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Molecular alterations induced in drug-resistant cells 

Maja Osmak 

Instiut Rudjer Bošlcovic, Zagreb, Croatia 

The major obstacle to the ultimate success in cancer therapy is the ability of tumor cells to develop resis­
tance to anticancer drugs. Severa/ molecular mechanisms have been suggested to be involved in drug­
resistance: a) decrease in the intracel/ular drug accumulation (increased activity of membrane trans­
porters such as P-glycoprotein ar multidrug-resistance-associated protein), b) changes in intracellular 
detoxification system (increased concentrations of glutathione ar metallothioneins, ar increased activity 
of related enzymes), c) alteration in nuclear enzymes (enhanced DNA repair and/or better tolerance of 
DNA damage, decreased activity of topoisomerases), d) altered expression of oncogenes (inducing 
increased leve/ of protective molecules in cells ar the inhibition of apoptosis). Drug resistance is a multi­
factorial phenomenon. The complexity of molecular alterations in drug-resistant cells is and will stay the 
main problem far the successful treatment of cancer. 
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Introduction 

Chemotherapy is one of the praven strategies 
against malignant tumors, especially if the 
lesions are spread systematically. In many 
patients, first regimens are successful in 
reducing tumor size and are sometimes even 
able to eliminate all clinically detectable 
tumor masses. But most often, the successful 
treatments are relatively short lasting. In a 
vast majority, a certain number of tumor cells 
will survive and thus become a source of 
recurrent disease. 

Chemotherapy of cancer may fail for vari-
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ous reasons. Among these, drug resistance is 
the most important one. This phenomenon 
was first observed by Sidney Farber (who 
introduced chemotherapy into cancer treat­
ment) in 1948.1 Almost fifty years later the 
molecular mechanisms involved in this pro­
cess have been unravelled. 

Resistance may be primary (intrinsic): the 
tumor cells do not respond from the start. 
Drug-resistance may be secondary (acqui­
red): under the selection pressure of cytotox­
ic drugs tumor cells are able to develop cer­
tain mechanisms which render them resis­
tant to these drugs. The tumor initially 
responds to therapy, but tumor growth 
resumes and the patient relapses. 

Knowledge regarding the genetic nature 
and biochemical nature of drug resistance 
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has been derived largely from cellular sys­
tems. By step-wise increase in the drug 
dose, highly resistant cell lines can be 
obtained. The mechanisms of drug resis­
tance can be defined by comparing the bio­
chemical and biological characteristics of 
parental and resistant cells. 

A search for the cause or causes of drug 
resistance mechanisms has been occupying 
the attention of cancer researchers for 
more than four decades. Today it is known 
that severa! molecular mechanisms can be 
involved in drug-resistance. The most 
important one will be presented in this 
review. 

Reduced intracellular accumulation: 

transport proteins 

A broad spectrum resistance to cytotoxic 
drugs, termed multidrug resistance (MDR), 

involves simultaneous resistance to a wide 
array of natura!, semisynthetic and synthetic 
compounds. The most common of them are 
shown in Table l. They do not have similar 
structure or the same cytotoxic intracellular 
target, but are amphipathic and are preferen­
tially soluble in lipid. 

Multidrug resistance is caused by overex­
pression of a 17 0 kDa plasma membrane -
associated glycoprotein (P-glycoprotein, Pgp; 
Table 1). It is an energy dependent efflux 
pump that decreases intracellular drug accu­
mulation. 2-4 Pgps are coded by MDR gene 
family. The number of members varies 
between species. Human possess two MDR 
genes, MDR1 and MDR2. Of these, only 
MDR1 can confer a drug resistance pheno­
type.5 Multidrug resistant cells, particularly 
those which display high levels of resistance, 
often possess an increased copy number of 
the MDR1 gene.2A 

It was noted that Pgp bore a remarkable 

Table l. Characteristics of transport proteins: P-glycoprotein and MRP protein 

Name 
Encoded by 
Mol. weight 
Length 
Number of amino acid 
Discovered in 
Resistance to 

Normal tissues 
distribution 
(high levels) 

