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0  INTRODUCTION

This paper presents an experimental validation of 
the nonlinear behaviour of cantilever beams. It is 
postulated that the nonlinear behaviour of a cantilever 
beam is due to large deformations. In order to validate 
this assumption, it is necessary to derive the nonlinear 
equations and compare them numerically with 
experimental results. From the experimental data, it is 
found that the dynamic response is highly dominated 
by the structural damping. This parameter diminishes 
the amplitude and, as a consequence, the nonlinear 
effect.

The subject has been studied for many years, 
and several researchers have proposed dynamic 
models and experimental procedures. Nevertheless, 
unanswered questions remain, and the validation has 
not been fulfilled. The bending of beams has been 
analysed especially for elastic problems. Halilovič and 
Štok [1] presented a deflection analysis of rectangular 
closed section beams with no hardening; assuming 
elastoplastic behavior, they derived analytical solutions 
considering small strains and small displacements. 
Yu et al. [2] modelled a naturally curved and twisted 
rectangular beam; their analysis considered a closed 
thin-walled section. The model was based on the 
principle of minimum potential energy. Although 
their model can be extended to solid cross-section 
beams, it is based on the small displacement theory. 
Regarding a large deformation model, Gerstmayr and 
Irschik [3] represented the large deformation using the 

elastic line approach. They used a cubic polynomial to 
represent the displacement; a similar approach is also 
applied in the present work. They used the weak form 
of the equation of motion using Lagrange’s equation 
and D’Alembert’s principle. Their results showed the 
vertical displacement of a beam as a function of time, 
and they never presented frequency or phase diagram 
analysis. Ashour and Nayfeh [4] presented a research 
on the nonlinear behaviour of an absorber to control 
vibrations in plates. The absorber is based on the 
saturation phenomenon associated with a quadratic 
nonlinear term and internal resonances. They identified 
two main problems regarding the application of 
auto-parametric absorbers: coupling two mechanical 
systems together and maintaining two-to-one internal 
resonances. For solving this problem, they applied a 
piezoelectric ceramic actuator; in their solution, they 
applied their method to a cantilever beam. Their beam 
model is only linear; the nonlinearity is in the actuator 
function. They found the solution applying Nayfeh’s 
perturbation method. 

The conventional method for the experimental 
study of nonlinear mechanical systems is parameter 
sweeping, in which the parameter is ramped 
smoothly up and down while the system response 
is recorded. This method is frequently used to 
demonstrate the bifurcation condition. Using a path-
following algorithm, Bureau et al. [5] developed 
a stabilizing control scheme for an experimental 
bifurcation analysis. In order to produce bifurcation, 
they proposed the application of a nonlinear 
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electromagnetic actuator and a proportional-derivative 
(PD) controller. With this method, it was possible to 
trace the bifurcation path. In their results, the phase 
diagram lacked representation of the two attracting 
poles of a typical bifurcation solution. Malatkar and 
Nayfeh [6] described a procedure for determining the 
nonlinear parameters of a cantilever beam excited 
at the supported end. The bifurcation plot was 
constructed using the sweep technique. They found 
that the large deformation component was neglected 
in their experiments. Therefore, it is confirmed that 
damping suppresses the large deformation effect. 
Paak et al. [7] analysed the nonlinear vibrations of a 
cantilevered cylinder. In their model, they considered 
the large displacement terms in the strain formula and 
they approximated the displacements as sinusoidal 
series. Their results are similar to the phase diagrams 
presented in the following sections. In a similar work, 
Stoykov and Ribeiro [8] presented a nonlinear forced 
vibration model for beams. They found similar phase 
diagrams with high amplitudes in the excitation force. 
Li and Zhang [9] used the B-spline function to derive a 
dynamic model of a tapered beam. They approximated 
the deformation variables as a cubic B-spline function. 
Several researchers described different approaches 
for determining the nonlinear term. Stangl et al. 
[10] modelled a cantilevered pipe as a Euler elastic; 
they considered large deflections without order-of-
magnitude assumptions. Equations of motion were 
obtained using an extended version of the Lagrange 
equations in combination with a Ritz method. Wang 
and Liew [11] modelled elastodynamic problems 
using an improved complex variable moving least-
square approximation and the Galerkin procedure. 
Furthermore, they enhanced the computing efficiency 
using an improved complex variable element-free 
method. Wang et al. [12] proposed a nonlinear model 
for a Euler-Bernoulli microscale beam. The governing 
equations are developed from the Hamilton principle 
following the modified couple stress theory and 
the Von Kármán geometrically nonlinear theory. 
The governing equations are reduced the partial 
differential governing equations to a nonlinear two-
point boundary value problem in a spatial variable 
by means of the Kantorovich time-averaging method. 
Zhang et al. [13] modelled a deploying-and-retreating 
wing as a cantilever laminated composite beam. They 
derived the governing equations of motions from the 
Hamilton’s principle and Reddy’s third-order theory 
and von Karman type equations of large deformation. 
By means of the Galerkin method, the dimensionless 
partial differential equation is transformed into a set 
of the ordinary differential equations. Noor et al. [14] 

