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Abstract

Let S be a subset of the cyclic group Zn. The cyclic Haar graph H(Zn, S) is the
bipartite graph with color classes Z+

n and Z−n , and edges {x+, y−}, where x, y ∈ Zn and
y − x ∈ S. In this paper we give sufficient and necessary conditions for the isomorphism
of two connected cyclic Haar graphs of valency 4.
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1 Introduction
Let S be a subset of a finite group G. The Haar graph H(G,S) is the bipartite graph with
color classes identified with G and written as G+ and G−, and the edges are {x+, y−},
where x, y ∈ G and yx−1 ∈ S. Haar graphs were introduced for abelian groups by
Hladnik, Marušič and Pisanski [6], and were redefined under the name bi-Cayley graphs
in [17]. A Haar graph H(G,S) is called cyclic if G is a cyclic group. In this paper we
consider the problem of giving sufficient and necessary conditions for the isomorphism
of two cyclic Haar graphs. This is a natural continuation of the isomorphism problem of
circulant digraphs which has been solved by Muzychuk [12]. It appears in the context of
circulant matrices under the name bipartite Ádám problem [16], and also in the context of
cyclic configurations [2, 6].

The symbol Zn denotes the additive group of the ring Z/nZ of residue classes modulo
n, and Z∗n denotes the multiplicative group of units in Z/nZ. Two Haar graphs H(Zn, S)
and H(Zn, T ) are called affinely equivalent, written as H(Zn, S) ∼=aff H(Zn, T ), if S
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can be mapped to T by an affine transformation, i.e., aS + b = T for some a ∈ Z∗n and
b ∈ Zn. It is an easy exercise to show that two affinely equivalent cyclic Haar graphs
are isomorphic as usual graphs. The converse implication is not true in general, and this
makes the following definition interesting (see [17]): we say that a subset S ⊆ Zn is a BCI-
subset if for each T ⊆ G, H(Zn, S) ∼= H(Zn, T ) if and only if H(Zn, S) ∼=aff H(Zn, T ).
Wiedemann and Zieve proved in [16, Theorem 1.1] that any subset S of Zn is a BCI-subset
if |S| ≤ 3 (a special case was proved earlier in [3]). However, this is not true if |S| ≥ 4 (see
[6, 16]), hence the first nontrivial case of the isomorphism problem occurs when |S| = 4.
In this paper we settle this case by proving the following theorem:

Theorem 1.1. Two connected Haar graphs H(Zn, S) and H(Zn, T ) with |S| = |T | = 4
are isomorphic if and only if there exist a1, a2 ∈ Z∗n and b1, b2 ∈ Zn such that

(1) a1S + b1 = T ; or

(2) a1S + b1 = {0, u, v, v +m} and a2T + b2 = {0, u+m, v, v +m}, where n = 2m,
Zn = 〈u, v〉, 2 | u, 2u | m and u/2 6≡ v +m/(2u)(mod m/u).

Remark 1.2. A group G is called an m-BCI-group if every subset S of G with |S| ≤ m
is a BCI-subset (see [7, 17]). In this context [16, Theorem 1.1] can be rephrased as Zn is a
3-BCI-group for any number n; and Theorem 1.1 says that Zn is not a 4-BCI-group if and
only if n is divisible by 8. This refines [16, Theorem 7.2] in which it is proved that, if Zn
contains a non-BCI-subset of size k, k ∈ {4, 5}, then n has a prime divisor less or equal to
2k(k − 1).

Our approach towards Theorem 1.1 is group theoretical, we adopt the ideas of [1, 11].
In short terms the initial problem is transformed to a problem about the automorphism
group of the graphs in question. Theorem 1.1 is proven in two steps: first it is settled
for graphs H(Zn, S) with S satisfying additional conditions (see Theorem 3.1); then it is
shown that, if S is not a BCI-subset, then it is affinely equivalent to a set satisfying the
conditions of Theorem 3.1 (see Theorem 4.1).

We conclude the introduction with the following modification of Theorem 1.1:

Theorem 1.3. Two connected Haar graphs H(Zn, S) and H(Zn, T ) with |S| = |T | = 4
are isomorphic if and only if there exist a1, a2 ∈ Z∗n and b1, b2 ∈ Zn such that

(1) a1S + b1 = T ; or

(2) a1S + b1 = {0, u, v, v +m} and a2T + b2 = {0, u+m, v, v +m}, where n = 2m,
Zn = 〈u, v〉, 2 | u, 2u | m.

Proof. In view of Theorem 1.1 it is sufficient to prove that H(Zn, S) ∼= H(Zn, T ) if

a1S + b1 = {0, u, v, v +m} and a2T + b2 = {0, u+m, v, v +m},

where n = 2m, Zn = 〈u, v〉, 2 | u, 2u | m and u/2 ≡ v + m/(2u)(mod m/u). In fact,
we are going to show below that there exist a ∈ Z∗n and b ∈ Zn such that

a · {0, u, v, v +m}+ b = {0, u+m, v, v +m}.

Then (a−1
2 aa1) · S + a−1

2 (ab1 + b− b2) = T, and so H(Zn, S) ∼= H(Zn, T ).
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Let us consider the following system of congruences:

ux ≡ −u+m(mod n) and vx ≡ −u+ v(mod n). (1.1)

By the first congruence, using also that 2u | m, x may be written in the form x =
(n/u)y − 1 + m/u. Plugging this in the second one, we obtain (vn/u)y ≡ 2v − u −
vm/u(mod n), which has an integer solution in y exactly when gcd(vn/u, n) | (2v−u−
vm/u). Then gcd(vn/u, n) = n/u gcd(u, v), and since Zn = 〈u, v〉, n/u and gcd(u, v)
are coprime. Since gcd(u, v) is clearly a divisor of 2v−u− vm/u, a solution in y exists if
and only if n/u | (2v−u−vm/u), i.e., u ≡ 2v−vm/u(mod 2m/u) (recall that n = 2m).
On the other hand, one of the initial assumptions is u/2 ≡ v+m/(2u)(mod m/u), and so
u ≡ 2v + m/u(mod 2m/u). We conclude that (1.1) has an integer solution if −vm/u ≡
m/u(mod 2m/u). Now, the latter congruence holds because of the conditions 2 | u,
2 | n, and Zn = 〈u, v〉. Let a be a solution of (1.1). It follows from the above argument
that gcd(a,m/u) = 1. Notice that, since 2u | m, 2 - a. Let d = gcd(a, u). By (1.1),
av ≡ −u + v(mod n), implying that d | v, and so d = 1. We see that gcd(a, 2m) = 1,
i.e., a ∈ Z∗n. Choosing b = u+m, we finally get by (1.1), a · 0 + b = u+m, au+ b = 0,
av + b = v +m, and a(v +m) + b = v, as required.

Theorem 1.3 becomes especially interesting when we compare it with the solution of
the isomorphism problem of trivalent circulant digraphs. In fact, the same conditions can
be derived from Muzychuk’s general algorithm presented in [12]: two connected Cayley
digraphs Cay(Zn, S) and Cay(Zn, T ) with |S| = |T | = 3 are isomorphic if and only if
there exist a1, a2 ∈ Z∗n such that

• a1S = T ; or

• a1S = {u, v, v +m} and a2T = {u+m, v, v +m}, where n = 2m, Zn = 〈u, v〉,
2 | u, and 2u | m.

The natural question arises whether this phenomenon holds also for graphs of larger valen-
cies.

2 A Babai type theorem
In this paper every group, graph and digraph is finite. For a (di)graph Γ, the symbols V (Γ),
E(Γ) and Aut(Γ) denote the set of its vertices, (directed) edges and the full group of its
automorphisms, respectively. Regarding terminology and notation in permutation group
theory we follow [5].

Let S be a subset of a group G. The Cayley digraph Cay(G,S) is the digraph with ver-
tex set G, and its directed edges are (x, y), where x, y ∈ G and yx−1 ∈ S. Two digraphs
Cay(G,S) and Cay(G,T ) are called Cayley isomorphic, written as Cay(G,S) ∼=cay

Cay(G,T ), if T = Sϕ for some group automorphism ϕ ∈ Aut(G). It is clear that such
an automorphism induces an isomorphism between Cay(G,S) and Cay(G,T ), and thus
Cayley isomorphic digraphs are isomorphic as usual digraphs. It is also well-known that
the converse implication is not true, and this makes sense for the following definition (see
[1]): a subset S ⊆ G is a CI-subset if for each T ⊆ G, Cay(G,S) ∼= Cay(G,T ) if and
only if Cay(G,S) ∼=cay Cay(G,T ). The following equivalence was proved by Babai [1,
3.1 Lemma].

