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Abstract

Let G be a group acting faithfully and transitively on Ωi for i = 1, 2. A famous
theorem by Burnside implies the following fact: If |Ω1| = |Ω2| is a prime and the rank
of one of the actions is greater than two, then the actions are equivalent, or equivalently
|(α, β)G| = |Ω1| = |Ω2| for some (α, β) ∈ Ω1 × Ω2.

In this paper we consider a combinatorial analogue to this fact through the theory of
coherent configurations, and give some arithmetic sufficient conditions for a coherent con-
figuration with two homogeneous components of prime order to be uniquely determined
by one of the homogeneous components.
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Math. Subj. Class.: 05C15, 05C10

1 Introduction
A famous theorem by Burnside states that each transitive permutation group of prime de-
gree with rank greater than two is Frobenius or regular. Since any Frobenius group of prime
degree is a subgroup of one-dimensional affine group, it follows that such a permutation
group is uniquely determined by its rank and degree up to equivalence of group actions.
Especially, if a group acts faithfully, transitively but not 2-transitively on each of two sets
of the same prime size, then the two actions are equivalent. Let us formulate this fact in the
following two paragraphs.
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Let G be a group acting transitively on Ωi for i = 1, 2. Then G acts on Ωi × Ωj by

(α, β)g = (αg, βg) for (α, β) ∈ Ωi × Ωj and g ∈ G,

for all i, j = 1, 2. It is well-known that (e.g., see [6, Lemma 1.6B]) the following are
equivalent:

(a) The action of G on Ω1 is equivalent to that on Ω2;

(b) There exists (α, β) ∈ Ω1 × Ω2 such that Gα = Gβ ;

(c) There exists (α, β) ∈ Ω1 × Ω2 such that |(α, β)G| = |Ω1| = |Ω2|.

Note that the rank of the action ofG on Ωi is equal to the number of orbits ofG on Ωi×Ωi,
and if G acts faithfully on Ωi, then G can be identified with a permutation group of Ωi.

Suppose that G acts faithfully on Ωi with i = 1, 2 and |Ω1| = |Ω2| is a prime. Then,
as mentioned in the first paragraph, these actions are equivalent if the rank of one of the
actions is greater than two, and so there exists an orbit R of G on Ω1 × Ω2 such that
|R| = |Ω1| = |Ω2|.

In this paper we consider a combinatorial analogy to this fact through the theory of
coherent configurations. The concept of coherent configurations was first introduced by
Higman who published a series of papers (e.g., [11], [12], [13]) to associate a lot of impor-
tant criterions with group actions.

Here we define a coherent configuration, its intersection numbers and its fibers accord-
ing to the notations as in [7].

Definition 1.1. Let V be a finite set and R a partition of V × V . We say that the pair
C = (V,R) is a coherent configuration if it satisfies the following:

1. The diagonal relation ∆V is a union of elements ofR where we denote {(u, u) | u ∈
U} by ∆U for a set U .

2. For each R ∈ R its transpose Rt = {(u, v) | (v, u) ∈ R} is an element ofR.

3. For all R,S, T ∈ R there exists a constant cTRS such that

cTRS = |R(u) ∩ St(v)| for all (u, v) ∈ T ,

where we denote by T (w) the set {z ∈ V | (w, z) ∈ T} for w ∈ V and T ∈ R.

The constants cTRS are called the intersection numbers. A subset X of V is called a
fiber of C if ∆X ∈ R. We denote the set of all fibers of C by Fib(C). By Definition 1.1(i),
V is partitioned into the fibers of C, and by Definition 1.1(i),(iii),R is partitioned into{

RX,Y | X,Y ∈ Fib(C)
}

where RX,Y =
{
R ∈ R | R ⊆ X × Y

}
.

Let U be a union of fibers of C. Then the pair(
U, {R ∈ R | R ⊆ U × U}

)
,

is also a coherent configuration, which is denoted by CU .
For R ∈ RX,Y we denote c∆X

RRt by dR. Then, by two-way counting we have

|R| = dR|X| = dRt |Y |. (1.1)
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ForX ∈ Fib(C), CX is nothing but an association scheme, i.e., a coherent configuration
with only one fiber (see [2] or [20] for its background). For short we shall write RX,X as
RX and CX is called a homogeneous component of C.

