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0  INTRODUCTION

Efficient transfer coordination in an intermodal 
transportation network can reduce the dwell times of 
cargos at the transfer terminals where various routes 
interconnect, thereby also increasing the vehicle 
utilisation rates, reducing the need for direct routes 
to connect many origins and destinations, reducing 
storage requirements at transfer terminals, and 
improving total system efficiency. In this paper we 
analyse an intermodal freight system with a single 
transfer hub and develop a model that optimises the 
schedule of vehicles on main routes while assuming 
Poisson arrivals on feeder routes. This model 
determines the departure times on main routes that 
minimize the supplier’s overall system cost, including 
storage, vehicle, in-terminal operation and late 
delivery penalty costs. 

The optimisation problem addressed in this paper 
is related to some classical problems of operations 
research, such as machine scheduling, lot sizing, and 
supply chains. Somewhat related machine scheduling 
problems can be found in [1] to [3]. [4] to [7] address 
the scheduling problem in transfer systems, but under 
different conditions from those considered here. 
For example, [4] and [5] analyse different transfer 
coordination policies and determine the thresholds 
in the intermodal systems with complex multi-
stop routes and lower variance in travel durations, 
both typical for normal operations. In this paper, 
we analyse the case with high variances in travel 
times, which are typical of disrupted operations and 
model the arrivals as a Poisson process. [6] and [7] 
deal with scheduling takeoff times, a problem that 
will be studied in this paper. Both papers optimise 

departures on a single airline route and under different 
demand assumptions from those considered here (i.e. 
[6] assumes uniform demand, whereas [7] adopts 
time dependent demand). This paper is based on the 
same framework as [8] and develops a model which, 
unlike [8], is suitable for intermodal systems with 
numerous arrivals of vehicles on feeder routes. In 
[8], Marković and Schonfeld develop a scheduling 
model which assumes generally distributed vehicle 
roundtrip durations and vehicles operating on multiple 
feeder routes. Low computational efficiency of the 
stochastic program used in [8] enabled only the 
optimisation of schedules in systems with relatively 
few arrivals on feeder routes. In this paper we provide 
a computationally less demanding model by assuming 
exponentially distributed vehicle roundtrips and fixed 
fleet size on feeder routes. These assumptions allow 
us to model the arrivals as a stationary Poisson process 
and derive the expectations needed to formulate a 
scheduling problem that is optimised much more 
efficiently than the stochastic program in [8]. Thus, 
the model developed here can efficiently optimise 
large intermodal systems with numerous arrivals on 
feeder routes.

In this paper we analyse the recovery of a system 
from a major disruption during which large amounts 
of freight have accumulated along the feeder routes, 
which are assumed here to be served by trucks. To 
dissipate the backlogs we let the trucks on feeder 
routes operate nonstop and deliver cargo to the 
terminal where the freight is transferred to main 
routes, which are assumed here to be aircraft routes. 
Thus our transfer terminal represents an airport hub. 
We use pre-determined fleet sizes on feeder routes and 
seek to optimise the number of departures and specific 
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departure schedules on main (air) routes. We consider 
one-directional flow going from origins along the 
feeders’ routes towards destinations at the main routes, 
as might be expected in emergency evacuations or 
recoveries from major disruptions.    

In Section 1 we describe the operations within the 
observed intermodal system and explain the tradeoff 
between different types of costs. The anticipated 
types of costs, which are included in the objective 
function, are formulated in Section 2. Section 3 
explains the constraints, while Section 4 provides the 
model formulation that is further tested on numerical 
examples designed in Section 5. Finally we draw 
conclusions and suggest possible extensions of this 
work.