Theorem 2.1. The following are equivalent for every Cayley digraph Cay(G,S).
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(1) S is a CI-subset.

(2) Every two regular subgroups of Aut(Cay(G,S)) isomorphic to G are conjugate in
Aut(Cay(G,S)).

Theorem 2.1 essentially says that the CI-property of a given subset S depends entirely on
the automorphism group Aut(Cay(G,S)). In this section we prove analogous results for
cyclic Haar graphs.

Let V = V (H(Zn, S)) be the vertex set of the Haar Graph H(Zn, S). Throughout this
paper c and d denote the permutations of V defined by

c : xε 7→ (x+ 1)ε and d : xε 7→

{
(n− x)− if ε = +,

(n− x)+ if ε = −,
(2.1)

where x ∈ Zn and ε ∈ {+,−}. It follows immediately that both c and d are automorphisms
of any Haar graph H(Zn, S). Denote by C the group generated by c, and by D the group
generated by c and d. The group D acts regularly on V, and D is isomorphic to D2n. Thus
H(Zn, S) is isomorphic to a Cayley graph over D, and so Theorem 2.1 can be applied.
The following corollary is obtained.

Corollary 2.2. The implication (1)⇐ (2) holds for every Haar graph H(Zn, S).

(1) S is a BCI-subset.

(2) Every two regular subgroups of Aut(H(Zn, S)) isomorphic to D are conjugate in
Aut( H(Zn, S)).

However, we do not have equivalence in Corollary 2.2 as it is shown in the following
example.

Example 2.3. Let Γ = H(Z10, {0, 1, 3, 4}). Using the computer package MAGMA [4]
we compute that Γ is edge-transitive and its automorphism group Aut(Γ) ∼= D20 o Z4.
Furthermore, Aut(Γ) contains a regular subgroup X which is isomorphic to D20 but X 6=
D20, hence (2) in Corollary 2.2 does not hold.

On the other hand, we find that for every subset T ⊆ Z10 with 0 ∈ T and |T | = 4,
the corresponding Haar graph H(Z10, T ) ∼= Γ exactly when H(Z10, T ) ∼=aff Γ. Thus
{0, 1, 3, 4} is a BCI-subset, so (1) in Corollary 2.2 holds. �

Example 2.3 shows that the isomorphism problem of cyclic Haar graphs is not a partic-
ular case of the isomorphism problem of Cayley graphs over dihedral groups. We remark
that the latter problem is still unsolved, for partial solutions, see [1, 13, 14]. Nonetheless,
the idea of Babai works well if instead of the regular subgroup D we consider its index 2
cyclic subgroup C.

We say that a permutation group G ≤ Sym(Z+
n ∪Z−n ) is bicyclic if G is a cyclic group

which has two orbits: Z+
n and Z−n . By a bicyclic group of a Haar graph Γ = H(Zn, S) we

simply mean a bicyclic subgroup X ≤ Aut(Γ). Obviously, C is a bicyclic group of any
cyclic Haar graph, and being so it will be referred to as the canonical bicyclic group.

Let Iso(Γ) denote the set of all isomorphisms from Γ to any other Haar graph H(Zn,
T ), i.e.,

Iso(Γ) =
{
f ∈ Sym(V ) : Γf = H(Zn, T ) for some T ⊆ Zn

}
.
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And let Ciso(Γ) denote the isomorphism class of cyclic Haar graphs which contains Γ, i.e.,
Ciso(Γ) = {Γf : f ∈ Iso(Γ)}.

Lemma 2.4. Let Γ = H(Zn, S) be a connected Haar graph and f be in Sym(V ). Then
f ∈ Iso(Γ) if and only if fCf−1 is a bicyclic group of Γ.

Proof. Let f ∈ Iso(Γ). Then fCf−1 ≤ Aut(Γ). Clearly, fCf−1 is a cyclic group. Since
the sets Z+

n and Z−n are the color classes of the connected bipartite graph Γ, f preserves
these color classes, implying that Orb(fCf−1, V ) = {Z+

n ,Z−n }. The group fCf−1 is a
bicyclic group of Γ.

Conversely, suppose that fCf−1 is a bicyclic group of Γ. Then C = f−1(fCf−1)f ≤
Aut(Γf ). Because that Orb(fCf−1, V ) = {Z+

n ,Z−n }, the graph Γf is connected and
bipartite with color classes Z+

n and Z−n . We conclude that Γf = H(Zn, T ) for some
T ⊆ Zn, so f ∈ Iso(Γ). The lemma is proved.

Lemma 2.4 shows that the normalizer NSym(V )(C) ⊆ Iso(H(Zn, S)). The group
NSym(V )(C) is known to consist of the following permutations:

ϕr,s,t : xε 7→

{
(rx+ s)+ if ε = +,

(rx+ t)− if ε = −,
ψr,s,t : xε 7→

{
(rx+ s)− if ε = +,

(rx+ t)+ if ε = −,
(2.2)

where r ∈ Z∗n and s, t ∈ Zn. Note that, two Haar graphs H(Zn, S) and H(Zn, T ) are
from the same orbit under NSym(V )(C) exactly when H(Zn, S) ∼=aff H(Zn, T ). Let
Caff(Γ) denote the affine equivalence class of cyclic Haar graphs which contains the graph
Γ = H(Zn, S), i.e., Caff(Γ) = {Γϕ : ϕ ∈ NSym(V )(C)}. It is clear that the isomorphism
class Ciso(Γ) splits into affine equivalence classes:

Ciso(Γ) = Caff(Γ1) ∪̇ · · · ∪̇ Caff(Γk)1.

Our next goal is to describe the above decomposition with the aid of bicyclic groups.
Let X be a bicyclic group of a connected graph Γ = H(Zn, S). Then g−1Xg is also a
bicyclic group for every g ∈ Aut(Γ), hence the full set of bicyclic groups of Γ is the union
of Aut(Γ)-conjugacy classes. We say that a subset Ξ ⊆ Iso(Γ) is a bicyclic base of Γ if
the subgroups ξCξ−1, ξ ∈ Ξ, form a complete set of representatives of the corresponding
conjugacy classes. Thus every bicyclic group X can be expressed as

X = gξC(gξ)−1 for a unique ξ ∈ Ξ and g ∈ Aut(Γ).

Remark 2.5. Our definition of a bicyclic base copies in a sense the definition of a cyclic
base introduced by Muzychuk [11, Definition, page 591].

Theorem 2.6. Let Γ = H(Zn, S) be a connected Haar graph with a bicyclic base Ξ. Then
Ciso(Γ) =

⋃̇
ξ∈ΞCaff(Γξ).

Proof. It follows immediately that,

Ciso(Γ) ⊇
⋃
ξ∈Ξ

Caff(Γξ). (2.3)

1Here we mean that Ciso(Γ) = Caff(Γ1) ∪ · · · ∪ Caff(Γk) and Caff(Γi) ∩ Caff(Γj) = ∅ for every
i, j ∈ {1, . . . , k}, i 6= j.
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We prove that equality holds in (2.3). Pick Σ ∈ Ciso(Γ). Then Σ = Γf for some f ∈
Iso(Γ). By Lemma 2.4, fCf−1 is a bicyclic group of Γ, hence

fCf−1 = gξC(gξ)−1, ξ ∈ Ξ, g ∈ Aut(Γ).

Thus f−1gξ = h, where h ∈ NSym(V )(C). Then

Σ = Γf = Γgξh
−1

=
(
Γξ
)h−1

.

This shows that Σ ∈ Caff(Γξ), and so

Ciso(Γ) ⊆
⋃
ξ∈Ξ

Caff(Γξ).

In view of (2.3) the two sides are equal.
Moreover, if Caff(Γξ1) ∩ Caff(Γξ2) 6= ∅ for ξ1, ξ2 ∈ Ξ, then Γξ1 = Γξ2h for some

h ∈ NSym(V )(C). Hence ξ2hξ−1
1 = g for some g ∈ Aut(Γ), and so

ξ1Cξ
−1
1 = g−1ξ2hCh

−1ξ−1
2 g = g−1(ξ2Cξ

−1
2 )g.

The bicyclic subgroups ξ1Cξ−1
1 and ξ2Cξ

−1
2 are conjugate in Aut(Γ), hence ξ1 = ξ2

follows from the definition of the bicyclic base Ξ. We obtain that Caff(Γξ1)∩Caff(Γξ2) = ∅
whenever ξ1, ξ2 ∈ Ξ, ξ1 6= ξ2, and so Ciso(Γ) =

⋃̇
ξ∈ΞCaff(Γξ). The theorem is proved.

