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ABSTRACT: This paper describes our implementation of a primél-
dual interior point algorithm for linear programming. The topics
discussed include economic data structures, efficient metbods
for some sparse matrix operations, sparse Cholesky factoriza-
tion, methods for handling dense columns and comparisons with
simplex based methods. Extensive numerical results demonstrate
the efficiency of the resulting algorithm as well as some prob-
lems which remain to be solved. The role of interior point based

solvers in the process of

solving large-scale mathematical

programming models is also discussed.
SNOVANJE, IMPLEMENTACIJA IN TESTIRANJE PRIMARNO-DUALNE METOD_E
NOTRANJE TOCKE ZA RESEVANJE LINEARNIH PROGRAMOV: V sestavku Je

opisana nasa implementacija
tocke za

resevanje linearnih programov.

primalno-dualne metode notranje

Obravnavane so

ekonomi&ne podatkovne strukture, ucinkoviti nac¢ini za izvajanje
nekaterih operacij z razprSenimi matrikami, razprsenl razcep po
Choleskem, metode za delo z gostimi stolpci ter primerjave z

metodo simpleksov. Iz&rpni

rezultati numeri&nega testiranja

kaZejo tako u€inkovitost razvitih algoritmov, kot tudi pekatere
probleme, ki jih je treba Se razre$iti. Opisana je tudi vloga
reSevanja z metodami notranje tocke v splosnem kontekstu modeli-
ranja in redevanja velikih problemov matematiénega programiran-

ja.

Introduction

The linear programming (LP) problem may be stated in the
o .

minimize (maximize) cTx
(1)
subject to: Ax = b, 1 £ x gu

vhere A is a rectangular matrix, ¢, x, 1, u, b are
column  vectors and the symbol T denotes transpose of a
vector or wmatrix. Some of bounds in 1 and u may be
infinite. The  important features of typical LP
constraint matrix A are its quite large dimension,
sparsity and a specific structure i.e. patterns in which
its nonzero elements appear. A classical way for solving
the awbove problem is the simplex algorithm, developed by
G.B. Dantzig in late 1940’s. Contemporary variants of
this algorithm, which are included in many commercial or
university developed software packages, are tailored for
sulving quite large problems in a fast and reliable way.
llowever, this established algorithm has got recently a
scerious  competitor in  the so called interior point
me:thods . These methods became widely known after
Larmavkar’s publication (Karmarkar, 1984) of an
algorithm that is claimed to be much faster for
practical problems than the simplex method. Although
these 1nitial promises appeared to be too optimistic,
Karnarkar’s algorithm and other interior point methods
are now regarded as a competitive methods for solving LP
problems. This is particularly true when solving of sone
specific  forms of super size problems on supercomputers
is cunsidered. Such kind of problems, which are often
encountered in  communication, transportation and
military operations, are very sparse and usually exhibit

specific and  generally well-behaved block  structures
that can be effectively exploited. Efforts to develop
software systems for solving super size LP problems with
Karmarkar's algorithm proved to be very fruitful. One of
the outstanding steps in this direction is AT&T's KORBX
system. The system consists of both hardware, which uses
parallel processing, and software which exploits the
resources of this hardware (Carolan et al., 1990).
However, there is also a need for exploring ability of
interior point methods for solving LP on a more widely
available serial computers. In the paper we present our
work in this direction, which was performed on  MS-DOS
personal computers and VAX/VMS minicomputers.

Algorithms

Nowadays a plethora of research papers 1is published
where different interior point. methods are proposed. We
have employed the variant of a primal-dual interior
point method which 1is supposed to be among the most
efficient (Lustig et al. 19889). In order to make clear
differences between such kind of methods and simplex
bused algorithms, we first give a brief explanation of
the revised simplex algoritiun, The steps of this
algorithm are roughly described within the following box
where B denotes the basis matrix and cs the cost vector
of the basic variables., It is therefore assumed that
there 1is a set of m basic variables, which is usually
changed after " each iteration in such a way that one
nonbasic variable enters the basis and one basic
variable leaves the basis. The informal description
which follows is related to the second phase of the
primal revised simplex algorithm, where the basic
feasible solution is already known.



Revised-simplex—method:

R1: Produce a pricing vector: n = cpTB-! (BTRAN).