Tumor tissues 
distribution 

Functions 

P-glycoprotein (Pgp) 
MDRl gene 
170 kDa 
4.5 kb mRNA 
1268 
1970 year 
Anthracyclines, Vinca alkaloids, 
Podophyllotoxins, Colchicine, 
paclitaxel 
Adrenal gland, kidney, !iver, 
large intestine, pancreas, 
bile duet, Jung, breast, 
prostate, gravid uterus 
Colonic, renal, hepatoma, 
adrenocortical, 
phaeochromocytoma 

Transport of xenobiotics 
Transport of hormones 

According to references 24 and 9 

MRP (multidrug resistance -associated protein) 
MRP gene 
190 kDa 
6.5 kb mRNA 
1531 
1992 year 
Anthracyclines, Vinca alkaloids 
Arsenic and antimony-centered oxyanions 

Testes, skeleta! muscle, 
heart, kidney, Jung 

Leukemias ( acute myeloid, chronic 
lymphocytic, acute myeloid, B­
chronic lymphocytic),lung (NSCLC), 
anaplastic thyroid, neuroblastoma 
Transport of leukotriene 
Transport of GSH-conjugates 
Transport of heavy metal oxyanions 
"MOAT" (multispecific organic anion transporter) 
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structural similarity to bacterial transport 
proteins, particularly those transporting 
haemolysin. 6 Presumably, in evolutionary 
terms, it represents a highly conserved com­
ponent of the cell. P-glycoprotein is dete­
ctable at a high concentration in certain nor­
mal tissues (Table 1). The disposition of the 
Pgp on the luminal surface of kidney brash 
border, on the mucosal surface of the large 
intestine, and on the bile canalicular surface 
of hepatocytes, indicates a normal role in 
transport and/ or protection against exoge­
nous toxins. High levels of Pgp were found in 
different tumors as well, specially in those 
arising from the normal tissue with a high 
Pgp leve1.2-4 

Pgp overexpression has been associated 
with multidrug resistance in many drug­
selected cell lines.7 The final evidence that 
MDR gene is involved in multidrug resistance 
came from transfection studies: MDRl gene 
inserted into retroviral expression vector con­
fers a complete multidrug resistance pheno­
type.5 

Recently, another member of the ATP­
binding cassette transporter superfamily was 
isolated from non-Pgp small cell lung carci­
noma cells, multidrug resistance -associated 
protein (MRP).8 It also lowers intracellular 
drug accumulation, conferring a pattern of 
drug resistance similar to that of the resis­
tance-conferring Pgps.9 However, there may 
be some differences. For example, MRP con­
fers only low resistance to paclitaxel and 
colchicine, which are reported among the 
best "substrates" for Pgp. Another notable 
difference is the ability of MRP to confer low 
resistance to arsenic and antimony-centered 
oxyanions. The characteristics of this protein 
are given in Table l. 

MRP has been identified in non-Pgp mul­
tidrug resistant cell lines from a variety of 
tumor types.9 Transfection of an MRP 
expression vector into HeLa cells demon­
strated conclusively that the protein con­
ferred resistance to drugs.10 

Some recent observations suggest that ele­
vated MRP expression may occur prior to 
MDR.11,12 

Decreased drug uptake 
Decreased intracellular drug accumulation 
may occur due to decreased drug uptake, for 
drugs that enter the cells by the help of a cel­
lular transport system. Loss or inactivation of 
this transport system may cause drug resis­
tance, as it was observed for melphalan, 13 
methotrexate14 or cisplatin.15 

Glutathione 
Glutathione (GSH) is a simple tripeptide that 
contributes to more than 90% of intracellular 
non-protein sulphydryl compounds.16,17 It is 
present in virtually all eucariotic cells. It is 
also synthesized by tumors, some of which 
exhibit high cellular levels of glutathione and 
high capacity for the synthesis of glu­
tathione. 