A general question here is formulated as follows: what can be said about the coherent
configuration if its homogeneous components are known. For example, it is a well-known
fact that the coherent configuration corresponds to a system of linked block designs if
|RX | = 2 for all X ∈ Fib(C). After the seminal Hanaki-Uno theorem on association
schemes of prime order (see [10] or Theorem 3.1), it seems quite natural to ask on a possible
structure of a coherent configuration each homogeneous component of which is of prime
order. The following is our first main result answering to this question:

Theorem 1.2. Let X,Y ∈ Fib(C) such that |X| = |Y | is a prime. Then |RX,Y | ∈
{1, |RX |}. In particular, if |RX,Y | > 1, then

|RX,Y | = |RX | = |RY |.

In order to state our second main theorem we need to recall the following observation.
LetG be a group acting on a finite set Ω. ThenG acts on Ω×Ω componentwise, and an orbit
of G on Ω× Ω is called an orbital (or 2-orbit) of G. We denote the set of orbitals of G by
OG. Then it is well-known that CG = (Ω,OG) is a coherent configuration, and Fib(CG) is
the set of orbits of G on Ω. In this sense, a coherent configuration is a combinatorial object
to generalize the orbitals of a group action.

Now we assume that C = (V,R) is a coherent configuration with exactly two fibers X ,
Y . Then (1.1) proves the equivalence of the first two statements of the following (see [16]
for the remaining):

(d) There exists R ∈ RX,Y such that |R| = |X| = |Y |.
(e) 1 ∈ {dR | R ∈ RX,Y } ∩ {dR | R ∈ RY,X}.

(f) C is isomorphic to CX
⊗
T2 where Tn =

(
{1, 2, . . . , n},

{
{(i, j)} | 1 ≤ i, j ≤ n

})
(see Section 2 for the definition of isomorphism and

⊗
).

We notice the following:
(d) is a combinatorial analogy to (c), and such R is a matching between X and Y ; (e)
is a simple arithmetic condition on intersection numbers; (f) implies that CX and CY are
isomorphic, and C is uniquely determined by CX .

In this paper we aim to obtain the analogous conclusion (d)–(f) to (a)–(c). The follow-
ing is our second main result to generalize the fact as in the first paragraph under certain
arithmetic conditions on intersection numbers:

Theorem 1.3. Suppose that C = (V,R) is a coherent configuration with exactly two fibers
X , Y satisfying

|X| = |Y | is a prime, |RX,X | > 2 and |RX,Y | > 1. (1.2)

Then there exists R ∈ RX,Y such that |R| = |X| = |Y | if one of the following conditions

holds with k =
|X| − 1

|RX,X | − 1
:

(i) |RX,X | > k2(k + e− 2) where e is the number of prime divisors of k;
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(ii) k ∈ {q, 2q, 3q} for some prime power q;

(iii) k = 4q for some prime power q with 3 - q + 1.

Let us show the reason why we exclude the case of |RX,X | = 2. Each symmetric
design induces the coherent configuration with exactly two fibers and eight relations (see
[14] or [16, Example 1.3]), and if the design is a non-trivial one on a prime number of
points, like the Fano plane, then the induced coherent configuration does not satisfy (d)–
(f).

Of course, if |RX,Y | = 1, then none of (d)–(f) hold, while C is the direct sum of CX
and CY (see [16] for the definition of direct sum).

Remark 1.4. Applying Theorem 1.3 for CX∪Y with |X| < 100 we obtain the same con-
clusion as Theorem 1.3 except for the case (|X|, k) = (71, 35) (see Section 5 for the
details).

Suppose that

(|X|, k) = (71, 35) and 1 /∈ {dR | R ∈ RX,Y }. (1.3)

Then by Theorem 1.2, |RX,Y | = 3. The three elements ofRX,Y must form three symmet-
ric designs whose parameters (v, k, λ) are (71, 35, 17), (71, 21, 6) and (71, 15, 3), respec-
tively. Though each of such symmetric designs exists (see [1], [3], [5], [9] and [17] or [4,
II.6.24,VI.16.30]), it does not guarantee the existence of a coherent configuration satisfying
(1.3).

In [14], Higman gave a result to eliminate the case of (|X|, k) = (71, 35) as in the
previous paragraph. But, the proof given in [14, (3.2)] contains a serious gap, so the result
may not be recognized to be true, while we have not found any counterexample. We would
be able to disprove [14, (3.2)] if there exists a coherent configuration satisfying (1.3).

In Section 2 we prepare several basic results on intersection numbers and introduce
the concepts of complex products and equitable partitions. In Section 3 we give a proof
of Theorem 1.2. In Section 4 we give a proof of Theorem 1.3. We add Section 5 for the
elimination of coherent configurations on at most 200 points satisfying (1.2).