R2: Select the entering variable xs (column u = Asg)
according to a given pricing strategy. If no
entering variable is found, terminate (solution
is optimal}.

R3: Update the entering column: v = B-lu (FTRAN),

R4: Determine the leaving variable. If none is found,
terminate (problem is unbounded}).

R5: Update the basis matrix representation;
refoactorize if necessary. Go to Rl.

It must be noted however that there is not yet general
agreement about what are the best algorithms in detail,
and how they should be implemented in the most efficient
way. In general, number crunching operations are
concentrated within the steps Rl and R3 where two
systems of linear equations have to be solved (these
operations are often refered to as BTRAN and FTRAN)., It
is very important that after basis change updating of
basis wmatrix is possible without performing full
factorization, which has to be done only periodically.
Other steps, particularly R2 and R4, deal mainly with
logic decision and "book-keeping" problems, It is also
obvious that a rather sophisticated data structures must
be  employed in order to exploit sparsity (Duff et al.,
1989).

Interior point methods differ considerably from the
simplex method. Primal-dual interior point method, which
we have decided to implement, requires LP problem being
formulated in the following form:

minimize cTx

(2)

subject to: A = b, x+s=u, x20,820
with the associated dual
maximize bty - uTw

(3)

subject to! ATy - w+2 = ¢, w20,220

Fortunately, formulation (2) can be derived in a
straightforward way from formulation (1). An outline of
the algorithm is sketched within the following box,
where X, S, W and Z are diagonal matrices with diagonal
elements equal to the components of corresponding
vectors x, s, wand z. ¢ is the user supplied constant
which is usually computed by using the following
formula:

n? n < 5000

¢ = ¢(n) =
n/n n > 5000
and M = rm(n)*ma.x(ﬂcugégb“m] where t is a scalar
multiplier which is used to allow variations of the

initial p, Furthermore, dp = ATy? + 20 - c, where y? and
2% are initial y and z, and e = (1,1,...,1). ad, ap are
some appropriate step lengths in the primal and dual
spaces respectively. These step lengths must be chosen
in a way which ensures nonnegativity of variables x, s,
2z and w, for exumple:

ap ao¥min {min; {x; /-8x; , 6x; <0}, min; (s; /8x;, 6x;>0}}

wa = go*min {min; (2; /-82;, 62; <0}, min; {w; /-8w; , &w; <0}}

where 0<qo<1 1is the user supplied parameter which is
usually set to be equal 0.9995.

Initial feasibility of the problem is formally assured
by adding column Axe - b and row dp to the matrix A,
together with x, and ya(=-zp), which are corresponding
primal and dual variable with initial value 1. In order
to achieve feasibility their values must decréase to 0.

Primal~dual-interior—point—method-————n
Kl: Compute p = (cTx + uTw ~ bTy + M{xa - ya))/®
K2: Compute B = (S-1W + X-12)-1
K3: Compute positive definite matrix AOAT.
K4: Perform Cholesky factorization of the ABA”

K5: Compute ofp) = p(8-t - X-t)e - (W=~ Zle

K6: Compute 8y = =(ABAT)-1(AB(o{p) + zpdp) +
(Ax - b))
8x = O(AT8y + o(p) ~ zvdp)
8s = -6x
6z = -pX~te + Ze - X-1Z6x
8w = -uS-le + We - S-1Wbx
K7: Update Ynew = Yoida - 048y
Xnew = Xoia ~ apdx
Smew = Soldq = apbs
Zoew = Zold — adbz
Wnew = Wold - Qdbw

K8: If relative duality gap satisfies relation:
cT™x + uTw - bTy
1+ Jutw - by}

where € is user supplied constant, terminate
{solution is optimal). Otherwise go to Kl.

It was also assumed that the initial interior solution
is supplied by the user. For example, it is possible to
choose x* = 2z° = min{e,u/2} and yo = 0 {Choi et al.,
1990), In general, interior point methods are not very
sensible to the choice of the initial solution.