As a direct consequence of Theorem 2.6 we obtain the following corollary, analog of
Theorem 2.1.

Corollary 2.7. The following are equivalent for every connected Haar graph H(Zn, S).

(1) S is a BCI-subset.

(2) Any two bicyclic groups of H(Zn, S) are conjugate in Aut(H(Zn, S)).

In our last proposition we connect the BCI-property with the CI-property. For aε ∈ V,
in what follows Aut(H(Zn, S))aε denotes the vertex stabilizer of aε in Aut(H(Zn, S)).

Proposition 2.8. Suppose that Γ = H(Zn, S) is a connected Haar graph such that for
some a ∈ Zn, Aut(Γ)0+ = Aut(Γ)a− . Then the following are equivalent.

(1) S is a BCI-subset.

(2) S − a = {s− a : s ∈ S} is a CI-subset.

Proof. For sake of simplicity we put A = Aut(Γ) and G = Aut(Γ){Z+
n }, i.e., the setwise

stabilizer of the color class Z+
n in Aut(Γ). Obviously, X ≤ G for every bicyclic group

X of Γ. Since A = G o 〈d〉 and d normalizes C, it follows that the conjugacy class of
subgroups of A containing C is equal to the conjugacy class of subgroups of G containing
C. Using this and Theorem 2.6, we obtain that S is a BCI-subset if and only if every
bicyclic group is conjugate to C in G.
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Let W = {0+, a−} and consider the setwise stabilizer A{W}. Since A0+ = Aa− ,
A0+ ≤ A{W}. By [5, Theorem 1.5A], the orbit of 0+ under A{W} is a block of im-
primitivity (for short a block) for A. Denote this block by ∆ and the induced system of
blocks by δ (i.e., δ = {∆g : g ∈ G}). Consider the element g = dca fromD. We see that g
switches 0+ and a−, henceA{W} = A0+

〈
g
〉
. Therefore, ∆ = (0+)A{W} = (0+)A0+ 〈g〉 =

(0+)〈g〉 = W, and so
δ =

{
{x+, (x+ a)−} : x ∈ Zn

}
.

Define the mapping ϕ : δ → Zn by ϕ : {x+, (x+ a)−} 7→ x, x ∈ Zn. Now, an action
of A on Zn can be defined by letting g ∈ A act as

xg = xϕ
−1gϕ, x ∈ Zn.

For g ∈ A we write ḡ for the image of g under the corresponding permutation representa-
tion, and for a subgroup X ≤ A we let X̄ = {x̄ : x ∈ X}. In this action of A the subgroup
G < A is faithful. Also notice that, a subgroup X ≤ G is a bicyclic group of Γ if and only
if X̄ is a regular cyclic subgroup of Ḡ. In particular, for the canonical bicyclic group C,
C̄ = (Zn)right, where (Zn)right denotes the group generated by the affine transformation
x 7→ x+ 1, x ∈ Zn.

Pick g ∈ G and (x, x + s − a) ∈ Zn × Zn, where s ∈ S. Then g maps the directed
edge (x+, (x+ s)−) to a directed edge (y+, (y + q)−) for some y ∈ Zn and q ∈ S. Since
δ is a system of blocks for G, g maps (x + s − a)+ to (y + q − a)+, and so ḡ maps the
pair (x, x + s − a) to the pair (y, y + q − a). We have just proved that ḡ leaves the set{

(x, x + s− a) : x ∈ Zn, s ∈ S
}

setwise fixed. As the latter set is the set of all directed
edges of the digraph Cay(Zn, S − a), Ḡ ≤ Aut(Cay(Zn, S − a)). For an automorphism
h of Cay(Zn, S − a), define the permutation g of V by

g : xε 7→

{
(xh)+ if ε = +,

((x− a)h + a)− if ε = −,
x ∈ Zn, ε ∈ {+,−}.

The reader is invited to check that the above permutation g is an automorphism of Γ. It is
clear that g ∈ G and ḡ = h; we conclude that Ḡ = Aut(Cay(Zn, S − a)).

Now, the proposition follows along the following equivalences:

(1) ⇐⇒ Every bicyclic group of Γ is conjugate to C in G
⇐⇒ Every regular cyclic subgroup of Ḡ is conjugate to C̄ in Ḡ
⇐⇒ (2).

The last equivalence is Theorem 2.1.

Remark 2.9. Let us remark that the equality Aut(Γ)0+ = Aut(Γ)a− does not hold in
general. For example, take Γ as the incidence graph of the projective space PG(d, q)
where d ≥ 2 and q is a prime power (i.e., Γ is the bipartite graph whose color classes
are identified by the set of points and the set of hyperplanes, respectively, and the edges
are defined by the incidence relation of the space). It is well-known that PG(d, q) admits
a cyclic group of automorphisms (called a Singer subgroup) acting regularly on both the
points and the hyperplanes. This shows that Γ is isomorphic to a cyclic Haar graph, and
we may identify the set of points with Z+

n , and the set of hyperplanes with Z−n , where
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n = (qd − 1)/(q − 1). The automorphism group Aut(Γ) = PΓL(d + 1, q) o Z2; and as
PΓL(d+ 1, q) acts inequivalently on the points and the hyperplanes, Aut(Γ)0+ cannot be
equal to Aut(Γ)a− for any a ∈ Zn.

3 Haar graphs H(Z2m, {0, u, v, v + m})
In this section we prove Theorem 1.1 for Haar graphs H(Zn, S) satisfying certain addi-
tional conditions.

Theorem 3.1. Let n = 2m and S = {0, u, v, v +m} such that

(a) Zn = 〈u, v〉;

(b) 1 < u < m, u | m;

(c) Aut(H(Zn, S))0+ leaves the set {0−, u−} setwise fixed.

Then H(Zn, S) ∼= H(Zn, T ) if and only if there exist a ∈ Z∗n and b ∈ Zn such that

(1) aT + b = S; or

(2) aT + b = {0, u+m, v, v +m}, and 2 | u, 2u | m, u/2 6≡ v +m/(2u)(mod m/u).

By (b) of Theorem 3.1 we have 2u ≤ m. We prove the extremal case, when 2u = m,
separately. Notice that, in this case the conditions in (2) of Theorem 3.1 that 2 | u, 2u | m
and u/2 6≡ v +m/(2u)(mod m/u) can be replaced by one condition: u ≡ 2(mod 4).

Lemma 3.2. Let S be the set defined in Theorem 3.1. If 2u = m, then H(Zn, S) ∼=
H(Zn, T ) if and only if there exist a ∈ Z∗n and b ∈ Zn such that

(1) aT + b = S; or

(2) aT + b = {0, u+m, v, v +m} and u ≡ 2(mod 4).

Proof. Let d = gcd(n, v). Because of 〈u, v〉 = Zn we have that gcd(u, v, n) = 1, i.e.,
gcd(n/4, v) = 1, and this gives that d ∈ {1, 2, 4}. Note that, if d 6= 1, then necessarily
2 - u. Let us write v = v1d, where gcd(v1, n) = 1. Let v−1

1 denote the inverse of v1 in the
group Z∗n. Then the following hold in Zn (here we use that u = n/4):

v−1
1 v = d, v−1

1 (v +m) = d+m and v−1
1 u ∈ {u, 3u}.

We conclude that S is affinely equivalent to one of the sets Si(d), i ∈ {1, 2} and d ∈
{1, 2, 4}, where

S1(d) = {0, u, d, d+ 2u} or S2(d) = {0, 3u, d, d+ 2u}.

The lemma follows from the following claims:

(i) H(Zn, S1(1)) ∼= H(Zn, S2(1)).

(ii) H(Zn, S1(1)) ∼=aff H(Zn, S1(d)) for d ∈ {2, 4};

(iii) H(Zn, S1(d)) ∼=aff H(Zn, S2(d)) ⇐⇒ d ∈ {2, 4} or (d = 1 and u 6≡ 2(mod 4));
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Figure 1: Haar graphs H(Zn, S1(1)) and H(Zn, S2(1)).

(i): Define the mapping f : V 7→ V by

f : xε 7→

{
xε if x ∈ {0, 1, . . . .u− 1} ∪ {2u, . . . .3u− 1},
(x+ 2u)ε otherwise.

We leave for the reader to verify that f is in fact an isomorphism from H(Zn, S1(1)) to
H(Zn, S2(1)) (compare the graphs in Figure 1; here the white vertices represent the color
class Z+

n , while the black ones represent the color class Z−n ).