2 Preliminaries
Throughout this section we assume that C = (V,R) is a coherent configuration.

Let Ci = (Vi,Ri) be a coherent configurations, i = 1, 2.
An isomorphism from C1 to C2 is defined to be a bijection ψ : V1 ∪ R1 −→ V2 ∪ R2

such that for all u, v ∈ V1 and R ∈ R1,

(u, v) ∈ R⇐⇒
(
ψ(u), ψ(v)

)
∈ ψ(R).

We say that C1 is isomorphic to C2 and denote it by C1 ' C2 if there exists an isomorphism
from C1 to C2.

We set
R1 ⊗R2 =

{
R1 ⊗R2 | R1 ∈ R1, R2 ∈ R2

}
,

where
R1 ⊗R2 =

{(
(u1, u2), (v1, v2)

)
| (u1, v1) ∈ R1, (u2, v2) ∈ R2

}
.
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Then
(
V1 × V2,R1 ⊗R2

)
is a coherent configuration called the tensor product of C1 and

C2 and denoted by C1
⊗
C2.

Following [20] we define the complex product on the power set ofR. For all subsets S
and T ofR we define the complex product ST of S and T to be the subset{

R ∈ R | ∃(S, T ) ∈ S × T ; cRST > 0
}
.

The complex product is an associative binary operation on the power set of R where the
proof is parallel to that for association schemes (see [20]). For convenience we shall write
S{T}, {S}T and {S}{T} as ST , ST and ST , respectively.

In this paper we need intersection numbers cTRS for R ∈ RX,Y , S ∈ RY,Z and T ∈
RX,Z under the assumption |X| = |Y | = |Z|. The following is a collection of simplified
equations on such intersection numbers (see [19] or [16, Lemma 2.2] for general formed
equations 1). For U ⊆ R we shall write dU instead of

∑
U∈U dU .

Lemma 2.1. For all X , Y , Z ∈ Fib(C) with |X| = |Y | = |Z| and all R ∈ RX,Y ,
S ∈ RY,Z and T ∈ RX,Z we have the following:

1. dRdS =
∑

T∈RX,Z

cTRSdT ;

2. cTRSdT = cRTStdR = cSRtT dS and lcm(dR, dS) | cTRSdT ;

3. |{U ∈ R | cURS > 0}| ≤ gcd(dR, dS), i.e., |RS| ≤ gcd(dR, dS);

4. |X| = dRX,X
= dRX,Y

.

The following lemmata were proved in [18, Lemma 2.3, Lemma 2.2]2:

Lemma 2.2. For all S, T ∈ RX,Y with |X| = |Y |, we have

SSt ∩ TT t ⊆ {∆X} if and only if cRStT ≤ 1 for each R ∈ R.

Lemma 2.3. Let Z ∈ Fib(C) such that |Z| is a prime. Then for each R ∈ RZ \ {∆Z} we
have:

1. dR = k where k =
|Z| − 1

|RZ | − 1
;

2.
∑
S∈RZ

cRSSt = k − 1.

According to [8] or [15] we define an equitable partition of a homogeneous component.

Definition 2.4. Let X ∈ Fib(C) and Π = {C1, C2, . . . , Cm} be a partition of X , i.e.,

X =

m⋃
i=1

Ci, Ci ∩ Cj 6= ∅ if i 6= j, and Ci 6= ∅ for each i = 1, 2, . . . ,m.

An element of Π is called a cell. We say that Π is an equitable partition of CX if, for all
i, j = 1, 2, . . . ,m and each R ∈ RX , |R(x) ∩ Cj | is constant whenever x ∈ Ci.

1We missed to assume that all fibers of C have the same size at Lemma 2.2 in [16] where the lemma is used
only for such coherent configurations in [16].

2Though it is a statement for association schemes, a parallel way to the proof can be applied for balanced
coherent configurations.
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For example, {X} and {{x} | x ∈ X} are equitable partitions of CX .
For each Y ∈ Fib(C) and each y ∈ Y we define

Πy :=
{
T (y) | T ∈ RY,X

}
. (2.1)

Then Πy is an equitable partition of CX , since

|R(x) ∩ S(y)| = cTRSt whenever x ∈ T (y).

3 Proof of Theorem 1.2
In [10] Hanaki and Uno proved the following brilliant theorem:

Theorem 3.1. All non-principal irreducible characters of an association scheme of prime
order are algebraic conjugate and of degree one.