1  PROBLEM

We consider an intermodal system with relatively 
short truck routes that feed cargo to major airplane 
routes (Fig. 1), which has suffered a major disruption. 
In order to reduce the backlogs accumulated along the 
feeder routes while the system is inoperative, each 
truck operates nonstop and fully loaded between an 
origin and the hub, without pausing between such 
round trips while backlogs persist. The trucks collect 
freight from multiple origins along their feeder routes 
and deliver it at the airport hub. When the takeoff 
on route  is scheduled at time , the airplane is filled 
to capacity with freight, as long as freight backlogs 
persist. If the airplane cannot carry all the freight 
waiting at the airport, the remaining freight has to wait 
for the next flight with available capacity. On the other 
hand, if prior to the takeoff, there is little freight in the 
terminal’s storage connecting to route l, the airplane’s 
capacity is underused and an additional flight may be 
needed later. For simplicity, we assume that all trucks 
are similar and all operate at equal maximum capacity. 
Moreover, we assume that airplanes have similar 
capacities. Finally, we assume that the expected 
amount of cargo waiting for connections can never 
exceed a preset multiple (e.g. 0.8) of the terminal’s 
storage capacity. 

Our objective is to find the optimal (i) number 
of takeoffs on each air route and (ii) corresponding 
schedule, for the given probabilistic durations of 
roundtrips on truck routes. In computing total cost 
we consider the storage cost, in-terminal operation 
cost, penalty for late delivery, and airline service 
cost. A tradeoff exists between the aforementioned 
types of costs. The earlier one schedules the takeoff, 
the lower are the storage and penalty costs associated 
with the freight that successfully connects. However, 

the earlier the takeoff is scheduled, the greater are the 
chances that an airplane’s capacity will be underused 
due to insufficient level of stock. Operating less than 
full airplanes may require running additional flights, 
thereby increasing the airline service cost. 

Fig. 1.  Intermodal freight system

2  COSTS

In this section we introduce the notation used and 
explain how various types of costs are computed. We 
begin with the assumptions that allow us to model the 
arrivals on feeder routes as a Poisson process. We then 
compute the arrival intensities, which are further used 
in the development of storage, in-terminal operation, 
penalty, and airline cost.

Suppose that a single truck operates on a 
relatively short feeder route i whose starting and end 
point is the terminal where the truckload connects to 
the airplane route l. Let’s assume that the duration of 
the truck’s roundtrip is exponentially distributed with 
a mean denoted as 1/ λi

l . Moreover, it is reasonable 
to assume that the observed transportation process has 
the following three properties:
1.	 The probability that a truck will accomplish more 

than one roundtrip within an infinitesimal time 
interval is negligible.

2.	 The duration of a roundtrip does not depend 
on the duration of the previously completed 
roundtrip.

3.	 The probability that a roundtrip will end within 
the time interval t depends on the interval’s 
length, rather than on the time period in which t 
was observed.
Having adopted the above assumptions, we can 

model the truck arrivals as a Poisson process with 
the mean arrival rate λi

l  according to [9] and [10]. If 
we assign to feeder route i more than one truck, the 
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arrival rate on route i is given in Eq. (1), in which ni 
represents the number of trucks assigned to feeder 
route i.

	 r ni i i
l= λ .	 (1)

Furthermore, if we define with Il the set of feeder 
routes connecting to main route l, the arrival rate of 
truckloads connecting to route l is:

	 λ λl
i i
l

i I

n
l

=
∈
∑ . 	 (2)

If we denote the jth  takeoff time on route l as t j
l , 

the expected number of truckloads connecting to route 
l and arriving to terminal between two consecutive 
flights is: 
	 E TR t t t tl

j
l

j
l l

j
l

j
l[ ( )] ( ).− = −− −1 1λ 	 (3)

2.1  Storage Cost

To compute the storage cost, we need to keep track of 
the inventory level. Moreover, since multiple feeder 
routes connect to multiple main routes, we need to 
know the stock for each main route. Therefore we 
define the variable S j

l , which defines the inventory 
level of freight connecting to main route l, after the jth 
takeoff. We also define Aj

l  representing the amount 
of freight transported in the jth flight on route l. 
Considering the inflow and outflow of freight into the 
terminal storage, Eq. (4) has to hold for all flights on 
all routes. Please note that S tl l

0 0,  and Al0  all equal 0. 
Moreover, we assume that all the freight arriving at 
the terminal before the last scheduled takeoff has to be 
flown. Thus we also set S

n
l
l  to equal 0.

