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Abstract
A genetic algorithm with resizable population has been applied to the estimation of parameters for Sovova’s mass trans-

fer model. The comparison of results between a genetic algorithm and a global optimizer from the literature shows that

a genetic algorithm performs as good as or better than a global optimizer on a given set of problems. Other benefits of

the genetic algorithm, for mass transfer modeling, are simplicity, robustness and efficiency.
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1. Introduction

The use of supercritical fluids (SCF) as solvents in

high pressure processes has environmental, health, safety

and chemical benefits, therefore they are sometimes cal-

led “Green solvents”.1 Expanded applications are making

SCFs the green solvents of the 21st century in numerous

processes, like chemical and biochemical reactions, ex-

traction processes, etc.2 The environmental benefits of the

most SCFs, in industrial processes, are in replacement of

environmentally far more damaging conventional organic

solvents.

Health and safety benefits include the fact that the

most important SCFs (supercritical CO
2

and supercritical

H
2
O) are non-carcinogenic, non-toxic, non-mutagenic,

non-flammable and thermodynamically stable. One of the

major process benefits has derived from the thermophysi-

cal properties of SCFs (high diffusivity, low viscosity,

high density and varying dielectric constant) which can be

fine tuned by changing the operating pressure and/or tem-

perature.

High pressure and its applications are new tools, ne-

vertheless the extraction of solids with SCF has been al-

ready applied on industrial scale processes. The highest

capacities are installed for coffee and tea decaffeination,

extraction of hop, extraction of spices for production of

oleoresins, extraction of bioactive from plants and extrac-

tion of oil from degumming residue to obtain highly con-

centrated and very pure lecithin.2 Moreover, the extended

research for extraction of solids with SCF is in progress.

To design an extraction plant and to determine the opti-

mum operating conditions, reliable models are necessary.

Therefore, one of the major activities in this field is kine-

tic modeling. In the literature, several models for supercri-

tical fluid extraction (SFE) can be found.3–16 Some of

them use simple empirical equations that fit to experimen-

tal data,6 others describe extraction rate using a mass

transfer coefficient. The description in the second group

can be made using the mass transfer coefficient either in

the solvent phase5,9,10 or in the solid phase.12 Sovova’s mo-

del, used in this paper, combines both mass transfer coef-

ficients.17

In this work, kinetic modeling for SFE curves was

used, where the extract mass or yield is represented as a

function of time or solvent mass used. The aim of this

work was to compare conventional global optimization al-
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gorithms with emerging evolutionary algorithms (EAs)18

on how the mass transfer model fits with the experimental

data. The EAs are a population-based stochastic optimiza-

tion search processes that mimics those biological proces-

ses that allow populations of organisms to adapt to their

surrounding environments by genetic inheritance and sur-

vival of the fittest. The main advantage of the EAs, over

the conventional search methods, is that the EAs don’t re-

quire any additional information about objective functions

such as differentiability or continuity. In other words, they

do not make any assumptions about the underlying fitness

landscape. Hence, the EAs are often used to solve hard re-

al world problems where other heuristic algorithms fail.

Many different algorithms such as: genetic algorithm

(GA), evolution strategies (ES), evolutionary program-

ming (EP), and genetic programming (GP) belong to the

EAs. Recently, many other algorithms such as: ant colony

optimization (ACO), differential evolution (DE), particle

swarm optimization (PSO), artificial immune systems

(AIS), and bees algorithm (BA) can be classified as EAs,

too.

The paper is structured as follows. The related work

is presented in the second section. In the third section So-

vova’s mass transfer model is described. The genetic algo-

rithm used for fitting the model is described in depth in

the fourth section. In the fifth section the results are pre-

sented. The statistical analysis of the results is presented

in the sixth section. At the end in the seventh section the

conclusion is made. All the parameters of the mass trans-

fer model are described in the notation section.