The above description is based on two papers (Lustig et
al. 1989, Choi et al. 1990} wherc algorithmic aspects of
the modularized fortran code OBl (Optimization with
Barriers 1) were described. Our intention was to develop
our own code based on mentioned papers and standard
methods  for computing sparse Cholesky factorization
(George, Liu, 1981). However, some of the implementation
details are different, for example:

a) In our implementation column Axe -.b und row dp are
computed at each iteration, rather than only for the
initial solution. xs and ys are defined as ratios
between current and initial o norms of Axo - b and
dp. Furthermore, x» ond ys retain some small valuc
even in the case if their computed vsalue is zero.
Such approach enable us to save some slorage space
and also, according to our experience, to improve
accuracy of the computed solution.

b) Sometimes it is impossible for relative duality gap
to reach prescribed € on step K8. In such cases we
terminate algorithm when relative difference between
two subscquent objective values become smaller than
the prescribed constant, which is usuallly set to be
0.1%¢,

On the whole, published description of the algorithm is
good enough to enable everyone to create, possibly after
some experimental investigation, workable implementation
of a primal dual interior point method. Evidently the
algorithm consists mostly of floating point computations
and consequently fortran is an obvious choicve of
implementation language. Some features of the interior
point methods that make them so much different from the
simplex method are obvious:

1) "There is no partitioning into basic and nonbusic
variables, This means that, in principle, all
variables and constraints are handled in  equal way
during the solution process.

2) Each iteration requires computationally expensive
factorisation of positive definite matrix or
solution of the least squares problem.



3) Solution vector x is always an interior point of the
solution polytope.

Feature 1) has a far-reaching consequences. It can be a
means for avoiding potential combinatorial problems
arising in .the movement from one basis to another which
is typical for simplex method. On the other hand such
approach may degrade computational speed and stability.

The main computational problem of the interior point
methods is inversion of matrix AGAT or solution of the
corresponding linear least squares problem. This is
usually done by computing sparse Cholesky factorization
of ABAT. In order to understand methods for doing this,
one must be acquainted with the methods for storing
sparse matrices. In the next section the methods for
storing sparse matrices which were applied in our
implementation of primal-dual interior point methods are
briefly described.

Data structures and implementation issues

Exploitation of sparsity is based on the fact that only
nonzero elements of sparse matrix (or vector) must be
stored, together with information about their position
within matrix (vector). In the case of LP input data (A,
b, ¢, u) within the framework of interior point methods,
we have employed the following data structures:

1) Righthand-side vector b is stored as a dense vector.

2) Constraint matrix A is stored using three one
dimensional vectors (XA,IA,CP) where

¥A = vector of nonzero values A;; which are sorted by
columns and (secondary) by row indices within a
particular column, both in increased order.

IA = vector of row indices of nonzero elements, which
are sorted in a same manner as XA.

CP = vector of column pointers which consists of
locations where the representation of columns
begins in XA and IA. For example, elements of
column i are all in locations from CP{(I) +to
CP(I+1)-1.

3

-~

Nonzerc elements of ¢ are stored (formally) as n+l.
column of A. Therefore they are stored between
locations CP(N+1) and CP(N+2})-1 in XA (values) and JA
(indices).

4

-~

Noninfinite elements of u are stored (formally) as
n+2. column of A, Therefore they are stored between
locations CP(N+2) and CP(N+3)~1 in XA (values) and IA
(indices).

Obviously, it is also necessary to store the matrix AOAT
and its triangular factor L, in the case if Cholesky
factorization is used within the solution process. These
matrices can be stored using the same storage locations.
The amount of this storage is determined by fill-in
which generally can not be avoided during the Cholesky
factorization of ABAT., It is therefore advisable to try
to minimize fill-in by appropriate reordering of rows
and columns of ABAT. Ordering algorithms are essentially
graph techniques for obtaining appropriate numbering of
the graph nodes. In our case nonzero structure of ABAT
represents an undirected graph G(X,E) with m nodes., The
adjacency 1list of node xeX is a list containing all
nodes adjacent to x, which is represented by indices of
nondiagonal nonzero elements of corresponding column of
ABAT. The implementation of described structure is done
by storing the adjacency lists sequentially in integer
array ADJNCY along with an index vector XADJ of length
M+1 containing pointers to the beginning of the lists in
ADJNCY. The extra entry XADJ(M+1) points to the next
available location in ADIJNCY (George, Liu, 1981). These
arrays are input data for ordering algorithms which can
be generally divided in two groups:

a) reorderings which try to minimize number of nonzero
elements (and therefore fill-in) in triangular

factor L. Although it is known to be NP-complete
problem (Duff et al. 1989) several reasonable good
heuristics exist. One of them is the minimum degree
algorithm., The name of this algorithm is derived
from its graph theoretic interpretation: in the
graph associated with a symmetric sparse matrix,
this strategy corresponds to choosing that node for
the next elimination which has the least edges
connected to it,

b) reorderings which try to permute AOAT and triangular
factor L into some particular desirable form. This
can be for example so-called envelope or profile
form. The most known algorithm of this type is the
Reverse Cuthill-McKee algorithm. The objective of
such kind of algorithms is to reorder the rows and
columns of the matrix so that the nonzeroes in the
obtained matrix are clustered near the main diagonal
since this property is retained in the corresponding
Cholesky factor L. Such a cluster is called the
profile or envelope and is defined to contain also
all zero elements between the diagonal and the last
nonzero element in the row or column. The problem of
minimizing the envelope size of a matrix is proven
to be NP-complete (Billionet, Breteau, 1989) and
consequently the Reverse Cuthill-McKee algorithm is
only one among heuristic procedures for doing this.

We have implemented both the minimum degree and the
Reverse Cuthill-McKee algorithm within our LP package.
In order to give some insight into these methods, we
shall show how they perform on the smallest example from
the NETLIB library (Gay, 1985), which is known under the
name AFIRO. This is the problem with constraint matrix
having 27 rows and 51 columns which contain all together
102 nonzero elements. Its corresponding ABAT matrix has
the structure as in the following picture, where only
the upper triangular part is reproduced:
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Figure 1. AFIRO ~ structure of the upper part of ABAT

Nondiagonal and diagonal nonzero elements are presented
using symbols X and D respectively. It is obvious that,
at least in this case, matrix ABAT is not as sparse as
matrix A itself, Moreover, number of its nonzeroes may
substantially increase during the subsequent Cholesky
factorization. The following picture displays how this
sitution is controlled by applying the minimum degree
algorithm, The produced ordering (permutation of rows
and columns) is: (4,14,26,27,13,22,12,3,24,2,1,11,10,17,
18,19,20,23,16,15,9,8,25,21,6,7,5)
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Figure 2. AFIRO - structure of the Cholesky factor

The above structure is determined not by actual
numerical factorization but by simulation of it, or so
called symbolic factorization. The advantage of this
approach is that the data structures are set up once for
all, as the structure of the matrix does not change from
one iteration to another. Obviously, at each iteration
it is necessary to perform numerical factorization since
ADAT is changing along with diagonal matrix 6. The data
structures returned by the symbolic factorization can be
presented in ' a  sparse storage scheme known as the
compressed storage scheme of Sherman, cited in (George,
Liu, 1981). The scheme has a storage array LNZ which
will contain all nonzero entries in the nondiagonal part
of Cholesky factor L colum-wise (or, which are the same
numbers, 1in the LT row-wise), an INTEGER vector NZSUB
which will hold the row subscripts of the nonzeroes, and
an index vector XINZ whose entries are pointers to the
beginning of nonzeroes in each column in LNZ. The
diagonal elements are stored separately in vector DIAG.
In addition, an index vector XNZSUB is also used to hold
pointers to the start of row subscripts in NZSUB for
each column. This is the consequence of the key idea of
the Sherman’s compressed scheme: some of indices from
NZSUB can be used for presenting nonzero patterns of two
or even more columns. For example, it is applicable when
columns 17,18,19,20 from the Figure 2 are considered.

Described data structure is filled et each iteration
after computation of ABAT is performed. The subsequent
Cholesky factorization is performed using the same data
structure. An interesting question is what is the best
way to compute ABAT. At first sight row-oriented data
structure for wmatrix A seems to be more practical and
efficient when computation of ABAT is considered.
However, theoretical arguments (Duff et al. 19893) and
practical testing convinced us that column-wise storage
of A is much more efficient. The point is in avoiding
operations with zero components of A. Perhaps this can
be best explained with our fortran code for computating
ABAT, which follows.

