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Abstract

The Wiener index W (G) of a simple connected graph G is defined as the sum of dis-
tances over all pairs of vertices in a graph. We denote by W [Tn] the set of all values of the
Wiener index for a graph from the class Tn of trees on n vertices. The largest interval of
consecutive integers (consecutive even integers in case of odd n) contained in W [Tn] is de-
noted by W int[Tn]. In this paper we prove that both sets are of cardinality 1

6n
3 + O(n5/2)

in the case of even n, while in the case of odd n we prove that the cardinality of both sets
equals 1

12n
3 + O(n5/2), which essentially solves two conjectures posed in the literature.
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1 Introduction
The Wiener index of a connected graph G is defined as the sum of distances over all pairs
of vertices, i.e.

W (G) =
∑

u,v∈V (G)

d(u, v).

It was first introduced in [13] and it was used for predicting the boiling points of paraffins.
Since the index was very successful many other topological indices were introduced later
which use the distance matrix of a graph. There is a recent survey by Gutman et al. [14] in
which finding extremal values and extremal graphs for the Wiener index and several of its
variations is nicely presented. Given the class of all simple connected graphs on n vertices
it is easy to establish extremal graphs for the Wiener index, those are complete graph Kn

and path Pn. The same holds for the class of tree graphs on n vertices in which the minimal
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tree is the star Sn and the maximal tree is the path Pn. Many other bounds on the Wiener
index are also established in the literature.

In [4] Gutman and Yeh proposed the inverse Wiener index problem, i.e. for a given
value w the problem of finding a graph (or a tree) G for which W (G) = w. The first
attempt at solving the problem was made in [7] where integers up to 1206 were checked and
49 integers were found that are not Wiener indices of trees. In [1] it was computationally
proved that for all integers w between 103 and 108 there exists a tree with Wiener index
w. The problem was finally fully solved in 2006 when two papers were published solving
the problem independently. It was proved in [12] that for every integer w > 108 there is a
caterpillar tree G such that W (G) = w. The other proof is from the paper [9] where it was
proved that all integers except those 49 are Wiener indices of trees with diameter at most 4.
Since the most interesting graphs to be considered are chemical trees (especially those in
which maximum vertex degree is at most 3) and hexagon type graphs, in [11] this problem
was further considered on classes of such graphs.

A related question is to ask what value of the Wiener index can a graph (or a tree) G on
n vertices have? In order to clarify further this problem one may also ask how many such
values are there, how are they distributed along the related interval or how many of them
are consecutive. In [6] this problem is named the Wiener inverse interval problem (see also
a nice recent survey [5] which covers the topic). In that paper the set W [Gn] is defined as
the set of all values of the Wiener index for graphs G ∈ Gn, where Gn is the class of simple
connected graphs on n vertices. Similarly, W [Tn] is defined as the set of values W (T ) for
all trees on n vertices (Tn denotes the class of trees on n vertices). Also, W int[Gn] (or
analogously W int[Tn]) is defined to be the largest interval of consecutive integers such that
W int[Gn] ⊆W [Gn] (or analogously W int[Tn] ⊆W [Tn]).

In [6] the Wiener inverse interval problem on the class Gn was considered. First, the
authors noted that obviously W int[Gn] ⊆W [Gn] ⊆ [W (Kn),W (Pn)] . Since W (Kn) and
W (Pn) are easily computed, the upper bound

∣∣W int[Gn]
∣∣ ≤ |W [Gn]| ≤ n3

6 −
n2

2 + n
3 + 1

easily follows. Introducing dandelion and comet graphs and establishing how the values
between the values of the Wiener index for dandelion and comet graph can be obtained, the
authors obtain the following lower bound |W [Gn]| ≥

∣∣W int[Gn]
∣∣ ≥ n3

6 −
5
2n

2 − 1
3n

3/2 +
19
3 n+ 7

3n
1/2. These bounds sandwich the value of

∣∣W int[Gn]
∣∣ and |W [Gn]| in terms of n3

tightly, therefore the result
∣∣W int[Gn]

∣∣ =
∣∣W int[Gn]

∣∣ = n3

6 + O(n2) easily follows. The
authors further conjecture that |W [Gn]| = n3

6 −
n2

2 + Θ(n). Regarding the same problem
on the class Tn the following two conjectures were made.

Conjecture 1.1. The cardinality of W [Tn] equals 1
6n

3 + Θ(n2).

Conjecture 1.2. The cardinality of W int[Tn] equals Θ(n3).

In this paper we will consider these two conjectures. First, we will note that for a
tree T on odd number of vertices n the value W (T ) can be only an even number. That
means that the Wiener inverse interval problem in that case has to be reformulated as the
problem of finding the largest interval W int[Tn] of consecutive even integers such that
W int[Tn] ⊆W [Tn]. Since |W [Tn]| ≤W (Pn)−W (Sn) + 1 = 1

6n
3 − n2 + 11

6 n, we now
conclude that the cardinality of W [Tn] in the case of odd n can be at most 1

12n
3 + O(n2).

Given that reformulation, we will prove both conjectures to be true in terms of n3. Even
more, we will prove the strongest possible version of Conjecture 1.2 in terms of n3 by
proving that

∣∣W int[Tn]
∣∣ also equals 1

6n
3 + O(n5/2) (i.e. 1

12n
3 + O(n5/2) in case of odd
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n) which is the best possible result given the upper bound on |W [Tn]| derived from the
difference between W (Pn) and W (Sn). These results will yield quite a strong result for
the class T 4

n of chemical trees as a direct corollary.
The present paper is organized as follows. In the next section basic definitions and

preliminary results are given. In the third section the problem is solved for trees on even
number of vertices, while in the fourth section the problem is solved for trees on odd
number of vertices. In the fifth section we conclude the paper with several remarks and
possible directions for further research.