The following proposition is obtained as a consequence of the previous theorem:

Proposition 3.2. Let C = (V,R) be an association scheme of prime order and Π be an
equitable partition of C. Then |Π| ≡ 1 mod |R| − 1.

Proof. Let A denote the adjacency algebra of C over C. Then the subspace W spanned by
the characteristic vectors of the cells in Π is a left A-module with respect to the ordinary
matrix product. Since A is semi-simple, W is a direct sum of irreducible submodules.

Note that the subspace spanned by the all-one vector is anA-submodule ofW affording
the principal character, and its multiplicity is one.

Since the character afforded by W is integral valued, it is left invariant from any al-
gebraic conjugate action. It follows from Theorem 3.1 that all non-principal irreducible
submodules of W have the same multiplicity, say m. Since

dimC(W ) = |Π| and dimC(A) = |R|,

it follows that

|Π| = 1 +m(|R| − 1).

Proof of Theorem 1.2. Let C = (V,R) be a coherent configuration with X , Y ∈ Fib(C)
such that |X| = |Y | is a prime. Recall that Πy is an equitable partition of CX where y ∈ Y .
By (2.1), |Πy| = |RX,Y |. Then it follows from Proposition 3.2 that

|RX,Y | ≡ 1 mod |RX | − 1.

Since |RX,Y | ≤ |RX | (see [13, p.223] or [16, Proposition 2.7]), |RX,Y | ∈ {1, |RX |}.
Applying the first statement for CY with |RX,Y | ≤ |RY |, we obtain the second statement.
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4 Proof of Theorem 1.3
For the remainder of this paper we assume that C = (V,R) is a coherent configuration with
X , Y ∈ Fib(C) such that

m = |X| = |Y | is a prime, r = |RX | > 2 and |RX,Y | > 1.

By Theorem 1.2, we have

r = |RX | = |RX,Y | = |RY |.

For the remainder of this paper we set

k =
m− 1

r − 1
.

By Lemma 2.3(i) the multi-set (dR | R ∈ RZ) withZ ∈ {X,Y } coincides with (1, k, . . . , k)
by a suitable ordering. In this section we aim to show that 1 ∈ {dR | R ∈ RX,Y }, which
implies that the multi-set (dR | R ∈ RX,Y ) coincides with (1, k, . . . , k) by a suitable or-
dering, since the complex product SR is a singleton with dSR = dS whenever S ∈ RX
and dR = 1 by Lemma 2.1(iii).

Lemma 4.1. For all S, T ∈ RX,Y with S 6= T we have the following:

(i) dSdS ≡ dS mod k;

(ii) dSdT ≡ 0 mod k.

Proof. (i) Applying Lemma 2.1(i) for S and St with dS = dSt and c∆X

SSt = dS , we obtain
that

dSdS = dS + k
∑

T∈RX,X

T 6=∆X

cTSSt .

(ii) Applying Lemma 2.1(i) for S and T t with dT = dT t and ∆X /∈ ST t, we obtain
that

dSdT = k
∑

T∈RX,X

cTST t .

We set

S1 := {T ∈ RX,Y | k - dT }, S2 := {T ∈ RX,Y | dT = k} and

S3 := {T ∈ RX,Y | k | dT , k < dT }.

Lemma 4.2. Let k = pα1
1 · · · pαe

e where pi are the distinct prime divisors of k and αi are
positive integers. Then we have the following:

1. For each i = 1, . . . , e there exists a unique S ∈ RX,Y such that pi - dS;

2. |S1| ≤ e;
3. k|S3|+ dS1 ≤ 1 + k(e− 1).
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Proof. (i) By Lemma 2.1(iv) and Lemma 2.3(i),

m = 1 + (r − 1)k ≡ 1 mod pi.

Since m = dRX,Y
, there exists an S ∈ RX,Y such that pi - dS . The uniqueness of such S

is a direct consequence of Lemma 4.1(ii).
(ii) The correspondence given in (i) gives a function from {p1, p2, . . . , pe} to S1. It

remains to show that this function is onto.
Let S ∈ S1. By the definition of S1, there exists pi such that piαi does not divide dS .

By Lemma 4.1(i),
dSdS ≡ dS mod k.