	 S t t A S j J l Lj
l l

j
l

j
l

j
l

j
l l

− −+ − = + ∀ ∈ ∀ ∈1 1λ ( ) . 	 (4)

Moreover, since we do not know in advance if 
there will be enough freight in the terminal’s storage to 
fill the airplane, we specify in Eq. (5) that the airplane 
will be loaded with all the connecting freight found 
in terminal that can fit within the airplane’s capacity, 
denoted Ac.

	 A A S t tj
l

c j
l l

j
l

j
l= + − }{ − −max , ( ) .1 1λ 	 (5)

Based on the previous derivations, in Eq. (6) we 
can compute the storage cost between two consecutive 
flights for freight connecting to route l. Please note 
that CDT denotes the storage cost per truckload-hour.

	 1
2 1 1( )( ) .S S t t Cj

l
j
l

j
l

j
l

DT− −+ − 	 (6)

We can further compute the total storage cost for 
freight connecting to route l by summing Eq. (6) over 
all the flights in Jl.

	 SC S S t t Cl
j
l

j
l

j
l

j
l

DT
j J l

= + −− −
∈
∑12 1 1( )( ) . 	 (7)

Finally, we can compute the total storage cost by 
summing Eq. (7) over the set L, which denotes main 
routes.

	 SC S S t t Cj
l

j
l

j
l

j
l

DT
j Jl L l

= + −− −
∈∈
∑∑12 1 1( )( ) . 	 (8)

2.2  In-terminal Operation Cost

Here we analyse the loading and unloading cost due 
to the cargo transfer from trucks to airplanes. We 
assume that the in-terminal operation cost is lower 
when a truck arrives slightly before the takeoff and 
takes its truckload directly to the airplane, instead of 
unloading it in the terminal storage. Therefore, let’s 
define parameter d so that a truck arriving within the 
( , )t d tj
l

j
l−  interval takes its truckload directly to the 

airplane. Now we can compute the expected number 
of truckloads that will be loaded directly on the 
airplane:

	 b dd
l

j Jl L l

=
∈∈
∑∑ λ . 	 (9)

Here we assume that d is smaller than the interval 
between two consecutive flights on the same route. 
Thus, the expected number of truckloads being loaded 
directly onto the airplane depends on the number of 
takeoffs rather than on their schedule. 

If we denote Ctd to be the unit in-terminal 
operation cost for the case of direct transfer to the 
airplane, Cti to be the unit cost for the case of indirect 
transfer to the airplane, and G to be the total number 
of truckloads, then the total in-terminal operation cost 
is:

	 IC b C G b Cd td d ti= + −( ) . 	 (10)

2.3  Penalty Cost

A penalty is imposed for late delivery, reflecting the 
lower value of freight that is delivered later. Here 
we assume that the time of the takeoff is relevant 
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for computing the penalty cost. We define a penalty 
function fp as the piecewise linear function of takeoff 
time starting from the beginning of the observed time 
period (the moment the system starts recovering from 
a disruption), as shown in Fig. 2.

Fig. 2.  Penalty function fp

Now we can compute the penalty cost by 
summing the penalty for all the flights on all the air 
routes, as shown in Eq. (11). Please note that we 
again use Aj

l  as defined in Eq. (5), which denotes 
the number of truckloads carried on the jth takeoff on 
route l.

	 PC A f tj
l
p j

l

j Jl L l

=
∈∈
∑∑ ( ). 	 (11)

2.4  Airline Cost

The last type of cost considered is the airline service 
cost, which covers the use of both airplanes and 
airport facilities. It is proportional to the number 
of the airplane roundtrips (takeoffs). We denote the 
number of takeoffs on route l as nl. Moreover, we 
denote as CA

l  the cost of an airplane roundtrip on 
route l. Finally, the total airline service cost is:

	 AC n Cl A
l

l L
=

∈
∑ . 	 (12)