2 Preliminaries
Let G = (V (G), E(G)) be a simple connected graph having n = |V (G)| vertices and
m = |E(G)| edges. For a pair of vertices u, v ∈ V (G) we define the distance dG(u, v) as
the length of the shortest path connecting u and v in G. For a vertex u ∈ V (G) the degree
dG(u) is defined as the number of neighbors of vertex u in graph G. When it doesn’t lead
to confusion we will use the abbreviated notation d(u, v) and d(u). Also, for a vertex u ∈
V (G) and a set of vertices A ⊆ V (G) we will denote d(u,A) =

∑
v∈A d(u, v). Similarly,

for two sets of vertices A,B ⊆ V (G) we will denote d(A,B) =
∑

u∈A,v∈B d(u, v). We
say that a vertex u ∈ V (G) is a leaf if dG(u) = 1, otherwise we will say that u is an
interior vertex of a graph G. A graph G which does not contain cycles is called a tree. A
tree graph will usually be denoted by T throughout the rest of the paper. We say that a tree
T is a caterpillar tree if all its interior vertices induce a path. Such a path will be called the
interior path of a caterpillar. Let a and b be positive integers such that a ≤ b. We say that the
interval [a, b] is Wiener p−complete if there is a tree T in Tn such that W (T ) = a+ pi for
every i = 0, . . . ,

⌊
b−a
p

⌋
. We say that the interval [a, b] is Wiener complete if it is Wiener

1−complete.
Let us now note that the value of the Wiener index for a tree T on odd number of

vertices n is an even number. There are various ways to prove this fact, maybe the simplest
one is to recall that for a tree T on n vertices it holds that

W (T ) =
∑

uv∈E(T )

nu · nv

where nu and nv are the number of vertices in the connected component of T\{uv} con-
taining u and v respectively. Obviously, nu +nv = n and therefore in the case of odd n the
product nu · nv must be an even number. I would like here to thank prof. Tomislav Došlić
for suggesting this short proof to me and to the anonymous reviewers for referring me to
the interesting survey [2] in which this fact is already explained and to several interesting
papers ([3], [8] and [10]) in which one can read more on the subject. Before proceeding
further, let us state this fact as a formal theorem which we can reference in further text.

Theorem 2.1. Let T be a tree on odd number of vertices n ≥ 3. Then W (T ) is an even
number.

The main tool for obtaining our results throughout the paper will be a transformation
of a tree which increases the value of the Wiener index by exactly four. We will call it
Transformation A, but let us introduce its formal definition.

Definition 2.2. Let T be a tree and u ∈ V (T ) a vertex of degree 4 such that neighbors v1
and v2 of u are leaves, while neighbors w1 and w2 of u are not leaves. We say that a tree
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T ′ is obtained from T by Transformation A if T ′ is obtained from T by deleting edges uv1
and uv2, while adding edges w1v1 and w2v2.

Theorem 2.3. Let T be a tree and let T ′ be a tree obtained from T by Transformation A.
Then W (T ′) = W (T ) + 4.

Proof. For simplicity’s sake we will use the notation d′(u, v) for dT ′(u, v). Let Twi
=

(Vwi , Ewi) be the connected component of T\{u} which contains vertex wi for i = 1, 2.
Note that the only distances that change in Transformation A are distances from vertices v1
and v2. For every v ∈ Vw1

∪ Vw2
we have

d′(v1, v)− d(v1, v) + d′(v2, v)− d(v2, v) = 0.

For the vertex u we have

d′(v1, u)− d(v1, u) + d′(v2, u)− d(v2, u) = 2.

Finally, we also have d′(v1, v2) − d(v1, v2) = 2. Therefore, W (T ′) −W (T ) = 4 which
proves the theorem.

Although Transformation A can be applied on any tree graph, we will mainly apply
it on caterpillar trees. Moreover, it is critical to find a kind of caterpillar tree on which
Transformation A can be applied repeatedly as many times as possible. For that purpose,
let us prove the following theorem.

Theorem 2.4. Let T be a caterpillar tree and P = u1 . . . ud its interior path. If there is a
vertex ui ∈ P of degree 4 such that ui±j is of degree 3 for every 1 ≤ j ≤ k − 1, then the
interval [W (T ),W (T ) + 4k2] is Wiener 4−complete.

Proof. Let us denote a caterpillar tree T from the statement of the lemma by T k (since 1 ≤
j ≤ k−1). Also, let us denote D = {ui±j : j = 0, . . . , k−1}. To obtain the desired result
we will systematically apply Transformation A to vertices from D until there is no more
vertices in D to which Transformation A can be applied. Let us now explain into greater
detail by what system that is done. First, note that in T k Transformation A can initially be
applied only to ui. By applying transformation A to ui in T k we will obtain a caterpillar
tree in which Transformation A can be applied to vertices ui−1 and ui+1. By applying
Transformation A to ui−1 and ui+1 consecutively we will obtain a caterpillar tree in which
Transformation A can be applied to ui−2 and ui+2 (and ui but we will not further apply
Transformation A to that vertex for the time being). By further applying transformation A
to ui−2 and ui+2 consecutively and repeating this procedure we will reach a caterpillar tree
in which Transformation A can be applied to vertices ui−(k−1) and ui+(k−1) and finally
apply Transformation A to those two vertices. The caterpillar tree obtained after that last
step we can denote by T k−1 because of the following: in that tree vertex ui ∈ P is of
degree 4 and vertices ui±j are of degree 3 for every j = 1, . . . , k − 2. Note that in the
process of transforming T k to T k−1 we will have applied the Transformation A 2k − 1
times. Now, the same process can be repeated on T k−1 to obtain T k−2. The procedure
stops when we reach T 1 in which ui is the only vertex in D having degree greater than 2
(to be more precise, the degree of ui in T 1 equals 4, so Transformation A can be applied to
it one more time). Applying Transformation A on ui in T 1 we finally obtain T 0 in which
Transformation A cannot be further applied to vertices from D. Therefore, in transforming
T k to T 0 Transformation A was used

∑k
j=1(2j − 1) = k2 times and each time the value

of the Wiener index increased by 4.
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Note that the Transformation A in Theorem 2.4 is applied k2 times on a caterpillar in
which interior path is of length d− 1. If we prove that there are Θ(n) different values of d
for which k = Θ(n), we obtain roughly Θ(n3) graphs with different values of the Wiener
index which is exactly the result we aim at (of course, here one has to be careful to avoid
significant overlapping of the values of the Wiener index for caterpillars with different
values of d). So, that is what we are going to do in following sections, but in order to do
that with sufficient mathematical precision we will have to construct four different special
types of caterpillar trees. To easily construct those four types of caterpillar trees we first
introduce two basic types of caterpillars from which those four types will be constructed
by adding one or two vertices.