developed simple mixed finite element models for 
curved thin-walled beams, the models include the 
effects of flexural-torsional coupling, the additional 
effects of transverse shear deformation, and rotary 
inertia. In general, it is assumed that large deflections 
are related to a nonlinear stiffness, whereas the 
damping term is always linear. Machado and Cortínez 
[15] developed a nonlinear model for beams. Their 
formulation only considered the elastic deformation, 
and they neglected the dynamic effects. Ramezani [16] 
derived a beam model based on the strain gradient 
elasticity theory. He assumed large deformations but 
proposed a dynamic equation with a stiffness function 
with a cubic coefficient. Kang and Li [17] presented a 
model of a cantilever beam with nonlinearities. They 
approximated the large deformations as a function of 
the stress-strain exponent. Fotouhi [18] presented a 
dynamic analysis of flexible beams. He considered 
only the free vibration case. He solved the problem 
using ANSYS. The results are presented in a way that 
is difficult to compare them with further analysis. 
He showed that large deformation analysis can be 
conducted with commercial software. Shad et al. 
[19] used a similar approach to the analysis of rotor 
dynamics using higher order deformations in bending. 
Although their model considers a simple supported 
beam, their analysis is similar to the analysis of 
cantilever beams. They showed bifurcations in the 
frequency spectrum.

The purpose of this paper is to demonstrate that 
the nonlinear behaviour of a cantilever beam is due 
to the large deformation term. Although the structural 
damping of the beam is a dominant parameter that 
diminishes large deformations, it is possible to reveal 
the nonlinear behaviour with the sweep method. Thus, 
in order to deploy the nonlinear terms, it is necessary 
to produce large deformations. Do so, in practice, is 
difficult to achieve. 

The remainder of this paper is organized as 
follows. Section 1 presents the derivation of a 
simplified model using the beam deflection. Section 
2 provides the analysis techniques used for data 
processing. Section 3 presents the numerical solution 
of the model for free vibration and forced vibration 
tests. Section 4 presents the experimental validation of 
the model. Finally, Section 5 gives the conclusions.

1  DYNAMIC MODEL

According to Gonzalez and Jauregui [20], nonlinear 
dynamic behaviour can be modelled using the beam 
deflection model. Since the purpose of this work is 
to demonstrate the effect of large deformations, the 
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following development is based on the simplest beam 
model. As described by them, it is assumed that the 
material is homogeneous, orthotropic, and linear. The 
strain is found from the deformation of the beam, 
assuming that the perpendicular displacement is 
greater than the beam thickness, as shown in Fig. 1.

Fig. 1.  Geometry of the cantilever beam

If the beam is represented as a one-dimensional 
element, and the strain only occurs along the x 
direction; then, the strain field as a function of the 
bending curvature can be expressed as:
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where z is the local coordinate perpendicular to the 
beam dimension, x is the coordinate along the beam 
dimension and w is the displacement along z. The sub-
index indicates partial derivatives with respect to x. 
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Using the Galerkin method, the displacement 
field can be approximated by a polynomial of the 
form:

 w a xi
i

i
N= −
=∑ 1
1 ,  (4)

where N is the number of degrees of freedom in the 
element and the coefficients ai are determined from 
the generalized coordinates. If the beam is represented 

as a one-dimension element with two nodes, j = 1, 2,   
then, there are four generalized coordinates:

 u ={ }w w
1 1 2 2
, , , ,θ θ  (5)

where u is the generalized coordinates vector, wj is 
the displacement and θj are the bending angle of the 
corresponding nodes. Therefore, for this particular 
case, the polynomial in Eq. (4) has four coefficients. 