Glutathione plays an important role in cel­
lular metabolism and in the protection of 
cells against free radicals induced oxidant 
injury (Table 2). It has been implicated in cell 
resistance to a number of cytotoxic drugs, 
particularly to alkylating agents and cis­
platin.18-22 There are a number of potential 
mechanisms by which GSH may affect cellu­
lar response to cytostatics. These include 
conjugation of electrophilic compounds, fre­
quently catalyzed by the glutathione S­
trasnferases (GST). In addition, GSH can 
detoxify oxygen-induced free radicals and 
organoperoxides using GSH-peroxidases. 23 

GSH may participate in the resistant phe­
notype in two ways. In cytoplasm it may bind 
electrophilic compounds, thus making them 
less dangerous. In nucleus, GSH may sup­
port the repair of the damage induced in 
DNA: by maintaining functional repair 
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Table 2. Functions of glutathione in metabolism and 
immune response 
Functions 

Deficiency 

Antioxidant 
Conjugation with different compounds 
(exogenous, the products of metabo­
lism) 
Amino acid transport 
Support of primary antibody response 
Regulation of T-lymphocyte prolifera­
tion 
Co-enzyme for multiple enzymatic 
reactions 
Thiol-disulfide exchange in protein 
synthesis and degradation 
DNA precursor synthesis 
Enzyme activation 
Regulation of microtubule formation 
Negative control of NF-kB activation 
Increased sensitivity to irradiation and 
different toxic compounds 
Oxidant stress 
Cataract formation 
Impaired function of both T and B lym­
phocyte function and immune function 
in general 

According to references 16 and 17 

enzymes or by maintaining deoxyribonu­
cleotide triphosphate pool size.24 

An argument for the potential role of GSH 
in resistance is based on the observation that 
the toxicity of many cytotoxic agents can be 
increased by lowering cellular GSH (as by 
adding specific inhibitor of GSH synthesis­
buthionine sulfoximine).25,26 

Glutathione S-transferases 

Glutathione S-transferases (GST) are an 
important part of the Phase II detoxification 
system that metabolizes many lipophilic 
drugs and other foreign compounds, includ­
ing anticancer drugs.27-29 The overall result of 
this system is the conversion of lipophilic 
chemicals to more polar derivates, thus facili­
tating their inactivation and elimination. GST 
are abundant and together may constitute up 
to about 5 % of soluble cellular protein. Their 

importance supports the finding that they 
perform specific detoxification, structural 
and transport function in many phila: from 
bacteria to humans. 

GST catalyze direct coupling of GSH to 
electrophilic drugs, thus making a less toxic 
and more readily excreted metabolic com­
pound. 

R-X + GSH -,. R-SG + H-X 

Figure l. Conjugation reaction catalyzed by GSTs 

Further, they may exhibit ligand binding 
function, by non-covalent binding of non­
substrate hydrophobic ligands (such as 
heme, bilirubin, some steroids, and some 
lipophilic cytostatics. 27-29 

The diverse biological functions of 
GSH/GST system are mediated by multiple 
GST enzymes. The genome of most species 
encode severa! different isoenzymes of GSTs. 
In eucaryotic cells, there are five classes of 
GST. Four are found in cytosol, while the 
fifth class, the microsomal GST, is found pri­
marily in the hepatic endoplasmic reticulum. 

The microsomal GST are functional trim­
mers with molecular weights of 17 kDa. 
Cytosol GST are both mono- and het­
erodimeric complexes formed of GST sub­
units that range in size from 23 to 28 kDa. 
The classification of the cytosolic GST into 
alpha, pi and mu, and recently identified 
theta classes was originally based on physical 
and catalytic properties. Among them, GST 
pi was found at elevated levels in many 
tumor tissues relative to matched normal tis­
sues.30,31 

Severa! anticancer drugs have been defini­
tively identified as GST substrates (Table 3). 
Therefore, it is not surprising that elevated 
levels of GST were found in cells resistant to 
some of these drugs like cisplatin, doxoru­
bicin, melphalan etc.27-29 

The final confirmation of GST involve­
ment in drug resistance came from the trans­
fection experiments. 32 The tranfection with 
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Table 3. Anticancer drugs: substrates for glutathione S-transferases 
Direct evidence for involvement 
in drug resistance 
Chlorambucil 
Melphalan 
Nitrogen mustard 
Phosphoramide mustard 
Acrolein 
BCNU 
Hydroxyalkenals 
Ethacrinic acid 
Steroids 
According to reference 27 

GST imparts a small but significant (and clin­
ically relevant) increase in resistance to cis­
platin (GST mu) , doxorubicin (GST pi) or 
chlorambucil and melphalan (GST alpha). 