Definition 2.5. Let n, d and x be positive integers such that n ≥ 18 is even,
⌈
n−2
4

⌉
≤ d ≤

n−8
2 and x ≤ 4+4d−n

2 . Caterpillar B1(n, d, x) is a caterpillar on even number of vertices n
obtained from path P = u−d . . . u−1u0u1 . . . ud by appending a leaf to vertices u−d−1+x

and ud+1−x and by appending a leaf to 2k − 1 consecutive vertices u−(k−1), . . . , uk−1

where k = n−(2d+1)−1
2 .

Caterpillar graph B1(n, d, x) is illustrated by Figure 1 (vertex ui of the interior path is
in the images denoted just by i in order to make labels easier to see).

a)

b)

Figure 1: Caterpillar graphs: a) B1(20, 6, 2), b) B1(20, 5, 1).

Lemma 2.6. Let n, d and x be integers such that B1(n, d, x) is defined. Then

W (B1(n, d, x)) =
n3

4
+ (−3d

2
− 5

4
)n2 + (4d2 + 10d +

13

2
− 2x)n+

+ 2x2 − 8

3
d3 − 12d2 − 46d

3
− 7.

Proof. Let k = n−(2d+1)−1
2 and x′ = −d − 1 + x. Even though the structure of B1 is a

bit complicated it is still regular enough so that the Wiener index can be computed exactly
(as a function in variables n, d and x). Let us divide vertices of B1 into three sets A,B and
C so that set A contains vertices ui for i = −d, . . . , d, set B contains leaves attached to
2k − 1 consecutive vertices u−(k−1), . . . , uk−1 and set C contains two leaves attached to
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vertices u−d−1+x and ud+1−x. Note that we have

d(A,A) =

d∑
i=−d

d∑
j=i+1

(j − i), d(B,B) =

k−1∑
i=−(k−1)

k−1∑
j=i+1

(j − i + 2)

d(C,C) = (2d + 2− 2(x− 1)), d(A,B) =

d∑
i=−d

k−1∑
j=−(k−1)

(|i− j|+ 1)

d(A,C) = 2

d∑
i=−d

(|i− x′|+ 1), d(B,C) = 2

k−1∑
i=−(k−1)

(|i− x′|+ 2)

Noting that

W (B1(n, d, x)) = d(A,A) + d(B,B) + d(C,C) + d(A,B) + d(A,C) + d(B,C)

and simplifying the obtained sum yields the formula from the statement of the lemma.

Note that the caterpillar B1(n, d, x) is a caterpillar with relatively long interior path.
Namely, the value d is roughly half of the length of the interior path and in the definition of
B1(n, d, x) the value of d is relatively large with respect to number of vertices n. We now
introduce the formal definition of the second basic caterpillar which will have relatively
short interior path.

Definition 2.7. Let n, d and x be positive integers such that n ≥ 18 is even, 4 ≤ d ≤
⌊
n
4

⌋
and x ≤ n−4d+2

2 . Caterpillar B2(n, d, x) is a caterpillar on even number of vertices n
obtained from path P = u−d . . . u−1u0u1 . . . ud by appending a leaf to 2k− 1 consecutive
vertices u−(k−1), . . . , uk−1 where k = d−1, by appending x leaves to each of the u−(d−1)
and u(d−1), and by appending r leaves to each of the u−d and ud where r = n−4d−2x+2

2 .

Caterpillar graph B2(n, d, x) is illustrated by Figure 2 (vertex ui of the interior path is
in the images denoted just by i in order to make labels easier to see).

a)

b)

Figure 2: Caterpillar graphs: a) B2(20, 4, 1), b) B2(20, 4, 3).

Lemma 2.8. Let n, d and x be integers such that B2(n, d, x) is defined. Then

W (B2(n, d, x)) = (
d

2
+ 1)n2 + (−2d− 2)n− 8d3

3
+

32d

3
− 5 + 8x− 8dx− 2x2.

Proof. Let k = d−1 and r = n−4d−2x+2
2 . To obtain the exact formula for W (B2(n, d, x))

we divide vertices from B2(n, d, x) into four sets: set A contains vertices ui for i =
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−d, . . . , d, set B contains leaves appended to 2k−1 consecutive vertices u−(k−1), . . . , uk−1,
set C contains x leaves appended to each of the u−(d−1) and u(d−1), while finally set D
contains r leaves appended to each of the u−d and ud. Note that

d(A,A) =

d∑
i=−d

d∑
j=i+1

(j − i), d(B,B) =

k−1∑
i=−(k−1)

k−1∑
j=i+1

(j − i + 2)+

d(C,C) = 4
(
x
2

)
+ x2(2d), d(D,D) = 4

(
r
2

)
+ r2(2d + 2)

Also, we have

d(A,B) =

d∑
i=−d

k−1∑
j=−(k−1)

(|i− j|+ 1), d(A,C) = 2x(3 +

2d+1∑
i=3

(i− 1))

d(A,D) = 2r

2d+1∑
i=1

i, d(B,C) = 2x

k−1∑
i=−(k−1)

(i + d + 1)

d(B,D) = 2r

k−1∑
i=−(k−1)

(i + d + 2), d(C,D) = 2(3xr + xr(2d + 1)).

Noting that

W (B1(n, d, x)) = d(A,A) + d(B,B) + d(C,C) + d(D,D)+

+ d(A,B) + d(A,C) + d(A,D)+

+ d(B,C) + d(B,D) + d(C,D)

and simplifying the obtained sum yields the formula from the statement of the lemma.

Finally, let us denote dmin
1 =

⌈
n−2
4

⌉
and xmax

1 =
4+4dmin

1 −n
2 , while dmax

2 =
⌊
n
4

⌋
. Note

that
B1(n, dmin

1 , xmax
1 ) = B2(n, dmax

2 , 1). (2.1)

This equality will provide us with a nice transition from caterpillars based on B1(n, d, x)
to caterpillars based on B2(n, d, x) in the following sections.

