplifies the analysis of acquired AE signals 
during monitoring. 

But AE signal box can represent mixture of 
information that can be with an individual AE signal 
burst analysis additionally dismembered. For this 
we implemented 10-dimensional feature subset 
vector with instances that are real-valued descriptors 
(variables). With neural network pattern recognition 
this vector offers us defining points in appropriate 
multidimensional space to characterize the damage 
in a mold with a high accuracy, and also recognition 
of acquired AE brusts that characterize the injection 
of the melt  and holding phase injection molding 
production cycle.
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