Therefore dS(dS − 1) is divided by k. Since dS and dS − 1 are relatively prime, pαi
i - dS

implies that pi - dS . It follows from (i) that dS lies in the range of the function.
(iii) Note that r = |S1|+ |S2|+ |S3| and

m =
∑

S∈RX,Y

dS =

3∑
i=1

dSi ≥ dS1 + k|S2|+ 2k|S3|.

Since k|S2|+ k|S3| = k(r − |S1|) and m = 1 + k(r − 1), it follows that

1 + k(|S1| − 1) ≥ dS1 + k|S3|.

By (ii), we have
1 + k(e− 1) ≥ dS1 + k|S3|.

This completes the proof of (iii).

Lemma 4.3. We have max{dS | S ∈ RX,Y } ≤ k ·min{dS | S ∈ RX,Y }.

Proof. Let S, T ∈ RX,Y such that

dS = min{dS | S ∈ RX,Y } and dT := max{dS | S ∈ RX,Y }.

Then T ∈ RS for some R ∈ RX since T ∈ RXS. Applying Lemma 2.1(i) we have
dT ≤ kdS .

For S ∈ RX,Y we define

US :=
{
R ∈ RX | RtR ∩ SSt = {∆X}

}
.

Lemma 4.4. For each S ∈ RX,Y we have the following:

1. r − |US | ≤ (dS − 1)(k − 1).

2. If R ∈ US − {∆X}, then k divides dT for each T ∈ RS.

3. If USS ∩ S2 = ∅, then r < dS(k + e− 2).

Proof. (i) Note that

RX − US =
⋃

R1∈SSt−{∆X}

{R ∈ RX | R1 ∈ RtR}.
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By Lemma 2.1(iii) with c∆X

SSt > 0,

|SSt − {∆X}| ≤ dS − 1.

It follows from Lemma 2.3(ii) that

|{R ∈ RX | R1 ∈ RtR}| ≤
∑
R∈R

cR1

RtR = k − 1.

This implies that
r − |US | = |RX − US | ≤ (dS − 1)(k − 1).

(ii) It is an immediate consequence of Lemma 2.1(ii) and Lemma 2.2.
(iii) Suppose that

USS ∩ S2 = ∅.

Then we have
USS ⊆ RX,Y − S2.

It follows from (ii) that
(US − {∆X})S ⊆ S3.

By Lemma 4.2(iii) and Lemma 4.3,

dS3 ≤ dSk|S3| ≤ dS [1 + k(e− 1)− dS1 ]. (4.1)

On the other hand, applying Lemma 2.2 and Lemma 2.1(iv) for the first inequality and (i)
for the second one,

dUSS ≥ 1 + (|US | − 1)k − dS ≥ 1 + [r − (dS − 1)(k − 1)− 1]k. (4.2)

Since (US − {∆X})S ⊆ S3,

dUSS − dS ≤ d(US−{∆X})S ≤ dS3 .

It follows from (4.1) and (4.2) that

1 + [r − (dS − 1)(k − 1)− 1]k − dS ≤ dS [1 + k(e− 1)− dS1 ],

and hence,

r ≤ dS
k

[2 + k(e− 1)− dS1 ]− 1

k
+ (dS − 1)(k − 1) + 1.

Thus,

r ≤ dS [
2

k
+ e− 1− dS1

k
+ k − 1]− k + 2− 1

k
< dS(k + e− 2).

This completes the proof of (iii).

Proposition 4.5. If r > k2(k + e − 2) where e is the number of prime divisors of k, then
1 ∈ {dS | S ∈ RX,Y }.
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Proof. We claim that
min{dS | S ∈ RX,Y } ≤ k.

If not, then
1 + k(r − 1) = m =

∑
S∈RX,Y

dS > kr,

a contradiction.
By Lemma 4.3,

max{dS | S ∈ RX,Y } ≤ k2.

Applying the contraposition of Lemma 4.4(iii) we have USS ∩ S2 6= ∅ for each S ∈ RX,Y ,
and hence, T ∈ RS for some R ∈ US and T ∈ S2. Since dT = k and cTRS = 1 by
Lemma 2.2, dS divides k for each S ∈ RX,Y . This implies that |S3| = 0.

We claim |S1| = 1. Suppose not. Since 1 + (r − 1)k = m = dS1 + k(r − |S1|),

1 + k|S1| ≤ k +
∑
S∈S1

dS ≤ k + k/2 + k/2 + (|S1| − 2)k,

a contradiction. By the claim we have S1 = {S} for some S ∈ RX,Y . Since

1 + k(r − 1) = m = k|S2|+ dS = k(r − 1) + dS ,

we have dS = 1. This completes the proof.