3 Even number of vertices
In this section we will first introduce a special kind of caterpillar based on B1(n, d, x)
which will have a longer interior path, then we will introduce a second special kind of
caterpillar based on B2(n, d, x) which will have a shorter interior path. For each of those
two special kinds of caterpillars we will establish a bound on the value of d for which the
interval between values of the Wiener index for two consecutive values of x and d is Wiener
4−complete. The equality (2.1) will then enable us to ”glue” all those intervals into one
big Wiener 4−complete interval.

Definition 3.1. Let n, d and x be integers for which B1(n − 2, d, x) is defined. For s =
−1, 0, 1, 2 caterpillar T1(n, d, x, s) is a caterpillar on even number of vertices n, obtained
from B1(n− 2, d, x) by appending a leaf to the vertex us and a leaf to the vertex ud of the
path P = u−d . . . u−1u0u1 . . . ud in B1(n− 2, d, x).
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a)

b)

Figure 3: Caterpillar graphs: a) T1(22, 6, 2, 0), b) T1(22, 6, 2, 2).

Caterpillar graph T1(n, d, x, s) is illustrated by Figure 3 (vertex ui of the path P is in
the images denoted just by i in order to make labels easier to see).

Lemma 3.2. Let n, d, x and s be integers for which T1(n, d, x, s) is defined. Then

W (T1(n, d, x, s)) = W (B1(n− 2, d, x)) +
n2

4
+

3n

2
+ 2d2 + 3d + 2s2 − s− 2x.

Proof. Let k = (n−2)−(2d+1)−1
2 , x′ = −d− 1 + x. We define a function

f(v) =

d∑
i=−d

(|v − i|+ 1) +

k−1∑
i=−(k−1)

(|v − i|+ 2)+

(|x′ − v|+ 2 + |−x′ − v|+ 2)

Now, the definition of T1(n, d, x, s) implies

W (T1(n, d, x, s)) = W (B1(n− 2, d, x)) + f(s) + f(d) + d− s + 2.

Plugging s and d into the formula for f and simplifying the obtained expression yields the
result.

As a direct consequence of Lemma 3.2 we obtain the following corollary.

Corollary 3.3. It holds that

W (T1(n, d, x, 1)) = W (T1(n, d, x, 0)) + 1,

W (T1(n, d, x, 2)) = W (T1(n, d, x, 0)) + 6,

W (T1(n, d, x,−1)) = W (T1(n, d, x, 0)) + 3.

The main tool in proving the results will be Transformation A of the graph, which,
for a given graph, finds another graph whose value of the Wiener index is greater by 4.
Therefore, it is critical to find a graph on which Transformation A can be applied con-
secutively as many times as possible. That was the basic idea behind constructing graph
T1(n, d, x, s) as we did, so that we can use Theorem 2.4 in filling the interval between
values W (T1(n, d, x, s)) for consecutive values of x and d. So, let us first apply Theorem
2.4 (i.e. find the corresponding value of k) to the graph T1(n, d, x, s).

Lemma 3.4. Let n, d, x and s be integers for which T1(n, d, x, s) is defined. For k =
1
2n−d−4 the interval [W (T1(n, d, x, s)),W (T1(n, d, x, s))+4k2] is Wiener 4−complete.
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Proof. Let us denote k1 = (n−2)−(2d+1)−1
2 . Note that k1 is half of the number of leaves

appended to the vertices u±j of the interior path of T1(n, d, x, s) for j = 0, . . . , k − 1.
Since s ≤ 2, note that the definition of T1(n, d, x, s) and Theorem 2.4 imply the result for
k = k1 − 2.

So, let us now establish for which values of d the gap between W (T1(n, d, x, s)) and
W (T1(n, d, x − 1, s)) is smaller than 4k2 which is the width of an interval which can be
filled by repeatedly applying Transformation A on T1(n, d, x, s) (i.e. by using Lemma 3.4).

Lemma 3.5. Let n, d, x ≥ 2 and s be integers for which T1(n, d, x, s) is defined. For
d ≤ 1

2 (n−
√

2n− 8− 8) the interval

[W (T1(n, d, x, s)),W (T1(n, d, x− 1, s))]

is Wiener 4−complete.

Proof. First note that

W (T1(n, d, x− 1, s))−W (T1(n, d, x, s)) ≤W (T1(n, d, 2, s))−W (T1(n, d, 1, s)) =

= 2(n− 5) + 2.

Therefore, Lemma 3.4 implies it is sufficient to find integers n and d for which it holds that
4k2 ≥ 2(n− 5) + 2 where k = 1

2n− d− 4. By a simple calculation it is easy to establish
that the inequality holds for d ≤ 1

2 (n−
√

2n− 8− 8) so the lemma is proved.

It is easy to show, using Lemma 3.2, that W (T1(n, d, x− 1, s))−W (T1(n, d, x, s)) =
2n−4x which is divisible by 4 since n is even. Therefore, Lemma 3.5 enables us to ”glue”
together Wiener 4−complete intervals

[W (T1(n, d, x, s)),W (T1(n, d, x− 1, s))]

into one bigger Wiener 4−complete interval

[W (T1(n, d, xmax
1 , s)),W (T1(n, d, 1, s))]

where xmax
1 = 4+4d−(n−2)

2 . Corollary 3.3 then implies that roughly the same interval will
be Wiener complete when we take values for every s = −1, 0, 1, 2. We say ”roughly”
because the difference W (T1(n, d, x, 2)) = W (T1(n, d, x, 0)) + 6 makes one point gap at
W (T1(n, d, xmax

1 , 0)) + 2. We now want to ”glue” together such bigger intervals into one
interval on the border between d and d− 1. The problem is that

T1(n, d, xmax
1 , s) 6= T1(n, d− 1, 1, s),

so we have to cover the gap in between. Moreover, it holds that

W (T1(n, d, xmax
1 , s))−W (T1(n, d− 1, 1, s)) = n− 3

which is not divisible by 4. Therefore, we have to find enough graphs whose values of the
Wiener index will cover the gap of n − 3 plus the gap of 6 which arises from the ”rough”
edge of the interval for a given d.
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Lemma 3.6. Let n, d, xmax
1 = 4+4d−(n−2)

2 and s be integers for which T1(n, d, xmax
1 , s)

and T1(n, d− 1, 1, s) are defined. For d ≤ 1
2 (n−

√
n + 3− 6) the interval

[W (T1(n, d− 1, 1, s)),W (T1(n, d, xmax
1 , s)) + 6]

is Wiener 4−complete.