3  CONSTRAINTS

In this section we analyse several constraints needed 
in order for the mathematical model to fairly represent 
the real world. The first constraint that we consider is 
the time window constraint for takeoffs. Utilisation 
of airport facilities is often restricted to certain time 
slots. Thus each takeoff must be scheduled within a 
prespecified time interval. Therefore, the time window 
constraint is:

	 a t b j J l Lj
l

j
l

j
l l< < ∀ ∈ ∀ ∈ . 	 (13)

Since limited airport capacity might require a 
minimum time interval between any two flights, we 
introduce the following constraint.

	 t t t j J l Lj
l

j
l l− ≥ ∀ ∈ ∀ ∈−1 min . 	 (14)

The last constraint we consider is the terminal’s 
storage capacity. We assume that the expected amount 
of freight at the terminal should never exceed the 
multiple ms of the storage capacity Sc. Since we 
previously explained how the expected inventory 
level for freight connecting to route l at takeoff time  
t j
l is computed, we must now ensure that the total 

expected inventory never exceeds the storage capacity 
msSc. Thus we define parameter pt and control the total 
inventory level at time pt. In order to do so we first 
need to find the inventory level of freight connecting 
to route l at time pt. We introduce sl which denotes the 
takeoff time on route l prior to pt and define kl which 
equals the takeoff index j.

	 s t t pl
j
l

j
l

t= ≤{ }max : , 	 (15)

	 k index j t p t pl
j
l

t j
l

t= ≤ ∧ ≥+: ( ).1 	 (16)

Now we can compute the expected inventory of 
freight connecting to route l as:

	 S p s
k
l l

t
l

l + −λ ( ). 	 (17)

Finally we can define the storage capacity 
constraint by summing Eq. (17) over the set of main 
routes and setting the sum below the storage capacity 
Sc multiplied by ms (a safety factor). Please note that 
the constraint in Eq. (18) should hold for any real 
value of time parameter pt. 

	 S p s S m p R
k
l l

t
l

l L
c s tl + − ≤ ∀ ∈

∈
∑ λ ( ) . 	 (18)

4  MODEL

In the previous section, the types of costs and 
constraints considered were explained. Now we can 
present the mathematical formulation of the model 
in Eqs. (19) to (30), which represents a nonlinear 
program. Here we provide a compact formulation of 
the objective function using Eqs. (8), and (10) to (12). 
In Eqs. (20) to (30), we provide the constraints and 
other previously derived relationships.

	 MinTC SC IC PC AC= + + + , 	 (19)

subject to:

     S t t A S j J l Lj
l l

j
l

j
l

j
l

j
l l

− −+ − = + ∀ ∈ ∀ ∈1 1λ ( ) , 	 (20)
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j
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l

j
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− −+ − = + ∀ ∈ ∀ ∈1 1λ ( ) , 	 (20)

	 a t b j J l Lj
l

j
l

j
l l< < ∀ ∈ ∀ ∈ , 	 (21)

	 t t t j J l Lj
l

j
l l− ≥ ∀ ∈ ∀ ∈−1 min , 	 (22)
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l

l L
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∈
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l
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j
l

j
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	 s t t pl
j
l

j
l

t= ≤{ }max : , 	 (25)

	 k index j t p t pl
j
l

t j
l

t= ≤ ∧ ≥+: ( ),1 	 (26)

	 b dd
l

j Jl L l

=
∈∈
∑∑ λ , 	 (27)

	 S t A Sl l l
n
l
l0 0 0 0= = = = , 	 (28)

	 t R j J l Lj
l l∈ ∀ ∈ ∀ ∈+ , 	 (29)

	 n Z l Ll ∈ ∀ ∈+ . 	 (30)

The total cost function is a function of the number 
of takeoffs and takeoff times, as explained in the 
problem statement. The nonlinear model shown in 
Eqs. (19) to (30) optimises the schedule while taking 
into consideration the capacity of airplanes, airport 
and terminal storage, and time windows for takeoffs. 
In the following section we apply a genetic algorithm 
(GA) to optimise the schedule in two case studies. 
Interested readers may refer to [11] and [12] for more 
information about GA’s.

