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Abstract

This article aims to provide exponential lower bounds on the number of non-isomorphic
k-gonal face-2-colourable embeddings (sometimes called, with abuse of notation, biem-
beddings) of the complete multipartite graph into orientable surfaces.

For this purpose, we use the concept, introduced by Archdeacon in 2015, of Heffer
array and its relations with graph embeddings. In particular we show that, under certain
hypotheses, from a single Heffter array, we can obtain an exponential number of distinct
graph embeddings. Exploiting this idea starting from the arrays constructed by Cavenagh,
Donovan and Yazıcı in 2020, we obtain that, for infinitely many values of k and v, there

are at least k
k
2 +o(k) ·2v·

H(1/4)

(2k)2
+o(v) non-isomorphic k-gonal face-2-colourable embeddings

of Kv , where H(·) is the binary entropy. Moreover about the embeddings of K v
t×t, for

t ∈ {1, 2, k}, we provide a construction of 2v·
H(1/4)
2k(k−1)

+o(v,k) non-isomorphic k-gonal face-
2-colourable embeddings whenever k is odd and v belongs to a wide infinite family of
values.
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1 Introduction
The purpose of this paper is to provide exponential lower bounds on the number of non-
isomorphic embeddings of the complete multipartite graph into orientable surfaces that
induce faces of a given length k (i.e. we investigate the so-called k-gonal embeddings). We
first recall some basic definitions, see [28].
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Definition 1.1. Given a graph Γ and a surface Σ, an embedding of Γ in Σ is a continuous
injective mapping ψ : Γ→ Σ, where Γ is viewed with the usual topology as 1-dimensional
simplicial complex.

The connected components of Σ \ψ(Γ) are said ψ-faces. Also, with abuse of notation,
we say that a closed walk F of Γ is a face (induced by the embedding ψ) if ψ(F ) is the
boundary of a ψ-face. Then, if each ψ-face is homeomorphic to an open disc, the embed-
ding ψ is called cellular. If the boundary of a face is homeomorphic to a circumference (i.e.
is a simple cycle), such a face is said to be simple and if all the faces are simple we say that
the embedding is circular (or simple, following the notation of [32]). If moreover, the em-
bedding is face-2-colourable sometimes, with abuse of notation, we call it a biembedding.
In this context, we say that two embeddings ψ : Γ → Σ and ψ′ : Γ′ → Σ′ are isomorphic
if and only if there is a graph isomorphism σ : Γ → Γ′ such that σ(F ) is a ψ′-face if and
only if F is a ψ-face.

The existence problem of cellular embeddings of a graph Γ into (orientable) surfaces
has been widely studied in the case of triangular embeddings, which are the ones whose
faces are triangular. This kind of embeddings has been investigated, at first, because their
construction was a major step in proving the Map Color Theorem [33]. Among the papers
related to this existence problem, we recall [3, 15, 16, 18, 19, 23, 26] where the natural
question of the rate growth of the number of non-isomorphic triangular embeddings of
complete graphs has been considered too. Moreover, due to the Euler formula, if there
exists a triangular embedding ψ from Γ to some surface Σ, ψ minimizes the genus of Σ.
For this reason, such kinds of embeddings are called genus embeddings. Two naturally
related questions are the investigation of the rate of the number of non-isomorphic genus
embeddings (see [21, 25]) and that of the k-gonal embeddings (see [17, 22, 24]).

In this paper, we consider the latter question and we study the rate growth of the number
of non-isomorphic k-gonal embeddings of the complete multipartite graph with m parts of
size t, denoted by Km×t. Here, we provide exponential lower bounds on this number for
several infinite classes of parameters k,m and t. Furthermore, our embeddings also realize
additional properties: the faces they induce are (in several cases) simple and it is possible
to color them within two colors, i.e. these embeddings are 2-face colorable. Finally, in the
cases where k is 3, we find new classes of genus embeddings.

The approach we use in this article is purely combinatorial and requires the notion of
combinatorial embedding, see [14, 34]. Here, we denote by D(Γ) the set of all the oriented
edges of the graph Γ and, given a vertex x of Γ, by N(Γ, x) the neighborhood of x in Γ.

Definition 1.2. Let Γ be a connected multigraph. A combinatorial embedding of Γ (into
an orientable surface) is a pair Π = (Γ, ρ) where ρ : D(Γ)→ D(Γ) satisfies the following
properties:

• for any y ∈ N(Γ, x), there exists y′ ∈ N(Γ, x) such that ρ(x, y) = (x, y′);

• we define ρx as the permutation of N(Γ, x) such that, given y ∈ N(Γ, x), ρ(x, y) =
(x, ρx(y)). Then the permutation ρx is a cycle of order |N(Γ, x)|.

It is well known that a combinatorial embedding of Γ is equivalent to a cellular embed-
ding of Γ in an orientable surface, see [1, 20, 29]. This observation leads us to study this
kind of embedding isomorphisms purely combinatorially. From the combinatorial point of
view, the faces are determined using the face-trace algorithm, see [1]. It is easy to see that
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the faces are closed walks (that is sequences of consecutive vertices and edges, denoted
by v1, v2, . . . , vk), the length of a closed walk is the number of its edges. If the faces are
simple then vi 6= vj for any i 6= j, so the closed walks are indeed cycles with k distinct
vertices and k edges. In this context, it is possible to rephrase the definition of embedding
isomorphism as done by Korzhik and Voss in [24], see page 61.

Definition 1.3. Let Π := (Γ, ρ) and Π′ := (Γ′, ρ′) be two combinatorial embeddings of,
respectively, Γ and Γ′. We say that Π is isomorphic to Π′ if there exists a graph isomor-
phism σ : Γ→ Γ′ such that, for any (x, y) ∈ D(Γ), we have either

σ ◦ ρ(x, y) = ρ′ ◦ σ(x, y) (1.1)

or
σ ◦ ρ(x, y) = (ρ′)−1 ◦ σ(x, y). (1.2)

We also say, with abuse of notation, that σ is an embedding isomorphism between Π and Π′.
Moreover, if Equation (1.1) holds, σ is said to be an orientation preserving isomorphism
while, if (1.2) holds, σ is said to be an orientation reversing isomorphism.

This combinatorial approach has been developed in the literature into two kinds of di-
rections. The first one is the use of recursive constructions and has been applied to construct
triangular embeddings of complete graphs from triangular embeddings of complete graphs
of a lesser order. Within this method, it was first shown that there are at least 2av

2−o(v2)

non-isomorphic face-2-colourable triangular embeddings of the complete graph Kv for
several congruence classes modulo 36, 60 and 84 (see [3, 16]) and then that, for an infinite
(but rather sparse) family of values of v, there are at least vbv

2−o(v2) non-isomorphic face-
2-colourable triangular embeddings ofKv (see [15, 18, 19]). Another consequence of these
kinds of recursive constructions is the existence of 2cv

2−o(v2) non-isomorphic Hamiltonian
embeddings of Kv for infinitely many values of v (see [17]).

The second approach uses the current graph technique. Within this method, it was pro-
vided the first exponential lower bound (of type 2dv) on the number of non-isomorphic
face-2-colourable triangular embeddings of Kv for infinitely many values of v. Then, sim-
ilar results have been also given in the cases of genus and quadrangular embeddings (see
[22, 23, 24, 25]). The approach used in this paper belongs to this second family. The main
tool we will use is the concept of Heffter array, introduced by Archdeacon in [1] to provide
constructions of current graphs. Section 2 of this paper will be dedicated to introducing
this kind of array, to reviewing the literature on this topic and to further investigating the
connection with face-2-colourable embeddings. Then, in Section 3, we will deal with the
following problem: given a family of embeddings each of which admits Zv as a regu-
lar automorphism group (i.e. embeddings that are Zv-regular), how many of its elements
can be isomorphic? Proposition 3.4 will provide an upper bound on this number. In the
last two sections, we will consider some of the known constructions of Heffter arrays and
we will show that, under certain hypotheses, from each of such arrays we can obtain a
family of Zv-regular embeddings that is exponentially big. These families, together with
Proposition 3.4, will allow us to achieve the existence of an exponential number of non-
isomorphic k-gonal face-2-colourable embeddings of Kv and K v

t×t in several situations.
In particular, in Section 4 we will obtain that, when k is congruent to 3 modulo 4 and v
belongs to an infinite family of values, there are k

k
2 +o(k) · 2g(k)v+o(v) non-isomorphic k-

gonal face-2-colourable embeddings of Kv where g(k) is a rational function of k. Finally,
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in Section 5, we will consider the embeddings of K v
t×t. In this case, for t ∈ {1, 2, k},

we will provide a construction of 2h(k)v+o(v,k) non-isomorphic k-gonal face-2-colourable
embeddings whenever k is odd, v belongs to a wide infinite family of values and where
h(k) is a rational function of k.