Proof. Since

W (T1(n, d, xmax
1 , s)) + 6−W (T1(n, d− 1, 1, s)) = n− 3 + 6 = n + 3,

Lemma 3.4 implies that it is sufficient to find for which d it holds that 4k2 ≥ n + 3 where
k = 1

2n − (d − 1) − 4. By a simple calculation one obtains that inequality holds for
d ≤ 1

2 (n−
√
n + 3− 6) which proves the theorem.

Note that the restriction on the maximum value of d is stricter in Lemma 3.5 then in
Lemma 3.6 for every n > 4.

Now we have taken out all we could from graph T1, but that covers only caterpillars
with relatively large d. We can further expand the Wiener complete interval to the left side,
i.e. to caterpillars with smaller d, using graph T2 which we will construct from the basic
graph B2.

Definition 3.7. Let n, d and x be integers for which B2(n − 2, d, x) is defined. For s =
−1, 0, 1, 2 caterpillar T2(n, d, x, s) is a caterpillar on even number of vertices n, obtained
from B2(n− 2, d, x) by appending a leaf to the vertex us and a leaf to the vertex ud of the
path P = u−d . . . u−1u0u1 . . . ud in B2(n− 2, d, x).

Caterpillar graph T2(n, d, x, s) is illustrated by Figure 4 (vertex ui of the path P is in
the images denoted just by i in order to make labels easier to see).

a)

b)

Figure 4: Caterpillar graphs: a) T2(22, 4, 3,−1), b) T2(22, 4, 3, 1).

Lemma 3.8. Let n, d, x and s be integers for which T2(n, d, x, s) is defined. Then

W (T2(n, d, x, s)) = W (B2(n− 2, d, x)) + (2d + 4)n− 2d2 − 7d− 6− 2x + 2s2 − s.

Proof. Let k = d− 1 and r = n−4d−2x
2 . We define a function

f(v) =

d∑
i=−d

(|v − i|+ 1) +

k−1∑
i=−(k−1)

(|v − i|+ 2)+

+ x(|v + (d− 1)|+ 2) + x(|v − (d− 1)|+ 2)+

+ r(|v + d|+ 2) + r(|v − d|+ 2).
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Now, the definition of T2(n, d, x, s) implies

W (T2(n, d, x, s)) = W (B2(n− 2, d, x)) + f(s) + f(d) + d− s + 2.

Plugging s and d into the formula for f and simplifying the obtained expression yields the
result.

Again, as a direct consequence of Lemma 3.8 we obtain the following corollary.

Corollary 3.9. It holds that

W (T2(n, d, x, 1)) = W (T2(n, d, x, 0)) + 1,

W (T2(n, d, x, 2)) = W (T2(n, d, x, 0)) + 6,

W (T2(n, d, x,−1)) = W (T2(n, d, x, 0)) + 3.

As in the case of large d, the main tool in obtaining the results will be the following
lemma.

Lemma 3.10. Let n, d, x and s be integers for which T2(n, d, x, s) is defined. For k = d−3
the interval [W (T2(n, d, x, s)),W (T2(n, d, x, s)) + 4k2] is Wiener 4−complete.

Proof. Let us denote k1 = d− 1. Note that k1 is half of the number of leaves appended to
the vertices u±j of the interior path of T2(n, d, x, s) for j = 0, . . . , k−1. Since s ≤ 2, note
that the definition of T2(n, d, x, s) and Theorem 2.4 imply the result for k = k1 − 2.

We will first use Lemma 3.10 to cover the interval between W (T2(n, d, x, s)) and
W (T2(n, d, x − 1, s)), after that we will use it to cover the gap between W (T2(n, d −
1, 1, s)) and W (T2(n, d, xmax

2 , s)).

Lemma 3.11. Let n, d, x ≥ 2 and s be integers for which T2(n, d, x, s) is defined. For
d ≥ 1

2 (
√

2n− 8 + 6) the interval

[W (T2(n, d, x, s)),W (T2(n, d, x− 1, s))]

is Wiener 4−complete.

Proof. First note that for xmax
2 = (n−2)−4d+2

2 it holds that

W (T2(n, d, x− 1, s))−W (T2(n, d, x, s)) ≤
≤W (T2(n, d, xmax

2 − 1, s))−W (T2(n, d, xmax
2 , s)) =

= 2(n− 5) + 2.

Therefore, Lemma 3.10 implies it is sufficient to find for which n and d it holds that 4k2 ≥
2(n − 5) + 2 where k = d − 3. By a simple calculation it is easy to establish that the
inequality holds for d ≥ 1

2 (
√

2n− 8 + 6) so the theorem is proved.

Again, it is easy to show that W (T2(n, d, x−1, s))−W (T2(n, d, x, s)) = 4d+ 4x−8
which is divisible by 4. Therefore, using Lemma 3.11 we can again ”glue” the interval for
different values of x into one bigger interval which will be ”roughly” Wiener complete
when taking values of W (T2(n, d, x, s)) for every s = −1, 0, 1, 2. The next thing is to
cover the gap between W (T2(n, d−1, 1, s)) and W (T2(n, d, xmax

2 , s)) which equals n−3
plus the gap of 6 which arises from the ”rough” ends of the Wiener complete interval for
given n and d.
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Lemma 3.12. Let n, d, xmax
2 = (n−2)−4d+2

2 and s be integers for which T2(n, d, xmax
2 , s)

and T2(n, d− 1, 1, s) is defined. For d ≥ 1
2 (
√
n + 3 + 8) the interval

[W (T2(n, d− 1, 1, s)),W (T2(n, d, xmax
2 , s)) + 6]

is Wiener 4−complete.

Proof. Since

W (T2(n, d, xmax
2 , s)) + 6−W (T2(n, d− 1, 1, s)) = n + 3,

Lemma 3.10 implies it is sufficient to find n and d for which it holds that 4k2 ≥ n + 3
where k = (d − 1) − 3. By a simple calculation one obtains that the inequality holds for
d ≥ 1

2 (
√
n + 3 + 8) which proves the theorem.