CREFRXEXERKIREREEIRRR RN R XRR AR R KIRXKRR KRR RRRRR XK KRk XK
o] At this moment LNZ and working vector Z must be
C initialised to zero values.
DO 500 ICOL=1,N
ISTART = CP{ICOL)
ISTOP = CP(IOOL+1) - 1
DO 100 I=ISTART,ISTOP
J = IA(I)
Z{J) = XA(I)*THETA(ICOL)

DIAG(J) = DIAG(J) + Z(J)*XA(I)
100 CONTINUE
DO 200 I=ISTART,ISTOP-1
IROW = TA(I)
Z0 = Z(IROW)
L = XLNZ({IROW)
KSUB = XNZSUB(IROW)
JBEGIN = I + 1
DO 150 J=JBEGIN, ISTOP
125 CONTINUE
IF (NZSUB{(KSUB) .EQ. IA(J)) THEN
LNZ(L) = LNZ(L) + Z0xXA(J)
ELSE
L=L+1
KSUB = KSUB + 1
GOTO 125
ENDIF
150 CONTINUE
200 CONTINUE
DO 300 I=ISTART,ISTOP

Z{IA(I)) = 0.0
300 CONTINUE
500 CONTINUE

(02232 222 0303332022228 2223 2338323233323 332333382

Another ordering algorithm which we have implemented is
the Reverse Cuthill-McKee algorithm. Its performance on
our test problem is presented on the following picture,
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Figure 3. AFIRO - Envelope after RCM algorithm

The storage scheme for envelope methods has a main
storage array ENV which will contain all entries (zeroes
as well as nonzercss) between the first nonzero entry in
row of L {or columm of LT) and the diagonal, an index
vector XENV whose entries are pointers to the beginning
of nonzerces in each row of L, and a vector DIAG where
diagonal entries are stored.

Our practical experience with the Reverse Cuthill-McKee
algorithm was quite disappointing. Its corresponding
storage scheme is usually not as economical as those
produced by the minimum degree algorithm. The results
concerning speed of the numerical factorization were
even less competitive. However, it would be interesting
to try other profile methods. Some of them produce more
economical storage scheme than the Reverse Cuthill-McKee
algoritm (Billionet, Breteau, 1989). There are also some
other efficient ordering algorithms, for example the
nested dissection ordering algorithm (George, Liu,
1981). Their quantitative and qualitative comparisons
may be an interesting topics for further research.



Handling of dense columns

The problem is what to do if one or more columns of A
are dense vectors. In such cases computation of ABAT
leads to a very dense matrix and therefore should be
avoided, if it 1is possible. This situation can be
overcome by first dividing columns of A into dense and
sparse submatrices:

A = [As;Ag)] and consequently 6 = [Bs;0a]
and then performing incomplete Cholesky factorization:
LLT = As0Bs

After this is done several approaches are possible. One
among them is to use the incomplete Cholesky factors as
preconditioner for a so called conjugate gradient
algorithm (Adler et al. 1889). Another way is to use a
method which deals with "dense windows" (Andersen et al.
1990). This method solves equation ABATYy = q by
performing the following operations:

Compute V = A4aB4q
Set up
LLT -V Y q
VT I 8 0

Solve for & by dense Cholesky factorization:
[I + VI(LLT)-1V]§ = ~VT(LLT)-!q
Compute y = (LLT)-!{q+V8)

It 1is obvious that typically there are only a few dense
columns in A and therefore computing and storing dense
Cholesky factorization is a trivial task.

Unfortunately, it was pointed out (Lustig et al., 1989)
that removing dense colums can severely exacerbate the
problem of ill~conditioning on badly conditioned
problems. For this reason a search of reliable methods
for handling dense columns remains an open research
problem. One among possible approaches is to exploit
fact that LP problem generally can be formulated in many
different but equivalent ways. For example, it is
possible to split dense column into two or more new
columns which may result in sparser AGAT (Gondzio, 1991).
Just to give impression about that approach, we note
that the following two matrices represent two different
but equivalent formulations:

—

2 3 4 5 6 7 1A1B 2 3 4 5 6 7

1} X X 1] X X

2] X X 2] X X

3] X X 3| X X

4 X X X X ==> 4 X X X X

5 X 5 X

6] X X X 6 X X X
71 1 -1

Figure 4. Column splitting

The first formulation will lead to completely dense
ABAT, while this is not so for the second one.

