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Abstract

The fundamental relationship between matrices over the rational numbers and a newly
defined type of graph, a Kirchhoff graph, is established. For a given matrix, a Kirchhoff
graph represents the orthogonal complementarity of the null and row spaces of that matrix.
A number of basic results are proven, and then a relatively complicated Kirchhoff graph
is constructed for a matrix that is the transpose of the stoichiometric matrix for a reaction
network for the production of sodium hydroxide from salt. A Kirchhoff graph for a reaction
network is a circuit diagram for that reaction network. Finally it is conjectured that there
is at least one Kirchhoff graph for any matrix with rational elements, and a process for
constructing an incidence matrix for a Kirchhoff graph from a given matrix is discussed.
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1 Introduction
To understand the relationship between matrices and a newly-defined type of graph, a
Kirchhoff or fundamental graph, consider the simple directed graph in Figure 1 and the
incidence matrix for this digraph:  1 0 1

−1 1 0
0 −1 −1

 (1.1)

In this matrix element aij = 1 if the j-th edge sj exits the i-th vertex νi, aij = −1 if sj
enters νi, and aij = 0 if sj is not incident to νi. This use of 1 and −1 is the opposite
of what many authors use in graph theory, but it matches the forward direction for steps
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in chemical reaction networks and hence is preferred here. The edges of the graph in
Figure 1 and indeed of all the graphs considered here are vectors (have specified length and
direction). Notice that the rows of this incidence matrix are linearly dependent, and that the
vector [1, 1,−1]T is in its null space. But this null-space vector also represents the cycle1

in this digraph since
(1)s1 + (1)s2 + (−1)s3 = 0

is the cycle. Also the cuts for each vertex2 of this graph are (as always) represented by the
rows of the incidence matrix. So the graph in Figure 1 is a representation of the orthogonal-
ity of the null and row spaces of this incidence matrix, and this orthogonality is essentially
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Figure 1: A simple example to illustrate the concept of Kirchhoff graph.

the classic result that the cycle space and the cut space of a (standard) graph are orthogonal
complements (cf. e.g. Diestel(1997) [5, p. 22] or Bollobás(1998) [1, p. 53]).

The relationship between the graph in Figure 1 and its incidence matrix easily extends
to multi-digraphs where the edges are again vectors. As a simple example of this extension,
consider the multi-digraph in Figure 2 and its incidence matrix3:

2 0 1
−2 1 0
0 −1 −1
0 1− 1 0
0 0 1− 1

 =


2 0 1
−2 1 0
0 −1 −1
0 0 0
0 0 0

 (1.2)

Here “1 − 1” means that the same vector enters and exits a given vertex. Again the graph
in Figure 2 represents the orthogonality of the row and null spaces of this incidence matrix
since the cycle is

(1)s1 + (2)s2 + (−2)s3 = 0

and the vertex cuts “lie” in this row space.
What is really interesting is that the relationship can be extended even further: For any

matrix with rational elements, it would seem possible to construct a multi-digraph whose
1For the current discussion, a cycle in a graph is a closed walk, i.e. an alternating sequence of vertices and

edges incident to adjacent vertices {ν1, s1,ν2, ...νn, sn,ν1} beginning and ending with the same vertex, with
no assumption that any vertices or edges are distinct.

2A vertex cut in a graph is the set of edges incident to the vertex (the minimum set of edges that would need
to be removed to isolate the vertex from the rest of the graph).

3The term incidence matrix as used here is a generalization of the standard definition. Here each column
corresponds to an edge vector, even though that vector may appear multiple times in the graph
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Figure 2: A multi-digraph that is a somewhat more complicated Kirchhoff graph. The
double hash marks crossing s1 indicate that two copies of this edge vector connect the first
two vertices.

cycle space corresponds to the null space of the matrix and whose cut space lies in the
row space of the matrix. Indeed the concept of a Kirchhoff graph is a sort of inverse
of the relationship between the cycle space and the cut space for the standard graph in
that one starts with an arbitrary matrix and then attempts to construct the graph. Thus
each Kirchhoff graph for a matrix is a graph-theoretic representation of the fundamental
theorem of linear algebra which states that the null space and the row space of any matrix
are orthogonal complements.4 Because of the relationship between Kirchhoff graphs for
a given matrix and the fundamental spaces for that matrix, a Kirchhoff graph can also be
termed a fundamental graph. Also from the simple examples above, one sees that the exact
length and orientation of the edge vectors are not important. The key issue, rather, is the
multiplicities of any given vector in a cycle and the multiplicities of that vector between
given vertices. The graph in Figure 1 is a Kirchhoff graph for any matrix with the same
row space and null space as the matrix in (1.1), and the graph in Figure 2 is a Kirchhoff
graph for any matrix with the same row space and null space as the matrix in (1.2).

The concept of a Kirchhoff graph comes out of chemical reaction network theory. As
the name implies, when based on a reaction network, a Kirchhoff graph satisfies both the
Kirchhoff current law and the Kirchhoff potential law, and is therefore a circuit diagram
for that reaction network. Their role in this context was discussed by Fehribach(2009) [9],
and also by Fishtik, Datta et al. [11, 12, 13, 10, 14, 25] and in some of their references.
In the latter works, Kirchhoff graphs are referred to as reaction route graphs. The concept
of a Kirchhoff graph thus connects the fundamental theorem of linear algebra with the
fundamental conservation principle in the Kirchhoff laws. There is also the important and
distinct concept of a Kirchhoff or Laplacian matrix and the well-known Kirchhoff theorem
which relates the eigenvalues of the Kirchhoff matrix for a graph to the number of spanning
trees of that graph.