The equation of motion is found using Lagrange’s 
equation. The potential energy V is determined from 
the strain energy function. Since it is a unidimensional 
element, it can be simplified as:

 V dv
v
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2
σε .  (6)

Considering only elements with linear material 
properties, the constitutive equation can be expressed 
as:
 σ ε= E .  (7)

Substituting Eq. (7) into Eq. (6), the potential 
energy is given as follow:
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In contrast, the kinetic energy is determined as:
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Considering that the beam is homogeneous, 
and the cross section is constant, Eqs. (8) and (9) 
are included into Lagrange’s equation. Then, four 
equations are derived, one for each generalized 
coordinate:
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where mi is the associated mass to each node. 
Considering that the beam element is fixed at one end 
w1 = 0, θ1 = 0 and redefining the other two generalized 
coordinates as w2 = 0, θ2 = 0, Eq. (10) is reduced to two 
nonlinear equations:
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where F(t) is the excitation force and the polynomial 
terms included in the stiffness are related to the 
restoring force generated by the potential energy. 
Therefore, the restoring force is modelled as a fifth-
degree polynomial. In order to demonstrate the 
effectiveness of the model, experimental tests are also 
carried out. Then, both numerical and experimental 
data are analysed using different techniques.

2  ANALYSIS TECHNIQUES

Three different techniques are used to analyse 
numerical and experimental data: the frequency 
spectrum, the time-frequency map, and the phase 
diagram or phase plane [21]. 

The frequency spectrum is one of the most 
commonly used techniques for vibration analysis and 
machine-health monitoring. It is generated via the 
fast Fourier transform, and it provided the frequency 
content of the time-domain signal, showing up the 
harmonics frequency content. However, by itself, the 
frequency spectrum does not enable the analysis of the 
system evolution over time. The time-frequency map 
(spectrogram) is constructed using the continuous 
wavelet transform (CWT). The definition of the CWT 
is out of the scope of this work; readers are referred 
to [22]. The advantage of the CWT is that it can 
decompose a signal into a set of vectors within a set 
of frequencies. This set of frequencies displays the 
behaviour of each frequency as a function of time. If 
the system is linear, each frequency remains constant 
at any time; otherwise, it varies and, in the time-
frequency map, it shows changes in the amplitude. 
The phase diagram, or phase plane, represents 
the instantaneous energy space. The vertical axis 
corresponds to the kinetic energy and the horizontal 
axis to the potential energy. If the dynamic response 
is stable, the trajectory described by the energy space 
will be a smooth function. Otherwise, the trajectory 
will display jumps or changes in direction, as well as 
many internal loops. Combining both analyses, phase 
diagram and time-frequency map, it is possible to 

determine the nonlinear behaviour of the cantilever 
beam.

3  NUMERICAL SIMULATION

Eqs. (11) and (12) were solved numerically. The 
solution was found using the Runge-Kutta method, 
assuming a sinusoidal excitation. Table 1 lists the 
beam parameters used in the model. 

Table 1.  Dimensions and properties of the modelling beam

Property Value

Width, W 0.025 [m]

Thickness, T 0.003 [m]

Length, L 1. 000 [m]

Young’s module, E 210 [GPa]

Natural frequency, ωn 1.460 [Hz]

Mass, m 2.750 [kg]

Damping coefficient, ξ 0.269 [kg/s]

The numerical solution of the model was done 
considering different conditions: free vibration and 
forced vibration. The results and discussion of the 
numerical analysis are presented in the following 
subsections.

3.1  Results of the Free Vibration Response

First, the model was solved considering a small 
displacement in the free end of the beam as an initial 
condition. The results are shown in Fig. 2. The 
frequency spectrum shows two peaks at 1.49 Hz and 
5.49 Hz, which correspond to the first and second 
vibration modes, respectively. The linear behaviour 
of the beam can be seen more clearly in the time-
frequency map, since the amplitude of each frequency 
remains constant at any time. Moreover, there are not 
vertical stripes connecting the frequencies content in 
the map. The phase diagram (Fig. 2) shows closed 
loops forming an annular shape; it verifies the stable 
response of the beam when a small displacement 
value is given.

In a second case, the model was solved given a 
large displacement on the free end of the beam as an 
initial condition. The results are shown in Fig. 3. The 
frequency spectrum displays two main peaks at 1.3 
Hz and 5.4 Hz. The first mode is shifted due to the 
nonlinear behavior, and both modes show sidebands 
at 2.4 Hz and 6.7 Hz, respectively. The nonlinear 
behaviour is evident in the time-frequency map as 
the amplitudes vary over time. The phase diagram 
shows closed loops with two attracting poles, and they 



Strojniški vestnik - Journal of Mechanical Engineering 62(2016)3, 187-196

191Nonlinear Response of Cantilever Beams Due to Large Geometric Deformations: Experimental Validation 

remain at the same location at any time. Comparing 
this diagram with the linear solution, the nonlinear 
effect is noted.