(ii): Since d ∈ {2, 4}, u is an odd number. For d ∈ {2, 4} define rd ∈ Z∗n as follows:

r2 =

{
2 + u if u ≡ 1(mod 4),

2 + 3u if u ≡ 3(mod 4),
r4 =

{
4 + u if u ≡ 3(mod 4),

4 + 3u if u ≡ 1(mod 4).

It can be directly checked that rdS1(1) +u = S1(d), so H(Zn, S1(1)) ∼=aff H(Zn, S1(d))
for d ∈ {2, 4}.

(iii): If u is odd, then (2u+1)S1(d) = S2(d), henceH(Zn, S1(d)) ∼=aff H(Zn, S2(d)).
Since u is odd whenever d ∈ {2, 4}, we are left with the case that d = 1 and u is even.
If also u ≡ 0(mod 4), then (u + 1)S1(1) + 3u = S2(1), and again H(Zn, S1(1)) ∼=aff

H(Zn, S2(1)).
Suppose that d = 1 and u ≡ 2(mod 4). We finish the proof by showing that in this case

H(Zn, S1(1)) 6∼=aff H(Zn, S2(1)). Suppose that, there is an affine transformation ψ : x 7→
rx+s, r ∈ Z∗n and s ∈ Zn, which maps the set S1(1) to S1(2). Then 1ψ−(1+2u)ψ = 2u
in Zn. This implies that {1, 1 + 2u}ψ = {1, 1 + 2u} and {0, u}ψ = {0, 3u}, and hence

r + s ∈ {1, 1 + 2u} and r{0, u}+ s = {0, 3u}.

A direct analysis shows that the above equations cannot hold if u ≡ 2(mod 4). Thus
H(Zn, S1(1)) 6∼=aff H(Zn, S2(1)), this completes the proof of (iii).

Now, we turn to the case when 2u 6= m. Recall that the canonical bicyclic group C
is generated by the permutation c defined in (1). For a divisor ` | n, C` will denote the
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Figure 2: The Haar graph H(Zn, S)

subgroup of C generated by c`. It will be convenient to denote by δ` the partition of V into
the orbits of C`, i.e., δ` = Orb(C`, V ). Furthermore, we set ηn,` for the homomorphism
ηn,` : Zn → Z` defined by ηn,`(1) = 1.

Observe that, if δ` is, in addition, a system of blocks for the group A = Aut(H(Zn,
S)), then an action of A can be defined on H(Z`, ηn,`(S)) by letting g ∈ A act as for
x ∈ Z` and for ε, ε′ ∈ {+,−},

(xε)g = yε
′
⇐⇒

{
zε : z ∈ η−1

n,`(x)
}g

=
{
zε
′

: z ∈ η−1
n,`(y)

}
. (3.1)

We denote by A(δ`) the corresponding kernel, and by gδ` the image of an element g ∈ G.
Note that, if X is a bicyclic group of H(Zn, S), then Xδ` = {xδ` : x ∈ X} is a bicyclic
group of H(Z`, ηn,`(S)).

Let S = {0, u, v, v + m} be the subset of Zn defined in Theorem 3.1. Let δ be the
partition of V defined by

δ =
{
X ∪Xψ1,0,0 : X ∈ Orb(Cu, V )

}
, (3.2)

where ψ1,0,0 is defined in (2.2). We write δ = {V0, . . . , Vu−1}, where

Vi =
{

(iv + ju)+, (iv + ju)− : j ∈ {0, 1, . . . , (n/u)− 1}
}
.

A part of H(Zn, S) is drawn in Figure 2 using the partition δ. White and black colors
represent again the color classes Z+

n and Z−n , respectively. For i ∈ {0, 1, . . . , u− 1}, let ei
be the involution of V defined by

ei : xε 7→

{
(x+m)ε if xε ∈ Vi,
xε otherwise.

It is clear that each ei ∈ Aut(H(Zn, S)), and also that eiej = ejei for all i, j ∈ {0, 1, . . . ,
u−1}. Let E = 〈e0, e1, . . . , eu−1〉. Thus E ≤ Aut(H(Zn, S)) and E ∼= Zu2 . For a subset
I ⊆ {0, 1, . . . , u− 1} let eI be the element in E defined by eI =

∏
i∈I ei.

The following lemma about imprimitivity systems of blocks (systems of blocks for
short) will be used throughout the paper.



H. Koike and I. Kovács: Isomorphic tetravalent cyclic Haar graphs 225

Lemma 3.3. Let Γ = H(Zn, R) be a Haar graph and suppose that R∗ ⊆ R such that the
point stabilizer Aut(Γ)0+ fixes setwise R−∗ , and let d = |〈R∗ − R∗〉|, where R∗ − R∗ =
{r1 − r2 : r1, r2 ∈ R∗}. Then the partition π of V defined by

π = {X ∪Xψ1,r,−r : X ∈ Orb(Cn/d, V )}, where r ∈ R∗,

is a system of blocks for Aut(Γ).2

Proof. For short we set A = Aut(Γ). Since R−∗ is fixed setwise by A0+ , we may write

R∗ = R1 ∪ · · · ∪Rk,

where R−i is an A0+ -orbit for every i ∈ {1, 2, . . . , k}. Choose an arc (0+, r−i ) of Γ where
we fix an element ri ∈ Ri for every i ∈ {1, . . . , k}. We claim that, the orbital graph of A
containing (0+, r−i ) is self-paired, and in fact it is equal to the Haar graph H(Zn, Ri) (for
a definition of an orbital graph, see [5]).

Define Ā as the color preserving subgroup of A. Then A = Ā o 〈ψ−1,0,0〉. Also,
Ā = A0+C, as C is transitive on Z+

n . Then the orbit of the arc (0+, r−i ) under A is

(0+, r−i )A = (0+, r−i )A0+C〈ψ−1,0,0〉 = {(0+, r′ −i ) : r′i ∈ Ri}C〈ψ−1,0,0〉

= {(j+, (j + r′i)
−) : r′i ∈ Ri, j ∈ Zn}〈ψ−1,0,0〉

= {(j+, (j + r′i)
−) : r′i ∈ Ri, j ∈ Zn} ∪

{((−j)−, (−j − r′i) +) : r′i ∈ Ri, j ∈ Zn},
= {(j+, (j + r′i)

−) : r′i ∈ Ri, j ∈ Zn} ∪
{((j + r′i)

−, j+) : r′i ∈ Ri, j ∈ Zn},

which is clearly equal to the set of arcs of H(Zn, Ri). The claim is proved.
Since H(Zn, Ri) is an orbital graph, A ≤ Aut(H(Zn, Ri)). Combining this with

H(Zn, R∗) = ∪ki=1H(Zn, Ri), we have that A ≤ Aut(H(Zn, R∗). Let Σ be the con-
nected component of H(Zn, R∗) which contains 0+. Obviously, the set W of vertices
contained in Σ is a block for A. It is easy to verify that W = X ∪Xψ1,r,−r where X is the
orbit of 0+ under Cn/d. The lemma follows.

Lemma 3.4. Let S be the set defined in Theorem 3.1. If 2u 6= m, then the stabilizer
Aut(H(Zn, S))0+ is given as follows.

(1) If u 6≡ 2v(mod m/u), then Aut(H(Zn, S))0+ = E0+ .

(2) If u ≡ 2v(mod m/u), then Aut(H(Zn, S))0+ = E0+ × F for a subgroup F ≤
Aut(H(Zn, S))0+ , |F | = 2.

Proof. For short we set Γ = H(Zn, S) and A = Aut(Γ). Consider the partition δ defined
in (3.2). Applying Lemma 3.3 with R = S, R∗ = {0, u} and r = 0, we obtain that δ is
a system of blocks for A. The quotient graph Γ/δ is a u-circuit if u > 2 and a 2-path if
u = 2. Let g ∈ A0+ . Then g fixes the directed edge (V0, V1) of Γ/δ, hence it must fix all
sets Vi. Thus A0+ ≤ A(δ), where A(δ) is the kernel of the action of A on δ.