2 Heffter arrays and face-2-colourable embeddings
In this section we introduce the classical concept of Heffter array and its generalizations,
showing how these notions are useful tools for getting face-2-colourable embeddings of the
complete multipartite graph into an orientable surface.

Anm×n partially filled array on a given set Ω is anm×nmatrix with elements in Ω in
which some cells can be empty. Archdeacon [1] introduced a class of partially filled arrays,
called Heffter arrays, and showed how it is related to several other mathematical concepts
such as difference families, graph decompositions, current graphs and face-2-colourable
embeddings. These arrays have been then generalized by Costa and al. in [9] as follows.

Definition 2.1. Let v = 2nk+ t be a positive integer, where t divides 2nk, and let J be the
subgroup of Zv of order t. A Heffter array over Zv relative to J , denoted by Ht(m,n;h, k),
is an m× n partially filled array with elements in Zv such that:

(1) each row contains h filled cells and each column contains k filled cells;

(2) for every x ∈ Zv \ J , either x or −x appears in the array;

(3) the elements in every row and in every column sum to 0 (in Zv).

Example 2.2. Below we have an H9(11; 9), say A. Hence the elements of A belongs to
Z207 and we avoid the elements of the subgroup of Z207 of order 9.

10 55 101 −90 13 −22 −78 67 −56
−37 −9 45 102 −91 21 −20 −79 68

58 −47 −8 54 103 −81 19 −18 −80
−70 59 −38 −7 44 93 −82 17 −16

−71 60 −48 −6 53 94 −83 15 −14
−33 −72 61 −39 11 49 95 −84 12

24 −25 −73 62 −43 4 40 96 −85
26 −27 −74 63 −52 3 50 97 −86

−87 28 −29 −75 64 −42 2 41 98
99 −88 30 −31 −76 65 −51 −5 57
36 100 −89 32 −34 −77 66 −35 1

If t = 1, namely, if J is the trivial subgroup of Z2nk+1, we find the classical Heffter
arrays defined by Archdeacon, which are simply denoted by H(m,n;h, k). It is immediate
that if there exists an Ht(m,n;h, k) then mh = nk, 3 ≤ h ≤ n and 3 ≤ k ≤ m.
Also, m = n implies k = h and an Ht(n, n; k, k) is simply denoted by Ht(n; k). The
most important result about the existence problem for Heffter arrays is the following, see
[2, 5, 13].

Theorem 2.3. An H(n; k) exists for every n ≥ k ≥ 3.
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For other existence results on classical and generalised Heffter arrays see [32].
In [10] we introduced the further generalization of a λ-fold Heffter array A over Zv

relative to J , denoted by λHt(m,n;h, k) replacing property (2) of Definition 2.1 with the
following one:

(2’) the multiset {±x | x ∈ A} contains λ times each element of Zv \ J , where v =
2nk
λ + t.

Note that if λ > 1 then h and k can also be equal to 2.

Example 2.4. The following array A is a 2H(2, 5; 5, 2), in fact the multiset {±x | x ∈ A}
contains 2 times each element of Z11 \ {0}.

1 −2 3 4 5
−1 2 −3 −4 −5

Anyway here we consider the case λ = 1, since several of our constructions cannot be
naturally extended to the case λ > 1, as it will be underlined in Remark 2.17.

The focus of this paper is not the existence problem of Heffter arrays, but their con-
nection with face-2-colourable embeddings. We point out that there are several papers
in which Heffter arrays have been investigated to obtain face-2-colourable embeddings see
[1, 4, 6, 8, 10, 11, 12]. To present such a connection, now we have to introduce the concepts
of simple and compatible orderings.

In the following, given two integers a ≤ b, by [a, b] we denote the interval containing
the integers {a, a + 1, . . . , b}. If a > b, then [a, b] is empty. The rows and the columns of
an m × n array A are denoted by R1, . . . , Rm and by C1, . . . , Cn, respectively. Also we
denote by E(A), E(Ri), E(Cj) the list of the elements of the filled cells of A, of the i-th
row and of the j-th column, respectively. Given a finite subset T of an abelian group G and
an ordering ω = (t1, t2, . . . , tk) of the elements of T , for any i ∈ [1, k] let si =

∑i
j=1 tj

be the i-th partial sum of T . The ordering ω is said to be simple if sa 6= sb for all 1 ≤
a < b ≤ k. We point out that if sk = 0 an ordering ω is simple if no proper subsequence
of consecutive elements of ω sums to 0. Note also that, if ω is a simple ordering, then
ω−1 = (tk, tk−1, . . . , t1) is simple too. Given an m × n partially filled array A, by ωRi
and ωCj we denote an ordering of E(Ri) and E(Cj), respectively. If for any i ∈ [1,m] and
for any j ∈ [1, n], the orderings ωRi and ωCj are simple, we define by ωr = ωR1

◦· · ·◦ωRm
the simple ordering for the rows and by ωc = ωC1

◦ · · · ◦ ωCn the simple ordering for the
columns. Also, by natural ordering of a row (column) of A one means the ordering from
left to right (from top to bottom).

Definition 2.5. A partially filled array A on an abelian group G is said to be

• simple if there exists a simple ordering for each row and each column of A;

• globally simple if the natural ordering of each row and each column of A is simple.

It is easy to see that if k ≤ 5 then every Ht(n; k) is globally simple. By a direct check
one can see that the array of Example 2.2 is globally simple.

Definition 2.6. Given a relative Heffter array A, the orderings ωr and ωc are said to be
compatible if ωc ◦ ωr is a cycle of order |E(A)|.

Reasoning as in [11], we get the following.
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Theorem 2.7. Let A be a relative Heffter array Ht(m,n;h, k) that admits two compati-
ble orderings ωr and ωc. Then there exists a cellular face-2-colourable embedding σ of
K 2nk+t

t ×t, such that every edge is on a face whose boundary has length h and on a face
whose boundary has length k, into an orientable surface of genus

g = 1 +
(nk − n−m− 1)(2nk + t)

2
.

Moreover, σ is Z2nk+t-regular.

Remark 2.8. As already remarked in the Introduction, in general, in Theorem 2.7, the
faces are closed walks, but if the array is simple with respect to the compatible orderings
ωr and ωc then the faces are cycles. Clearly, in this case the face-2-colourable embedding
is circular.

Now we recall the definition of the Archdeacon embedding, see [1]. Let A be an
Ht(m,n;h, k); we consider the permutation ρ0 on ±E(A) = Z2nk+t \ 2nk+t

t Z2nk+t,
where 2nk+t

t Z2nk+t denotes the subgroup of Z2nk+t of order t, so defined:

ρ0(a) =

{
−ωr(a) if a ∈ E(A);

ωc(−a) if a ∈ −E(A).
(2.1)

Note that the complete multipartite graph K 2nk+t
t ×t is nothing but the Cayley graph on

Z2nk+t with connection set ±E(A), denoted by Cay[Z2nk+t : ±E(A)]. Now, we define a
map ρ on the set of the oriented edges of this graph as follows:

ρ((x, x+ a)) = (x, x+ ρ0(a)). (2.2)

Since ρ0 acts cyclically on ±E(A), the map ρ is a rotation of Cay[Z2nk+t : ±E(A)].

Example 2.9. Let A be the H9(11; 9) given in Example 2.2. Consider the following order-
ing for the rows

ωr = (10, 55, 101,−90, 13,−22,−78, 67,−56)(−37,−9, 45, 102,−91, 21,−20,−79, 68)
(58,−47,−8, 54, 103,−81, 19,−18,−80)(−70, 59,−38,−7, 44, 93,−82, 17,−16)
(−71, 60,−48,−6, 53, 94,−83, 15,−14)(−33,−72, 61,−39, 11, 49, 95,−84, 12)
(24,−25,−73, 62,−43, 4, 40, 96,−85)(26,−27,−74, 63,−52, 3, 50, 97,−86)
(−87, 28,−29,−75, 64,−42, 2, 41, 98)(99,−88, 30,−31,−76, 65,−51,−5, 57)
(36, 100,−89, 32,−34,−77, 66,−35, 1)

and the following ordering for the columns

ωc = (10, 36, 99,−87, 24,−33,−70, 58,−37)(55,−9,−47, 59,−71,−25, 26,−88, 100)
(101, 45,−8,−38, 60,−72,−27, 28,−89)(−90, 102, 54,−7,−48, 61,−73,−29, 30)
(−91, 103, 44,−6,−39, 62,−74,−31, 32)(13,−81, 93, 53, 11,−43, 63,−75,−34)
(−22, 21,−82, 94, 49, 4,−52, 64,−76)(−20, 19,−83, 95, 40, 3,−42, 65,−77)
(−78,−18, 17,−84, 96, 50, 2,−51, 66)(67,−79,−16, 15,−85, 97, 41,−5,−35)
(−56, 68,−80,−14, 12,−86, 98, 57, 1).