Glutathione peroxidase 
Glutathione peroxidase catalyzes the reduc­
tion of potentially toxic peroxides to alcohols 
by oxidizing GSH to its disulfide form 
(GSSG). GSSG is returned to GSH with the 
concomitant oxidation of coenzyme NADPH 
to NADP+. GST enzyme can catalyze a seleni­
um-independent GSH peroxidase activity 
leading to the detoxification of lipid and 
nucleic acid hydroperoxides. This redox cycle 
may play an essential role in protecting cells 
from damage of lipid peroxidation generated 
during normal metabolism or by redox recy­
cling of many drugs. 

Doxorubicin is one of the agents known to 
generate free radicals and peroxides. GST as 
well as the selenium -dependent enzyme 
GSH peroxidase can deactivate these 
metabolites through peroxidative mecha­
nisms, resulting in decreased cytotoxicity. In 
tumor cells resistant to doxorubicin, 
increased levels of selen -dependent GSH 
peroxidase were found.33,34 

Indirect evidence for involvement 
in drug resistance 
Bleomycin 
Hepsulfam 
Mitomycin C 
Adriamycin 
Cisplatin 
Carboplatin 

Metallothionein 
Metallothioneins (MT) were first discovered 
as a family of inducible proteins involved in 
Zn2+ and Cu2+ homeostasis and in the 
detoxification of heavy metals.35,36 They are 
evolutionary conserved low molecular weight 
intracellular proteins with unusually high 
level of cystein content, that constitute the 
major fraction of the intracellular protein thi­
ols. 

Today is known that metallothioneins are 
a part of generalized cell response to environ­
mental stress: the abundant nucleophilic 
thiol-rich groups in MT can react with many 
electrophilic toxins, participate in controlling 
the intracellular redox potential, and act as 
scavengers of oxygen radicals generated dur­
ing the metabolism of xenobiotics. They can 
be induced by environmental stimuli such as 
epinephrine, glucocorticoids, thermal injury, 
cytokines, cyclic nucleotides, phorbol esters, 
UV light, etc., suggesting a protective func­
tion and a role in cell growth and prolifera­
tion_ 35,36 

Metallothioneins are attractive candidates 
as modulators of cellular sensitivity to anti­
cancer drugs. Elevated levels of MT have 
been observed in some malignant cells with 
acquired resistance to antineoplastic drugs, 
such as cisplatin.3740 Increases in intracellu­
lar MT by gene-transfer-produced resistance 
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to cisplatin, melphalan and chlorambucil, 
and less to doxorubicin and bleomycin38 or 
N-methyl-N -nitro-N-nitrosoguanidine (MN­
NG) and methyl nitrosourea (MNU).41 In 
most MT overexpressing cell lines, however, 
induction of MT did not cause a parallel 
increase in resistance. Therefore, the resis­
tance associated with MT overexpression was 
not due to direct binding of the drug to MT. 
The study of Kaina and co-workers suggest 
that MT may participate as a cofactor or regu­
latory element in the repair or tolerance of 
toxic alkylating drugs.41 

Nevertheless, increases in MT do not 
always result in a phenotype that is less sen­
sitive to the toxic effects of antineoplastic 
drugs.42 Thus, the protective role of MT has 
been questioned. Recently, transgenic mice 
lacking functional MT have been produced 
by homologous recombination of disrupted 
MTI and II genes. The embryonic cells of 
these mice exhibit enhanced sensitivity to 
cisplatin, melphalan, bleomycin, cytarabin or 
MNNG, confirming the protective function 
of metallothioneins against cytotoxic drugs.43 

Gene amplification 

One of the important mechanisms of drug 
resistance is gene amplification. The first 
observation of this phenomenon was noted 
by Biedler and Spengler. They found chromo­
some elongation in cultured hamster cells 
resistant to methotrexate (MTX) and called 
this extra DNA "homogeneously staining 
regions" (HSR).44 Schimke and co-workers 
then showed that the extra DNA contains 
extra copies of the gene for the enzyme dihy­
drofolate reductase (DHFR), explaining the 
increased enzyme levels in the resistant 
cell.45A6 The amplified DNA may either be 
present in chromosomes as HSRs or free, as 
minute chromatin particles usually present in 
metaphase spreads as pair minutes, called 
double minutes (DM). 