2. Related Work

Authors use different mathematical models to fit ex-

perimental SFE data. Some use mathematical techniques

built in common software such as Excel,19 Matlab,20

PROC NLIN software of SAS,21 and adjust them to fit

their needs. Others use or implement different algorithms

like maximum likelihood method with linear regression,22

Nelder-Mead simplex method,23 global optimization algo-

rithm with lexicographical grid method24 and parallel

flows.25

Sovova’s model for SFE extraction is a commonly

used model for SFE of vegetable oils, found in the litera-

ture.26–33 To obtain the curve for the extraction process,

model equations are composed from two sets of parame-

ters. In the first set the parameters are dependent from the

used material and conditions at which the extraction was

made. In the second set the parameters need to be estima-

ted to fit the model curve with the experimental data. The

fitting of parameters for Sovova’s model was mostly car-

ried out with the use of local optimization tools, although

it was also studied using global optimization.24 A global

optimizer24 uses the lexicographical grid method (LGM)

with a local variation algorithm (LVA) to obtain the near

global optimum point on which the Nelder-Mead method

was used to find the global optimum. The comparison bet-

ween the global optimization algorithm and the genetic al-

gorithm used in this paper, was made and the results are

shown in section 5.

The GAs were already used in parameter estimation

in chemical processes. Wolf and Moros34 used a GA to es-

timate the rate constants in oxidizing methane to C
2

hydrocarbons. With a GA, the initial estimates were made,

which were further optimized with the Nelder-Mead sim-

plex method. For the heterogeneous catalytic reaction,

Park and Froment35 estimated parameters by combining a

GA and the Levenberg-Marquardt method. Balland et al.36

used a GA, with a local convergence method, to estimate

simultaneously the kinetic and energetic parameters on

the real and complex chemical system. The estimation of

kinetic parameters of multi-component photocatalytic

process was done by Wang and Kim37, also with the com-

bination of a GA and simplex local optimization algo-

rithm. Katare et al.38 estimated the parameters for propane

aromatization on a zeolite catalyst with a hybrid algo-

rithm. All mentioned approaches use the combination of a

GA with some local search technique. To our knowledge,

none of the papers that use a GA were in the area of ex-

traction models.

3. Experimental

3. 1. Sovova’s Model
An extraction curve is a plot of total mass of oil ex-

tracted vs the time or total mass of solvent used. Sovova’s

model is designed to describe the extraction curve of ve-

getable oils. It extends Lack’s plug-flow model and assu-

mes that the part of extractable material is easily accessib-

le to the solvent, due to the breaking of the cell structures,

which contains the solute, during the milling of the raw

material. The other fraction of the solute remains inside

the cell structures that were not broken by milling, so its

contact with the solvent is more difficult.17

Figure 1: Extraction curve separated into three parts/periods.
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The whole extraction curve consists of three periods

(Figure 1). In the first period, the easily accessible solute

is linear with a slope close to the value of oil solubility in

solvent (CO
2
). In the second, transition period, the rate of

extraction drops rapidly and continues with a third period

where the extraction is almost linear but with much a

smaller extraction rate then in the first period.

Equations (1)–(4) show Sovova’s model that descri-

bes the extraction curve as a function of time. Martínez

and Martínez24 have used the global optimization method,

combined with the Nelder-Mead method, to find the opti-

mal fit. They have optimized the parameters Z, t
CER

and

t
FER

. The parameter W was calculated, because a correla-

tion exists between W and t
CER

. To prove that the GA is

able to find the near optimal or optimal solution to this

problem, the comparison was made and is presented in

section 5.

phase, ρ
s
is the density of the material and ε represents the

void fraction in bed.

In this paper, parameters Z, W and x
k

were chosen to

be optimized with GA, similar to parameters F, S and x
k

fitted in literature.25

3. 2. The genetic Algorithm 
for Sovova’s Model
GAs belong to EAs, which use mechanisms inspired

by biological evolution, such as mutation, crossover, and

selection. The main differences between GA and other well

known instances of EAs (ES, EP, and GP) are in the repre-

sentation of solutions (bit vector, real vector, finite automa-

ta, computer program), type of search operators (crossover,

mutation), type of selection (stochastic, deterministic), or-

The axial coordinate z
w

in the second extraction pe-

riod is calculated using equation (2).