Hence,
ωc ◦ ωr = (10,−9,−8,−7,−6, 11, 4, 3, 2,−5, 1, 99, 100, 101, 102, 103, 93, 94, 95, 96, 97,

98, 24, 26, 28, 30, 32, 13, 21, 19, 17, 15, 12,−70,−71,−72,−73,−74,−75,
−76,−77,−78,−79,−80,−37,−47,−38,−48,−39,−43,−52,−42,−51,
−35,−56, 36, 55, 45, 54, 44, 53, 49, 40, 50, 41, 57,−87,−89,−91,−82,−84,
−86,−88,−90,−81,−83,−85,−33,−27,−31,−22,−18,−14,−25,−29,
−34,−20,−16, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68).
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So, since ωc ◦ ωr is a cycle of order 99 = |E(A)| the orderings are compatible.

Looking for compatible orderings of a (globally simple) Heffter array leads us to con-
sider the following problem introduced in [7]. Given anm×n toroidal partially filled array
A, by ri we denote the orientation of the i-th row, precisely ri = 1 if it is from left to right
and ri = −1 if it is from right to left. Analogously, for the j-th column, if its orientation
cj is from top to bottom then cj = 1 otherwise cj = −1. Assume that an orientation
R = (r1, . . . , rm) and C = (c1, . . . , cn) is fixed. Given an initial filled cell (i1, j1) con-
sider the sequence LR,C(i1, j1) = ((i1, j1), (i2, j2), . . . , (i`, j`), (i`+1, j`+1), . . .) where
j`+1 is the column index of the filled cell (i`, j`+1) of the row Ri` next to (i`, j`) in the
orientation ri` , and where i`+1 is the row index of the filled cell of the column Cj`+1

next
to (i`, j`+1) in the orientation cj`+1

. Given an element (ik, jk) ∈ LR,C(i1, j1) we define
SR,C(ik, jk) as the element (ik+1, jk+1) ∈ LR,C(i1, j1). It is easy to see that SR,C is well
defined on the set of the filled cells of A.

The problem proposed in [7] is the following:

Crazy Knight’s Tour Problem. Given a toroidal partially filled array A, do there existR
and C such that the list LR,C covers all the filled cells of A?

The Crazy Knight’s Tour Problem for a given array A is denoted by P (A), known
results can be found in [7, 27]. Also, given a filled cell (i, j), if LR,C(i, j) covers all the
filled positions ofAwe will say that (R, C) is a solution of P (A). The relationship between
the Crazy Knight’s Tour Problem and (globally simple) relative Heffter arrays is explained
in the following result, see [11].

Corollary 2.10. Let A be a relative Heffter array Ht(m,n;h, k) such that P (A) admits a
solution (R, C). Then there exists a face-2-colourable embedding of K 2nk+t

t ×t, such that
every edge is on a face whose boundary has length h and on a face whose boundary has
length k, into an orientable surface.

Moreover if A is globally simple, then the face-2-colourable embedding is circular.

Example 2.11. Let A be the H9(11; 9) of Example 2.2. Let R = (1, 1, . . . , 1) and C =
(−1, 1, 1, . . . , 1). Now we consider SR,C(1, 1) and, in the following table, in each position
we write j if we reach that position after having applied SR,C to (1, 1) exactly j times.

↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
→ 0 56 13 73 27 80 41 97 54
→ 44 1 57 14 68 28 86 42 98
→ 88 45 2 58 15 74 29 81 43
→ 33 89 46 3 59 16 69 30 87
→ 34 90 47 4 60 17 75 31 82
→ 77 35 91 48 5 61 18 70 32
→ 22 83 36 92 49 6 62 19 76
→ 23 78 37 93 50 7 63 20 71
→ 66 24 84 38 94 51 8 64 21
→ 11 72 25 79 39 95 52 9 65
→ 55 12 67 26 85 40 96 53 10

Note that LR,C(1, 1) covers all filled cells of A, hence (R, C) is a solution of P (A).
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Remark 2.12. The orderings ωr and ωc of A described in Example 2.9, correspond to the
vectorsR and C of Example 2.11, respectively. Hence, we also say that (R, C) induces the
cycle ωc ◦ ωr.

Clearly, given an array A, a pair (R, C) is a solution of P (A) if and only if the induced
permutation ωc ◦ ωr is a cycle of order |E(A)|.

Now, to present the results of this section we need some other definitions and notations.
By skel(A) we denote the skeleton of A, that is the set of the filled positions of A. Given
an n× n partially filled array A, for i ∈ [1, n] we define the i-th diagonal of A as follows:

Di = {(i, 1), (i+ 1, 2), . . . , (i− 1, n)}.

Here all the arithmetic on the row and column indices is performed modulo n, where
{1, 2, . . . , n} is the set of reduced residues. The diagonals Di+1, Di+2, . . . , Di+k are
called k consecutive diagonals. A set of t consecutive diagonals S = {Di+1, Di+2, . . . ,
Di+t} is said to be an empty strip of width t if Di+1, Di+2, . . . , Di+t are empty diagonals,
while Di and Di+t+1 are non-empty diagonals.

Definition 2.13. Let n, k be integers such that n ≥ k ≥ 1. An n× n partially filled array
A is said to be:

• k-diagonal if the non-empty cells of A are exactly those of k diagonals;

• cyclically k-diagonal if the non-empty cells of A are exactly those of k consecutive
diagonals;

• k-diagonal with width t1, t2, . . . , ts if it is k-diagonal and has s empty strips with
width t1, t2, . . . , ts, respectively;

• k-diagonal with width t if it is k-diagonal and all its empty strips have width t.

Clearly a cyclically k-diagonal array of size n is nothing but a k-diagonal array with
width n− k. Note that the array of Example 2.2 is 9-diagonal with width 1.

Lemma 2.14. Let A be a partially filled array. If (R, C) is a solution of P (A), then also
(−R,−C) is a solution of P (A).

Proof. By Remark 2.12, if (R, C) is a solution of P (A), then the induced cycle ωc ◦ωr has
order |E(A)|. Clearly also (ωc ◦ωr)−1 = ω−1

r ◦ω−1
c is a cycle of the same order. The same

holds if we consider the conjugate ωr ◦ (ω−1
r ◦ω−1

c ) ◦ω−1
r = ω−1

c ◦ω−1
r , hence (−R,−C)

is a solution, too.

Lemma 2.15. LetA be a cyclically k-diagonal array of size n ≥k and letR=(1, 1, . . . , 1).
If (R, C) is a solution of P (A), then also (C,R) is a solution of P (A).

Proof. We can assume, without loss of generality, that (1, 1) is a filled cell of A. If (R, C)
is a solution of P (A), then the induced cycle ωc ◦ ωr has order |E(A)|. Now, since if we
commute ωr and ωc we still obtain a cycle of order |E(A)|, then (C,R) is a solution of
P (At), where by At we denote the transposed of A. Note that, in general, A and At do
not have the same skeleton. Before concluding the proof, we present an example in order
to illustrate this fact. Here A is a cyclically 4-diagonal array of size 6 (we put a “•” in the
filled cells),R = (1, 1, 1, 1, 1, 1), as in the hypothesis, and C = (1,−1,−1, 1,−1, 1).
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↓ ↑ ↑ ↓ ↑ ↓
→ • • • •
→ • • • •
→ • • • •
→ • • • •
→ • • • •
→ • • • •

↓ ↓ ↓ ↓ ↓ ↓
→ • • • •
← • • • •
← • • • •
→ • • • •
← • • • •
→ • • • •

↓ ↓ ↓ ↓ ↓ ↓
→ • • • •
← • • • •
← • • • •
→ • • • •
← • • • •
→ • • • •

Figure 1: Arrays A, At and B.

Note that, instead of At, we can consider the array B on the right obtained from At by
a translation on the rows of length k − 1. We point out that B has the same skeleton of
A. We remark that applying (C,R) to At is equivalent to apply (C,R) to B, where if
R = (r1, r2, . . . , rn), then R = (rk, . . . , rn, r1, . . . , rk−1). Since R = (1, 1, . . . , 1) then
also R = (1, 1, . . . , 1). Hence (C,R) is a solution of P (B), but skel(B) = skel(A), so
(C,R) is a solution of P (A) too.