After the initial demonstration that cells 
can overcome the MTX inhibition of DHFR 
by overproducing the enzyme by means of 
gene amplification, numerous other exam­
ples of this mechanism have been reported: 
for MDR, Z,4 for metallothioneins 35,36 etc. 

DNA repair 

The resistance to some cytotoxic drugs can 
be caused by enhanced ability of cells to 
repair the DNA induced damage or to toler­
ate their presence. One of the most studied 
phenomena in this respect is resistance to 
cisplatin. 

It has been well established that cisplatin 
binds to DNA and that these adducts con­
tribute to cellular toxicity. In a number of cis­
platin resistant cell lines, an enhanced repair 
of DNA lesions has been demonstrated.21,22 

Thus, Eastman and Schulte provided direct 
evidence for increased repair showing that 
the predominant lesions, cis-GG adducts, 
were more rapidly removed from resistant 
than sensitive cells.47 These resistant L1210 
cells can also reactivate a cisplatin-damage 
plasmid more readily than sensitive parental 
cells.48 However, a correlation of repair activ­
ity with drug-resistance has not always been 
demonstrated: L1210 cells with 100-fold resis­
tance to cisplatin, removed cis-GG intra­
strand adducts only slightly better than 20-
fold resistant cells.47 

Repair of platinum damage in very specif­
ic regions of the genome is a possible charac­
teristic of enhanced repair in resistant cells. 
If only active genes are more efficiently 
repaired in resistant cells, then it is not likely 
that a significant change in overall platinan­
tion levels or repair rates will occur. 
Enhanced gene-specific repair could explain 
some of the controversial results found in 
such investigations. While preferential repair 
of the interstrand cross-link in active versus 
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inactive regions was not found in Chinese 
hamster ovary cells,49 it was demonstrated in 
resistant human ovarian 2008 cells.50 

It was observed that some cisplatin-resis­
tant cell may have higher DNA platination 
than parental cells,51 or may tolerate severa! 
fold more platinum on their DNA at equitox­
ic concentrations as sensitive cells.52,53 Con­
sidering these facts, the concept of enhanced 
tolerance to DNA damage was suggested as a 
potential mechanism of resistance. However, 
the basis of this phenomenon is not well 
understood. 

Severa! groups have described DNA-bind­
ing proteins that retard the mobility of cis­
platin-damaged DNA fragments in non-dena­
turing polyacrylamide gels. It has been 
hypothesized that these proteins are either 
involved in DNA repair by shielding adducts 
from repair, or are involved in transcrip­
tion. 54 A number of cisplatin-resistant cells 
have been investigated for changes in these 
DNA damage-recognition proteins.22 Howev­
er, no obvious correlation between the 
expression of DNA damage-recognition pro­
teins and resistance to cisplatin was found. 

Some of the recent papers suggest that 
resistance to DNA damage can be acquired 
via the loss of DNA mismatched repair activi­
ty. The DNA mismatch repair system acts 
after DNA replication and corrects non-Wat­
son-Crick base pair and other replication 
errors. Human cells lacking mismatch repair 
activity have high spontaneous mutation 
rates. Also, they may be resistant to certain 
cytostatics, such as etoposide,55 cisplatin56 or 
N-methyl-N-nitro-N-nitrosoguanidine.57 

DNA toposiomerase 
Besides MDR, some resistant cell lines exhib­
it atypical multidrug resistance (at-MDR). At­
MDR is distinguished from the MDR in the 
following ways: a) lack of cross-resistance to 
the Vinca alkaloids,58 b) absence of a drug 

accumulation defect,58 c) relative insensitivi­
ty to modulation of resistance by verapamil 
or chloroquine typical inhibitors of P-glyco­
protein, 59 and d) lack of overexpression of 
the MDRl gene or its product, Pgp.59 

At-MDR involves altered activity of topoi­
somerases II. Topoisomerases II are enzymes 
that catalyze changes in the secondary and 
tertiary structures of DNA. They are neces­
sary for replication, recombination and tran­
scription, as well as in mitotic chromosome 
condensation and segregation. Topoiso­
merases II act via introduction of a transient 
double-stranded break in one segment of a 
DNA molecule through which a second DNA 
duplex is passed before religation of the 
break.60 