(2)

Times t
CER

and t
FER

represent the transition between

the fast- and slow-extraction periods and are calculated

using equations (3) and (4).

(3)

(4)

Parameters Z and W are directly proportional to

mass transfer coefficients by equations (5) and (6).

(5)

(6)

The values k
f
and k

s
are mass transfer coefficients in

CO
2

and solid phase, respectively. Value a
0

represents the

specific interfacial area, ρ is the density of the solvent

der of operators (selection, crossover, mutation), and how

control parameters (pop_size, max_gen, p
c
, p

m
) are handled.

In order to obtain optimal solutions, the search pro-

cess of the EA is leveraged by two important aspects: ex-

ploration and exploitation. Exploration visits entirely new

regions of a search space to discover a promising offs-

pring while exploitation utilizes the information from pre-

viously visited regions to determine potentially profitable

regions to be visited next. To be successful, any search al-

gorithm needs to find a good balance between exploration

and exploitation. Many researchers believe that EAs are

(1)

Figure 2: Steps of genetic algorithm.
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effective because of a good ratio between the exploration

and exploitation. However, how and when to control and

balance exploration and exploitation in the search process

to obtain even better fitness results, and/or convergence

faster, are still an on-going research in EAs.39–42

Figure 2 shows the basic steps of the GA. In the be-

ginning, the initial population is often generated randomly.

The size of the population, the number of individuals, is

defined by the user before the run, with parameter pop_si-
ze, that might change during the evolution process. In the

parameter estimation technique, each individual represents

a set of model parameters, which need to be estimated. The

model equation(s) can therefore be computed for every in-

dividual and the result represents its fitness.

The basic steps of the GA are selection, crossover,

mutation, and evaluation. These steps are often problem

specific and hence explained in more details later. Every

iteration in the evolutionary cycle (Figure 2) is also called

a generation. The user, with a max_gen parameter, defines

the number of generations.

When to stop the GA is checked in the termination

check step. There are many possibilities for how long to

iterate the GA steps. The algorithm can stop when the re-

sult is good enough (within the defined error range), after

a certain number of fitness evaluations, or as in our case

after a certain number of generations (max_gen). The first

option is rarely used since the solution is usually not

known in advance.

One of the most important parts of GAs is the repre-

sentation of the individual. The performance and good-

ness of the fit is often based on the representation. Wolf

and Moros34 transformed each model parameter in the in-

dividual into floating point codes, which subdivide infor-

mation on mantissa, exponent and a sign of exponent.

Park and Froment35 used the binary representation of the

parameter set. Balland et al.36 used number coding where

the decimal value between 0 and 1 was converted to an

ASCII character chain. The coding of the individual, in

this work, is the same as in literature37,38 and uses the vec-

tor of floating points. Each model parameter is represen-

ted by a float value. Because the parameters Z, W and x
k

were chosen to be estimated, the individual is represented

with a vector [Z, W, x
k
].

The size of population during the algorithm run can

remain the same or it can change. If the offspring genera-

ted by a crossover or mutation replaces the parent, the size

of the population does not change. Otherwise, as in our

case, newly generated individuals can be inserted into the

population, which increases its size and leaves the parent

individuals untouched. This is useful if the parent has bet-

ter fitness value then the generated offspring.

3. 2. 1. Selection

It is decided, through the selection, which indivi-

duals will survive and make up the population in the next

generation. Many different techniques exist to make the

selection of the individuals.18 The most popular are pro-

portional, ranking and tournament selections. The tourna-

ment selection was used in this paper. In tournament se-

lection, the algorithm randomly selects k individuals from

the population and the best one (with the best fitness va-

lue) is selected into the next population. Because the po-

pulation size is changing, it is important that this process

is repeated pop_size times to reduce the size of population

to one that was defined by the user. Both parameters, k
and pop_size, are algorithm parameters defined by the

user.

3. 2. 2. Evaluation

The fitness value, for every individual in the popula-

tion, is calculated with the evaluation method and it is

used in the selection process. In this paper, for every indi-

vidual, the evaluation process calculates how good Sovo-

va’s model fits the experimental data with given parameter

values. To calculate the fitting of the model to the experi-

mental data, the merit function (7) was used. Value y(t
i
) is

calculated using equation (1) and represents the calculated

amount of an extract at time t
i
, while y

obs
(t

i
) represents the

experimentally obtained amount of extract.