A variety of other graphs have been used to discuss reaction networks. For a general
review, particularly of early uses, see Fehribach(2007) [8]. An important recent sequence
of work on graphs and reaction networks began with the work of Horn(1973) [15, 16],
followed by that of Perelson & Oster(1974) [22], Clarke(1980) [3], Schlosser & Fein-
berg(1994) [23], and the work of Craciun & Feinberg(2006) [4]. The graphs studied in

4Not all authors/texts use this terminology, but it has become more widely used in recent years; cf.
Strang(2003) [24].
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these articles are termed species-complex-linkage (SCL) graphs and species-complex (SC)
graphs, and are useful in studying reaction kinetics and the stability of equilibria, but they
are not connected to the fundamental spaces of any matrix, nor do they give a represen-
tation of the fundamental theorem of linear algebra. Also in general the above articles
specifically discuss graphs; see their references for other related articles that discuss the
reaction networks themselves.

Throughout this work, we consider matrices with rational elements, but then consider
basis vectors for the null and row spaces with integer elements. This is possible since for
any matrix over the rationals, one can multiply each element by the least common multiple
of all the denominators to obtain a matrix with integral elements, but the same null and row
space as the original rational matrix. Also it is important to realize that the correspondences
between the null and row spaces on the one hand and the cycle and cut spaces on the other
are not equivalences. The null and row spaces are vector spaces over the rationals, while the
cycle and cut spaces are modules over the integers (it is easy to interpret integral multiples
of a cycle, but not fractional multiples). For a Kirchhoff graph G of a matrix A, there are
natural embeddings of the cycle space of G into the null space of A, and of the cut space
of G into the row space of A.

The next section contains the formal definition of a Kirchhoff graph and several basic
results; these make rigorous the ideas introduced in the examples above. Since the impetus
for the concept of Kirchhoff graph comes from the theory of chemical reaction networks,
Section 3 presents the development of a Kirchhoff graph for such a network. The final two
sections discuss the construction of Kirchhoff graphs, as well as open problems and future
work.

2 Kirchhoff Graphs—Definition and Basic Results
Consider an m × n matrix over the rationals: A ∈ Mm,n(Q). The main question to be
considered here is “Which graph or graphs best represent this matrix in terms of its fun-
damental spaces and the fundamental theorem of linear algebra?” That is, which graph(s)
best reflect the duality that Row(A) and Null(A) are orthogonal complements:

Row(A) ⊥ Null(A) , RowT(A)⊕Null(A) = Qn

where the superscript T indicates the transpose of all vectors in the space. The proposed
answer to this question is the Kirchhoff graph:

Definition 2.1. For a given matrix A ∈ Mm,n(Q), a geometric cyclic multi-digraph G is
a Kirchhoff graph for A if and only if the following two conditions are satisfied:

1. For uj ∈ Z, u = [u1, u2, ..., un]
T ∈ Null(A) if and only if there is a cycle in G

where, for each j, 1 ≤ j ≤ n, the jth directed edge appears with multiplicity |uj |.
The sign of uj gives the relative direction that the jth edge is crossed.

2. For a given vertex of G, if the jth edge exits with multiplicity vj ∈ Z, then v =
[v1, v2, ..., vn] ∈ Row(A). When vj is negative, the edge enters the vertex (exits in
the negative sense).
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Remark 2.2.

1. While in general A ∈ Mm,n(Q), there is no loss of generality in assuming that
A ∈Mm,n(Z) since one can multiply A by the least common multiple of all the de-
nominators of the elements of A without affecting the null and row spaces. Similarly
one can take the elements of the basis vectors for the null space or row space to be
integers.

2. According to this definition, two matrices with the same null and row spaces have
the same Kirchhoff graph(s).

3. For the present discussion, a digraph G is cyclic if and only if si is an edge vector
of G implies si is an edge vector of some cycle C ⊂ G. The trivial graph with one
vertex and no edges is then vacuously cyclic.

4. These graphs are “geometric” in that edges are vectors. Two edges with the same
length and direction are the same vector and are therefore identified. For discussions
of the more-general topic of geometric graphs, see Pach, et al. [19, 20, 21].

5. The second condition in Definition 2.1 assures that all of the vertex cuts lie in the
row space of the matrix, but not all dimensions of the row space necessarily need to
be represented explicitly as vertex cuts. As is discussed below, if A is nonsingular,
the simplest Kirchhoff graph is a single vertex with no edges.

6. Making the outward direction positive matches the tradition in analysis and is what
is needed for discussing reaction networks; unfortunately it is the opposite what is
generally used in graph theory.

7. In the extreme cases where either Null(A) = {0} or Row(A) = {0}, the Kirchhoff
graph can be defined as a single vertex with no edges. When Null(A) = {0}, this
graph results from the only allowed cycle being a null cycle where all edge vectors
appear an even number of times and cancel as one moves around the cycle; the sim-
plest null cycle is a single vertex. When Row(A) = {0}, then the second condition
in the definition requires that all edges vectors begin and end at the same vertex and
therefore have length zero.

8. As will be discussed in Section 3 below, if the matrix A is the transpose of the
stoichiometric matrix for a reaction network, the first condition in Definition 2.1 is a
form of the Kirchhoff potential (or voltage) law, while the second condition is a form
of the Kirchhoff current law.

The rest of this section is devoted to some basic properties and results associated with
Kirchhoff graphs.

2.1 Some Basic Results

Proposition 2.3. Suppose that A ∈ Mm,n(Q) and Null(A) = Span{[a1, a2, ..., an]T},
aj ∈ Z, with at least one aj 6= 0. Then dim(Null(A)) = 1 and dim(Row(A)) = n − 1,
and a Kirchhoff graph for A can be given as a single cycle with |a1| + |a2| + ... + |an|
vertices.