5  APPLICATION

In order to test our model, we designed two case 
studies. In the first case, the schedule in an intermodal 
system with a single main route is optimised. In 
this simplified optimisation problem we examine 
the anticipated tradeoff in types of costs through 
sensitivity analysis. In the second case we analyse a 
complex system with multiple main routes and time 
windows. 

5.1  Case Study with a Single Air Route

We analyse a system with ten feeder truck routes 
connecting to a single airplane main route. In Table 1 
we provide the average roundtrip time on each feeder 
route, as well as the number of vehicles operating on 

each truck route. We seek to optimise the number of 
takeoffs and corresponding schedule assuming that 
all the freight arriving at the terminal before the last 
takeoff has to be transported. For this case, we assume 
the input data from Table 2. The optimisation results 
for 4 to 9 takeoffs are presented in Table 3. We present 
an optimised schedule for six different numbers of 
takeoffs and corresponding costs in dollars. Please 
note that within “other costs” we consider storage, 
penalty, loading and unloading costs. Moreover, by 
marginal savings in other costs we consider savings 
in storage, penalty, loading and unloading costs due to 
introducing an additional roundtrip flight.

Table 1. Vehicle size and roundtrip duration

Feeder 
route

Average roundtrip 
duration 1 / λ1 [hr]

Number of trucks 
in feeder route

1 1.23 3
2 1.97 4
3 1.73 1
4 2.10 2
5 2.16 1
6 1.94 2
7 2.18 5
8 1.86 2
9 1.68 1

10 2.00 3

The results presented in Table 3 show that the 
minimum total cost occurs in the case with five 
takeoffs. Therefore we can conclude that at the cost 
of 7000 $/flight, one more flight than necessary to 
satisfy the demand should be introduced. Moreover, 
we can observe that storage, penalty and loading/
unloading cost decrease with the increase in the 
number of takeoffs. This outcome was expected and it 
confirmed the tradeoff between types of cost that was 
explained in the problem statement. We also note that 
the marginal savings in storage, penalty and loading/
unloading cost decreases with the number of aircraft 
roundtrips, which is another anticipated outcome. 

Based on the values for storage, penalty and 
loading/unloading cost we can explore how different 
flight costs affect the optimised number of takeoffs 
and thereby the schedule. In Fig. 3, we plot total cost 
for the case of 4, 5, 6, 7, 8 and 9 roundtrips vs. aircraft 
roundtrip cost. Fig. 3 also shows five threshold values 
for airplane roundtrip cost which determine the 
optimal number of takeoffs. Those values are 1357, 
1871, 2771, 4277 and 7509 dollars, respectively. 
Clearly, for a relatively low cost per plane roundtrip, 
the total system cost is optimised by scheduling more 
takeoffs than necessary to satisfy the demand. As the 
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Table 2.  Input data

Airplane capacity Ac 50 truckloads In-terminal cost Ctd 25 $/truckload

Flight cost CA
1 7,000 $/roundtrip In-terminal cost cti 45 $/truckload

Terminal storage capacity Sc 87.5 truckloads Time of the last takeoff tn
1 15 hrs

Storage multiple (safety factor) ms 0.8 Minimum headway tmin 0.8 hrs

Storage cost CDT 4 $/truckload-hr Arrival rate based on the data from Table 1 λ1 12.95 veh/hr

Amount of time d 15 min Penalty function fp (t)
0 if t≤2
125t-250 if 2<t≤10
1000 if t>10

Table 3.  Optimised Schedules and Costs

Number 
of 

flights

Airline 
cost 

[103$]

Other 
cost 

[103$]

Marginal 
savings 
in other 

cost

Total 
cost  

[103$]

Optimised takeoff times  
for the given number of flights [hr]

Fl.1 Fl.2 Fl.3 Fl.4 Fl.5 Fl.6 Fl.7 Fl.8 Fl.9

4 28 151 NA 179 3.6 7.3 11.1 15.0 NA NA NA NA NA
5 35 143 8 178 2.5 5.0 7.5 11.3 15.0 NA NA NA NA
6 42 139 4 181 2.0 4.0 6.0 8.0 11.5 15.0 NA NA NA
7 49 136 3 185 2.0 3.6 5.2 6.8 8.4 11.7 15.0 NA NA
8 56 134 2 190 2.0 3.3 4.7 6.0 7.4 8.7 11.9 15.0 NA
9 63 133 1 196 2.0 3.2 4.3 5.5 6.6 7.8 8.9 12.0 15.0

Fig. 3.  Sensitivity Analysis

airline cost increases, the optimal number of takeoffs 
decreases until it eventually drops to the minimum 
number needed to satisfy the demand.