Consider the action of A0+ on V0. The corresponding kernel is A(V0), the pointwise
stabilizer of V0 in A, and the corresponding image is a subgroup of Aut(Γ[V0]), where

2Notice that, π does not depend of the choice of the element r ∈ R∗.
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Γ[V0] is the subgraph of Γ induced by V0. Using that 2u 6= m, we show next that A(V0) =
E0+ . It is clear that A(V0) ≥ E0+ . We are going to prove that A(V0) ≤ E0+ also holds.
Let g ∈ A(V0). Then for a suitable element e ∈ 〈e1〉, the product ge fixes pointwise V0 and
fix the vertex v− from block V1 (see Figure 2). Thus ge acts on V1 as the identity or the
unique reflection of the circuit Γ[V1] that fixes v−. If this action is not the identity, then ge
switches v+ and (v + n − u)+, and so it must switch (v + u)− and (v + n − u)−. On
the other hand, since (v + u)− is connected to u+ ∈ V0, it follows that (v + u)− can only
be mapped to (v + u + m)−, and so (v + n − u)− = (v + u + m)−, contradicting that
2u 6= m. We conclude that ge acts as the identity also on V1. Continuing in this way, we
find that ge′ is the identity with a suitable choice of e′ ∈ E0+ , hence g = e′.

The equality A(V0) = E0+ together with Aut(Γ[V0]) ∼= D4u imply that |A0+ : E0+ | ≤
2. Moreover, |A0+ : E0+ | = 2 holds exactly when A0+ contains an involution g for which
g : 0− ↔ u−. In the latter case A0+ = E0+ × 〈g〉 as g centralizes E (to see this, observe
that g is in the kernel A(δ), and acts on every block Vi as an element of D2n/u, whereas
E acts on Vi as the center Z(D2n/u).) We settle the lemma by proving the following
equivalence :

A0+
∼= E0+ × Z2 ⇐⇒ u ≡ 2v(mod m/u). (3.3)

Suppose first that A0+ = E0+ × 〈g〉, where g ∈ A0+ and g : 0− ↔ u−. By (c) of
Theorem 3.1, {v−, (v+m)−}A0+ = {v−, (v+m)−}. Applying Lemma 3.3 with R = S,
R∗ = {v, v + m} and r = v, we obtain that the set B = {0+,m+, v−, (v + m)−} is a
block for A. The induced graph Γ[B] is a 4-circuit (again, see Figure 2). Denote by A{B}
the setwise stabilizer of B in A, and by AB{B} the permutation group of B induced by
A{B}. As Γ[B] is a 4-circuit, AB{B} ≤ D8. This gives that {0+,m+} is a block for AB{B},
and therefore it is also a block for A. We conclude that δm = {X : X ∈ Orb(Cm, V )}
is a system of blocks for A. Consider the action of A on H(Zm, ηn,m(S)) defined in
(3.1). Then E ≤ A(δm), while g /∈ A(δm). This implies that gδm is an automorphism of
H(Zm, ηn,m(S)) which normalizes its canonical bicyclic group. This means that gδm =
ϕr,s,t for some r ∈ Z∗m and s, t ∈ Zm. Using that gδm : 0+ 7→ 0+ and 0− 7→ ηn,m(u)−,
we find that s = 0 and t = ηn,m(u), and so

Aδm = 〈Dδm , ϕr,0,ηn,m(u)〉. (3.4)

Also, gδm : ηn,m(u)− 7→ 0− and ηn,m(v)− 7→ ηn,m(v)−, hence rηn,m(u) = −ηn,m(u)
and rηn,m(v) = ηn,m(v − u) hold in Zm. From these r ≡ −1(mod m/u) and rv ≡
v − u(mod m/u), i.e., u ≡ 2v(mod m/u). The implication “⇒” in (3.3) is now proved.

Suppose next that u ≡ 2v(mod m/u). Define the permutation g of V by

g : (iv + ju)ε 7→

{(
iv − (i+ j)u

)+
if ε = +,(

iv − (i+ j − 1)u
)−

if ε = −,

where i ∈ {0, 1, . . . , u − 1} and j ∈ {0, 1, . . . , n/u − 1}. We complete the proof by
verifying that g ∈ A0+ . Since 0+ g

= 0+ and g : 0− ↔ u−, this will imply that A0+ =
E0+ × 〈g〉. Thus part “⇐” of (3.3) is also proved.

Choose an arbitrary vertex w ∈ Z+
n such that w = (iv + ju)+, i ∈ {0, 1, . . . , u − 1}

and j ∈ {0, 1, . . . , n/u− 1}, and suppose for the moment that i < u− 1. Then w has the
following neighbors:

(iv + ju)−, (iv + (j + 1)u)−, ((i+ 1)v + ju)−, ((i+ 1)v + (j +m/u)u)−,
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where v + 1 ∈ {0, 1, . . . , u − 1}, and j + 1 and j + m/u are from {0, 1, . . . , n/u − 1}.
Thus these vertices are mapped by g to

(iv−(i+j−1)u)−, (iv−(i+j)u)−, ((i+1)v−(i+j)u)−, ((i+1)v−(i+j+m/u)u)−.

A direct check shows that these are just the neighbors of wg = (iv − (i + j)u)+. Let
i = u− 1. Then the neighbors of w are:

(iv + ju)−, (iv + (j + 1)u)−, ((j + v)u)−, ((j + v +m/u)u)−,

where j + v and j + v +m/u are from {0, ..., n/u− 1}. Then these vertices are mapped
by g to

(iv − (i+ j − 1)u)−, (iv − (i+ j)u)−, (−(j + v − 1)u)−, (−(j + v +m/u− 1)u)−.

The first two are clearly connected with wg = (iv − (i + j)u)+; whereas the rest two are
connected with wg if and only if the following equality holds in Zn:

{iv − (i+ j)u+ v, iv − (i+ j)u+ v +m} = {−(j + v − 1)u,−(j + v +m/u− 1)u}.

Using that v = u − 1, this reduces to {−(u − v)u,−(u − v)u + m} = {−vu,−vu +
m}. Finally, observe that this equality holds if (u − v)u ≡ vu(mod m), and the latter
congruence follows from the initial assumption that u ≡ 2v(mod m/u).

Lemma 3.5. Let S be the set defined in Theorem 3.1. If 2u 6= m, then for the normalizer
NAut(H(Zn,S))(C) of C in Aut(H(Zn, S)),

∣∣Aut(H(Zn, S)) : NAut(H(Zn,S))(C)
∣∣ =


2u−2 if 2 | u and

(
u 6≡ 2v(mod m/u) or

u/2 ≡ v(mod m/u)
)
,

2u−1 otherwise.
(3.5)

Proof. For short we set A = Aut(H(Zn, S)) and N = NA(C). Since A = DA0+ and
D ≤ N, N = D(N ∩A+

0 ). The cases (1) and (2) in Lemma 3.4 are considered separately.

CASE 1. u 6≡ 2v(mod m/u).

In this case, from Lemma 3.4, A0+ = E0+ , hence |A| = 2un. Let g ∈ N ∩A+
0 . Since

g ∈ E0+ , it follows quickly that g = 1A or 2 | u and g = e1e3 · · · eu−1. Combining this
with N = D(N ∩ G+

0 ) we find that |N | = 4n if 2 | u, and |N | = 2n if 2 - u. Formula
(3.5) follows.

CASE 2. u ≡ 2v(mod m/u).

From Lemma 3.4, A0+ = E0+ × F for a subgroup F ≤ A0+ , |F | = 2, hence |A| =
2u+1n. It follows from the proof of Lemma 3.4 that, there exists r ∈ Z∗m such that the
following hold:

rηn,m(u) = −ηn,m(u) and rηn,m(v) = ηn,m(v − u).
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Let s ∈ Z∗n such that ηn,m(s) = r. Then

su ∈ {−u,−u+m} and sv ∈ {v − u, v − u+m}. (3.6)

Suppose that 2 - u. Then we get as before that N ∩ E0+ is trivial. Notice also that,
u ≡ 2v + m/u(mod n/u), which follows from the assumption that u ≡ 2v(mod m/u)
and that 2 - u. Thus 2 - m and 2 | (u + m), implying that in (3.6) we have su = −u. We
obtain that ϕs,u,0 ∈ N ∩ (A0+ \ E0+), and so |N ∩A0+ | = 2.

Suppose next that 2 | u. Then |N ∩ E0+ | = 2. It is easily seen that |N ∩ A0+ | = 4 if
and only if there exists r ∈ Z∗n such that ru = −u and rv = v − u hold in Zn. Consider
the following system of linear congruences:

xu ≡ u(mod n), xv ≡ v − u(mod n). (3.7)

From the first congruence we can write x in the form x = yn/u − 1. Substitute this into
the second congruence. We obtain that yvn/u ≡ 2v − u(mod n). This has a solution if
and only if gcd(vn/u, n) | (2v − u). Suppose that gcd(v, n) 6= 1. Using that 〈u, v〉 = Zn
and that 2 | u, we obtain that gcd(v,m/u) 6= 1. However, then from the assumption that
u ≡ 2v(mod m/u) it follows that also gcd(v, u) 6= 1, which contradicts that 〈u, v〉 = Zn.
Hence gcd(v, n) = 1, gcd(vn/u, n) = n/u, and so (3.7) has a solution if and only if u ≡
2v(mod n/u), or equivalently, u/2 ≡ v(mod m/u) (recall that 2 | u and u | m). It is not
hard to show that any solution to (3.7) is necessarily prime to n, hence is in Z∗n. The above
arguments can be summarized as follows: |N | = 8n if 2 | u and u/2 ≡ v(mod m/u), and
|N | = 4n otherwise. This is consistent with (3.5). The lemma is proved.