Proof. Suppose first that Null(A) = Span{[a1, a2, ..., an]T} with aj 6= 0 ∀j. Then
Row(A) = Span{[−a2, a1, 0, ..., 0], [0,−a3, a2, ..., 0], ..., [0, ...,−an, an−1]}, and these
n − 1 vectors give n − 1 cut (vertex balance) conditions for vertices where differing edge
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vectors meet. The final condition is a linear combination these row-space basis vectors:
[−an, 0, 0, ..., a1]. Unless |aj | = 1∀j, there are also null vertices where the same edges
enter and exit.

If aj = 0 for some j, then the unit vector with 1 as the j-th element and all other
elements being 0 lies in Row(A). The edge sj does not appear in the graph, and the
vertex balance conditions are formed as before leaving out this unit vector. (Recall that the
definition of a Kirchhoff graph does not require that all the basis vectors for the row space
be represented in a graph.)

Example 2.4. A simple example is helpful in understanding the above proposition: Sup-
pose that Null(A) = Span{[0, 1,−3, 2]T}. Then

Row(A) = Span{[1, 0, 0, 0], [0, 3, 1, 0], [0, 0, 2, 3]}

and [0,−2, 0, 1] is the additional vector from Row(A) needed for the vertex where the s4
edges join s2. Figure 3 shows a one-cycle Kirchhoff graph for this example.

s
2

s
3

s
3

s
3

s
4

s
4

Figure 3: A simple cycle to illustrate Proposition 2.3. The hash marks give the multiplicity
of each edge indicating how the cut space of the graph corresponds to Row(A).

Remark 2.5. If fewer than three of the elements aj are nonzero, then the Kirchhoff graph
is degenerate, as when the null space or row space is trivial. When only one aj is nonzero,
there is one vertex and an edge of length zero (the edge must begin and end at the same
vertex); when two aj are nonzero, there are two vertices and two overlapping edges, as in
the degenerate case shown in Figure 5 below.

The previous proposition suggests that matrices can have multiple Kirchhoff graphs
since the edges can appear in any order in the cycle. For example, one could split the two
s4 vectors so that the order moving around the cycle is s2, s4,−3s3, and finally the second
s4. In fact, a given matrix may have two or more Kirchhoff graphs which differ even more
than just the order that edges appear in a cycle.

Proposition 2.6. A given matrix A ∈ Mm,n(Q) may have multiple, distinct Kirchhoff
graphs, i.e., a matrix does not necessarily have a unique Kirchhoff graph.

Proof. Consider the matrix

A =

[
1 0 1 1
−1 1 0 1

]
(2.1)
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Here Row(A) is just the span of the two rows of A, while

Null(A) = Span




1
1
−1
0

 ,


0
1
1
−1


 (2.2)

At least5 two Kirchhoff graphs exist for this matrix (and any other matrix with the same
row and null spaces), as seen in Figure 4.
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Figure 4: Two Kirchhoff graphs for A in (2.1). Again the hash marks in Graph 2 indicate
that two copies of that edge are needed in that position.

Now suppose that dim(Row(A)) = 1 and thus dim(Null(A)) = n − 1. This is again
a degenerate case, and a Kirchhoff graph in this case again depends on what one is willing
to accept as a cycle. For our purposes here, we again allow for a degenerate cycle where
the edge vectors double back on themselves.

Proposition 2.7. Suppose that A ∈ Mm,n(Q) and that dim(Row(A)) = 1. Then
dim(Null(A)) = n − 1, and a Kirchhoff graph for A can be given as a degenerate one-
dimensional set of cycles whose edge vectors lie on top of each other.

Proof. Suppose first that Row(A) = Span{[a1, a2, ..., an]} with aj 6= 0. Then Null(A) =
Span{[−a2, a1, 0, ..., 0]T, [0,−a3, a2, ..., 0]T, ..., [0, 0, ...,−an, an−1]

T}, and these n − 1
vectors represent n− 1 degenerate cycles. Each of the vertices in the middle of the cycle is
a null vertex—a vertex where exactly the same edges enter and exit. On the other hand, the
edges entering/leaving the two end vertices satisfies the row space condition, i.e., at each
end |aj | copies of sj enter or exit and the sign of aj determines which end the edge sj
enters and which end it exits. If aj = 0, then sj = 0 since this is the only edge vector that
ends where it begins.

Example 2.8. Reversing the situation in the previous example, suppose that Row(A) =
Span{[0, 1,−3, 2]}. Then Null(A) = Span{[1, 0, 0, 0]T, [0, 3, 1, 0]T, [0, 0, 2, 3]T}. The
first vector in the span ([1, 0, 0, 0]T) implies that s1 = 0. Figure 5 shows a degenerate
Kirchhoff graph for this example.

5Clearly the union of any two Kirchhoff graphs is also a Kirchhoff graph, but the author believes that these are
the only two minimal or prime Kirchhoff graphs for this matrix.
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Figure 5: A degenerate Kirchhoff graph to illustrate Proposition 2.7. The three sets of
vectors must be overlaid to form the Kirchhoff graph so that all edge vector sets begin or
end at the two end vertices νL and νR. The middle vertices are null vertices where copies
of an edge both begin and end.

Another basic case that should be considered is the one mentioned in the Introduction:

Proposition 2.9. Suppose thatA ∈Mm,n(Q) is row equivalent to the incidence matrix for
a standard cyclic digraph (having at most one edge vector between any two vertices, and
no edge vector appearing multiple times in the digraph). Then this digraph is a Kirchhoff
graph for A.