Proposition 2.16. Let A and B be two distinct (globally simple) Ht(m,n;h, k)s such that
E(A) = E(B). Assume that both A and B admit compatible orderings and denote them,
respectively, by (ωAr , ω

A
c ) and by (ωBr , ω

B
c ). Then (ωAr , ω

A
c ) and (ωBr , ω

B
c ) determine the

same (circular) k-gonal face-2-colourable embedding ofK 2nk+t
t ×t if and only if ωAr = ωBr

and ωAc = ωBc .

Proof. Suppose, by contradiction, that there exists a ∈ E(A) = E(B) such that ωAr (a) 6=
ωBr (a) or ωAc (a) 6= ωBc (a). In the following we assume, without loss of generality, that
the previous condition holds for the rows. Hence, recalling Equations (2.1) and (2.2), from
ωAr (a) 6= ωBr (a), it follows that the maps ρA and ρB are different. Therefore (ωAr , ω

A
c ) and

(ωBr , ω
B
c ) determine different k-gonal face-2-colourable embeddings of K 2nk+t

t ×t.
Conversely, if we have that ωAr = ωBr and ωAc = ωBc the maps ρA0 and ρB0 coincide and

hence also ρA = ρB . In this case the compatible orderings of A and of B determine the
same k-gonal face-2-colourable embedding of K 2nk+t

t ×t.

Remark 2.17. Let A be an Ht(m,n;h, k). It is not hard to see that distinct solutions of
P (A) induce distinct orderings ωr and ωc of the rows and columns of A, respectively.
Also, distinct permutations determine distinct face-2-colourable embeddings of K 2nk+t

t ×t.
These facts, in general, do not hold for λHt(m,n;h, k) with λ > 1. In the following ex-
ample we show how two distinct solutions of P (A), where A is a λ-fold Heffter array with
λ > 1, induce the same permutations ωr and ωc. Moreover, when λ > 1, the definition
of the Archdeacon embedding is more complicated since the complete multipartite multi-
graph λK( 2nk

λt +1)×t has repeated edges, see [10]. In this case, one could show that distinct
solutions of P (A) can induce the same face-2-colourable embedding.

Example 2.18. Let A be the 2H(2, 5; 5, 2) of Example 2.4. Set R = (1, 1), C1 =
(1, 1, 1, 1, 1), C2 = (1,−1,−1, 1,−1). It is easy to see that (R, C1) and (R, C2) are two
distinct solutions of P (A). Anyway they induce the same permutations:

ωr = (1,−2, 3, 4, 5)(−1, 2,−3,−4,−5),

ωc = (1,−1)(−2, 2)(3,−3)(4,−4)(5,−5).
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Corollary 2.19. Let A and B be two k-diagonal (globally simple) Ht(n; k)s such that:

(1) there exists a non-empty diagonal Dī where A and B coincide;

(2) E(A) = E(B) and skel(A) = skel(B);

(3) both P (A) and P (B) admit a solution denoted, respectively, by (RA, CA) and by
(RB , CB).

Then (RA, CA) and (RB , CB) determine the same (circular) k-gonal face-2-colourable
embeddings of K 2nk+t

t ×t if and only if A = B and (RA, CA) = (RB , CB).

Proof. Clearly, ifA = B and (RA, CA) = (RB , CB), we obtain the same face-2-colourable
embedding.

Now, assume that (RA, CA) and (RB , CB) determine the same k-gonal face-2-colourable
embedding of K 2nk+t

t ×t. We have to prove that A = B and (RA, CA) = (RB , CB). At
this purpose we will first suppose, by contradiction, that (RA, CA) 6= (RB , CB), then we
will also consider the possibility thatA 6= B. Our assumption means that eitherRA 6= RB
or CA 6= CB .

In the first case, there exists an index ` such that (rA)` = −(rB)`. Moreover, up to
translate on the torus the cells of the Heffter arrays A and B, we can assume, without loss
of generality that ` = ī = 1.

Here we set by ωAr , ω
A
c the orderings induced by (RA, CA) on the elements of E(A)

and by ωBr , ω
B
c the orderings induced by (RB , CB) on the elements of E(B). We also

denote the non-empty elements of the first row of A, following the natural ordering, by
(a1,1, a1,i2 , . . . , a1,ik). Then, since (rA)1 = −(rB)1 and since, due to Proposition 2.16,
ωAr = ωBr , we have that the non-empty elements of the first row of B are, following the
natural ordering, (a1,1, a1,ik , . . . , a1,i2) where a1,ik is in the i2-th column and a1,i2 is in
the ik-th column. Now we consider the element ai2,i2 in position (i2, i2) of A. Since,
in the diagonal D1, the arrays A and B coincide, we have that ai2,i2 is also the element
in position (i2, i2) of B. Here we note that, in the array A the elements ai2,i2 and a1,i2

belong both to the i2-th column. On the other hand, in the array B they belong to different
columns: ai2,i2 is in the i2-th and a1,i2 is in the ik-th. But this implies that the orbits of
ai2,i2 under the action of ωAc and ωBc are different and hence, due to Proposition 2.16, we
would obtain the contradiction that (RA, CA) and (RB , CB) determine different face-2-
colourable embeddings.

We obtain a similar contradiction also in the case CA 6= CB and hence we have proved
that (RA, CA) = (RB , CB).

It is left to prove that A = B. At this purpose we suppose, by contradiction, that there
is a position (`1, `2) where A and B are different and we consider the element a of Dī

that belongs to the `1-th row. Due to Proposition 2.16 we have that ωAr (a) = ωBr (a) and,
inductively, that (ωAr )j(a) = (ωBr )j(a) for any j ∈ [1, k]. Since skel(A) = skel(B) and
RA = RB , it follows that the `1-th row of A and that of B are equal. But this would
imply that also the elements in position (`1, `2) of A and B coincide that contradicts our
hypothesis. It follows that A = B.

3 On the maximum number of isomorphic embeddings
Given an embedding Π, we will denote by Aut(Π) the group of all automorphisms of Π
and by Aut+(Π) the group of the orientation preserving automorphisms. Similarly, we
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will denote by Aut0(Π) the subgroup of Aut(Π) of the automorphisms that fix 0 and by
Aut+

0 (Π) the group of the orientation preserving automorphisms that fix 0. We remark that,
since an orientable surface admits exactly two orientations, Aut+(Π) (resp. Aut+

0 (Π)) is a
normal subgroup of Aut(Π) (resp. Aut0(Π)) whose index is either 1 or 2. In the following,
when we consider a Zv-regular embedding Π of Γ, we identify the vertex set of Γ with Zv
and we assume that the translation action is regular. We denote by τg the translation by
g, i.e. τg : V (Γ) = Zv → V (Γ) = Zv is the map such that τg(x) = x + g. Applying
this convention, we have that τg ∈ Aut(Π) for any g ∈ Zv . Moreover, in the case of the
Archdeacon embedding, recalling Equation (2.2), the translations also belong to Aut+(Π).

Remark 3.1. Let Π and Π′ be two isomorphic Zv-regular embeddings of Km×t, where
v = mt. Given an embedding isomorphism σ : Π→ Π′ and g ∈ Zv , we define

φσ,g := σ ◦ τ−1
g ◦ σ−1 ◦ τσ(g).

Moreover, if σ(0) = 0 then, since φσ,g(0) = 0, we obtain that:

φσ,g ∈ Aut0(Π′).

Proposition 3.2. Let Π0,Π1 and Π2 be Zv-regular embeddings of Km×t, where v = mt.
Let us suppose there exist two embedding isomorphisms σ1 : Π1 → Π0 and σ2 : Π2 → Π0

such that, considering σ1 and σ2 as maps from Zv to Zv , the following properties hold:

(1) σ1(0) = σ2(0) = 0;

(2) σ1(1) = σ2(1);

(3) φσ1,1 = φσ2,1.

Then the identity map from Π1 to Π2 is an isomorphism.

Proof. We note that, due to hypothesis (3), we have that:

φσ1,1 = σ1 ◦ τ−1
1 ◦ σ−1

1 ◦ τσ1(1) = σ2 ◦ τ−1
1 ◦ σ−1

2 ◦ τσ2(1) = φσ2,1.

Since, because of hypothesis (2), σ1(1) = σ2(1) the maps τσ1(1) and τσ2(1) coincide.
Reducing these maps from the composition, we obtain that:

σ1 ◦ τ−1
1 ◦ σ−1

1 = σ2 ◦ τ−1
1 ◦ σ−1

2 . (3.1)

Note that Equation (3.1) can be rewritten as:

(σ−1
2 ◦ σ1) ◦ τ−1

1 = τ−1
1 ◦ (σ−1

2 ◦ σ1),

hence we have that:
τ1 ◦ (σ−1

2 ◦ σ1) = (σ−1
2 ◦ σ1) ◦ τ1. (3.2)

Setting σ1,2 := σ−1
2 ◦ σ1, by definition of τ1, it results

τ1 ◦ σ1,2(x) = σ1,2(x) + 1,

and
σ1,2 ◦ τ1(x) = σ1,2(x+ 1).
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Therefore, Equation (3.2) can be written as:

σ1,2(x+ 1) = σ1,2(x) + 1.