Computational results

In this section, we report the computational results of
running our implementation of a primal-dual interior
point method on a set of LP test problems available
through NETLIB (Gay, 1985). NETLIB is a system designed
to provide efficient distribution of public domain
software to the scientific community through different

computer networks, We considered in our tests all 53
problems which are currently available to us. However,
3 of them (CZPROB, 80BAU3 and PILOTS) we were not able
to read from the input file due to insufficient
generality of our subroutine for reading LP data written
in MPS format. Therefore we have used only 50 problems
in our tests. Some guantitative data related to their
size and storage consumption (when the minimum degree
algorithm is used) are presented in the following table,

Problem: No: m n: nz{A): nz{AAT): nz{(L): nz(ind):

25FV47 45 820 1876 10705 11894 34590 8925
ADLITTLE 2 56 138 424 384 355 171
AFIRO 1 27 51 102 90 80 46
BANDM 19 305 472 2494 3724 4355 1913
BEACONFD 24 173 295 3408 2842 2727 1783
BORE3D 9 233 333 1446 2424 2860 1331
BRANDY 14 193 303 2202 2734 3236 1306
CAPRI 11 271 480 1933 3112 5569 2628
E226 20 223 472 2768 2823 3416 1390

ETAMACRO 16 400 734 2188 2771 11186 4016
FFFFF800 34 524 1028 6401 10615 18520 6601

GANGES 35 1309 1706 6937 8965 29359 7080
GFRDPNC 23 616 1160 2445 1451 1537 1270
GROW15 32 300 645 5620 3430 5790 5372
GROWZ2 38 440 846 8252 5040 8590 8039
GROWT 18 140 301 2612 1690 2590 2324
ISRAEL 15 174 316 2443 11227 11259 1373
NESM 47 662 2930 13260 4743 21283 8604

PILOT4 29 410 1181 7242 6743 14273 6781
PILOTJA 49 924 2044 13339 14174 50793 12560
PILOTWE 40 722 2930 9537 5547 15422 6109

RECIPE 6 87 178 652 582 584 153
5C205 3 205 317 665 656 986 701
SCAGR25 12 471 671 1725 2393 2510 1521
SCAGR7 4 129 185 465 629 636 417
SCFXM1 17 330 600 2732 3233 4400 1797
SCFXM2 30 660 1200 5469 6486 83877 3673
SCFXM3 36 990 1800 8206 9739 13631 5556
SCORPION 10 388 466 15634 2101 2086 937
SCRS8 26 490 1275 3288 2198 6117 2791
5CSsD1 22 77 760 2388 1133 1315 464
SCSD6 31 147 1350 4316 2099 2398 960
SCSD8 46 397 2750 8584 4280 5482 1682
SCTAP1 13 300 660 1872 1686 2261 1430
SCTAP2 37 1090 2500 7334 6595 13729 6719
SCTAP3 43 1480 3340 9734 8866 17156 8636
SEBA 27 515 1036 4360 51915 53695 6176
SHARE1B 8 117 253 1179 1001 1345 526
SHAREZB 5 96 182 777 871 925 350
SHELL 28 536 1527 3058 1991 3556 2099
SHIPO4L 39 360 2166 6380 4588 4428 1608
SHIP04S 33 360 1506 4400 3272 3252 1198
SHIPOSL 50 712 4363 12882 9224 8948 3224
SHIPO8S 42 712 2467 7194 5440 5464 2160
SHIP12L 51 1042 5533 16276 11715 11183 4742
SHIP12S 44 1042 2869 8284 6387 6289 2063

SIERRA 41 1222 2715 17951 6118 11665 5742
STAIR 25 356 538 3831 6653 15281 6263
STANDATA 21 359 1258 3173 1758 2726 1505
VTPBASE 7 198 329 945 1773 2217 974

Table 1. Quantitative data about LP problems

Numbers in the second column are related to the sequence
of problems ordered by the number of nonzeroes. The last
two columns show numbers of used entries in LNZ and
NZSUB resceptively. On the one hand these data show that
usage of compressed storage scheme is very efficient,
but on the other hand indicate that density of
triangular Cholesky factor can be a serious problem. In
general, storage consumption of our implementation can
be estimated using the following approximate formula:

real numbers (REAL*8)...: 6n + 4m + nz(A+c+u) + nz(L)
integers...cvvraveenseeet n + 4m + nz(A+ctu) + nz(ind)

where nz{A+c+u) is the number of nontrivial elements in
A,c and u together, It must be noted that interior point
methods generally consume more storage than simplex
based methods. Nevertheless, use of the above formula



shows that about 40 out of 50 problems can be solved on
a standard PC with no more than 640 KB memory.