Remark 2.10. A matrix is the incidence matrix for a standard cyclic digraph if and only
if (1) all elements are 0 or ±1, (2) each column has exactly one 1 and one −1, (3) no two
columns have their nonzero elements in the same rows, and (4) each row has at least two
nonzero elements.

Proof. In this case the standard result that the cycle space and the cut space of a graph are
orthogonal complements yields the desired result, since Null(A) and Row(A) are preserved
under row operations (cf. e.g. Diestel [5, p. 22] or Bollobás [1, p. 53]).

One might think that every geometric cyclic multi-digraph is the Kirchhoff graph for
some matrix; this is not the case, as the following counterexample shows. Consider the
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Figure 6: Three similar geometric cyclic multi-digraphs: the leftmost is not the Kirchhoff
graph of any matrix; the center and rightmost are Kirchhoff graphs. Note that the Kirchhoff
graph in the center is not minimal; it is simply the union of two triangular Kirchhoff graphs,
each triangular graph having one copy of each edge vector.

leftmost geometric cyclic multi-digraph in Figure 6. If this graph is a Kirchhoff graph for
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some matrixA, then [1, 1,−1]T must be in Null(A) and [1, 1, 1] must be in Row(A) which
of course is impossible since these vectors are not orthogonal. So the cycle space and the
cut space for this graph are not orthogonal. There are two possible Kirchhoff graphs similar
to this non-Kirchhoff graph, and they are shown in the center and on the right in Figure 6.

Finally the following proposition is an immediate consequence of the definition of
Kirchhoff graph:

Proposition 2.11. If G is a Kirchhoff graph for a matrix A, and if B is the same as A
except that columns j1 and j2 are interchanged, then a Kirchhoff graph for B is obtained
by interchanging the labeling of edge vectors sj1 and sj2 in G.

3 Kirchhoff Graphs and Reaction Networks

Let us now consider connections between Kirchhoff graphs and chemical reaction net-
works. As was mentioned in the Introduction, the study of such reaction networks led to
the definition of a Kirchhoff graph. The reaction network discussed below describes the
production of sodium hydroxide from a brine (salt) solution through electrolysis. There are
a number of processes to accomplish this production (Castner-Kellner, diaphragm, mem-
brane), and a number of variations of these processes [2, 17]. The steps presented here do
not all necessarily occur in all processes, but considering all the steps together allows one
to compare various processes.

The reaction steps for the network to be studied here are as follows:

s1 : NaCl 
 Na+ + Cl−

s2 : 2Cl− 
 Cl2 + 2e−

s3 : 2Na+ + 2e− + 2H2O 
 2NaOH + H2

s4 : H+ + Cl− 
 HCl
s5 : Na+ + OH− 
 NaOH
s6 : 2H+ + 2e− 
 H2

s7 : H2O 
 H+ + OH−

s8 : 2H2O + 2e− 
 H2 + 2OH−

(3.1)

For this network, the charged species are viewed as intermediate, while the uncharged
species are viewed as terminal. The net concentrations of the intermediate species are
constant as the reaction steps proceed, while the terminal species are being produced or
consumed by the reaction network. Based on these steps (3.1) and this definition of inter-
mediate and terminal species, the achievable overall reactions for this reaction network are
determined using basic linear algebra [9]. In this case the two achievable overall reactions
are

b1 : 2NaCl + 2H2O 
 Cl2 + H2 + 2NaOH
b2 : NaCl + H2O 
 HCl + NaOH (3.2)

Combining these two overall reactions (3.2) with the reaction steps (3.1) above, one obtains
the entire reaction network.
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Now consider the stoichiometric matrix for this network:

AT =



0 1 0 1 0 −1 0 0 0 0 0
2 −2 0 0 0 0 0 1 0 0 0
−2 0 0 −2 0 0 −2 0 1 0 2
0 −1 0 0 −1 0 0 0 0 1 0
0 0 −1 −1 0 0 0 0 0 0 1
−2 0 0 0 −2 0 0 0 1 0 0
0 0 1 0 1 0 −1 0 0 0 0
−2 0 2 0 0 0 −2 0 1 0 0
0 0 0 0 0 −2 −2 1 1 0 2
0 0 0 0 0 −1 −1 0 0 1 1


(3.3)

In a stoichiometric matrix, the entries are the stoichiometric coefficients for each chemical
equation with positive entries for products and negative entries for reactants (species that
are consumed in a reaction step). The rows of AT correspond to the eight steps plus the
two overall reactions; the columns correspond to the eleven chemical species, namely, in
order, e−, Cl−, OH−, Na+, H+, NaCl, H2O, Cl2, H2, HCl and NaOH.

To construct a Kirchhoff graph for this reaction network, we must compute both
Null(A) and Row(A) where A is the transpose of the stoichiometric matrix in (3.3); one
finds that Null(A) = Span{u1,u2,u3,u4} where

u1 :=



0
0
−1
0
2
0
0
1
0
0


, u2 :=



0
0
0
0
0
1
2
−1
0
0


, u3 :=



2
1
1
0
0
0
0
0
−1
0


, u4 :=



1
0
0
1
1
0
1
0
0
−1


, (3.4)

and that Row(A) = Span{v1,v2,v3,v4,v5,v6} where

v1 := [ 1 0 −2 0 −1 0 0 0 0 0 ] ,
v2 := [ 0 0 0 0 1 0 −1 −2 0 0 ] ,
v3 := [ 0 0 0 1 0 2 −1 0 0 0 ] ,
v4 := [ 1 0 0 0 0 0 0 0 2 1 ] ,
v5 := [ 0 1 0 0 0 0 0 0 1 0 ] ,
v6 := [ 0 0 0 1 0 0 0 0 0 1 ] .