5.2  Case Study with Multiple Airline Routes

Here we consider the case of multiple feeder routes 
connecting to three air routes of similar lengths. Since 
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we consider the case with three dozen feeder routes, 
we do not present the expected roundtrip duration and 
the number of vehicles on each route, as we did in the 
previous example. Instead, we provide the computed 
arrival rates of vehicles connecting to three air routes. 
Moreover, we assume the same values from the 
previous numerical example, but this time we include 
time windows into our analysis. The aforementioned 
data are provided in Table 4. Please note again that, 
for each route, all the freight arriving at the terminal 
by the time of the last flight has to be loaded into 
airplanes and transported to its destination.

Table 4.  Input data

Flight cost on all routes CA
1 9,000 $

Arrival rate on route 1 λ1 8.0 veh/hr
Arrival rate on route 2 λ2 8.5 veh/hr
Arrival rate on route 3 λ3 7.5 veh/hr

Time windows for Route 1
( , )a b1
1

1
1 (1.5,2.5)

( , )a b2
1

2
1 (3.1,4.5)

Time windows for Route 2

( , )a b1
2

1
2 (1.2,3.6)

( , )a b2
2

2
2 (4.5,6.4)

( , )a b3
2

3
2 (7.0,10.0)

Time windows for Route 3
( , )a b1
3

1
3 (2.3,4.2)

( , )a b2
3

2
3 (5.2,6.5)

Minimum time interval between 
any two flights tmin 0.5 hours

Last takeoff on Route 1 tn
1 15 hours

Last takeoff on Route 2 tn
2 14 hours

Last takeoff on Route 3 tn
3 16 hours

Table 5. Optimised cost

Case
Number of Flights on Route l Total Cost

[103$]l=1 l=2 l=3
1 3 3 3 NA
2 4 3 3 NA
3 3 4 3 NA
4 3 3 4 NA
5 4 4 4 378
6 4 4 5 387
7 4 5 4 386
8 5 4 4 384
9 5 5 4 390

10 5 4 5 389
11 4 5 5 394
12 5 5 5 396

The optimization results for the case study with 
three main routes are given in Table 5. NA stands for 

the cases when no feasible solution is found either due 
to overloading of the terminal storage or due to not 
delivering all the freight that has arrived by the time 
of the last takeoff on each air route. 

From Table 5 we conclude that at 9000 $/flight, 
the total cost is optimised by scheduling 4 flights 
on each main route (case 5), which also equals the 
minimum number of flights needed to provide a 
feasible solution. Finally, in Table 6 we provide the 
optimised schedule for all 8 feasible combinations of 
flights from Table 5. 