(7)

3. 2. 3. Crossover

The crossover operator is often used to explore the

search space.40 This operator is used to mix the “genetic”

material between two or more individuals. Generally, the

crossover uses two individuals as parents and generates

two new individuals or offspring. The two basic crossover

mechanisms are the n-point crossover and uniform cros-

sover.18 The n-point crossover cuts the parents of length L
into n + 1 segments, based on randomly selected crosso-

ver points. The first offspring is created with the use of

odd segments from the first parent and even segments

from the second parent and vice versa for the second offs-

pring. In the uniform crossover the decision for every ele-

ment for the first offspring is made randomly, if it will be

taken from first or the second parent. The second offs-

pring is then generated using opposite decisions. Mostly

the 1- or 2- point crossover is used.

Because the individuals in this paper are of the short

length, the 1-point crossover has been used. For every in-

dividual in the population a random number between 0

and 1 is generated. If the number is lower than the crosso-

ver probability (p
c
), defined by the user, then this indivi-

dual is selected for crossover as the first parent. The se-

cond parent is then randomly selected from the popula-

tion. After both parents are known, the crossover position

needs to be determined. The crossover position in 1-point
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crossover is randomly chosen value between 1 and L-1.

After the position is selected, the new individuals are ge-

nerated based on rules written earlier in this subsection.

Figure 3 depicts this process graphically. As a result, two

new individuals are made and inserted into the population.

3. 2. 4. Mutation

The mutation operator is often used to exploit the

search space.40 The mutation operator is used to change a

part of the “genetic” material of the individual. In the real-

valued representation, the basic element or gene is a floa-

ting number. Mutation is therefore implemented as it

changes the value (gene) of the individual. For every gene,

in the individual, the random number between 0 and 1 is

generated. If this number is lower than the probability of

mutation (p
m

) defined by the user, the gene is mutated.

The proposed GA uses equation (8a) or (8b) for mutation.

(8a)

(8b)

Where v
n

represents value that replaces the old value

v, r is the random value between 0 and 1, v
max

is the maxi-

mum value and v
min

is the minimum value, both defined

by the user for every parameter separately. To achieve that

a smaller value change occurred more often, the cube on

the random value was used. With such designed selection,

crossover, and mutation operators we believe that good di-

versity of population is obtained. Diversity is one of the

important factors that influence exploration and exploita-

tion of EAs.43

The boundaries of the model parameters estimated

(Z, t
CER

and t
FER

) in the global optimizer24 were studied in

detail and limited to values:

In contrast to the global approach, the boundaries of

parameters estimated in the GA, were not dependent of

each other and for parameters Z and W the minimum value

was 0 and the maximum was 10, while the boundaries for

parameter x
k

were between 0 and x
0

(which fits with the

description of x
k
).

4. Results and Discussion

The comparison of the GA with the global optimi-

zation technique described in the literature24 was made

on the same data. The data describes supercritical fluid

extraction with CO
2

of vetiver roots at 40 °C and 200

bars. The first three problems represent a small pilot sca-

le and the next three a large production scales. The va-

lues for initial mass of extractable material x
0

= 0.0619

and extract solubility y
r

= 0.06 are equal for all prob-

lems.

Firstly, the influence of different control parameters

values on results of the GA was measured.41 The parame-

ters chosen for tuning were population size (pop_size),

probability of crossover (p
c
) and probability of mutation

(p
m

). For each parameter, three different values were cho-

sen:

– pop_size: 1000, 5000, 10000

– p
c
: 0.1, 0.2, 0.3

– p
m

: 0.05, 0.1, 0.2

The data used, for fitting, is described as problem 1

in literature.24 The flow rate was 0.85 kg/min and m
total

was 3.53 kg. The results of GA control parameter tuning

are summarized in Table 1. For every set of control para-

meters, the GA was run for 100 times and Table 1 contains

an average, the best and the worst solution found as well

as the standard deviation of results. The results are shown

as a percentage of average absolute relative deviation

(AARD), which is a commonly used measure in extrac-

tion modeling and shows the deviation of the model from

experimental data. The AARD is calculated using equa-

tion 9.