Lemma 4.6. If S, T ∈ RX,Y with ST t = {R}, then

cR1

RRt ≥ dT for each R1 ∈ SSt and cR2

RtR ≥ dS for each R2 ∈ TT t.

Proof. Let y ∈ Y , x1, x2 ∈ St(y) and z ∈ T t(y). Note that (xi, z) ∈ R for i = 1, 2
since ST t = {R}. Since z ∈ T t(y) is arbitrarily taken, we have T t(y) ⊆ R(x1) ∩R(x2),
which proves the first statement. By the symmetric argument the second statement can be
proved.

Proposition 4.7. There exist no S, T ∈ RX,Y such that

ST t = {R}, dS + dT ≥ k + 1 and 1 < dS < dT . (4.3)

Proof. Suppose that S, T ∈ RX,Y satisfies (4.3).
We claim that SSt = {∆X , R1} for some R1 ∈ RX − {∆X}. Suppose not, i.e.,

SSt − {∆X} has at least two elements R1, R2. By Lemma 2.1(i),

k2 = dRdRt ≥ k + cR1

RRtdR1
+ cR2

RRtdR2
= k + cR1

RRtk + cR2

RRtk.

It follows from Lemma 4.6 and dS + dT ≥ k + 1 that

k2 ≥ k(k + 2),

a contradiction.
We claim that SSt∩TT t = {∆X , R1}. Suppose not, i.e., SSt∩TT t = {∆X}. Then,

by Lemma 2.2, cRST t = 1. It follows from Lemma 2.1(i) that k = dR = dSdT , which
contradicts dS + dT ≥ k + 1 and 1 < dS < dT .
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We claim that R = Rt. Suppose not, i.e., R 6= Rt. Then, by Lemma 2.3(ii),

k − 1 =
∑

R2∈RX

cR1

R2Rt
2
≥ cR1

RRt + cR1

RtR ≥ dS + dT ≥ k + 1,

a contradiction.
We claim that TT t = {∆X , R1}. If R2 ∈ TT t − {∆X , R1}, then cR2

RR ≥ dS by
Lemma 4.6 with R = Rt. By Lemma 2.1(i),

k2 = dRdR ≥ k + cR1

RRk + cR2

RRk,

which implies that k ≥ 1 + dT + dS , a contradiction to dS + dT ≥ k + 1.
We claim that cR1

R1Rt
1
≥ dT − 2. By the previous claim, for all z1, z2 ∈ T t(y) with

z1 6= z2 we have (z1, z2) ∈ R1. Thus,

cR1

R1Rt
1

= |R1(z1) ∩R1(z2)| ≥ |T t(y)− {z1, z2}| ≥ dT − 2.

Since cR1

R1Rt
1

+ cR1

RRt ≥ dT − 2 +dT ≥ k by Lemma 4.6, it follows from Lemma 2.3(ii)

that R = R1. Thus, cRRRt = k − 1 since 1 < dS and

St(y) ∪ T t(y) \ {x1, x2} ⊆ R(x1) ∩R(x2) for x1, x2 ∈ St(y).

Since {∆X , R} is closed under the complex product, 1 + k divides |X|. Since |X| is a
prime, it follows that {∆X , R} = RX , and hence |RX | = 2, a contradiction.

Lemma 4.8. Suppose that k = 4q for some prime power q and 1 /∈ {dS | S ∈ RX,Y }.
Then |S3| = 0, |S1| = 2, and {dS | S ∈ S1} = {3q, q + 1}.

Proof. By Lemma 4.2(iii) and the assumption, |S3| = 0. By Lemma 4.2(ii), |S1| ≤ 2. Let
S ∈ S1. Then, by Lemma 4.1, dS ≡ 1 mod q. By the assumption, 1 < dS < 4q. Since
dS ≤ dS1 ≤ 1 + 4q Lemma 4.2(iii), it follows from Lemma 4.1 that

dS ∈ {q + 1, 3q + 1}.

Let T ∈ RX,Y with S 6= T . Since dSdT ≡ 0 mod 4q by Lemma 4.1, q | dT . Since
m = 1 + k(r − 1) = dS1 + dS2 = dS + dT + k(r − 2), we have dS + dT = k + 1.
Therefore, we conclude from Proposition 4.7 that {dS | S ∈ S1} = {3q, q + 1}.

Proof of Theorem 1.3. (i) is a direct consequence of Proposition 4.5.
(ii) Suppose on the contrary that

1 /∈ {dS | S ∈ RX,Y }.