Since, for hypothesis (1), σ1(0) = σ2(0) = 0 we can prove, inductively, that σ1,2(x) = x
that is σ1,2 = id. It follows that the identity map from Π1 to Π2 is an isomorphism of
embeddings.

Proposition 3.3. Let Π be an embedding of Km×t where m ≥ 2. Then we have that:

|Aut0(Π)| ≤ 2|Aut+
0 (Π)| ≤ 2|N(Km×t, 0)| = 2(m− 1)t.

Proof. Since Aut+
0 (Π) is a normal subgroup of Aut0(Π) whose index is at most two, it suf-

fices to prove that |Aut+
0 (Π)| ≤ |N(Km×t, 0)|. Because of the definition, σ ∈ Aut+

0 (Π)
implies that, for any x 6∈ N(Km×t, 0):

σ ◦ ρ(0, x) = ρ ◦ σ(0, x).

Recalling that ρ(0, x) = (0, ρ0(x)) for a suitable map ρ0 : N(Km×t, 0) → N(Km×t, 0),
we have that:

σ ◦ ρ(0, x) = (0, σ ◦ ρ0(x)) = (0, ρ0 ◦ σ(x)) = ρ ◦ σ(0, x). (3.3)

Since |N(Km×t, 0)| = (m−1)t, we can write ρ0 as the cycle (x1 =1, x2, x3, . . . , x(m−1)t).
Then, setting σ(x1) = xi, Equation (3.3) implies that:

(0, σ(x2)) = (0, ρ0 ◦ σ(x1)) = ρ ◦ σ(0, x1) = (0, xi+1).

Therefore, we can prove, inductively, that:

σ(xj) = xj+i−1

where the indices are considered modulo (m − 1)t. This means that σ|N(Km×t,0) = ρi−1
0

and that σ is fixed in N(Km×t, 0) when the image of one element is given. In particular
since ρ0 has order (m − 1)t, there are at most |N(Km×t, 0)| possibilities for the map
σ|N(Km×t,0).

Now we need to prove that, if two automorphisms σ1 and σ2 of Aut0(Π) coincide in
N(Km×t, 0), they coincide everywhere. Set σ1,2 = σ−1

2 ◦ σ1, this is equivalently to prove
that σ1,2 is the identity. Given x ∈ N(Km×t, 0) we have that σ1,2(x) = x and hence σ1,2

belongs to the subgroup Aut+
x (Π) of Aut+(Π) of the elements that fix x. Proceeding as

before we prove that σ1,2|N(Km×t,x) is fixed when the image of one element is given. But
now we note that 0 ∈ N(Km×t, x) and we have that σ1,2(0) = 0. It follows that

σ1,2|N(Km×t,x) = id.

Since σ1 and σ2 coincide in N(Km×t, 0), we also have that

σ1,2|N(Km×t,0) = id.

Now the thesis follows because, for m ≥ 2,

V (Km×t) = N(Km×t, 0) ∪N(Km×t, x).
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Proposition 3.4. Let F = {Πα : α ∈ A} be a family of Zv-regular distinct embeddings
of Km×t where v = mt and m ≥ 2. Then, if Πα is isomorphic to Π0 for any α ∈ A, we
have that:

|F| ≤ 2|Aut0(Π0)| · |N(Km×t, 0)| ≤ 4|N(Km×t, 0)|2 = 4((m− 1)t)2.

Moreover, if for any α ∈ A and any g ∈ Zv , the translation τg belongs to Aut+(Πα), then:

|F| ≤ 2|Aut+
0 (Π0)| · |N(Km×t, 0)| ≤ 2|N(Km×t, 0)|2 = 2((m− 1)t)2.

Proof. We can assume Π0 ∈ F and let us denote by σα an isomorphism between Πα

and Π0 that fixes 0. Note that this isomorphism exists since F is a family of Zv-regular
embeddings. Let us assume, by contradiction that

|F| > 2|Aut0(Π0)| · |N(Km×t, 0)|.

We note that, for any α ∈ A, φσα,1 ∈ Aut0(Π0). Since σα is an isomorphism that fixes 0,
σα(1) belongs to N(Km×t, 0) if and only if 1 belongs to N(Km×t, 0). It follows that, we
have at most

max(|N(Km×t, 0)|, v − 1− |N(Km×t, 0)|) = max((m− 1)t, t− 1) = (m− 1)t

possibilities for σα(1). Therefore, due to the pigeonhole principle, we would have that
there exist Π1, Π2 and Π3 in F such that:

(1) σ1(1) = σ2(1) = σ3(1);

(2) φσ1,1 = φσ2,1 = φσ3,1.

Hence, due to Proposition 3.2, we would have that the identity is an isomorphism both from
Π1 = (Γ1, ρ1) to Π2 = (Γ2, ρ2) and from Π1 = (Γ1, ρ1) to Π3 = (Γ3, ρ3). It follows
from Definition 1.3 that Γ1 = Γ2 = Γ3 and ρ2, ρ3 ∈ {ρ1, ρ

−1
1 }. But this means that either

Π1 = Π2 or Π1 = Π3 or Π2 = Π3. In each of these cases we would obtain that the
elements of F are not all distinct that contradicts the hypotheses.

We remark that, in case the translations are all elements of Aut+(Πα) (for every
α ∈ A), φσα,1 would be an element of Aut+

0 (Π0) and hence we can substitute Aut0(Π0)
with Aut+

0 (Π0) in the previous argument. This leads us to obtain:

|F| ≤ 2|Aut+
0 (Π0)| · |N(Km×t, 0)|.

Remark 3.5. Clearly if t = 1 the complete multipartite graph Km×t is nothing but the
complete graph of order m. Hence the results of Propositions 3.3 and 3.4 hold also for the
complete graph.

4 Embeddings from Cavenagh, Donovan and Yazıcı’s arrays
We consider now the family of embeddings of Kv obtained by Cavenagh, Donovan, and
Yazıcı in [6]. In their constructions, all the face boundaries are cycles of length k.
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Set the binary entropy function byH(p) := −p log2 p−(1−p) log2(1−p) and denoted
byH(m) the cardinality of the derangements on [0,m−1], we will use the following, well
known, approximations:

m! ≈
√

2mπ
(m
e

)m
, (4.1)(

m

pm

)
≈ 1√

2mπ(1− p)p
2mH(p), (4.2)

H(m) ≈ m!/e, (4.3)

where the symbol ≈ means that the two quantities are asymptotic: their ratio tends to 1 as
m tends to infinity. We will also use the simbol & in case the lim inf of the ratio between
two quantities, as m tends to infinity, is greater than or equal to 1.

Theorem 4.1 (Cavenagh, Donovan and Yazıcı [6]). Let v = 2nk + 1, k = 4t + 3 and let
n ≡ 1 (mod 4) be either a prime or n ≥ (7k + 1)/3. Moreover, if n ≡ 0 (mod 3), we
also assume that k ≡ 7 (mod 12). Then, the number of distinct circular k-gonal face-2-
colourable embeddings of Kv is, at least, of:

(n− 2)[H(t− 2)]2 ≈ (n− 2)[(t− 2)!/e]2.

Also, for all such embeddings and all g ∈ Zv , τg is an orientation preserving automor-
phism.

Using Proposition 3.4 and Theorem 4.1, we can prove the following result.

Theorem 4.2. Let v = 2nk + 1, k = 4t + 3 and let n ≡ 1 (mod 4) be either a prime
or n ≥ (7k + 1)/3. Moreover, if n ≡ 0 (mod 3), we also assume that k ≡ 7 (mod 12).
Then, the number of non-isomorphic circular k-gonal face-2-colourable embeddings ofKv

is, at least, of:

(n− 2)[H(t− 2)]2

2(2nk)2
≈ π(t− 2)2t−5

64e2t−2n
≈ kk/2+o(k)/v.

Proof. Let us consider, for given k and v, the distinct circular k-gonal face-2-colourable
embeddings of Kv provided in [6]. Let us partition these embeddings into families of iso-
morphic ones. The thesis easily follows because, due to Proposition 3.4, each of these
families has size at most 2(v − 1)2 = 8(nk)2. Then the lower bound on the number
of non-isomorphic circular k-gonal face-2-colourable embeddings of Kv can be approxi-
mated using the Stirling formula for the factorial, that is Equation (4.1), and the approxi-
mation (4.3).