Therefore, using graphs T1(n, d, x, s) and T2(n, d, x, s) we obtained two big Wiener
complete intervals, which it would be nice if we could ”glue” together into one big Wiener
complete interval. In order to do that, note that the equality (2.1) implies

T2(n, dmax
2 , 1, s) = T1(n, dmin

1 , xmax
1 , s)

for dmax
2 =

⌊
n−2
4

⌋
, dmin

1 =
⌈
n−4
4

⌉
and xmax

1 =
4+4dmin

1 −(n−2)
2 . Now we can state the

theorem which gives us the largest Wiener complete interval we have managed to obtain.

Theorem 3.13. Let n ≥ 30, dmin
2 =

⌈
1
2 (
√

2n− 8 + 6)
⌉
, xmax

2 =
(n−2)−4dmin

2 +2
2 and

dmax
1 =

⌊
1
2 (n−

√
2n− 8− 8)

⌋
. The interval

[W (T2(n, dmin
2 , xmax

2 , 2)),W (T1(n, dmax
1 , 1, 0))]

is Wiener complete.

Now that we have obtained very large Wiener complete interval, we can finally prove
the following theorem which is our main result and which proves Conjectures 1.1 and 1.2
in terms of n3.

Theorem 3.14. For even n ≥ 30 it holds that
∣∣W int[Tn]

∣∣ = |W [Tn]| = 1
6n

3 + O(n5/2).

Proof. Theorem 3.13 implies

|W [Tn]| ≥
∣∣W int[Tn]

∣∣ ≥W (T1(n, dmax
1 , 1, 0))−W (T2(n, dmin

2 , xmax
2 , 2))

where dmin
2 = 1

2 (
√

2n− 8+6)+p, xmax
2 =

(n−2)−4dmin
2 +2

2 and dmax
1 = 1

2 (n−
√

2n− 8−
8)− 1 + q for p ∈ [0, 1〉 and q ∈ 〈0, 1] . From Lemmas 3.2 and 3.8 we further obtain that∣∣W int[Tn]

∣∣ ≥ 1

6
n3− 1

2

√
2n5 − 8n4−4n2 +

10

3

√
2n3 − 8n2 +

143

6
n+21

√
2n− 8−51.

On the other hand, recall that
∣∣W int[Tn]

∣∣ ≤ |W [Tn]| ≤ W (Pn) −W (Sn) + 1 = 1
6n

3 −
n2 + 11

6 n, which proves the theorem.
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Note that caterpillar trees T1(n, d, x, s) are chemical trees (i.e. trees in which the de-
gree of every vertex is at most 4) for all possible values of its parameters and they remain
chemical after repeated application of Transformation A. Therefore, half of these results
hold for chemical trees and we obtain the following corollary.

Corollary 3.15. Let T 4
n be a class of chemical trees on n vertices where n ≥ 30 is even.

Then
∣∣W int[T 4

n ]
∣∣ =

∣∣W [T 4
n ]
∣∣ = Θ(n3).

Proof. Note that Lemmas 3.5 and 3.6 imply that∣∣W [T 4
n ]
∣∣ ≥ ∣∣W int[T 4

n ]
∣∣ ≥W (T1(n, dmax

1 , 1, 0))−W (T1(n, dmin
1 , xmax

1 , 2))

where dmax
1 = 1

2 (n−
√

2n− 8− 8)− 1 + p, dmin
1 = n−2

4 + q and xmax
1 =

6+4dmin
1 −n
2 for

p ∈ 〈0, 1] and q ∈ [0, 1〉 . From Lemma 3.2 we obtain∣∣W int[T 4
n ]
∣∣ ≥ 1

12
n3−1

4

√
2n5 − 8n4−15

8
n2+

5

3

√
2n3 − 8n2+

101

12
n+

9

2

√
2n− 8−134

3
.

Note that this result for chemical trees is obtained using only chemical trees with rela-
tively large diameter and the result is still the best possible with regard to the highest power
n3 (just the power, not the coefficient). This means that this result is something that proba-
bly can be significantly improved by considering chemical trees with shorter diameter, but
we leave that as an open problem for future research.

4 Odd number of vertices
The strategy to prove the result in the case of odd number of vertices is the same as in the
case of even number of vertices. The only difference is that in this case the value of the
Wiener index can be only even number so we are aiming at the largest possible interval of
consecutive even numbers which are values of the Wiener index for a tree.

Definition 4.1. Let n, d and x be integers for which B1(n − 1, d, x) is defined. For s =
0, 1 caterpillar T3(n, d, x, s) is a caterpillar on odd number of vertices n, obtained from
B1(n−1, d, x) by appending a leaf to the vertex us of the path P = u−d . . . u−1u0u1 . . . ud

in B1(n− 1, d, x).

Caterpillar tree T3(n, d, x, s) is illustrated by Figure 5 (vertex ui of the path P is in the
images denoted just by i in order to make labels easier to see).

a)

b)

Figure 5: Caterpillar graphs: a) T3(21, 6, 2, 0), b) T3(21, 6, 2, 1).
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Lemma 4.2. Let n, d, x and s be integers for which T3(n, d, x, s) is defined. Then

W (T3(n, d, x, s)) = W (B1(n− 1, d, x)) +
n2

4
− dn + 2d2 + 5d +

11

4
− 2x + 2s2.

Proof. Let k = (n−1)−(2d+1)−1
2 , x′ = −d− 1 +x. The definition of T3(n, d, x, s) implies

W (T3(n, d, x, s)) = W (B1(n− 1, d, x)) +

d∑
i=−d

(|s− i|+ 1)+

+

k−1∑
i=−(k−1)

(|s− i|+ 2) + (s− x′ + 2)+

+ (−x′ − s + 2).

Simplifying this expression yields the result.

As a direct consequence of Lemma 4.2 we obtain the following corollary.

Corollary 4.3. It holds that W (T3(n, d, x, 1)) = W (T3(n, d, x, 0)) + 2.

We now want to apply Theorem 2.4 to T3(n, d, x, s), i.e. we want to establish the value
of k in the case of this special graph.