(3.5)

Null space vectors u3 and u4 give the combinations of reaction steps that yield the two
overall reactions; vectors u1 and u2 give two linearly independent null cycles among these
steps—combinations of steps that exactly cancel. The six vectors in (3.5) give six linearly
independent reaction-rate balance conditions which guarantee the rates for all ten steps in
the reaction network balance so that all of the species concentrations change only through
the overall reactions (see the specific example for rNaCl below). By inspection, the columns
and rows in (3.4) and (3.5) form a basis for Null(A) and Row(A), respectively.
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Figure 7: Kirchhoff graph for NaCl-NaOH network. Hash marks again indicate the multi-
plicity of edge vectors between vertices.

One Kirchhoff graph for this network is shown in Figure 7. This Kirchhoff graph is in
fact the two dimensional projection of vectors which actually lie in an eleven dimensional
phase space for the eleven chemical species in this reaction network. All of the nodes
of Figure 7 lie in Row(A), while the cycles of Figure 7 correspond to vectors that span
Null(A); these are of course the two defining properties that make the graph in Figure 7 a
Kirchhoff graph for this reaction network, (3.1) and (3.2). Indeed one can confirm that the
graph in Figure 7 is Kirchhoff by observing that the cut or incidence vectors of edges for
each vertex are linear combinations of the vectors in (3.5), while the cycles in this graph
are linear combinations of the vectors in (3.4).

To see how the Kirchhoff graph in Figure 7 satisfies the Kirchhoff laws and is thus
a circuit diagram for the NaCl-NaOH reaction network, the concepts of electrochemical
potential and component potential must be introduced. An electrochemical potential µX

can be defined for each species X in a reaction network, and as potentials, they can be
combined linearly. The linear combinations of electrochemical potentials that are based on
the stoichiometry of each reaction step sj and each overall reaction bk are the component
potentials for the reaction network. Up to an arbitrary reference potential, these component
potentials are the potentials for the vertices of the Kirchhoff graph. So for example, if
the potential of vertex ν2 in Figure 7 is set to a reference potential (µν2

= µref ), then
the electrochemical potential for the vertex ν3 at the opposite end of s2 is given by the
stoichiometry of the second reaction step:

µν3
= µref + 2µCl− − µCl2 − 2µe−
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The signs in the linear combination are determined by the direction of the reaction step.
The difference in potential between two vertices connected by a reaction step vector is the
affinity of that reaction step and is a property of that reaction step. Similarly a compo-
nent potential can be determined for each vertex, and because of the stoichiometry, the net
change in potential around any cycle in this Kirchhoff graph must be zero. This is of course
the Kirchhoff potential law. For a more thorough discussion of electrochemical potentials
and component potentials in the context of reaction networks, cf. e.g. Newman(2004) [18]
and Fehribach [7, 6].

To see that the Kirchhoff graph also satisfies the Kirchhoff current law, consider the
reaction steps that are incident on vertex ν1. Because the total amounts of each species
must be conserved when the overall reactions are taken into account, the reaction rates
for each reaction step (rsj

and rbk
) are not independent, but rather must satisfy a set of

rate-balance conditions: the rate of production/consumption of species X must be zero
(rX = 0). So for example, the balance for ν1 represents the rate (or current) balance for
the consumption of NaCl. Since NaCl occurs in reactions s1, b1 and b2, the stoichiometry
again yields the needed rate balance condition:

rNaCl = rs1 + 2rb1
+ rb2

= 0

This is the Kirchhoff current law at vertex ν1 and corresponds precisely to v4 in (3.5).
Similar rate balance conditions for other species or linear combinations of species hold for
each vertex in the Kirchhoff graph. Thus both Kirchhoff laws are satisfied by this Kirchhoff
graph, and the result is a fundamental connection between the fundamental theorem of
linear algebra for the transpose of the stoichiometric matrix for a reaction network and the
conservation principles of the Kirchhoff laws. Since the Kirchhoff laws are satisfied, a
chemical engineer can use a Kirchhoff graph as a circuit diagram for a chemical reaction
network in the same way an electrical engineer can use a traditional circuit diagram for an
electrical network.

4 Existence and Construction of Kirchhoff Graphs

As the NaCl-NaOH network makes clear, it is relatively easy to verify that a given geomet-
ric cyclic multi-digraph is a Kirchhoff graph for a given reaction network or a given matrix.
One needs only to check that the two conditions in the definition for a Kirchhoff graph are
satisfied. The two real issues are those of existence and construction of Kirchhoff graph(s)
for a given reaction network or matrix. The question of existence is open, but the author
offers the following conjecture:

Conjecture 4.1. Every matrix over Q has a Kirchhoff graph.