Now we will show that, studying carefully the Crazy Knight’s Tour Problem for the
Heffter arrays found by Cavenagh, Donovan and Yazıcı it is possible to get many other
circular k-gonal face-2-colourable embeddings of Kv .

We consider here a k-diagonal array A of size n > k and vectors R = (1, . . . , 1) and
C ∈ {−1, 1}n, whose −1 are in positions E = (e1, . . . , er) where e1 < e2 < · · · < er.
We state a characterization, obtained with the same proof of Lemma 4.19 of [7], of the
solutions of P (A) that have a trivial vectorR, i.e. R = (1, . . . , 1).
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Lemma 4.3. Let k ≥ 3 be an odd integer and let A be a k-diagonal array of size n > k,
widths s1, s2, . . . , si and with non-empty diagonal D1. Then the vectors R = (1, . . . , 1)
and C ∈ {−1, 1}n, where the positions of each −1 in C are described by E, are a solution
of P (A) if and only if:

(1) for any j ∈ [1, n], the list E covers all the congruence classes modulo dj , where
dj = gcd(n, sj);

(2) the list LR,C(1, 1) covers all the positions of {(e, e)|e ∈ E}.

Proposition 4.4. Let k be an odd integer, n > 8k be a prime, and let A be a k-diagonal
Heffter array H(n; k) whose filled diagonals are D1, D2, . . . , Dk−3, Dk−1, Dk, Dk+1.
Then, the number of distinct solutions of P (A) is at least of:

2

(
dn/2ke
dn/8ke

)
&

√
k√

3πn
2
n
2k ·H(1/4)+3.

Proof. Let us consider a subset E = (e1, . . . , er) of [1, n] where e1 < e2 < · · · < er that
satisfies the following properties:

(1) the elements e1, . . . , er of E are integers equivalent to 1 modulo 2k;

(2) r = |E| is coprime with k − 2.

A set E with such properties can be constructed as follows. Let r be a prime in the range
[ n8k ,

n
4k ] that exists because of Bertrand’s postulate. Then we choose r elements e1, . . . , er

among the dn/2ke integers equivalent to 1 modulo 2k contained in [1, n]. The number of
such choices is at least of (

dn/2ke
r

)
≥
(
dn/2ke
dn/8ke

)
.

Note that, due to the approximation for the binomial coefficients, see Equation (4.2), this
number can be approximated to(

dn/2ke
dn/8ke

)
&

√
k√

3πn
2
n
2k ·H(1/4)+2.

Hence, in order to obtain the thesis, it suffices to prove that, set R = (1, 1, . . . , 1) and
CE ∈ {−1, 1}n whose −1 are in positions E = (e1, . . . , er), (R, CE) is a solution for
P (A). Indeed, according to Lemma 2.14, the number of distinct solutions of P (A) would
be, at least, of

2

(
dn/2ke
dn/8ke

)
&

√
k√

3πn
2
n
2k ·H(1/4)+3.

Since n is a prime, condition (1) of Lemma 4.3 is satisfied. We need to check that also con-
dition (2) of the same lemma holds. At this purpose, we consider an element
(e, e) ∈ D1 with e ∈ E, then there exists a minimum m ≥ 1 such that SmR,C((e, e)) =
(e′, e′) for some e′ ∈ E. We define the permutation ωC on E as ωC(e) = e′. We need to
prove that ωC is a cycle of order r. Given e ∈ E, the second cell of the form (e′, e′) with
e′ ∈ E we meet in the list LR,C(e, e) is reached after the following moves:

(1) from (e, e) we move backward into the diagonal D1 with steps of length k until we
reach a cell of the form (ei + k, ei + k) with ei ∈ E;
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(2) from SR,C(ei + k, ei + k) = (ei + (k − 1), ei) we move forward into the diagonal
Dk with steps of length 1 until we reach the cell (ei+1 − 1 + (k − 1), ei+1 − 1),
where the indices are considered modulo r (as for the rest of this proof);

(3) from SR,C(ei+1 − 1 + (k − 1), ei+1 − 1) = (ei+1 + (k − 4), ei+1) we move for-
ward into the diagonalDk−3 with steps of length 1 until we reach the cell (ei+2−1+
(k−4), ei+2−1); we reiterate this procedure into the diagonalsDk−5, Dk−7, . . . , D4;

(4) since k is odd, we arrive to the cell (ei+(k−3)/2+1, ei+(k−3)/2) ∈ D2 from which we
move forward with steps of length 1 until we reach the cell (ei+(k−1)/2,
ei+(k−1)/2 − 1);

(5) from SR,C(ei+(k−1)/2, ei+(k−1)/2−1) = (ei+(k−1)/2 +k, ei+(k−1)/2) we move for-
ward into the diagonal Dk+1 with steps of length 1 until we reach the cell
(ei+(k+1)/2 − 1 + k, ei+(k+1)/2 − 1); we reiterate this procedure into the diagonals
Dk−1 (here with steps of length 2),Dk−4, . . . , D3;

(6) since k is odd, we arrive to the cell (ei+(k−1), ei+(k−1)) ∈ D1 that is the second one
of the form (e′, e′) ∈ D1 with e′ ∈ E we meet in the list LR,C(e, e).

We denote by γ the cyclic permutation of the elements of E defined by (e1, . . . , er). We
note that since the distances between elements of E are multiples of k, in the first step of
the above procedure we apply the permutation γ−1. Then, from the previous discussion,
it follows that ωC = γk−1 ◦ γ−1 = γk−2. Since r is coprime with k − 2 and γ is a cycle
of order r, then ωC is also a cycle of order r and hence condition (2) of Lemma 4.3 is
satisfied.

Remark 4.5. We note that, if n is sufficiently large, in the proof of Proposition 4.4, the
choice of r could also be done in the range [λnk ,

n
4k ] where λ is smaller than 1/4. In fact,

if | n4k − λ
n
k | ≥ k − 2, we can find r coprime with k − 2 also in this range. It follows that,

given λ < 1/4, we can replace the exponent n
2k ·H(1/4) of the previous proposition with

n
2k · H(2λ). However, due to the complications in the notations, we believe it is better to
write the statement in the “clearest” case.

Theorem 4.6. Let v = 2nk + 1, k = 4t + 3 and let n ≡ 1 (mod 4) be a prime greater
than 8k. Then the number of distinct circular k-gonal face-2-colourable embeddings ofKv

is, at least, of:

2(n− 2)[H(t− 2)]2
(
dn/2ke
dn/8ke

)
&

[(t− 2)!]2
√

(4t+ 3)n

e2
√

3π
2

n
2(4t+3)

·H(1/4)+3.

Also, for all such embeddings and all g ∈ Zv , τg is an orientation preserving automor-
phism.

Proof. We note that, if n is a prime, each array of the family Fn,k := {Ai : i ∈ An,k} of
globally simple H(n; k)s constructed in [6] satisfies (setting α = 2p + 2) the hypotheses
of Proposition 4.4. Therefore, for each array Ai of Fn,k the number of solutions of P (Ai)
is at least of:

2

(
dn/2ke
dn/8ke

)
&

√
k√

3πn
2
n
2k ·H(1/4)+3.
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We also recall that, due to Theorem 4.1, the number of such arrays is at least of:

(n− 2)[H(t− 2)]2 ≈ (n− 2)[(t− 2)!/e]2.

Now we note that, given n and k, these arrays have all the same entries and skeleton,
and coincide in at least 5 diagonals. Therefore, because of Corollary 2.19, however we take
Ai ∈ Fi and a solution of P (Ai), we determine a different embedding.

It follows that the number of distinct circular k-gonal face-2-colourable embeddings of
Kv is, at least, of:

2(n− 2)[H(t− 2)]2
(
dn/2ke
dn/8ke

)
&

[(t− 2)!]2
√
kn

e2
√

3π
2
n
2k ·H(1/4)+3.

By Proposition 3.4 and Theorem 4.6, it follows that:

Theorem 4.7. Let v = 2nk+1, k = 4t+3 and let n ≡ 1 (mod 4) be a prime greater than
8k. Then the number of non-isomorphic circular k-gonal face-2-colourable embeddings of
Kv is, at least, of:

(n− 2)

(2nk)2
[H(t− 2)]2

(
dn/2ke
dn/8ke

)
≈ [(t− 2)!]2

e2
√

3π(n(4t+ 3))3
2

n
2(4t+3)

·H(1/4)

≈ k k2 +o(k) · 2v·
H(1/4)

(2k)2
+o(v)

.

Proposition 4.8. Let k be an odd integer, s1 ≥ 1, and let A be a k-diagonal Heffter array
H(n; k) whose filled diagonals areD1, D2, . . . , Di, Di+s1 , Di+s1+2, Di+s1+3, . . . , Dk+s1 .
Assuming that gcd(n, 2) = gcd(n, s1) = gcd(n, k + s1 − 1) = 1, the number of distinct
solutions of P (A) is at least of 2

(
n
2

)
.