Our computational testing was performed on a VAX8550
computer, The operating system was VMS, version 5.2, and
the VMS FORTRAN compiler, version 5.2, was used with the
default options. The algorithm was used with default
purameters ae=0.9995, ¢=0.1 and €=10-8, Computed optimal
objective value and number of iterations were com]

with those obtained using OBl (Lustig et al. 1989).

Problem: Iter. Computed Relative Opt. value
(Lustig) opt. value d. gap Lustig et al.
25FV47 48 (48) 5501.8459 0.321e-06  5501.8458
ADLITTLE 21 (17) 225494.96 0.447e~-07  225494.96
AFIRO 14 (13) -464.75314 0.249e~08 -464.75314
BANDM 31 (28) -158.62802 0.57%e-07 -158,62802
BEACONFD 25 (21) 33592.486 0.427e-07  33592.486
BORE3D 28 (25) 1373.0804 0.184e~08  1373,0804
BRANDY 34 (27) 1518.5100 0.412e-07 1518,5099
CAPRI 40 (37) 2690.0165 0.443e~05  2690,0127
£226 34 (31) -18.751929 0.371e-07 -18.751929
ETAMACRO 51 (52) -755.71523 0.132e~07 -755.71523
FFFFFB800 66 (59) 555679.61 0.869e-06  555679.56
GANGES 41 (33) -109585.74 0.670e~08 -109585.74
GFRDPNC 30 (26) 6902236.0 0.896e-07 6902236.0
GROW1S 34 (25) -1.0687094e+8 0,105e-07 ~1.0687094e+8
GROW22 32 (30) -1.6083431e+8 0.347e-06 -1.6083434e+8
GROW7 30 (22) -47787812. 0.519e-08 -47787812.
ISRAEL 47 (47) -896644.82 0.593e-~07 -896644.82
NESM 70 (66) 14076037. 0.218e-04 14076036.
PILOT4 58 (56) -2581.1378 0.779e-06 -2581.1405
PILOTJA 67 (67) -~6113.,1349 0.155e~-06 -6113.1365
PILOIWE 74 (71) -2.7201067e+6 0.728e-06 -2.7201075e+6
RECIPE 18 (16) -266.61600 0.867e-08 -266.61600
sC205 22 (16) -52,202061 0.785e-07 -52.202061
SCAGR25 28 (24) -14753433. 0.132e~06 ~14753433.
SCAGR7 22 (22) -2331389.8 0.316e~07 -2331389.8
SCFXM1 38 (31) 18416.759 0.192e~06  18416.759
SCFxM2 38 (37) 36660.263 0.149e-06  36660.262
SCFXM3 41 (39) 54901.255 0.194e-06  54901,255
SCORPION 21 (18) 1878,1250 0.141e~06  1878,1248
SCRS8 51 (50) 904.29696 0.453e~07  904.29695
SCSD1 14 (12) 8.6666667 0.320e~-07 8.6666667
SCSD6 15 (15) 50.500000 0.638e-08  50.500000
SCSD8 14 (15) 905.00001 0.998e-08  905.00000
SCTAP1 22 (22) 1412,2500 0.643e-10  1412.2500
SCTAP2 23 (23) 1724,8071 0.809e-08 1724.8071
SCTAP3 27 (28) 1424.0000 0.150e~08  1424.0000
SEBA 32 (29) 15711.600 0.470e-07 156711.600
SHAREIB 42 (40) -76589.318 0.254e-07 -76589.319
SHARE2B 20 (17) -415.73224 0.778e-07 , -415.73224
SHELL 39 (37) 1.2088253e+9 0.116e~06  1,2088253e+9
SHIPO4L 26 (22) 1793324.5 0.161e-06 1793324.5
SHIPO4S 22 (21) 1798714.7 0.124e-06 1798714.7
SHIPOBL 26 (24) 1909055.2 0.111e-06  1909055.2
SHIPO8S 25 (23) 1920098.2 0.856e~07  1920098.2
SHIPI12L 29 (27) 1470187.9 0.13%e-06  1470187.9
SHIP12S 29 (27) 1489236.1 0.161e-06 1489236.1
SIERRA 30 (28) 15394362, 0.140e-06  15394362.
STAIR 27 {25) -251,26695 0.187e-06 ~251.26695
STANDATA 34 (28) 1257.6995 0.295e~07 1257.6995
VIPBASE 28 (24) 129831.46 0.414e-08  129831.46
Table 2. Computational results