Proving this conjecture seems to be a difficult and interesting issue. While no proof is
given here, a process for constructing Kirchhoff graphs offers one possible approach for a
constructive proof—showing that the process always converges to a Kirchhoff graph would
establish existence. The following two subsections demonstrate this process for two of the
matrices above; the first is relatively simple, the second, somewhat more complicated. The
final subsection below gives a general summary of the process.
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4.1 Construction of First Kirchhoff Graph in Figure 4

One method to systematically construct a Kirchhoff graph for A in (2.1) is to “weave” the
bases vectors of the null space through the row space to form the incidence matrix for a
graph. To begin, consider two rows of A and the first basis vector for Null(A) in (2.2).
Since the first elements in these rows are 1 and −1, these rows can correspond to the first
two vertices in the graph with edge s1 connecting them. Now since the second element of
the first row is a zero, one should consider the negative of the second row as a new third row
of the developing incidence matrix; this new row corresponds to a new third vertex, with
s2 now connecting the second and third vertices. But there would seem to be a problem in
that the zero in the third position of the third row does not seem to allow an edge to connect
the first and third vertices or to complete the first cycle. This problem can be overcome,
however, by adding the negative of the first row to the original choice for the third row; this
allows the 1 in the third position of the first row and the −1 in the third position of the new
third row to correspond to−s3, completing the cycle corresponding to the first basis vector
for Null(A). The partial three-vertex incidence matrix constructed so far is 1 0 1 1

−1 1 0 1
0 −1 −1 −2

 . (4.1)

Here bold face numbers correspond to the vertices of this first cycle; the non-bold entries
in the fourth column correspond to “loose ends” that must be “tied up” as the incidence
matrix is developed. Only when all of the loose ends are dealt with in some way can one
hope to have the incidence matrix for a complete Kirchhoff graph.

Now to tie up at least some of the loose ends and incorporate the next basis vector from
Null(A), additional rows from Row(A) corresponding to new vertices must be appended to
the developing incidence matrix. Since this next null space basis vector corresponds to the
cycle s2+s3−s4, it would seem to make sense to start with the s2 edge represented in the
second column of the partial incidence matrix (4.1). Moving across this edge in the forward
direction, one needs a forward copy of s3; this can be created by adding the negative of
the third row in (4.1) to that third row (thus the vertex corresponding to the new third row
becomes a null vertex), then appending as a fourth row the negative of the first row. The
resulting (still) partial incidence matrix is now

1 0 1 1
−1 1 0 1
0 1−1 1− 1 0
−1 0 −1 −1

 . (4.2)

The cycle corresponding to the second basis vector from Null(A) is now shown in bold in
(4.2), while the entries corresponding to the remaining two edges of the first basis vector
are now in italics, and the remaining loose ends are in standard typeface.

The partial incidence matrix in (4.2) still has three loose ends and thus is still incom-
plete. But these loose ends themselves now lie in Row(A) and thus can be tied up by
appending one more row which is the negative of the current second row. To make the
final incidence matrix symmetric, this final new row should be the fourth, and the previous
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fourth row should become the fifth. The now complete incidence matrix is
1 0 1 1
−1 1 0 1
0 1−1 1− 1 0
1 −1 0 −1
−1 0 −1 −1

 . (4.3)

Again the typeface indicates which column-element pairs represent vertices which are con-
nected by an edge. All of the vertices satisfy the second Kirchhoff graph condition because
all of the rows of (4.3) are in Row(A), and it is easy to check that all of the cycles repre-
sented in (4.3) are in Null(A). Keeping in mind that an edge vector that appears multiple
times in the graph must always have a fixed length and direction, one can use (4.3) to draw
the left Kirchhoff graph in Figure 4, or an equivalent version of this graph.

Of course there were many free choices in the above construction where one could have
added new vertices and/or edges in alternate ways. One set of alternate choices would lead
to the other graph in Figure 4. Still other choices could lead to a diverging construction of
a larger and larger graph which never satisfies both of the Kirchhoff conditions at all of its
vertices and for all of its cycles. A full algorithm for a construction would need a measure
of how close/far the process is from converging to determine whether to proceed with an
ongoing construction, or to go back to some earlier point in the construction and make a
different choice for rows to add or cycles to weave.

4.2 Construction of Kirchhoff Graph in Figure 7

Now we turn our attention to the construction of a Kirchhoff graph for a somewhat larger
matrix—A defined by (3.3). To begin, consider vectors u1 and u2 from Null(A) in (3.4)
and vectors v1, v2 and v3 from Row(A) in (3.5). These cycles/cuts do not involve either
of the overall reactions b1 or b2 and therefore constitute an important subgraph to the
Kirchhoff graph we seek. Because the third element of u1 is −1, let us start with row
vector v1, and take this as the first row of a partial incidence matrix. Since this is in fact
the only row space vector with a nonzero third entry, the only choice for the second row of
the incidence matrix is the negative of the first row, and the −2 and 2 in the third column
of these first two rows of a partial incidence matrix represent s3 from u1. The next row in
the incidence must be connected to the second row by either s5 or s8 (the other two edge
vectors in u1). Since the only nonzero entries in the second incidence matrix row are in the
first and fifth columns, one should hope to use s5 to connect the second and third rows of
the incidence matrix. This third row cannot be a multiple of the first or second since then
s3 and s5 would need to be multiples of each other. So the only possible choice among
the given row space vectors that s5 can connect to is the negative of row vector v2 in (3.5).
To complete this first cycle and represent the rest of the entries v1, the fourth row on the
incidence matrix can be the negative of the third. Two copies of s8 then connect the 2 and
−2 in the eight columns of the third and fourth rows of the incidence matrix, and finally
an s5 then connects the 1 and −1 in the fifth column of the fourth and first rows, thus
completing the cycle and weaving v1, through several row vectors from (3.5). This weave
is shown in (4.4) where the bold face numbers correspond to vertices that are in the first
cycle. In (4.4), note that each row corresponds to a vertex, and each column corresponds to
an edge vector. Since there are two s5 edge vectors in this cycle, the entries corresponding
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to each vector are realigned to the left or right to indicate which vertices are connected:


1 0 −2 0 −1 0 0 0 0 0
−1 0 2 0 1 0 0 0 0 0
0 0 0 0 −1 0 1 2 0 0
0 0 0 0 1 0 −1 −2 0 0

 . (4.4)

Again, the convention is that edge vectors go from positive entries to negative ones, and
these entries must always have the same absolute value. Also the non-bold elements of
(4.4) represent edge vectors that are currently open (not connected) and must be connected
in the eventual full incidence matrix.