3.2  Results of the Forced Vibration Response

A forced vibration solution was made at the nonlinear 
frequencies found in the experimental test for free 
vibration analysis. Fig. 4 shows the results when the 
system is excited at 2.9 Hz. The frequency spectrum 
shows a dominant peak at 2 Hz and a second and third 
ones at 5.9 Hz and 4.2 Hz, respectively. In the time-
frequency map, it can be seen that the frequencies 
have a nonlinear behaviour since they vary in time. 

The phase diagram shows two attracting poles in the 
loops, also indicating the nonlinear behaviour.

Fig. 5 shows the results for the forced vibration 
at 18.1 Hz. The frequency spectrum shows two main 
peaks: the dominant peak at the excitation frequency 
and the second one at 1.8 Hz. The time-frequency map 
shows nonlinear behaviour at the excitation frequency. 
The phase diagram shows closed loops and unstable 
behaviour of the system.

Fig. 6 presents the results for the forced vibration 
at 51 Hz. The frequency spectrum shows the dominant 
peak at the excitation frequency and the second peak 
at 1.4 Hz. The time-frequency map displays the 
nonlinear behaviour near the 1.4 Hz frequency, since 

Fig. 2.  Numerical response, free vibration response for small 
deformations; a) frequency spectrum; b) time-frequency map;  

c) phase diagram*

Fig. 3.  Numerical response, free vibration response at large 
deformations; a) frequency spectrum; b) time-frequency map;  

c) phase diagram*

*For interpretation of the references to color in figures 2 to 6 and 10 to 14, the reader is referred to the web version of the article.
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it diminishes in time. The phase diagram shows closed 
loops, which are shifted along the x-axis.

In order to validate the simplified model, a set of 
tests was conducted.

4  EXPERIMENTAL VALIDATION

Two kinds of tests were done on a slender cantilever 
beam: free vibration and forced vibration. The 
experimental test rig is shown in Fig. 7. Essentially, 
it consists of a cantilever beam (1), whose parameters 
are listed in Table 1; an ADX-321J accelerometer 
(2) placed at the free end of the beam to measure 
the vibration on the axis z (see Fig. 1) (because the 
accelerometer mass is relatively small compared to 
the beam mass, it has not influence on the dynamic 
response of the beam); a data acquisition system NI 

USB-6366 (3); and a PC (4). The data acquisition 
was executed from a graphical interface developed 
in LabView®. During the forced vibration test, the 
cantilever beam was excited by the TIRA® TV 51144-
IN inertial shaker (5). For this purpose, a frequency 
sweep of a sine vibration profile was generated by the 
Tektronix AFG 3102 signal generator (6); and then, 
the signal was amplified by the TIRA® BAA 1000 
power amplifier (7) and then it was sent to the shaker 
to generate a sine oscillation. A schematic diagram of 
the test rig is shown in Fig. 8.

In order to produce the phase diagram, the 
displacement and velocity data were calculated 
numerically from the acceleration measurements. 

Fig. 4.  Numerical response at 2.9 Hz excitation frequency;  
a) frequency spectrum; b) time-frequency map; c) phase diagram* Fig. 5.  Numerical response at 18.1 Hz excitation frequency;  

a) frequency spectrum; b) time-frequency map; c) phase diagram*
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Fig. 6.  Numerical response at 51 Hz excitation frequency;  
a) frequency spectrum; b) time-frequency map; c) phase diagram*

Fig. 7.  Experimental test rig

Fig. 8.  Schematic diagram of the experimental test rig

Fig. 9.  Time response of the system for the free vibration test

4.1  Results of the Free Vibration Response

The time response for the free vibration test is shown 
in Fig. 9. In this figure, it is possible to see the 
nonlinear effect from the higher frequencies in the 
signal when the oscillations amplitude is higher; as the 
oscillations amplitude decreases, the system response 
is more linear. 

The analysis of the free vibration response is 
presented in Fig. 10. The frequency spectrum shows 
a dominant peak at 2.9 Hz, a second one around 18.01 
Hz, and a third one at 50.96 Hz. The time-frequency 
map shows the damping effect, but the nonlinear 
behaviour is clearly identified around the 18.01 Hz 
and 50.96 Hz frequencies, as the frequency amplitude 
varies over time. The phase diagram shows a shape 
with a squared form at the outsides, caused by the 
nonlinear behaviour. The attracting poles diminished 
because the numerical integration filters the high 
nonlinear frequencies. Although the overall shape 
keeps a polygonal shape, the time-frequency map 
reveals the nonlinear behaviour at the second and third 
frequencies. 