Note that e ≤ 2 if k ∈ {q, 2q, 3q} for some prime power q. By Lemma 4.2(iii), |S3| = 0,
and dS1 ≤ k + 1. Since

1 + k(r − 1) = dS1 + dS2 ≤ k + 1 + dS2 ,

we have dS2 ≥ k(r − 2), and, hence, |S2| ≥ r − 2.
Suppose k = q. Then the statement follows from Lemma 4.2(iii) since e = 1.
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Suppose k = 2q. Then |S1| ≤ 2 and {dS | S ∈ S1} = {q, q+1} by Lemma 4.2(ii),(iii)
and Lemma 4.1. Without loss of generality we assume that

S1 = {S, T}, dS = q + 1 and dT = q.

Since q and q + 1 are relatively prime, it follows from Lemma 2.1(iii) that ST t = {R} for
some R ∈ R, which contradicts Proposition 4.7.

Suppose k = 3q. Then we have either

{dS | S ∈ S1} = {q, 2q + 1} or {dS | S ∈ S1} = {2q, q + 1}.

The first case is done by Proposition 4.7.
For the last case we assume that S1 = {S, T}, dS = q + 1 and dT = 2q. By

Lemma 2.1(i),(ii), SSt = {∆X , R} for some R ∈ R with R = Rt. This implies that
k = dR is even since |X| is an odd prime, so q is a power of two. Thus, dS and dT are
relatively prime. Therefore, the statement follows from Lemma 2.1(iii) and Proposition 4.7.

(iii) Suppose k = 4q. Then, by Lemma 4.8, {dS | S ∈ RX,Y } = {q, 3q + 1}
or {dS | S ∈ RX,Y } = {3q, q + 1}. The statement follows from the assumption and
Proposition 4.7.

5 Appendix
In this section we show how Theorem 1.3 is applied to small configurations CX∪Y with
|X| = |Y | < 100.

First, we denote byM the set of primes m less than 100.
Second, we take the set K of positive integers k such that

k | m− 1 for some m ∈M with k < m− 1 and

k /∈ {q, 2q, 3q | q is a prime power} ∪ {4q | q is a prime power with 3 - q + 1}.

Then K = {20, 30, 35, 44}.

Lemma 5.1. If k = 20, then 1 ∈ {dS | S ∈ RX,Y }.

Proof. Suppose not. By Lemma 4.8, {dS | S ∈ S1} = {15, 6}. Let S ∈ RX,Y with
dS = 6. By Lemma 2.1(ii), 6 | cRSStk for R ∈ SSt \ {∆X}. Thus, 3 | cRSSt , which
contradicts Lemma 2.1(ii).

Lemma 5.2. Suppose that each element of RY = {∆Y , R,R
′} is symmetric and Πx =

{C1, C2, C3} is the equitable partition of (Y,RY ) as in Section 2 for x ∈ X . We define

{βij}1≤i,j≤3 and {γij}1≤i,j≤3

such that βij = |R(y) ∩ Cj | with y ∈ Ci and γij := |R′(y) ∩ Cj | with y ∈ Ci. Then we
have the following:

1. For each i we have
∑3
j=1 βij = k;

2. For all i, j with i 6= j we have βij + γij = |Cj |;
3. For each i we have βii + γii = |Ci| − 1;
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4. For all i, j we have |Ci|βij = βji|Cj |;
5. We have β11 + β22 + β33 = k − 1.

Proof. The first four statements can be proved by checking the definition of equitable par-
titions and using a double-way counting for (Ci × Cj) ∩R.

Let A be the adjacency algebra of CY and W the subspace spanned by the character-
istic vectors of the cells of Πx. Then W is a left A-module corresponding to the algebra
homomorphism defined by AR 7→ (βij), AR′ 7→ (γij).

We claim that W affords the regular character. Let χ be the character afforded by W ,
i.e., the value of the adjacency matrix of R is equal to

∑3
i=1 βii. Note that the character

afforded by W is integral valued but not a sum of principal character. Since dim(W ) = 3,
it follows that χ is the sum of irreducible characters ofA. This implies that χ is the regular
character of A, and, hence, the trace of the matrix (βij) is equal to k− 1 by Lemma 2.3(ii)
with Lemma 2.1(ii).

Proposition 5.3. If (k,m) = (30, 61), then 1 ∈ {dS | S ∈ RX,Y }.