Our testing was therefore successful in a sense that we
have solved all 50 problems with reasonable accuracy.
However, we have experienced numerical troubles (such as
Tloating overflow or underflow) on some problems:

1) To solve problem SCFXM1 we had to use ao=0.95.

2) To solve problems PILOT4, PILOTWE and PILOTJA, which
are known to be very ill-conditioned, we had to use
a0=0.95 again and also to change initial v to value
t=0.001,

Although we have eventually solved above problems after
some experimentation with algorithm parameters, a sound
solution would be to use some kind of scaling. This
means that instead of ABGAT, in some cases it is better
to work with the matrix RAUATR, where R is a suitable
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chosen diagonal matrix.

On the whole, we were not able to obtain such quality of
solution as it was reported for OBl, neither in terms of
number of iterations, nor in terms of obtained relative
duality gap. This is easily explainable by the fact that
many fine details and important options, which are
present in OBl, are not yet implemented in our code.

We have performed also some other types of computational

testing, Jjust to check validity of some assumptions

about interior point methods. For example:

- A good simplex code usually outperforms interior point
methods on small problems.

- Some problems, which are supposed to be difficult for
simplex based methods, can be easily (and much faster)

solved if some interior point method is used. For
example, this is the case with problem 25FV47.
- Computational work within a step of interior point

methods is dominated by sparse Cholesky ftactorization
of ABAT. Its share on bigger problems is 60% to 90% of
overall time.

System design and implementation

Implementations of interior point method were done in a
form of highly portable fortran modules LPENV and LPMDG.
The former uses the Reverse Cuthill-McKee algorithm, the
latter uses the minimum degree algorithm. They are still
in the phase of testing and development, for which we
are using mainly VAX/VMS computer system, although the
same code is running also on the PC. Our ultimate goal
is to create reliable, portable and user-friendly LP
software package based on the interior point algorithms,
which is to be called LPINT. In our opinion such kind of
system must contain portable full screen user interface
and also subroutines for graphical display of different
LP matrices (Alvarado, 1990). It is also very important
to allow user to include his/her subroutines into the
package. Data exchange between a user program and LPINT
may be done with the usage of some type of communication
region (CR). An overall LPINT system architecture can be
ilustrated with the following picture:

)[ user program ]

external files
. | configuration
profile
CR basis
solution
LPINT optimizer {—> jteration log
(LPENV or LPMDG) MPS data
IJvalues data
Interactive problem file
interface: messages
Ly ==zzzzz=z== GRAPHICAL reports
windows Subroutine
pop-up menus Library
pull-down
menus
Figure 5. LPINT system architecture
Conclusions

Generally we can say that the interior point methods are
getting more and more reliable and sophisticuted as
well. Moreover, interior point methods had greatly
influenced algorithmic and experimental work in the
field of linear programming. However, it is not likely
that interior point methods can completely replace the
simplex method in future. In our opinion reasons for
this are mainly in simplex method ability to produce
optimal basic solution. The knowledge of basic status of
variables is very important, especially when postoptimal
analysis or solution of mixed integer programs are
considered. On the other hand, when one wish to solve
big LP problem for the first time, it is advisable to
start with some interior point based package. Tt is a



fast, reliable and robust way to obtain the first
information about LP model.

A primal-dual interior point method can be implemented
in a rather easy and straightforward way. This fact, as

well

as method’s efficiency and mathematical elegance,

can be a big step toward deeper understanding of
interior point methods in general.
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