(9)

Comparison was made between AARD calculated

from values for model parameters taken from literature24

(obtained with the global optimizer) and AARD calcula-

ted from values obtained with the proposed genetic algo-

rithm on the same model (Equations (1)–(4)).

Using the solution of the global optimizer24 for the

first problem, the AARD value is 2.09499%. The GA was

able to find the solution, which was better than one obtai-

ned with the global optimizer, regardless of the control pa-

rameters values used (fifth column). We also measured the

worst solution from 100 runs (sixth column in Table 1). It

can be seen that the worst solutions of the GA are getting

Figure 3: Possible crossovers for vectors [Z
1
, W

1
, x

k1
] and [Z

2
, W

2
, x

k2
].
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closer to the best runs solution with increases in the values

of all three control parameters.

The results from Table 1 show that the worst solu-

tions have lower values (are therefore better) than that

of the global optimizer, in all cases where the probabi-

lity of mutation is 0.2. Furthermore the average AARD

(fourth column) is falling with increasing control para-

meter values. However, because the GA is a stochastic

It can be seen, from Figure 4, that the algorithm con-

verged quickly. In all three cases, it was near final solution

after about 30 to 50 generations. After that, only small im-

provements of fitness value were performed. There was

not a big difference in convergence between pop_size
5000 and 10000.

Based on the results of parameter tuning and al-

gorithm convergence, the next parameter values of the

and population based technique, the computational time

used also increases with the growth of each control pa-

rameter value. Therefore we have to make a compromi-

se between the quality of the average result and the time

spent for computation. According to the results, given

from Table 1, the algorithm gave better results than the

global optimizer in all runs, with the use of higher con-

trol parameter values. This makes it robust and less de-

pendent of control parameter settings (if they are high

enough).

Another interesting test, commonly used in different

EAs, is the convergence to the solution. Figure 4 shows

the convergence of GA for different population sizes

(1000, 5000, 10000) with the probability of crossover 0.1

and the probability of mutation 0.2. The plotted lines re-

present how the fitness value of the best individual in po-

pulation is changing through generations.

Table 1: Tuning of control parameter of the GA.

Figure 4: Convergence of GA run for different population sizes (p
c

= 0.1, p
m

= 0.2).

pop_size pc pm Average AARD Best AARD Worst AARD St. Dev.
1000 0.1 0.05 2.10032 2.09152 2.33522 2.61E-02