Proof. Let us consider a subset E = (e1, e2) where e1 < e2 of [1, n]. Hence in order
to obtain the thesis, it suffices to prove that, set R = (1, 1, . . . , 1) and CE ∈ {−1, 1}n
whose −1 are in positions E = (e1, e2), (R, CE) is a solution for P (A). Indeed, due to
Lemma 2.14, the number of distinct solutions of P (A) would be, at least, of 2

(
n
2

)
. Since

n is coprime with 2, s1 and k + s1 − 1, condition (1) of Lemma 4.3 is satisfied. We need
to check that also condition (2) holds. Defined ωC and γ as in the proof of Proposition 4.4,
we obtain that, also here, ωC = γk−2. Since γ is a cycle of order 2 and k − 2 is odd, ωC is
also a cycle of order 2. Hence condition (2) of Lemma 4.3 is satisfied.

Theorem 4.9. Let v = 2nk + 1, k = 4t + 3 and let n ≡ 1 (mod 4) be such that
n ≥ (7k + 1)/3. Moreover, if n ≡ 0 (mod 3), we also assume that k ≡ 7 (mod 12).
Then the number of distinct circular k-gonal face-2-colourable embeddings of Kv is, at
least, of:

2(n− 2)

(
n

2

)
[H(t− 2)]2 ≈ n3[(t− 2)!]2

e2
.

Also, for all such embeddings and all g ∈ Zv , τg is an orientation preserving automor-
phism.

Proof. The thesis follows from Proposition 4.8 reasoning as in the proof of Theorem 4.6.
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From Proposition 3.4, it follows that:

Theorem 4.10. Let v = 2nk + 1, k = 4t + 3 and let n ≡ 1 (mod 4) be such that
n ≥ (7k + 1)/3. Moreover, if n ≡ 0 (mod 3), we also assume that k ≡ 7 (mod 12).
Then the number of non-isomorphic circular k-gonal face-2-colourable embeddings of Kv

is, at least, of:

n− 2

(2nk)2

(
n

2

)
[H(t− 2)]2 ≈ n[(t− 2)!]2

8((4t+ 3)e)2
≈ v · kk/2+o(k).

5 Embeddings from cyclically k-diagonal Heffter arrays
We note that the bounds obtained in Theorems 4.7 and 4.10 grow more than exponentially
in k but they have some restrictions on the considered values of n. Furthermore, they grow
exponentially in n only when n is a prime. For this reason, in this section, we will provide
lower bounds that grow exponentially in n on the number of k-gonal face-2-colourable
embeddings not only of complete graphs but also of complete multipartite graphs.

First of all, we need to recall the following existence result reported in [31] (see Corol-
laries 3.4 and 3.6) on cyclically k-diagonal Heffter arrays.

Lemma 5.1. Given n ≥ k ≥ 3, then there exists a cyclically k-diagonal Heffter array
Ht(n; k) in each of the following cases:

(1) t ∈ {1, 2} and k ≡ 0 (mod 4) [2, 30];

(2) t ∈ {1, 2}, k ≡ 1 (mod 4) and n ≡ 3 (mod 4) [8, 13];

(3) t ∈ {1, 2}, k ≡ 3 (mod 4) and n ≡ 0, 1 (mod 4) [2];

(4) t = k, k ≡ 1 (mod 4) and n ≡ 3 (mod 4) [9];

(5) t = k, k ≡ 3 (mod 4) and n ≡ 0, 3 (mod 4) [9];

(6) t ∈ {n, 2n}, k = 3 and n is odd [11].

Moreover, in [8] and in [11], it is also proved the following existence result on globally
simple cyclically k-diagonal Heffter arrays.

Lemma 5.2. Given n ≥ k ≥ 3, then there exists a globally simple, cyclically k-diagonal
Heffter array Ht(n; k) in each of the following cases:

(1) t ∈ {1, 2}, k ∈ {3, 5, 7, 9} and nk ≡ 3 (mod 4);

(2) t = k, k ∈ {3, 5, 7, 9} and n ≡ 3 (mod 4);

(3) t ∈ {n, 2n}, k = 3 and n is odd.

The goal will be now to find an exponential family of solutions of P (A) whereA is one
of those arrays and then to proceed by using the following remark.

Remark 5.3. Let us assume we have M distinct solutions of P (A) where A is a given
(globally simple) cyclically k-diagonal Heffter array Ht(n; k) and k is an odd integer.
In this case we may assume, without loss of generality, that the filled diagonals are D1,
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D2, . . . , D(k+1)/2 and Dn, Dn−1, . . . , Dn−(k−3)/2. Then, if we consider At, we have that
skel(A) = skel(At) and hence any solution of P (A) is also a solution of P (At). More-
over, A and At coincide on D1 and E(A) = E(At). Therefore, due to Corollary 2.19, there
are at least 2M distinct Z2nk+t-regular (circular) k-gonal face-2-colourable embeddings
of K 2nk+t

t ×t. Then, because of Proposition 3.4, the number of non-isomorphic (circular)

k-gonal face-2-colourable embeddings of K 2nk+t
t ×t is, at least, of M

(2nk)2 .

For a cyclically k-diagonal array A, we recall a characterization, provided in [7], of the
solutions of P (A) that have vectorR = (1, . . . , 1).

We consider here a cyclically k-diagonal array of size n > k and vectorsR = (1, . . . , 1)
and C ∈ {−1, 1}n, whose−1 are in positionsE = (e1, . . . , er) where e1 < e2 < · · · < er.
We note that, given e ∈ E, there exists a minimum m ≥ 1 such that e −m(k − 1) ≡ e′′

(mod n) for some e′′ ∈ E. We define the permutation ω1,C on E as ω1,C(e) = e′′. Finally
we define the permutation ω2,C on E = (e1, . . . , er) as ω2,C(ei) = ei+(k−1) where the
indices are considered modulo r. Then, in [7], it is proven that:

Lemma 5.4. Let k ≥ 3 be an odd integer and letA be a cyclically k-diagonal array of size
n > k. Then the vectors R := (1, . . . , 1) and C ∈ {−1, 1}n, whose −1 are in positions
E = (e1, . . . , er) where e1 < e2 < · · · < er, are a solution of P (A) if and only if:

(1) the list E covers all the congruence classes modulo d, where d = gcd(n, k − 1);

(2) the permutation ω2,C ◦ ω1,C on E is a cycle of order r = |E|.

Proposition 5.5. Let A be a cyclically 3-diagonal Heffter array Ht(n; 3) where n ≥ 3 is
an odd integer. Then the number of distinct solutions of P (A) is, at least, of 2

1
2n+2.

Proof. Let us consider a subset E = (e1, . . . , er) of [1, n] where the elements e1, . . . , er
are odd integers such that e1 < e2 < · · · < er.

We note that the set O of odd elements in [1, n] has cardinality n+1
2 > 1

2n. The number
of subsets of O is then at least of 2

1
2n. It follows that the number of possible choices

for E is, at least, of 2
1
2n. Hence, in order to obtain the thesis, it suffices to prove that,

set R = (1, 1, . . . , 1) and CE ∈ {−1, 1}n whose −1 are in positions E = (e1, . . . , er),
(R, CE) is a solution for P (A). Indeed, due to Lemmas 2.14 and 2.15, the number of
distinct solutions of P (A) would be, at least, of 2

1
2n+2.

Here we denote by γ the cyclic permutation of the elements ofE defined by (e1, . . . , er).
In this case, since k − 1 = 2 we have that ω2,C = γ2. Similarly, since the elements of E
are all odd integers, ω1,C = γ−1. It follows that ω2,C ◦ ω1,C = γ. Since n is odd, we also
have that d = gcd(n, 2) = 1 and hence both the conditions of Lemma 5.4 are satisfied and
(R, CE) is a solution of P (A).

We can also provide a similar construction for arbitrary odd k. In this case, we still
obtain an exponential lower bound to the number of solutions of P (A) but, here, if we
consider k = 3, the exponent is worse than that of Proposition 5.5.

Proposition 5.6. LetA be a cyclically k-diagonal Heffter array Ht(n; k) where n ≥ 4k−3
and k are odd integers such that gcd(n, k − 1) = 1. Then the number of distinct solutions
of P (A) is, at least, of

4

(
dn/(k − 1)e
dn/(4k − 4)e

)
&

√
2(k − 1)

3nπ
2

n
k−1 ·H(1/4)+3.
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Proof. Let us consider a subset E = (e1, . . . , er) of [1, n], where e1 < e2 < · · · < er, that
satisfies the following properties:

(1) the elements e1, . . . , er of E are integers equivalent to 1 modulo k − 1;

(2) r = |E| is an integer coprime with k − 2.