Now we must try to incorporate the second cycle (i.e., the second vector from (3.4))
into the partial incidence matrix. Although there is no guarantee, one can hope that the s8
edge vector from the first cycle is common to this second cycle and therefore start with it.
Because the (3,7) element of (4.4) is 1, it makes sense to try to have s7 leave ν3. This edge
cannot go to ν4 since it would then connect the same vertices as s8. Since one also needs
s6 in this cycle, it makes sense to add v3 to the partial incidence matrix, and thereby to add
a new vertex to the graph. Adding−v3 as the sixth row of the partial incidence matrix, one
connects these rows and their vertices using edge vectors s6 and s7 to complete the second
cycle. The rows of the partial incidence matrix for the first six vertices are now given in
(4.5); the first cycle is now in italics, while the new cycle is in bold:


1 0 −2 0 −1 0 0 0 0 0
−1 0 2 0 1 0 0 0 0 0
0 0 0 0 −1 0 1 2 0 0
0 0 0 0 1 0 −1 −2 0 0
0 0 0 1 0 2 −1 0 0 0
0 0 0 −1 0 −2 1 0 0 0

 . (4.5)

Next one must include u3 and u4, the latter two null space vectors from (3.4), and do
this in such a way so as to tie up the non-boldface, non-italicized entries in (4.5). Consid-
ering u3, one must have two copies of the s1 edge vector and one s3 in this cycle. The first
two vertices (the first two rows of (4.5)) are already connected by two copies of s3 and have
loose ends for s1 in the proper direction, so this would seem a natural place to tie in the
third cycle. To complete this cycle, one must add a vertex corresponding to v4 and add an
s1 edge vector to connect this seventh row of the partial incidence matrix to its second row.
Continuing this cycle, one must add an eighth row to the partial incidence matrix which
is two times v5, and two copies of b1 to connect the vertices that correspond to these sev-
enth and eighth rows. Finally two copies of s2 are needed to complete the cycle, but upon
checking each of the rows in (3.5), one finds that none have the correct requirements for a
final vertex. This means that linear combinations of the rows in (3.5) must be considered.
Taking into account all of the requirements for this final vertex, one finds that the correct
linear combination is v4 − 2v5. This linear combination then becomes the ninth row of
the partial incidence matrix, and the corresponding vertex is connected to ν1 by one copy
of s1, and to ν8 by two copies of s2, all with the proper orientation to complete the third
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cycle. The partial incidence matrix for the first nine vertices is thus

1 0 −2 0 −1 0 0 0 0 0
−1 0 2 0 1 0 0 0 0 0
0 0 0 0 −1 0 1 2 0 0
0 0 0 0 1 0 −1 −2 0 0
0 0 0 1 0 2 −1 0 0 0
0 0 0 −1 0 −2 1 0 0 0
1 0 0 0 0 0 0 0 2 1
0 −2 0 0 0 0 0 0 −2 0

−1 2 0 0 0 0 0 0 0 −1


. (4.6)

Again the new cycle in (4.6) is in bold, while the two previous cycles are now in italics.
In this case, the final cycle corresponding to u4 is easy to include, but it must occur

twice. The partial incidence matrix (4.6) has only four loose connections (nonzero entries
that are neither in italics or bold), and happily these can be connected pairwise by copies of
s4 and b2 through the addition of two new vertices, one corresponding to v6, and the other
corresponding to its negative. The full incidence matrix is then

1 0 −2 0 −1 0 0 0 0 0
−1 0 2 0 1 0 0 0 0 0
0 0 0 0 −1 0 1 2 0 0
0 0 0 0 1 0 −1 −2 0 0
0 0 0 1 0 2 −1 0 0 0
0 0 0 −1 0 −2 1 0 0 0
1 0 0 0 0 0 0 0 2 1
0 −2 0 0 0 0 0 0 −2 0

−1 2 0 0 0 0 0 0 0 −1
0 0 0 −1 0 0 0 0 0 −1
0 0 0 1 0 0 0 0 0 1


. (4.7)

For simplicity, no entries in (4.7) are in bold or italics, but entries corresponding to different
copies of the same edge are still shifted to the right or left side of their column.

Remark 4.2. Again when the edge vectors that satisfy the definition of Kirchhoff graph
are actually drawn, (Definition 2.1), their exact length and direction are not important.
One needs only to ensure that a given edge vector si has the same length and orientation
each time it appears in the graph, and to avoid any degeneracies (accidentally placing two
distinct vertices in the same position). Because a Kirchhoff graph is actually a two dimen-
sional projection of a much higher dimensional geometric structure, the incidence matrix
is sufficient to produce some projection of this structure. For example, if the Kirchhoff
graph comes from a reaction network with N species, then the vector structure lies in the
stoichiometric space QN .

Dividing the process into two parts as was done above, first constructing the part of the
graph that does not involve the overall reactions (or some other group of reaction steps),
then adding on these remaining steps (edges) as the row and null space vectors require,
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is often a very effective way of constructing a full Kirchhoff graph. Of course the above
construction is not guaranteed to produce a Kirchhoff graph, and in particular there are
points in the process where one might choose the wrong row and not be able to neatly
complete a given cycle. One would then have to go back and consider different rows
or linear combinations of rows from (3.5) to form possible rows in a partial incidence
matrix. Fortunately this laborious process should be computerizable, so that a computer
can sort through the possible weaves to produce a Kirchhoff graph, assuming that one
actually exists.