Lemma 3.6. Let r ∈ Z∗n, r 6= 1 and s ∈ Zn such that the permutation ϕr,0,s is of order
2. Then the group 〈D,ϕr,0,s〉 contains a bicyclic subgroup different from C if and only if
8 | n, r = n/2 + 1, and s = 0 or s = n/2.

Proof. Suppose that 〈D,ϕr,0,s〉 contains a bicyclic subgroup X such that X 6= C. Then
X is generated by a permutation in the form ciϕr,0,s. Since ϕ2

r,0,s = idV , r
2 = 1 in Zn,

and we calculate that (ciϕr,0,s)
2 sends x+ to (x + r(r + 1)i) + for every x ∈ Zn. That

Z+
n is an orbit of X is equivalent to the condition that gcd(n, r + 1) = 2. Using this and

that r2 − 1 = (r − 1)(r + 1) ≡ 0(mod n), we find that n/2 divides r − 1, so r = 1 or
r = n/2 + 1. Since r 6= 1, we have that r = n/2 + 1 and 8 | n. Then (ϕr,0,s)

2 sends x−

to (x+ (n/2 + 2)s)−. Since (ϕr,0,s)
2 = idV , we obtain that s = 0 or s = n/2.

On the other hand, it can be directly checked that, if 8 | n, r = n/2 + 1 and s ∈
{0, n/2}, then the permutation cϕr,0,s generates a bicyclic subgroup of 〈D,ϕr,0,s〉. Obvi-
ously, this bicyclic subgroup cannot be C. The lemma is proved.

Everything is prepared to prove the main result of the section.

Proof of Theorem 3.1. The case that 2u = m is settled already in Lemma 3.2, hence
let 2u 6= m. We consider the action of A = Aut(H(Zn, S)) on the system of blocks
δm defined in (3.1). We claim that the corresponding image Aδm has a unique bicyclic
subgroup (which is, of course, Cδm ).

This is easy to see if A0+ = E0+ , because in this case Aδm = (DA0+)δm = Dδm .
Let A0+ 6= E0+ . Then A0+ = E0+ × F for some subgroup F, |F | = 2. By (3.4),

Aδm = 〈Dδm , ϕr,0,ηn,m(u)〉. Also, r ≡ −1(mod m/u), hence r 6= 1 in Zm. By Lemma
3.5, Aδm contains more than one bicyclic subgroup if and only if 8 | m, r = m/2 + 1 and
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ηn,m(u) ∈ {0,m/2}. In the latter case u ∈ {m,m/2}, which is impossible as u < m/2.
Hence Aδm contains indeed a unique bicyclic subgroup.

We calculate next the number of bicyclic groups of H(Zn, S); we denote this number
by B. In fact, we are going to derive the following formula:

B =

{
2u−2 if 2 | u and 2 - (m/u),

2u−1 otherwise.
(3.8)

Let g ∈ G such that 〈g〉 is a bicyclic group of H(Zn, S). Since G = DA0+ , g can be
written as g = xy with x ∈ D and y ∈ A0+ . Since 〈g〉 is a bicyclic group, g fixes the
color classes setwise, implying that x ∈ C. The image 〈g〉δm is also a bicyclic subgroup
of Aδm , hence by the previous paragraph, 〈g〉δm = Cδm . Now, since x ∈ C, yδm ∈ Cδm ,
from which yδm = idδm . We conclude that x = ci ∈ C for some i ∈ {1, . . . , n− 1} with
gcd(i,m) = 1, and y ∈ E0+ , and so y = eI for a subset I ⊆ {1, . . . , u − 1}. Obviously,
the product φ(n)B calculates the number of elements g ∈ G such that 〈g〉 is a bicyclic
group of H(Zn, S), where φ denotes the Euler’s totient function. Therefore, φ(n)B is
equal to the number of elements in the form cieI that i ∈ {1, . . . , n − 1}, gcd(i,m) = 1,
I ⊆ {1, . . . , u− 1}, and 〈cieI〉 is a bicyclic group of H(Zn, S).

Let us pick cieI with i ∈ {1, . . . , n− 1}, gcd(i,m) = 1, and I ⊆ {1, . . . , u− 1}. It is
easily seen that eIci = cieI+i, where I + i = {x + i : x ∈ I}, here the addition is taken
modulo u. Using this and induction on u, it follows that

(cieI)
u = cuieIeI+i · · · eI+(u−1)i.

Since gcd(i,m) = 1 and u | m, gcd(i, u) = 1, from which

eIeI+i · · · eI+(u−1)i = (e0e1 · · · eu−1)|I| = cm|I|.

Thus (cieI)
u = cu( i+ m

u |I| ). This and gcd(i, u) = 1 show that 〈cieI〉 is a semiregular
group. Therefore, 〈cieI〉 is a bicyclic group if and only if cieI is of order n, or equivalently,

gcd
(
i+

m

u
|I|, 2m

u

)
= 1. (3.9)

Notice that, since gcd(i,m) = 1, the greatest common divisor above is always equal to 1
or 2. Suppose at first that 2 | (m/u). Then 2 | m and i is odd. Hence (3.9) always holds.
We obtain that the number of elements in A which generate a bicyclic group is φ(n)2u−1,
and so B = 2u−1, as claimed in (3.8). Suppose next that 2 - (m/u). Now, if 2 | u, then
2 | m, hence 2 - i, and so (3.9) holds if and only if |I| is even. We deduce from this that
B = 2u−2, as claimed in (3.8). Finally, if 2 - u, then 2 - m, and in this case (3.9) holds if
and only if gcd(i, n) = 1 and |I| is even, or gcd(i, n) = 2 and |I| is odd. We calculate that
B = 2u−1, and this completes the proof of (3.8).

Let Ξ be a bicyclic base of H(Zn, S). By (3.5) and (3.8) we obtain that, |Ξ| > 1 if and
only if

|A : NA(C)| = 2u−2 and B = 2u−1.

This happens exactly when(
2 | u and (u 6≡ 2v(mod m/u) or u/2 ≡ v(mod m/u))

)
and

(
2 - u or 2u | m

)
.
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After some simplification,

|Ξ| > 1 ⇐⇒ 2 | u, 2u | m and u/2 6≡ v +m/(2u)(mod m/u).

Suppose that |Ξ| > 1. ThenA contains exactly 2n−1 bicyclic subgroups, 2n−2 of which
are conjugate to C. These 2n−1 subgroups are enumerated as: 〈ceI〉, I ⊆ {1, . . . , u− 1}.
For i ∈ {1, . . . , u − 2}, eicei = ce{i,i+1}. We can conclude that the bicyclic subgroups
split into two conjugacy classes:{
〈ceI〉 : I ⊆ {1, . . . , u− 1}, |I| is even

}
and

{
〈ceI〉 : I ⊆ {1, . . . , u− 1}, |I| is odd

}
.

In particular, |Ξ| = 2. Choose ξ from Sym(V ) which satisfies

ξcξ−1 = ce1 and ξ : 0+ 7→ 0+, 0− 7→ 0−.

Then Ξ can be chosen as Ξ = {idV , ξ}. Also, {v−, (v + m)−}ξ = {v−, (v + m)−},
and since (ce1)u+m = cu, (u−)ξ = (0−)(ce1)u+mξ = (0−)ξc

u+m

= (u + m)−. Thus
H(Zn, S) ξ = H(Zn, {0, u+m, v, v +m}). The theorem follows from Theorem 2.6. �

4 Proof of Theorem 1.1
Theorem 1.1 follows from Theorem 3.1 and the following theorem.

Theorem 4.1. Let H(Zn, S) be a connected Haar graph such that |S| = 4 and S is not
a BCI-subset. Then n = 2m, and there exist a ∈ Z∗n and b ∈ Zn such that aS + b =
{0, u, v, v +m} and the conditions (a)-(c) in Theorem 3.1 hold.