4.2  Results of the Frequency Sweep Response

A frequency sweep ramped up and down was applied 
to the beam while the vibration response was recorded. 
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The response amplitude is presented in Fig. 11a. It is 
clear that there is a jump phenomenon associated with 
the nonlinearities of the beam at the 18.1 Hz and 51 
Hz frequencies. In the case of the excitation frequency 
at 51 Hz, the beam shows relatively larger amplitudes. 
Therefore, the nonlinear behaviour is more noticeable 
at this frequency. The evolution in time of the system 
response is presented in Fig. 11b. It can be seen 
that the 51 Hz frequency is also excited when low 
frequencies are applied to the system.

Two forced vibration tests were conducted at 
the critical frequencies found in the jump diagram. 
The first measurement was recorded at an excitation 
frequency of 18.1 Hz. The analysis results are 
presented in Fig. 12. The frequency spectrum shows 
a dominant peak at the excitation frequency and a 
second small peak at 54 Hz. In the time-frequency 

Fig. 10.  Experimental results, free vibration; a) time response;  
b) frequency spectrum; c) time-frequency map; d) phase diagram*

Fig. 11.  Experimental frequency response obtained by frequency 
sweep; a) response amplitude; b) time-frequency map*

Fig. 12.  Experimental results, Forced vibration at 18.1 Hz;  
a) frequency spectrum; b) time-frequency map; c) phase diagram*
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map, it can be seen that the excitation frequency affects 
the system response. Measurements are dominated 
by the excitation frequency shadowing the beam 
response except at the other frequencies. Therefore, 

large amplitudes produced by the excitation frequency 
excites the nonlinear behaviour of the beam around 
54 Hz. Fig. 13 shows a close view of the nonlinear 
behaviour around 54 Hz. The phase diagram shows 
closed loops with a balloon shape.

The second forced test was recorded at 51 Hz. 
The analysis results at this condition are shown in Fig. 
14. The frequency spectrum shows only a dominant 
peak around the excitation frequency, whereas the 
time-frequency map exhibits the nonlinear behavior at 
the excitation frequency. The phase diagram exhibits 
shifting closed loops. It is important to notice that 
the beam has a characteristic behaviour due to the 
large deformation effect. This behaviour occurs at a 
particular frequency that cannot be determined with 
the linear theory.

Large deformations are a source of nonlinearity 
in cantilever beams. The effect produces a dynamic 
response that occurs at a different frequency. This 
frequency has no relation to those associated with the 
linear modes of vibration. Additionally, the nonlinear 
effect due to large deformations only occurs when the 
displacement is significantly large. In such cases, it 
is necessary to displace the tip of beam several times 
its thickness or excite the beam with a frequency near 
the nonlinear frequency. However, in engineering 
problems these conditions are not easily found.

5  CONCLUSIONS

Cantilever beams can have a nonlinear dynamic 
response due to large deformations. This behaviour 
has been identified experimentally, and it can 
be simulated assuming the dynamic model has 
polynomial terms. The numerical solution shows a 
typical harmonic distortion pattern due to polynomial 
terms in the model. When the excitation frequency 
is below the natural frequency, the phase diagram 
has two attracting poles. Experimental results show 
two particular frequencies around 18 Hz and 51 Hz, 
which are related to the nonlinear terms of the beam. 
Thus, these frequencies are associated with the large 
deformations effect. In the case of the excitation 
frequency at 51 Hz, the beam shows highly different 
amplitudes. From the frequency sweep test, it is 
found that the amplitudes were higher in the ramp-up 
process than in the ramp down procedure. Therefore, 
the nonlinear behaviour is more noticeable at this 
frequency. Nevertheless, these frequencies can only 
be found numerically or experimentally. The nonlinear 
behaviour due to large deformations occurs only at 
certain frequencies or when the beam is deflected a 
large amount. Otherwise, the large deformation effects 

Fig. 13.  Nonlinear response of the 54 Hz frequency when the 
beam is excited at 18.1 Hz*

Fig. 14.  Experimental results, forced vibration at 51 Hz;  
a) frequency spectrum; b) time-frequency map; c) phase diagram*
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can be neglected. The simplified approximation 
presented in this work is sufficient for determining 
those frequencies that are due to the nonlinear terms. 
Any other method can produce these values only 
if the relative displacement between two points is 
significantly large.
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