4.3 Summary of Kirchhoff Graph Construction

While the construction process used above contains too many free choices to be called an
algorithm, it does have a certain structure which it is useful to summarize. Given a matrix
A over Q, the process can be summarized in the following general steps:

Step 1: Construct bases with integral elements for both Null(A) and Row(A). Even for
moderately large matrices, this construction can be accomplished effectively with
any of a number of software packages/applications.

Step 2: Refine the bases found in Step 1 to find ones that satisfy minimal total absolute sum
norms: If {xi} is an integral basis for one of these two spaces, with xi = (xij) and
xij ∈ Z, refine this basis until

∑
ij |xij | minimal.

Step 3: Starting with the minimal basis for Row(A), begin to construct a first attempt at an
incidence matrix for the first vector in Null(A). The construction may require linear
combinations of the row vectors. This first attempt should have column pairs which
represent each edge in the cycle corresponding to this first vector in Null(A), but the
order of the edges may or may not match what is eventually needed, and there will in
general be “loose ends,” entries in the matrix which represent one end of an edge for
which there is not yet an entry for the other end. As in the earlier examples, it may
also be necessary to introduce one or more null vertices (a rows of zeros) to form an
incidence matrix consistent with this first null space vector.

Step 4: Next, attempt to include the next vector from Null(A) in the growing incidence ma-
trix, using as many of the loose ends as possible, but also adding new rows from
Row(A) as needed. Note that each additional row in the incidence matrix corre-
sponds to an additional vertex in the developing Kirchhoff graph.

Step 5: If all vectors from Null(A) have been included and all loose ends have been ellim-
inated, then the construction of the incidence matrix and the Kirchhoff graph are
complete. If there remain vectors from Null(A) to be included, but the number of
loose ends is in some sense declining, return to Step 4 to add another null space vec-
tor. If the number of loose ends is in some increasing, then return to Step 3 and/or
Step 4 to change the order in which the edges appear in one or more cycles, or change
the row vectors that determine which edges are incident to each vertex.

5 Conclusion
A Kirchhoff graph for a rational matrix is a graph-theoretic representation of the funda-
mental theorem of linear algebra for that matrix. When the matrix is based on a reaction
network, a Kirchhoff graph is a circuit diagram for that reaction network, and it represents
the connection between the Kirchhoff laws and the fundamental theorem of linear algebra.
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Figure 8: An example of a relatively simple matrix with a fairly intricate Kirchhoff graph.
Edge vector s42 is the vector sum of s2 and s4 which always occur in sequence. The
multiplicity of an edge vector between given vertices is given by hash marks which should
be read as Roman numerals. To reduce crowding, not all edge vectors are labeled.

Certainly the most interesting open question unresolved in this work is the actual exis-
tence of a Kirchhoff graph for any given matrix. While it is not obvious that the conjecture
is true, it is clear that there is no guarantee that a Kirchhoff graph for a relatively simple
matrix will itself be in any sense simple. Consider the matrix

A =

 1 −1 1 0 0
0 1 0 1 0
−4 0 0 1 1

 . (5.1)

Then

Null(A) = Span
{
[ 0, 1, 1,−1, 1]T, [ 1, 0,−1, 0, 4]T

}
(5.2)

and Row(A) is the span of the three rows of A. Therefore a Kirchhoff graph for this
matrix must have two linearly independent cycles, and all of its vertices must lie in the row
space, but this really does not indicate how intricate a Kirchhoff graph for A is. The author
believes that the Kirchhoff graph given in Figure 8 is the simplest one corresponding to
A in (5.1). It is difficult to image that anyone could guess how complicated a Kirchhoff
graph forA needs to be just looking atA, Null(A) and Row(A). Other matrices that would
appear similar to A have much simpler Kirchhoff graphs, but there are also other relatively
simple matrices (or relatively simple reaction networks) where to the author’s knowledge
no Kirchhoff graph has yet been constructed and any possible Kirchhoff graph must be
large and intricate. For example, consider the matrix

A =

[
1003 1829 −17 0
0 59 1411 1003

]
. (5.3)

The rows ofA in (5.3) clearly form a basis for Row(A), and no linear combination of these
two rows will lead to a simpler set of vertex conditions for any possible Kirchhoff graph.
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One also finds that

Null(A) = Span




31
−17

0
1

 ,


1
0
59
−83


 , (5.4)

so any possible Kirchhoff graph for this matrix must be a complicated weave of large
cycles based on these null space vectors. Again considering linear combinations of these
null space vectors would not simplify the graph. The rows of (5.3) and the vectors of (5.4)
satisfy the minimal total absolute sum norm condition discussed in Step 2 above. If the
matrix in (5.3) is the stoichiometric matrix of some reaction network, even if one succeeds
in constructing a Kirchhoff graph, it would seem to be of little use since it would be far too
complicated. But since stoichiometric coefficients are typically 0, ±1 or occasionally ±2,
elements like those in (5.3) are not realistic as stoichiometric coefficients.

From an applications point of view, the key point is that when the Kirchhoff graph for
a reaction network is relatively simple, it can be used to study the reaction network in the
same way that a circuit diagram is used to study an electrical network. One can construct
equivalent circuits, study how temperature, pH or other changes which reaction pathway is
dominant, or compute the rate of an overall reaction from the rates of the individual steps,
to name a few.

In terms of future work, the process for constructing Kirchhoff graphs needs to be
computerized. This will make it possible to find Kirchhoff graphs for matrices and reaction
networks where construction by hand is too time consuming to be practical.

Finally it seems worth noting that there is a certain aesthetic beauty in the intricacy of
the more-complicated Kirchhoff graphs such as the one in Figure 8.
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