A set E with such properties can be constructed as follows. Let r be a prime in the range
[ n
4(k−1) ,

n
2(k−1) ] that exists because of Bertrand’s postulate. Then we choose r elements

e1, . . . , er among the dn/(k−1)e integers equivalent to 1 modulo k−1 contained in [1, n].
The number of such choices is at least of(

dn/(k − 1)e
r

)
≥
(
dn/(k − 1)e
dn/(4k − 4)e

)
.

Note that, due to the approximation for the binomial coefficients, see Equation (4.2), this
number can be so approximated(

dn/(k − 1)e
dn/(4k − 4)e

)
&

√
8(k − 1)

3nπ
2

n
k−1 ·H(1/4).

Hence, also here, in order to obtain the thesis, it suffices to prove that, setR = (1, 1, . . . , 1)
and CE ∈ {−1, 1}n whose −1 are in positions E = (e1, . . . , er), (R, CE) is a solution for
P (A). Indeed, due to Lemmas 2.14 and 2.15, the number of distinct solutions of P (A)
would be, at least, of

4

(
dn/(k − 1)e
dn/(4k − 4)e

)
&

√
2(k − 1)

3nπ
2

n
k−1 ·H(1/4)+3.

Now we proceed as in the proof of Proposition 5.5. We denote by γ the cyclic permu-
tation of the elements of E defined by (e1, . . . , er). In this case we have that ω2,C = γk−1.
Similarly, since the elements ofE are all integers equivalent to 1 modulo k−1, ω1,C = γ−1.
It follows that ω2,C ◦ ω1,C = γk−2 which is a cyclic permutation on E of order r because
r is coprime with k − 2. Since we have assumed that d = gcd(n, k − 1) = 1, both the
conditions of Lemma 5.4 are satisfied and hence (R, CE) is a solution of P (A).

Remark 5.7. As already noted in Remark 4.5, also here, if n is sufficiently large and given
λ < 1/2, we can replace the exponent n

k−1 · H(1/4) of the previous proposition with
n
k−1 ·H(λ). However, also in this case, we believe it is better to write the statement in the
“clearest” case.

Proposition 5.8. Let A be a cyclically 7-diagonal Heffter array Ht(n; 7) where n > 120
is an odd integer. Then the number of distinct solutions of P (A) is, at least, of

4

(
bn/6c
bn/24c

)
&

1√
nπ

2b
n
6 c·H(1/4)+4.

Proof. We divide the proof in two cases. If gcd(n, 6) = 1, the thesis follows from Propo-
sition 5.6. In fact, in this case, the number of distinct solutions of P (A) is, at least, of

4

(
dn/6e
dn/24e

)
≥ 4

(
bn/6c
bn/24c

)
.

Otherwise, we have that gcd(n, 6) = 3. In this case we consider a subset E =
(e1, . . . , er) of [1, n], where e1 < e2 < · · · < er, that satisfies the following properties:
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(1) e1 = 1 and e2 = 2;

(2) the elements e3, . . . , er of E are integers equivalent to 3 modulo 6;

(3) r = |E| is equivalent to 4 modulo 5.

We note that the number of integers equivalent to 3 modulo 6 in [1, n] is bn+3
6 c ≥ b

n
6 c.

Now, we fix r ≡ 4 (mod 5) in [ n24 ,
n
12 ]. Then the number of possible choices for a set E

of cardinality r among the integers equivalent to 3 modulo 6 is, at least, of(
bn/6c
dn/24e

)
≥
(
bn/6c
bn/24c

)
&

1√
nπ

2b
n
6 c·H(1/4)+2.

As usual, we denote by γ the cyclic permutation of the elements of E defined by
(e1, . . . , er). Here we have that ω2,C = γ6 and that, for x 6∈ {e1, e2, e3}, ω1,C = γ−1.
It follows that, if x 6∈ {e1, e2, e3}, ω2,C ◦ ω1,C = γ5, that is ω2,C ◦ ω1,C(ei) = ei+5

for i 6∈ {1, 2, 3} and where the indices are considered modulo r. Due to the definition,
we also have that ω1,C(e1) = e1, ω1,C(e2) = e2 and ω1,C(e3) = er. It means that
ω2,C ◦ ω1,C(e1) = γ6(e1) = e7, ω2,C ◦ ω1,C(e2) = γ6(e2) = e8 and ω2,C ◦ ω1,C(e3) = e6.

Since r ≡ 4 (mod 5), we have that:

γ5 = (e1, e6, e6+5, . . . , er−3, e2, e7, . . . , er−2, e3, e3+5, . . . , er−1, e4, . . . , er,

e5, . . . , er−4).

It follows that ω2,C ◦ ω1,C is the cycle of order r given by:

(e1, e7, . . . , er−2, e3, e6, e6+5, . . . , er−3, e2, e8, . . . , er−1, e4, . . . , er, e5, . . . , er−4).

Moreover, since E covers all the congruence classes modulo 3 in [1, n], both the conditions
of Lemma 5.4 are satisfied and (R, CE) is a solution of P (A). Finally, the thesis follows
because, due to Lemmas 2.14 and 2.15, from each such solution (R, CE) we obtain four
different solutions of P (A).

Theorem 5.9. Let n ≥ 3 and t be such that either t ∈ {1, 2} and n ≡ 1 (mod 4) or t = 3
and n ≡ 3 (mod 4) or t ∈ {n, 2n} and n is odd. Then, set v = 6n + t, the number of
non-isomorphic circular 3-gonal face-2-colourable embeddings ofK 6n+t

t ×t
is, at least, of:

2n/2

9n2
≈


2v/12+o(v) if t ∈ {1, 2, 3};
2v/14+o(v) if t = n;

2v/16+o(v) if t = 2n.

Proof. For these sets of parameters n and t, Lemma 5.2 assures the existence of a cyclically
k-diagonal Ht(n; 3), sayA. Then, due to Proposition 5.5, the problem P (A) admits at least
2n/2+2 solutions. The thesis follows from Remark 5.3.

Remark 5.10. If t = 1, namely if we are considering the complete graph K6n+1, the
lower bound of Theorem 5.9 is surely worse than the ones already obtained in the literature
(see [3, 15, 16, 18, 19]). On the other hand, we want to underline that our result is still
exponential in v and holds also for other values of t.
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Theorem 5.11. Let k ∈ {5, 7, 9}, let n ≥ 120 and t be such that either t ∈ {1, 2} and
nk ≡ 3 (mod 4) or t = k and n ≡ 3 (mod 4). Then, set v = 2nk + t, the number of
non-isomorphic circular k-gonal face-2-colourable embeddings of K 2nk+t

t ×t is, at least,
of: ( bn/(k−1)c

bn/(4k−4)c
)

(nk)2
&

√
2(k−1)

3nπ 2b
n
k−1 c·H(1/4)+1

(nk)2
≈ 2v·

H(1/4)
2k(k−1)

+o(v,k).

Proof. We proceed as in the proof of Theorem 5.9 by using Propositions 5.6 and 5.8 instead
of Proposition 5.5.

Theorem 5.12. Let k > 9 be odd, let n ≥ 4k − 3 and t be such that either t ∈ {1, 2} and
nk ≡ 3 (mod 4) or t = k and n ≡ 3 (mod 4). Assume also that gcd(n, k − 1) = 1 and
set v = 2nk + t. Then the number of non-isomorphic, non necessarily circular, k-gonal
face-2-colourable embeddings of K 2nk+t

t ×t is, at least, of:

( dn/(k−1)e
dn/(4k−4)e

)
(nk)2

&

√
2(k−1)

3nπ 2
n
k−1 ·H(1/4)+1

(nk)2
≈ 2v·

H(1/4)
2k(k−1)

+o(v,k).

Proof. We proceed as in the proof of Theorem 5.9 by using Lemma 5.1 instead of Le-
mma 5.2 and Proposition 5.6 instead of Proposition 5.5.

ORCID iDs
Simone Costa https://orcid.org/0000-0003-3880-6299
Anita Pasotti https://orcid.org/0000-0002-3569-2954

References
[1] D. S. Archdeacon, Heffter arrays and biembedding graphs on surfaces, Electron. J. Comb. 22

(2015), Paper 1.74, 14 pp., doi:10.37236/4874, https://doi.org/10.37236/4874.

[2] D. S. Archdeacon, J. H. Dinitz, D. M. Donovan and E. Ş. Yazıcı, Square integer Heffter arrays
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integer Heffter arrays, Ars Math. Contemp. 17 (2019), 369–395, doi:10.26493/1855-3974.
1817.b97, https://doi.org/10.26493/1855-3974.1817.b97.
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