Lemma 4.4. Let n, d, x and s be integers for which T3(n, d, x, s) is defined. For k =
1
2n−d−

5
2 the interval [W (T3(n, d, x, s)),W (T3(n, d, x, s))+4k2] is Wiener 4−complete.

Proof. Let us denote k1 = (n−1)−(2d+1)−1
2 . Note that k1 is half of the number of leaves

appended to the vertices u±j of the interior path of T3(n, d, x, s) for j = 0, . . . , k − 1.
Since s ≤ 1, note that the definition of T3(n, d, x, s) and Theorem 2.4 imply the result for
k = k1 − 1.

So, let us now establish for which values of d the gap between W (T3(n, d, x, s)) and
W (T3(n, d, x− 1, s)) is smaller than 4k2 where k = 1

2n− d− 5
2 .

Lemma 4.5. Let n, d, x ≥ 2 and s be integers for which T3(n, d, x, s) is defined. For
d ≤ 1

2 (n−
√

2n− 6− 5) the interval

[W (T3(n, d, x, s)),W (T3(n, d, x− 1, s))]

is Wiener 4−complete.

Proof. First note that

T3(n, d, x− 1, s)− T3(n, d, x, s) ≤ T3(n, d, 2, s)− T3(n, d, 1, s) =

= 2(n− 4) + 2.

Therefore, Lemma 4.4 implies it is sufficient to find integers n and d for which it holds that
4k2 ≥ 2(n− 4) + 2 where k = 1

2n− d− 5
2 . By a simple calculation it is easy to establish

that the inequality holds for d ≤ 1
2 (n−

√
2n− 6− 5) so the lemma is proved.
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Using Lemma 4.2 it is easy to establish that

W (T3(n, d, x− 1, s))−W (T3(n, d, x, s)) = 2(n− 2x + 1)

which is divisible by 4 since n is odd. Moreover, note that for xmax
3 = 4+4d−(n−1)

2 it holds
that

T3(n, d, xmax
3 , s) = T3(n, d− 1, 1, s).

Therefore we can use Lemma 4.5 and ”glue” together intervals both on the border between
x and x− 1 and on the border of d and d− 1, so we will obtain one large interval which is
Wiener 2−complete (because of Corollary 4.3).

Again, here we have used T3(n, d, x, s) to the maximum, but we have covered thus
only caterpillars with large d. Let us now use graph B2(n, d, x) to create the fourth special
kind of caterpillars which we will use to widen our interval to caterpillars with small d.

Definition 4.6. Let n, d and x be integers for which B2(n − 1, d, x) is defined. For s =
0, 1 caterpillar T4(n, d, x, s) is a caterpillar on odd number of vertices n, obtained from
B2(n−1, d, x) by appending a leaf to the vertex us of the path P = u−d . . . u−1u0u1 . . . ud

in B2(n− 1, d, x).

Caterpillar graph T3(n, d, x, s) is illustrated by Figure 6 (vertex ui of the path P is in
the images denoted just by i in order to make labels easier to see).

a)

b)

Figure 6: Caterpillar graphs: a) T4(21, 4, 3, 0), b) T4(21, 4, 3, 1).

Lemma 4.7. Let n, d, x and s be integers for which T4(n, d, x, s) is defined. Then

W (T4(n, d, x, s)) = W (B2(n− 1, d, x)) + (2 + d)n− 2d2 − 3d− 1 + 2s2 − 2x.

Proof. Let k = d− 1 and r = (n−1)−4d−2x+2
2 . The definition of T4(n, d, x, s) implies

W (T4(n, d, x, s)) = W (B2(n− 1, d, x)) +

d∑
i=−d

(|s− i|+ 1)+

+

k−1∑
i=−(k−1)

(|s− i|+ 2) + (s− x′ + 2)+

+ 2x(d + 1) + 2r(d + 2).

Simplifying this expression yields the result.

Corollary 4.8. It holds that W (T4(n, d, x, 1)) = W (T4(n, d, x, 0)) + 2.
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Let us now apply Theorem 2.4 to T4(n, d, x, s).

Lemma 4.9. Let n, d, x and s be integers for which T4(n, d, x, s) is defined. For k = d−2
the interval [W (T4(n, d, x, s)),W (T4(n, d, x, s)) + 4k2] is Wiener 4−complete.

Proof. Let us denote k1 = d− 1. Note that k1 is half of the number of leaves appended to
the vertices u±j of the interior path of T3(n, d, x, s) for j = 0, . . . , k−1. Since s ≤ 1, note
that the definition of T4(n, d, x, s) and Theorem 2.4 imply the result for k = k1 − 1.

Now we can establish the minimum value of d for which the difference between Wiener
index of T4(n, d, x, s) and T4(n, d, x− 1, s) can be ”covered” by Transformation A.

Lemma 4.10. Let n, d, x ≥ 2 and s be integers for which T4(n, d, x, s) is defined. For
d ≥ 1

2 (
√

2n− 6 + 4) the interval

[W (T4(n, d, x, s)),W (T4(n, d, x− 1, s))]

is Wiener 4−complete.

Proof. First note that for xmax
4 = (n−1)−4d+2

2 it holds that

W (T4(n, d, x− 1, s))−W (T4(n, d, x, s))

≤W (T4(n, d, xmax
4 − 1, s))−W (T4(n, d, xmax

4 , s)) =

= 2(n− 4) + 2.

Therefore, Lemma 4.9 implies it is sufficient to find integers n and d for which it holds that
4k2 ≥ 2(n − 4) + 2 where k = d − 2. By a simple calculation it is easy to establish that
the inequality holds for d ≥ 1

2 (
√

2n− 6 + 4) so the lemma is proved.

Using Lemma 4.7 it is easy to establish that

W (T4(n, d, x− 1, s))−W (T4(n, d, x, s)) = 4(x + 2d− 2)

which is divisible by 4. Moreover, note that for xmax
4 = (n−1)−4d+2

2 it holds that

T4(n, d, xmax
4 , s) = T4(n, d− 1, 1, s).

Therefore we can use Lemma 4.10 and ”glue” together intervals both on the border between
x and x− 1 and on the border of d and d− 1, so we will obtain one large interval which is
Wiener 2−complete (because of Corollary 4.8).