The levels of these enzymes are markedly 
higher in exponentially growing than in qui­
escent cell lines. Two distinct forms of topoi­
somerase II exist in human cells, termed a 
(17 0 kDa form) and f3 (180 kDa form).61 They 
differ not only in molecular weight but also 
in their patterns of expression and their 
apparent sensitivity to anticancer drugs.62 In 
cell lines the expression of the a isoform has 
been shown to be strictly proliferation depen­
dent, whereas the f3 isoform is presented in 
both dividing and non-dividing cells. 

There are some inhibitors of topoiso­
merase II (doxorubicin, epirubicin, mitox­
antrone, etoposide, teniposide) that trap the 
"cleavable complex" resulting in increased 
DNA scissions and inhibition of rejoin­
ing. 60,63,64 These protein-associated DNA 
lesions are directly toxic to cells. The cells 
with a high leve! of topoisomerase II are gen­
erally more sensitive to inhibitors than cells 
with a low leve! of these enzymes. 

There is a number of rodent and human 
tumor cells lines in which resistance to topoi­
somerase II inhibitors are connected with 
decreased leve! of the topoisomerase II a and 
/or f3. The resistance mechanisms appear to 
be the result of a decrease in the activity of 
topoisomerase II.63-68 
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Beside topoisomerase II, drug resistance 
may involve the altered activity of topoiso­
merase I. Topoisomerase I is an enzyme 
abundant in actively transcribing gene 
regions. It has important role in DNA replica­
tion and elongation step of transcription. 
Contrary to topoisomerase II, toposiomerase 
I introduce a transient single-stranded nick in 
DNA and is ATP independent. Severa! cyto­
statics, such as camptothecins and actino­
mycin D are the poisons of topoisomerase 
r_60,63,64 Drug induced accumulation of topoi­
somerase I-DNA cleavable complex is direct­
ly proportional to drug cytotoxicity and anti­
tumor activity. Resistance to topoisomerase I 
inhibitors involves altered activity of this 
enzyme, that may be caused by mutation(s) 
in the gene coding for topoisomerase I. 69 

Oncogenes and tumor suppresser genes: sig-
nal transduction pathway and apoptosis 

In last few years interest has been focused on 
oncogenes and their role in drug-resistance. 
The direct evidence that oncogenes can be 
involved in drug-resistance came from trans­
fection studies. The transfection of murine 
NIH3T3 cells 7o,71 or kerytocytes72 with ras 
oncogene resulted in resistance to cisplatin. 
Ras oncogene may induce resistance to dox­
orubicin as well.73 Moreover it was found 
that the degree of cisplatin resistance corre­
lated directly with the level of c-myc expres­
sion,74,75 while the re-establishment of the 
normal level of c-myc transcription restored 
original sensitivity.74 C-myc oncogene was 
also involved in resistance to methotrexate.76 

Using ribosome mediated cleavage of c-fos 
mRNA, the role of c- Jas oncogene in resis­
tance to cisplatin was proved.77 Resistance to 
cisplatin was achieved by the transfection of 
src oncogene as well. 78 

The mechanisms by which oncogenes 
cause drug-resistance in not quite clear. 79 It 
has been suggested that c-myc oncogene 

binds to DNA, and thus directly or indirectly 
regulates a process of DNA repair.74 Ras 
oncogene might induce resistance by regulat­
ing the expression of other genes involved in 
the protection of cell against cytostatics. It 
was shown for glutathione transferase pi,80 
topopisomerase II, 81 c-jun, 82 glutathione, 83 
MDR,84 or altered membrane potential.85 

Scanlon hypothesized that fos expression is 
the trigger that causes the resistance 
response (primary DNA reparability, as indi­
cated by DNA polymerase a, DNA poly­
merase �' thymidilate synthase, DHFR and 
topoiosmerase I expression). Consistent with 
this concept is the observation that transfec­
tion of sensitive cells with c-fos generated 
eithold resistance to cisplatin,77 while attenu­
ation of the elevated c-fos expression 
returned the cisplatin toxicity to that of par­
ent population. Another oncogene, mutated 
p53, may confer resistance to many 
hydrophobic drugs by stimulating specifical­
ly MDRl promoter.84 