Before we prove Theorem 4.1 it is necessary to give three preparatory lemmas. For an
element i ∈ Zn, we denote by |i| the order of i viewed as an element of the additive group
Zn. Thus we have |i| = n/ gcd(n, i).

Lemma 4.2. If R = {i, n − i, j} is a generating subset of Zn with |i| odd, then R is a
CI-subset.

Proof. For short we set A = Aut(Cay(Zn, R)) and denote by A0 the stabilizer of 0 ∈ Zn
in A. Clearly, A0 leaves R setwise fixed. If A0 acts on R trivially, then A ∼= Zn, and the
lemma follows by Theorem 2.1. If A0 acts on R transitively, then Cay(Zn, R) is edge-
transitive. This condition forces that R is a CI-subset (see [10, page 320]).

We are left with the case that R consists of two orbits under A0. These orbits must be
{i, n− i} and {j}. It is clear that A0 leaves the subgroups 〈i〉 and 〈j〉 fixed; moreover, the
latter set is fixed pointwise, and since |i| is odd, 〈i〉 consists of (|i| − 1)/2 orbits under A0,
each of length 2, and one orbit of length 1. We conclude that Zn = 〈i〉×〈j〉, and also thatA
is permutation isomorphic to the permutation direct product

(
(Z|i|)righto〈π〉

)
×(Z|j|)right.

For ` ∈ {|i|, |j|}, (Z`)right is generated by the affine transformation x 7→ x + 1, and π is
the affine transformation x 7→ −x. We leave for the reader to verify that the above group
has a unique regular cyclic subgroup. The lemma follows by Theorem 2.1.

Lemma 4.3. Let n = 2m and R = {i, n− i, j, j +m} be a subset of Zn such that

(a) R generates Zn;

(b) |i| is odd;
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(c) the stabilizer Aut(Cay(Zn, R))0 leaves the set {i, n− i} setwise fixed.

Then R is a CI-subset.

Proof. For short we set A = Aut(Cay(Zn, R)). Let T be a subset of Zn such that
Cay(Zn, R) ∼= Cay(Zn, T ) and let f be an isomorphism from Cay(Zn, R) to Cay(Zn, T )
such that f(0) = 0. Let us consider the subgraphs

Γ1 = Cay(Zn, {i, n− i}) and Γ2 = Cay(Zn, {j, j +m}).

By condition (c), the group A preserves both of these subgraphs, that is, A ≤ Aut(Γ`)
for ` ∈ {1, 2}. As f is an isomorphism between two Cayley graphs, f(Zn)rightf

−1 ≤
A. Then f(Zn)rightf

−1 ≤ A ≤ Aut(Γ`), implying that f maps Γ` to a Cayley graph
Cay(Zn, T`) for both ` ∈ {1, 2}. Clearly, T = T1 ∪ T2. It was proved by Sun [15]
(see also [10]) that every subset of Zn of size 2 is a CI-set. Using this, it follows from
Cay(Zn, {i, n − i}) ∼= Cay(Zn, T1) that T1 = a{i, n − i} for some a ∈ Z∗n. Letting
t1 = ai,we have T1 = {t1, n−t1} such that |i| = |t1|. In the same way, T2 = a′{j, j+m}
for some a′ ∈ Z∗n, and letting t2 = a′j, we have T2 = {t2, t2 +m} with |t2| = |j|. Since
f(0) = 0, f maps {i, n− i} to T1 = {t1, n− t1} and {j, j +m} to T2 = {t2, t2 +m}.

We claim that the partition of Zn into the cosets of 〈m〉 is a system of blocks for
Aut(Γ2), hence also for the group A ≤ Aut(Γ2). Let us put Ā = Aut(Γ2). Then Ā0

leaves the set T = {j, j+m} setwise fixed. Thus the setwise stabilizer Ā{T} of the set T in
Ā can be written as Ā{T} = Ā{T} ∩ Ā = Ā{T} ∩ Ā0(Zn)right = Ā0(Ā{T} ∩ (Zn)right) =
Ā0〈mright〉. Here (Zn)right is generated by the affine transformation x 7→ x + 1, and
mright is the permutation x 7→ x + m for every x ∈ Zn. Thus Ā0〈mright〉 is a subgroup
of Ā which clearly contains Ā0. By [5, Theorem 1.5A], the orbit of 0 under the group
Ā0〈mright〉 is a block for Ā. Now, the required statement follows as the latter orbit is equal
to 0Ā0〈mright〉 = 0〈mright〉 = 〈m〉.

Since the partition of Zn into the cosets of 〈m〉 is a system of blocks for A, the iso-
morphism f induces an isomorphism from Cay(Zm, ηn,m(R)) to Cay(Zm, ηn,m(T )), we
denote this isomorphism by f̄ . Note that, f̄(0) = 0 for the identity element 0 ∈ Zm.

The set ηn,m(R) satisfies the conditions (a)-(c) of Lemma 4.2, hence it is a CI-subset.
This means that f̄ is equal to a permutation x 7→ rx for some r ∈ Z∗m. Let s ∈ Z∗n such
that ηn,m(s) = r. Then ηn,m(si) = ηn,m(s)ηn,m(i) = ηn,m(t1), and so the following
holds in Zn:

si = t1 or si = t1 +m. (4.1)

The order |t1| = |i| is odd by (b), implying that |t1| 6= |t1 + m|, and so si = t1 holds in
(4.1). We conclude that sR = T, so R is a CI-subset. The lemma is proved.

Lemma 4.4. Let n = 2m and S = {0, u, v, v +m} such that

(a) S generates Zn;

(b) 1 < u < n, u | n but u - m;

(c) Aut(H(Zn, S))0+ leaves the set {0−, u−} setwise fixed.

Then S is a BCI-subset.
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Proof. Let δ be the partition of V defined in (3.2). Applying Lemma 3.3 with R = S,
R∗ = {0, u} and r = 0, we obtain that δ is a system of blocks for A = Aut(H(Zn, S)).
Thus the stabilizer A0+ leaves the set V0 setwise fixed, and we may consider the action of
A0+ on V0. The subgraph of H(Zn, S) induced by the set V0 is a circuit of length 2n/u,
thus A0+ fixes also the vertex on this circuit antipodal to 0+. We find that this antipodal
vertex is (u/2 + m)−. Therefore, A0+ = A(m+u/2)− , and thus S is a BCI-subset if and
only if S − u/2 +m is a CI-subset of Zn, see Proposition 2.8. The latter set is

S − u/2 +m =
{
u/2 +m,−u/2 +m, v − u/2, v − u/2 +m

}
.

Since u - m, u is even and the order |u/2 + m| is odd. Lemma 4.3 is applicable to the set
S − u/2 + m (choose i = u/2 + m and j = v − u/2), it gives us that S − u/2 + m is a
CI-subset. This completes the proof.

Proof of Theorem 4.1. Let S be the subset of Zn given in Theorem 4.1. We deal first with
the case when the canonical bicyclic group C is normal in A = Aut(H(Zn, S)).

CASE 1. C E A.

By Theorem 2.6, there is a bicyclic groupX ofH(Zn, S) such thatX 6= C. Since C E
A,X is generated by a permutation in the form ciϕr,0,s, r ∈ Z∗n, s ∈ Zn, and ord(ϕr,0,s) ≥
2. The permutation ϕr,0,s acts on both Z+

n and Z−n as an affine transformation. This fact
together with the connectedness ofH(Zn, S) imply that, ϕr,0,s acts faithfully on S−. Thus
ord(ϕr,0,s) ≤ 4.

Suppose that ord(ϕr,0,s) = 4. We may assume without loss of generality that S− can
be obtained as S− = { (0−)ϕ

j
r,0,s : j ∈ {0, 1, 2, 3} }, and so S = {0, s, (r + 1)s, (r2 +

r + 1)s} and (r3 + r2 + r + 1)s = 0. Since H(Zn, S) is connected, gcd(s, n) = 1, and
(r+ 1)(r2 + 1) = 0. We find that (ciϕr,0,s)

4 sends x+ to (x+ r(r+ 1)(r2 + 1)i) + = x+.
Since X =

〈
ciϕr,0,s

〉
is bicyclic, n = 4, and so H(Zn, S) ∼= K4,4. This, however,

contradicts that C E A.
Now, suppose that ord(ϕr,0,s) = 3. If A0+ is transitive on S−, then it must be regular

[9, Theorem 4.3]. This implies that S− splits into two orbits under A0+ with length 1
and 3, respectively. Let s ∈ S such that {s−} is an orbit under A0+ . Then A0+ = As− ,
and by Proposition 2.8, S − s is not a CI-subset of Zn. However, in this case the graph
Cay(Zn, S−s) is edge-transitive, and thus S−a is a CI-subset (see [10, page 320]), which
is a contradiction.