1000 0.1 0.1 2.09329 2.09152 2.12256 3.99E-03

1000 0.1 0.2 2.09184 2.09151 2.09348 3.93E-04

1000 0.2 0.05 2.10127 2.09152 2.33437 2.91E-02

1000 0.2 0.1 2.09445 2.09152 2.26253 1.70E-02

1000 0.2 0.2 2.09183 2.09151 2.09309 3.27E-04

1000 0.3 0.05 2.09954 2.09152 2.34141 2.62E-02

1000 0.3 0.1 2.09299 2.09152 2.12326 3.37E-03

1000 0.3 0.2 2.09179 2.09152 2.09327 2.74E-04

5000 0.1 0.05 2.09211 2.09151 2.09919 1.02E-03

5000 0.1 0.1 2.09171 2.09151 2.09910 7.66E-04

5000 0.1 0.2 2.09154 2.09151 2.09178 4.40E-05
5000 0.2 0.05 2.09217 2.09151 2.09528 8.60E-04

5000 0.2 0.1 2.09161 2.09151 2.09243 1.33E-04

5000 0.2 0.2 2.09156 2.09151 2.09174 4.79E-05

5000 0.3 0.05 2.09215 2.09152 2.09783 9.75E-04

5000 0.3 0.1 2.09159 2.09151 2.09212 1.09E-04

5000 0.3 0.2 2.09154 2.09151 2.09175 4.08E-05

10000 0.1 0.05 2.09171 2.09151 2.09318 2.88E-04

10000 0.1 0.1 2.09155 2.09151 2.09177 5.07E-05

10000 0.1 0.2 2.09153 2.09151 2.09164 1.71E-05

10000 0.2 0.05 2.09171 2.09151 2.09363 3.41E-04

10000 0.2 0.1 2.09154 2.09151 2.09173 3.79E-05

10000 0.2 0.2 2.09152 2.09151 2.09159 1.41E-05

10000 0.3 0.05 2.09167 2.09151 2.09275 2.20E-04

10000 0.3 0.1 2.09155 2.09151 2.09174 5.08E-05

10000 0.3 0.2 2.09153 2.09151 2.09158 1.39E-05
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GA were used for all six problems described in the lite-

rature:24

– population size (pop_size): 5000

– maximum number of generation (max_gen): 300

– probability of crossover (p
c
): 0.1

– probability of mutation (p
m

): 0.2

– tournament size (k): 2

For every problem, the algorithm was run for 100 ti-

mes. Commonly, the results obtained from more GA runs

were averaged and showed the expected value (with stan-

dard deviation) if the user made a random run afterwards.

In this case, average value of results was not of much help,

because the comparison of estimated model parameters

values between the GA and global optimizer was also nee-

ded. Therefore, the best and worst solution with belonging

estimations of model parameters values were compared

with model parameter values obtained with the global op-

timizer.24 This comparison is shown in Table 2.

Results from the GA are in all cases better then the

results from model parameters values obtained with the

global optimizer. However, if the comparison between pa-

rameter values (Z, W, t
CER

and t
FER

) is done, it can be seen

that they are in most cases almost identical. This means

that both algorithms found the same optimum in almost the

same search space location. It can be concluded that GA

found a reasonable solution with a physical meaning wit-

hout studying the connections between model parameters

that was done in literature.24 The upper and lower bounda-

Table 2: Comparison of results obtained with global optimizer and genetic algorithm for fitting Sovova’s

model to experimental data. The fitting was measured using AARD.

* Values for t
CER

and t
FER

parameters were calculated from obtained Z, W and x
k

using equations (3) and (4).