Proof. Suppose not.
By Lemma 4.2(ii),(iii), |S1| ≤ 3 and |S3| ≤ 1. if |S3| = 1, then 2k ≤ dS3 < m =

2k + 1, a contradiction. Thus, |S3| = 0.
Since |S2| ≤ 1, it follows from Lemma 4.1 that the following are only possible cases

of {dS | S ∈ RX,Y }:

{30, 25, 6}; {30, 15, 16}; {30, 10, 21};{15, 36, 10};{15, 6, 40}.

The first three cases do not occur by Proposition 4.7 since each of them contains a pair
of relatively prime numbers.

Note that {|Ci| | i = 1, 2, 3} = {dS | S ∈ RX,Y } where Πx = {C1, C2, C3} as in
Lemma 5.2. Without loss of generality we may assume that

Ci = Si(x) for i = 1, 2, 3.

From now on we shall use Lemma 5.2 many times without mentioning.
Suppose that

(|C1|, |C2|, |C3|) = (10, 15, 36).

Since |C2|β23 = |C3|β32, we have 12 | β23. If β23 ∈ {0, 36}, then |S2S
t
3| = 1, which

contradicts Proposition 4.5. Replacing R ∈ RY by R′ if necessary we may assume that
β23 = 24, and hence, β32 = 10.

Since
|C1|β13 = |C3|β31,

we have 18 | β13. If β13 ∈ {0, 36}, then |S3S
t
1| = 1, which contradicts Proposition 4.7.

Thus, β13 = 18, and, hence, β31 = 5.
By Lemma 5.2(i),

β33 = 15, β21 + β22 = 6 and β11 + β12 = 12.

By Lemma 5.2(v), β11 + β22 = 23. Thus, β12 + β21 = 19, which contradicts 10β12 =
15β21. Therefore, (dS , dT , dU ) = (10, 15, 36) does not occur.
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Suppose
(|C1|, |C2|, |C3|) = (15, 6, 40).

Since |C2|β23 = |C3|β32, we have 20 | β23. If β23 ∈ {0, 40}, then |S2S
t
3| = 1, which

contradicts Proposition 4.7. We may assume that β23 = 20, and hence, β32 = 3.
Since

|C1|β12 = |C2|β21,

we have 5 | β21. By Lemma 5.2(i),

β21 + β22 + 20 = 30.

Thus, 5 | β22. Replacing R ∈ RY by R′ if necessary we may assume that β22 = 5, and
hence, β21 = 5 and β12 = 2.

By Lemma 5.2(i),(v), we have

β11 + β13 = 28, β31 + β33 = 27 and β11 + β33 = 24.

Thus, β13 + β31 = 31, which contradicts 15β13 = 40β31.
This completes the proof.

Proposition 5.4. If (k,m) = (44, 89), then 1 ∈ {dS | S ∈ RX,Y }.

Proof. Suppose not. By Lemma 4.8, the following is a unique possible case of {dS | S ∈
RX,Y }:

{12, 33, 44}.
Without loss of generality we may assume that

Ci = Si(y) for i = 1, 2, 3 and (|C1|, |C2|, |C3|) = (12, 33, 44).

Since 12β12 = 33β21, β12 ∈ {0, 11, 22, 33}. Proposition 4.7 forces β12 ∈ {11, 22}, and
we may assume that β12 = 22 by replacing R ∈ RY by R′. Then β21 = 8.

Note that 11 divides β13 and so does β11 by Lemma 5.2(i). We divide our consideration
into the following two cases β11 = 11 or 0.

Suppose β11 = 11. Then β13 = 11 and β31 = 3. By Lemma 5.2(i),(v),

β22 + β23 = 36, β32 + β33 = 41 and β22 + β33 = 32.

Therefore, β23 + β32 = 45, which contradicts 33β23 = 44β32.
Suppose β11 = 0. Then

β13 = 22 and β31 = 6.

By Lemma 5.2(i),(v),

β22 + β23 = 36, β32 + β33 = 38 and β22 + β33 = 43.

Therefore, β23 + β32 = 34, which contradicts 33β23 = 44β32.
This completes the proof.

Lemma 5.5. If (k,m) = (35, 71) then {dS | S ∈ RX,Y } = {15, 21, 35}.

Proof. Applying Lemma 4.2(i),(iii) and Lemma 4.1 we conclude that {15, 21, 35} is a
unique case of {dS | S ∈ RX,Y }.

We notice that the lemmata given in this section justify the elimination given in Intro-
duction.
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