It must be mentioned, however, that not 
always an increased expression of ras, myc or 
other oncogenes caused an increased resis­
tance to cytostatics.75,86-88 

In many cases the cellular damage caused 
by active doses of drug is not sufficient to 
explain the observed toxicity. Therefore, it is 
possible that some determinants of inherent 
drug sensitivity and resistance may be inde­
pendent of those which involve the formation 
of the drug-target complex and its immediate 
biochemical sequel, such as commitment to 
cell death. Cell death is activated by natura! 
control processes whose function is to allow 
repair of low level damage to DNA while 
eliminating those cells in which repair is not 
possible. There are two modes of cell death: 
apoptosis and necrosis. They differ morpho­
logically and biochemically. Necrosis is asso­
ciated with cell swelling, rupture of mem­
branes and dissolution of organized struc­
ture. That is a consequence of the loss of 
osmoregulation. DNA degradation occurs at 
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a late stage. In contrast, in apoptosis internu­
cleosomal cleavage of genomic DNA and 
chromatin condensation precedes the loss of 
membrane integrity (Figure 2). Necrosis 
mostly results from a major cell insult such 
as that caused by serious mechanical, ische­
mic, or toxic damage. Apoptosis generally 
occurs as a response to less severe injury and 
is also involved in the development and 
remodeling of normal tissue.89, 90 

Apoptosis induces a wide variety of cell 
stresses and cytotoxic chemicals,89,90 among 
them anticancer drugs.91-94 Deregulation of 
normally integrated cell cycle progression 
appears a central signalling event in most 
forms of apoptosis.90 

Apoptosis is a highly conserved active 
mechanism that requires the expression of 
several specific genes. Also their exact func­
tion is not quite understood, certain genes 
have been proposed as positive ( p53, c-fos, c­
myc, interleukin-1 converting enzyme etc.) or 
negative regulatory elements (bcl-2 or glu­
tathione redox cycle). They induce or prevent 
the onset of apoptosis.95-103 Among them, 
p53 and bcl-2 are the most important and 
most studied. 

p53 protein can function as a genetic 
switch capable of activating G1 arrest, result­
ing in the repair of DNA damage.94 Also, it is 

Figure 2. HeLa cells obtained 48 hours after a 1-hour 
treatment with 150 r1M cisplatin. Apoptotic cells showed 
typical chromatin condensation, fragmented nuclei and 
cellular shrinkage (arrowhead), while intact nuclei 
exhibit "mottled" fluorescence. Fram reference 91. 

required for efficient activation of apoptosis 
following irradiation or treatment with chem­
icals. Loss of p53 function has been reported 
to increase resistance of tumor cells to a vari­
ety of cytotoxic drugs.95,96 Recently it was 
shown that cells with mutated p53 gene dis­
play perturbed G1 arrest or apoptosis. This 
defect appears to reduce the sensitivity to 
DNA-damaging agents, suggesting that inhi­
bition of apoptosis may represents a mecha­
nism by which tumor cells may acquire drug­
resistance. 95,96 By transfer of normal p53 into 
p53-defective non-small cell cancer line, an 
important increase in sensitivity to cisplatin 
was determined, which was related to the 
promotion of apoptosis.97 However, the 
paper recently published by Wosikowski et 
al. suggests that alterations in p53 gene sta­
tus or protein functions are not critical for 
the development of multidrug resistance.98 

On the other hand, Bcl-2 protein inhibits 
apoptosis 99,ioo and increases cell resistance 
to drugs.101 Recently, bcl-2 related gene prod­
ucts have been reported. One of them, Bax, 
homodimerizes as well as heterodimerizes 
with Bcl-2 protein. The Bcl-2:Bax ratio may 
determine survival or death after an apoptot­
ic stimulus.102 

Therefore, oncogenes and tumor supres­
sor genes may be involved in drug resistance 
in two ways: by increasing the level of protec­
tive molecules in cells or by inhibiting apop­
tosis. 