Table 6.  Optimised schedule

Case Route Optimised Schedule on Route

5

1 2.19 | 4.50 | 8.75 | 15.00

2 2.69 | 5.51 | 8.12 | 14.00

3 3.19 | 6.26 | 9.33 | 16.00

6

1 2.19 | 4.50 | 8.75 | 15.00

2 2.69 | 5.40 | 8.12 | 14.00

3 3.19 | 6.22 | 9.25 | 12.63 | 16.00

7

1 2.17 | 4.50 | 8.75 | 15.00

2 2.69 | 5.12 | 7.57 | 10.79 | 14.00

3 3.17 | 6.25 | 9.33 | 16.00

8

1 2.19 | 4.50 | 7.27 | 11.13 | 15.00

2 2.69 | 5.40 | 8.12 | 14.00

3 3.19 | 6.26 | 9.33 | 16.00

9

1 2.15 | 4.43 | 6.71 | 8.73   | 15.00

2 2.65 | 5.04 | 7.44 | 9.83   | 14.00

3 3.15 | 6.21 | 9.33 | 16.00

10

1 2.19 | 4.37 | 6.56 | 8.75   | 15.00

2 2.69 | 5.34 | 8.12 | 14.00

3 3.19 | 5.84 | 7.62 | 11.81 | 16.00

11

1 2.18 | 4.50 | 8.75 | 15.00

2 2.68 | 5.04 | 7.40 | 9.75   | 14.00

3 3.18 | 6.21 | 9.25 | 12.63 | 16.00

12

1 2.01 | 4.27 | 6.51 | 8.75   | 15.00

2 2.51 | 4.77 | 7.01 | 8.25   | 14.00

3 3.01 | 5.37 | 7.72 | 11.86 | 16.00

6  CONCLUSIONS

This paper studied the recovery of a single-terminal 
intermodal freight system from a disruption. A model 
was developed that optimises the schedule of vehicles 
on main routes assuming Poisson arrivals on feeder 
routes. A genetic algorithm was used to optimise 
several case studies and sensitivity analysis confirmed 
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the anticipated tradeoff in types of cost. Moreover, 
the model developed in this paper was applied to case 
studies including feeder truck routes and main airline 
routes. However, this model could be applied to other 
combinations of transportation modes without many 
modifications, as long as the arrivals do not deviate 
much from Poisson distributions. 

Since the arrivals were modeled as a Poisson 
process, the computational efficiency of the model 
is fairly insensitive to the number of feeder routes or 
operating vehicles. Therefore the proposed scheduling 
model can be successfully applied to optimise 
the performance of busy intermodal systems with 
numerous vehicle arrivals. 

Several assumptions built into this paper may be 
relaxed in the future in order to make the model more 
general. The current model could be improved to 
provide good robust solutions even for the case when 
some of the three properties of the Poisson process 
listed in Section 1 do not hold. Moreover, the current 
analysis assumes fixed numbers of vehicles operating 
on the feeder routes. Future work may consider 
variable fleet sizes on feeder routes and thereby 
nonstationary arrival intensities.

7  NOTATION

The following symbols are used in this paper:
λi
l
	 parameter of the exponentially distributed 

duration of truck roundtrip on feeder route i 
connecting to main route l

i	 index of feeder route
l	 set of feeder routes
Il	 set of feeder routes connecting to main route l; 

clearly I Il ∈
j	 index of takeoffs on route l
Jl	 set of takeoffs on route l
l	 index of main route
kl	 index of the takeoff on route l prior to time pt
L	 set of main routes
tj	 time of the jth takeoff on route l 
nl	 number of takeoffs on main route l 
ni	 number of trucks on feeder route i 
ri	 arrival rate on feeder route i 
Ac	 capacity of an airplane
Sc	 capacity of terminal’s storage
ms	 storage multiple
CDT	in-terminal dwell cost
CA
l 	 flight cost on route l

SCl	 storage cost associated with freight connecting to 
main route l

SC	 storage cost

d	 the amount of time such that a truck arriving 
within the (tj – d,tj) interval will take its truckload 
directly to the airplane

S j
l 	 inventory level of freight connecting to main 

route l after the jth takeoff
bd	 the expected number of truckloads that will be 

transferred directly from trucks to airplanes
Cti	 cost of in-terminal  operations
Ctd	 cost of in-terminal  operations when the truck 

takes its truckload directly to the airplane
IC	 overall cost for in-terminal  operations
fp ( t j

l )	 penalty function per truckload loaded into 
airplane at moment t j

l  
PC	 overall penalty cost
AC	 overall airline cost
TC	 total cost
tmin	 minimum time interval between any two takeoffs
a j
l 	 the lower bound for the jth takeoff on route l
bj
l 	 the upper bound for the jth takeoff on route l
Aj
l 	 amount of freight carried in the jth takeoff on 

route l
pt	 control parameter used to check the inventory 

level
R+	 set of nonnegative real numbers
Z+	 set of nonnegative integers
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