Finally, suppose that ord(ϕr,0,s) = 2. If r = 1, then 2 | n and s = m, where n = 2m.
This implies that S− is a union of two orbits of Cm, we may write S = {0,m, s, s+m}.
The graph H(Zn, S) is then isomorphic to the lexicographical product Cn[Kc

2] of an n-
circuit Cn with the graph Kc

2 , see Figure 3. It is easily seen that then A0+ is not faithful on
the set S−, which is a contradiction.

Let r 6= 1. By Lemma 3.6, 8 | n, r = m + 1 and s ∈ {0,m}, where n = 2m.
We consider only the case when s = 0 (the case when s = m can be treated in the same
manner). Then Z−n splits into the following orbits under ϕr,0,s:

{(2i)−}, {(2i+ 1)−, (2i+ 1 +m)−}, where i ∈ {0, 1, . . . ,m− 1}.

Since H(Zn, S) is connected and cannot be the union Cm-orbits (see above), S− contains
one orbit under ϕr,0,s of length 2, and two orbits of length 1. Let S1 denote the orbit of
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0 0 s s 2s 2s

m m s+m s+m 2s+m 2s+m

Figure 3: The lexicographical product Cn[Kc
2].

length 2 and let S2 = S \ S1. Then we may write S1 = {s, s + m}, and S2 = {s′, s′′},
where both s′ and s′′ are even. Let u = gcd(s′ − s′′, n). Then u is a divisor of n and
also 2 | u. There exist a ∈ Z∗n such that a(s′ − s′′) ≡ u(mod n). Choosing b = −as′′
(all arithmetic is done in Zn), we find that aS2 + b = {u, 0}. Now, letting v = as + b,
we get aS1 + b = {v, v + m}. We finish the proof of this case by showing that the set
R = aS + b = {0, u, v, v +m} satisfies the conditions (a)-(c) of Theorem 3.1.

(a): As H(Zn, S) is connected, H(Zn, R) is also connected. This implies that {u, v}
is a generating set of Zn.

(c): Since C E A, C E Aut(H(Zn, R)). To the contrary assume that the stabilizer
Aut(H(Zn, R))0+ does not leave {0−, u−} setwise fixed. Thus there exists some g ∈ A0+

which maps v− into {0−, u−}. Letting w−1 = (v−)g and w−2 = ((v+m)−)g, we find that
w1 − w2 = m, and from this that u = m. However, then H(Zn, R) ∼= Cn[Kc

2], which we
have already excluded above. Thus Aut(H(Zn, R))0+ fixes setwise {0−, u−}.

(b): We have already showed (see previous paragraph) that u 6= m and 1 < u. Since S
is not a BCI-subset, R is also a not a BCI-subset. This also implies that u | m by Lemma
4.4, and we conclude that 1 < u < m and u | m, as required.

CASE 2. C 6E A.

LetA0+ act transitively on S−. This gives thatH(Zn, S) is edge-transitive. Since C 6E
A, D 6E A, in other words, H(Zn, S) is non-normal as a Cayley graph over the dihedral
group D. We apply [8, Theorem 1.2], and obtain that H(Zn, S) is either isomorphic to
Kn[Kc

2], or to one of 5 graphs of orders 10, 14, 26, 28 and 30, respectively. Suppose that
the former case holds. Then n = 2m, and we obtain quickly that S consists of two Cm-
orbits. Then S can be mapped by an affine transformation to a set {0,m, v, v+m}, where
〈m, v〉 ∼= Zn. Then v or v + m is a generating element of Zn, and so S can actually be
mapped by an affine transformation to {0,m, 1, 1 + m}. Now, the same holds for any set
T with H(Zn, T ) ∼= H(Zn, S) ∼= Kn[Kc

2], contradicting that S is not a BCI-subset. In the
latter case, a direct computation by the computer package MAGMA [4] shows that none of
these graphs is possible (in fact, in each case the corresponding subset S is a BCI-subset).

The set S− cannot split into two orbits under A0+ of size 1 and 3, respectively (see the
argument above). We are left with the case that S = S1 ∪ S2, |S1| = |S2|, and A0+ leaves
both sets S1 and S2 setwise fixed. For i ∈ {1, 2}, let ni = |〈Si − Si〉|, n1 ≤ n2, where
Si − Si = {a− b : a, b ∈ Si}.

We claim that n1 = 2. To the contrary assume that n1 > 2. We prove first that
Cn/n1 E A. Applying Lemma 3.3 with R = S, R∗ = S1 and r = s1 ∈ S1, we obtain that
the partition

δ =
{
X ∪Xψ1,s1,−s1 : X ∈ Orb(Cn/n1 , V )

}
,
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is a system of blocks for A. Let us consider the action of A(δ) (the kernel of A acting on δ)
on the block of δ which contains 0+. Denote this block by ∆, and by ∆′ the block which
contains s− for some s ∈ S2. Notice that, the subgraph of H(Zn, S) induced by any block
of δ is a circuit of length 2n1, and when deleting these circuits, the rest splits into pairwise
disjoint circuits of length 2n2. Let Σ denote the unique (2n2)-circuit through s−. Now,
suppose that g ∈ A(δ) which fixes ∆ pointwise. If V (Σ) ∩∆ = {0+}, then g must fix the
edge {0+, s−}, and so fixes also s−. If V (Σ) ∩∆ 6= {0+}, then |V (Σ) ∩∆| = n2 > 2.
This implies that g fixes every vertex on Σ, in particular, also s−. The block ∆′ has at least
n1 vertices having a neighbor in ∆, hence by the previous argument we find that all are
fixed by g. Since n1 > 2,∆′ is fixed pointwise by g. It follows, using the connectedness of
H(Zn, S), that g = idV , hence that A(δ) is faithful on ∆. Thus Cn/n1 is a characteristic
subgroup of A(δ), and since A(δ) E A, Cn/n1 E A.

Let G be the unique normal subgroup of A that fixes the color classes Z+
n and Z−n . We

consider N = G ∩ CA(Cn/n1). Then C ≤ N and N E A. Pick g ∈ N0+ such that g acts
non-trivially on S−. Since N centralizes Cn/n1 , g fixes pointwise the orbit of 0+ under
Cn/n1 , and hence also ∆. Then g2 fixes S− pointwise, and so also ∆′. We conclude that
g2 = idV , and that eitherN = C, orN = Co〈g〉. The caseN = C is impossible because
C 6E A. Let N = C o 〈g〉. Then (S−i )g = S−i (for both i ∈ {1, 2}), hence Si is a union of
orbits of g. As g normalizes C and fixes 0+, g = ϕr,0,s. Recall that ord(g) = 2. If r 6= 1,
then by Lemma 3.6, either C is the unique cyclic subgroup of N, or 8 | n, r = n/2 + 1 and
s = 0 or s = n/2. In the former case C is characteristic in N, and since N E A, C E A,
a contradiction. Therefore, we are left with the case that r = 1 (and so s = n/2), or 8 | n,
r = n/2 + 1 and s = 0 or s = n/2. Then every orbit of g is of length 1 or 2, and if it is of
length 2, then is in the form {jε, (j +m)ε} as we proved in Case 1. Since ni > 2, we see
that S−i must be fixed pointwise by g for both i ∈ {1, 2}. This, however, contradicts that g
was assumed to act non-trivially on S−; and so n1 = 2.

This means that 2 | n, say n = 2m, and the group generated by the set S1 − S1 =
{x − y : x, y ∈ S1} is equal to {0,m}. Then we can write S1 = {s, s + m}. It can be
proved as before that there exist a ∈ Z∗n and b ∈ Zn such that aS2 + b = {0, u} for some
divisor u of n. Then, letting v = as+ b, we get aS1 + b = {v, v+m}. We finish the proof
of this case by showing that the set R = aS + b = {0, u, v, v+m} satisfies the conditions
(a)-(c) of Theorem 3.1.

(a): As H(Zn, S) is connected, H(Zn, R) is also connected. This implies that {u, v}
is a generating set of Zn.

(c): Since S1 and S2 are left fixed setwise by A, Aut(H(Zn, R))0+ leaves the set
{0−, u−} setwise fixed.

(b): If u = 1, then Aut(H(Zn, {0, u})) ≤ D4n. But then C E A, which is a contra-
diction. We conclude that 1 < u, and by Lemma 4.4, u | m also holds, i.e., 1 < u < m
and u | m, as required. �
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