Finally, noting that for dmin
3 =

⌈
n−3
4

⌉
, xmax

3 =
4+4dmin

3 −(n−1)
2 and dmax

4 =
⌊
n−1
4

⌋
it

holds that
T3(n, dmin

3 , xmax
3 , s) = T4(n, dmax

4 , 1, s),

we conclude that we can ”glue” together two large Wiener 2−complete intervals we ob-
tained (one for large values of d and the other for small values of d), and thus we obtain
the following theorem which gives us the largest Wiener 2−complete interval we manage
to obtain.
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Theorem 4.11. Let n ≥ 21, dmax
3 =

⌊
1
2 (n−

√
2n− 6− 5)

⌋
, dmin

4 =
⌈
1
2 (
√

2n− 6 + 4)
⌉

and xmax
4 =

(n−1)−4dmin
4 +2

2 . The interval

[W (T4(n, dmin
4 , xmax

4 , 1)),W (T3(n, dmax
3 , 1, 0))]

is Wiener 2−complete.

Having the largest Wiener 2−complete interval from the previous theorem, we can now
finally prove the following theorem which is our main result and which proves Conjectures
1.1 and 1.2 in terms of n3.

Theorem 4.12. For odd n ≥ 21 it holds that
∣∣W int[Tn]

∣∣ = |W [Tn]| = 1
12n

3 + O(n5/2).

Proof. Using Theorem 3.13 we obtain

|W [Tn]| ≥
∣∣W int[Tn]

∣∣ ≥ (W (T3(n, dmax
3 , 1, 0))−W (T4(n, dmin

4 , xmax
4 , 1)))/2

where dmax
3 = 1

2 (n −
√

2n− 6 − 5) − 1 + p, dmin
4 = 1

2 (
√

2n− 6 + 4) + q and xmax
4 =

(n−1)−4dmin
4 +2

2 for p ∈ 〈0, 1] and q ∈ [0, 1〉 . Now, using Lemmas 4.2 and 4.7 we further
obtain

|W [Tn]| ≥
∣∣W int[Tn]

∣∣ ≥ 1

12
n3 − 1

4

√
2n5 − 6n4 − 3

2
n2 +

5

3

√
2n3 − 6n2 +

+
83

12
n− 13

12

√
2n− 6− 253

12
.

On the other hand, Theorem 2.1 implies
∣∣W int[Tn]

∣∣ ≤ |W [Tn]| ≤ (W (Pn) −W (Sn) +
1)/2 = 1

12n
3 − 1

2n
2 + 11

12n.

Again, since caterpillars T3(n, d, x, s) are chemical trees for all possible values of pa-
rameters, and remain chemical after applying repeatedly Transformation A, half of these
results hold for chemical trees, i.e. we obtain the following corollary.

Corollary 4.13. Let T 4
n be a class of chemical trees on n vertices where n ≥ 21 is odd.

Then
∣∣W int[T 4

n ]
∣∣ =

∣∣W [T 4
n ]
∣∣ = Θ(n3).

Proof. Using Lemma 4.5 we obtain∣∣W [T 4
n ]
∣∣ ≥ ∣∣W int[T 4

n ]
∣∣ ≥ (W (T3(n, dmax

3 , 1, 0))−W (T3(n, dmin
3 , xmax

3 , 1)))/2

where dmin
3 = n−3

4 + p, xmax
3 =

4+4dmin
3 −(n−1)

2 and dmax
3 = 1

2 (n−
√

2n− 6− 5)− 1 + q
for p ∈ [0, 1〉 and q ∈ 〈0, 1] . Using Lemma 4.2 we further obtain∣∣W int[T 4

n ]
∣∣ ≥ 1

24
n3−1

8

√
2n5 − 6n4−11

16
n2+

5

6

√
2n3 − 6n2+

19

12
n−61

24

√
2n− 6−685

48
.

Again, this result for chemical trees is obtained by considering only chemical trees with
large diameter so it probably can be significantly improved, but we leave that as an open
problem for future research.
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5 Conclusion
In this paper we have proved that in the case of even n the cardinality of the largest interval
W int[Tn] of consecutive integers which are values of the Wiener index for a tree graph
on n vertices equals 1

6n
3 + O(n5/2). In the case of odd n the value of the Wiener index

for a tree on n vertices can be only even number, therefore the cardinality of the largest
interval W int[Tn] of consecutive even integers which are values of the Wiener index for a
tree graph on n vertices equals 1

12n
3+O(n5/2). Since the set W int[Tn] is a subset of the set

W [Tn] of all values of the Wiener index for trees on n vertices, this immediately yields the
same result on the cardinality of W [Tn]. The upper bound |W [Tn]| ≤ 1

6n
3−n2 + 11

6 n (i.e.
|W [Tn]| ≤ 1

12n
3− 1

2n
2 + 11

12n for odd n) is easily established by calculating the difference
of the value of the Wiener index for maximal and minimal tree graphs (the path Pn and
the star Sn respectively). Comparing this bound with our results it is readily seen that our
results are best possible with respect to n3. Yet, with respect to n2 the results are not so
good, because we obtained |W [Tn]| =

∣∣W int[Tn]
∣∣ = 1

6n
3 +O(n5/2) (i.e. 1

12n
3 +O(n5/2)

in the case of odd n). This may be due to the fact that in the paper we aimed at the bound
for
∣∣W int[Tn]

∣∣ and we stopped with our search when the interval was interrupted (when
the diameter of a tree became too small or too large). There is the possibility that the same
approach extended to the caterpillars of all diameters would yield sufficient improvement
on |W [Tn]| to reduce O(n5/2) to O(n2). But we leave that for future research.

Furthermore, in our research we focused only on caterpillar trees, so the obvious corol-
lary is that the same results hold in the narrower class of caterpillar trees. Half of the
caterpillars we used are chemical trees, which yields relatively strong result for the class
of chemical trees as a direct corollary. Also, we researched the caterpillars grouped by the
length of the interior path (which is nearly the diameter), so the results for trees with given
diameter would also follow easily though it is questionable how strong those results would
be. Researching the same question in the classes of trees with other given parameters might
also be interesting direction of future research.
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