Other factors 
In doxorubicin treated cells an altered pat­
tern of intracellular drug distribution was 
observed. The initial accumulation of drug in 
perinuclear location was followed by the 
development of a punctate pattern of the 
drug scattered throughout the cytoplasm. 
This pattern was suggestive of a process of 
drug sequestration, possibly followed by vesi­
de transport. In resistant cells, alteration in 
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the intracellular drug distribution was acco-­
mpanied by a decrease in nuclear versus cyto-­
plasm drug ratio.104,105 

There is more and more evidence, that 
drug resistance is a multifactorial phenome­
non (only for very low doses of the drug a 
single mechanism can be involved in drug­
resistance. Thus, for instance, in cells resis­
tant to cisplatin altered drug accumulation, 
increased levels of glutathione and related 
enzymes, metallothloneins, increased repair 
and altered expression of oncogenes could be 
observed.21,22,39,40 In methotrexate resistant 
cells, decreased uptake of this drug, decre­
ased polyglutamation, decreased affinity to 
DHFR and increased levels of target enzyme 
are the most common cause of drug resis­
tance to MTX.106 It should be mentioned, 
however, that all of these mechanisms need 
not be induced in drug resistant cells. So, in 
cisplatin resistant human laryngeal carcino­
ma cells only decreased platinum accumula­
tion was connected with resistance to cis­
platin, while no alteration in oncogene 
expression, no involvement of glutathione, 
glutathione transferase or metallothioneins 
was determined.40,87 

Table 4. Drug sensitivity pattern of resistant cell lines 

Celi line Drug used far Treatment 
resistance development schedule 

Laryngeal carcinoma 1 vincristine acute 
continuous 

Cervical carcinoma2 cisplatin acute 

continuous 

Laryngeal cardnoma3 cisplatin acute 
continuous 

Breast adeno-carcinoma4 doxorubicin 

1 reference 107, 2 reference 39, 3 reference 108, 4 reference 88. 
* Significant resistance only at higher doses. 
Acute 1 hour treatment; continuous 24 hours treatment 

Due to induction of several protective mol­
ecular mechanisms, resistant cells obtained 
after treatment with a single drug, can 
become resistant to various unrelated drugs 
(Table 4) . The schedule of drug-resistance 
development can also influence the resis­
tance pattern. Even with the same treatment 
schedule, clones with different cross-resis­
tance patterns occur.109 

It is generally accepted that the resistance 
to drugs can be induced by treatment with 
chemicals. However, in last severa! years it 
became obvious that also ionizing irradiation 
can induce drug resistance in irradiated cells 
no-114 by the same mechanisms that are 
involved in resistance development induced 
by cytostatics . 112,114-120 Thls fact, if supported 
in vivo, and specially in clinic, is of the out­
most importance for the patients. Namely, if 
irradiation precedes chemotherapy, it can 
reduce the success of combined therapy. 

In conclusion, drug resistance is a com­
plex, multifactorial phenomenon, which may 
involve decreased intracellular drug accumu­
lation, increased detoxification, increased 
DNA decreased activity of topo­
siomerases, gene amplification, altered onco-

Resistant 
to 

DOX, MTX 
DOX, MTX, 5-FU 

VCR, DOX, ETO, 
MTX, 5-FU 
VCR, MTX 

VCR, I\IIMC 
VCR, MMC, 5-FU 

continuous 

Sensitive 
to 

CDDP 
CDDP 

ETO, DOX 

VCR, VBL, 
CDDP, CBDCA, 
(MMC, 5-FU)* 

VCR= vincristine, VBL = vinblastine, DOX doxorubicin, ETO = etoposide, MTX methotrexate, 5-FU = 5-fluorouracil, 
CDDP= cisplatin, CBDCA= carboplatin, MMC= mitomycin C. 
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gene and tumor supressor gene expression, 
as well as inhibition of apoptosis. Resistance 
pattern of anticancer drugs is determined by 
the a) genotype of the cells, b) genotoxic 
agent involved in resistance development, 
and c) treatment schedule. The complexity of 
drug-resistance mechanisms, as well as 
sometimes conflicting experimental <lata sug­
gest the need to continue such investigation 
and clarify the cascade of events involved in 
this process. 
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