Extraction 
conditions

Global optimizer Best run of GA* Worst run of GA*

Problem 1: AARD = 2.09499 AARD = 2.09151 AARD = 2.09178

Q
CO2

= 0.85, Z = 0.083382, Z = 0.0833816, Z = 0.0833820,

m
total

= 3.53 W = 0.012494, W = 0.0124254, W = 0.0124398,

t
CER

= 24.372, x
k

= 0.0307196, x
k

= 0.0307221,

t
FER

= 26.411 t
CER

* = 24.3743120, t
CER

* = 24.3722408,

t
FER

* = 26.4131456 t
FER

* = 26.4109189

Problem 2: AARD = 1.95147 AARD = 1.91780 AARD = 1.91955

Q
CO2

= 0.85, Z = 0.104925, Z = 0.0938798, Z = 0.0940318,

m
total

= 3.53 W = 0.009490, W = 0.0074551, W = 0.0074529,

t
CER

= 18.766, x
k

= 0.0298954, x
k

= 0.0298973,

t
FER

= 20.740 t
CER

* = 22.2208750, t
CER

* = 22.1836385,

t
FER

* = 24.3108404 t
FER

* = 24.2734789

Problem 3: AARD = 1.62209 AARD = 1.59072 AARD = 1.59073

Q
CO2

= 6.3, Z = 0.228515, Z = 0.2285151, Z = 0.2285151,

m
total

= 26.2 W = 0.056783, W = 0.0552940, W = 0.0552929,

t
CER

= 13.627, x
k

= 0.0141545, x
k

= 0.0141544,

t
FER

= 16.762 t
CER

* = 13.6377716, t
CER

* = 13.6378002,

t
FER

* = 16.7743242 t
FER

* = 16.7743588

Problem 4: AARD = 1.60608 AARD = 1.56185 AARD = 1.56249

Q
CO2

= 17, Z = 0.226704, Z = 0.2267038, Z = 0.2267038,

m
total

= 71.68 W = 0.097600, W = 0.0943289, W = 0.0939244,

t
CER

= 14.269, x
k

= 0.0129419, x
k

= 0.0129218,

t
FER

= 17.537 t
CER

* = 14.2915706, t
CER

* = 14.2974381,

t
FER

* = 17.5638633 t
FER

* = 17.5708875

Problem 5: AARD = 1.94700 AARD = 1.84725 AARD = 1.84727

Q
CO2

= 17, Z = 0.259076, Z = 0.2590756, Z = 0.2590756,

m
total

= 72.26 W = 0.087644, W = 0.0816559, W = 0.0816523,

t
CER

= 12.182, x
k

= 0.0140226, x
k

= 0.0140224,

t
FER

= 15.371 t
CER

* = 12.3287263, t
CER

* = 12.3287778,

t
FER

* = 15.5528071 t
FER

* = 15.5528703

Problem 6: AARD = 3.10782 AARD = 3.07182 AARD = 3.07291

Q
CO2

= 6.3, Z = 0.283353, Z = 0.2833528, Z = 0.2833527,

m
total

= 73.1 W = 0.220752, W = 0.2174639, W = 0.2168423,

t
CER

= 24.083, x
k

= 0.0243632, x
k

= 0.0243396,

t
FER

= 31.207 t
CER

* = 24.1252429, t
CER

* = 24.1404193,

t
FER

* = 31.2576854 t
FER

* = 31.2762118
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ries of parameter values were wider, however this did not

affect the GA effectiveness. Therefore the GA is also more

robust on wider parameter value boundaries, which also

means that it is successful on search with larger search spa-

ce. With high confidence, we can conclude that a random

run of the GA with given control parameter values, will gi-

ve at least as good results as the global optimizer.

Because of almost the same estimated model para-

meters values, from both algorithms, the extraction curves

from the model are the same except for the second prob-

lem, where the GA found better fitting with different mo-

del parameter values. Figure 5 shows both extraction cur-

ves and experimental points for the second problem.

The computational time, used in the global optimi-

zer, is described with equation t = 10–6 n
1
n

2
n

3
n

obs
(s), whe-

re n
1
, n

2
and n

3
is the number of grid points for each model

parameter and n
obs

represents the number of experimental

points. In case, where n
1
, n

2
and n

3
are 100, this means

about 10 seconds for data with 10 experimental points.

The average time for the run of the GA for the problem

with 10 experimental points was 5 seconds. For the GA,

the Intel processor with 2.66 GHz was used and the algo-

rithm was written in Java. Although the GA is a popula-

tion based technique, the time used for computation was

better than the time mentioned in the literature for the glo-

bal optimizer.

5. Statistics

The statistical analysis of the result obtained with

GA and global optimizer was made with SPSS Statistics

software. One sample t-test was used for comparison of

the results. This test was found to be the most appropriate

because the results from several GA runs represent one

sample that needs to be compared to the already known

mean result from the global optimizer. The following

hypotheses were defined:

H
null

: There is no significant difference between re-

sults of the GA and results from the global op-

timization algorithm.

H
alt

: There is a significant difference between results

of the GA and results from the global optimiza-

tion algorithm.

With parameter tuning, we have determined the con-

trol parameters for the GA that give good enough solu-

tions. Although parameter tuning is time consuming and

the user without any information about GA efficiency for

different control parameter values might use values that

do not give good results. Therefore we have also made

one sample t-test for the GA run with the worst results ob-

tained, where the control parameter values were lower.

The results of the statistical test are shown in the first row

of Table 3.

By observing the data from the significance column

of Table 3, which is the most important column, it can be

concluded that there is not a significant difference in mean

value between the results of the global optimizer and the

GA with control parameter values 1000 for population si-

ze, 0.1 for probability of crossover and 0.05 probability of

mutation. The significant level was in this case exceeded

(α > 0.01). Therefore, in this case, the null hypotheses

H
null

was accepted. Although, in the second case (see Tab-

le 3, second row), where the control parameter values of

the GA were tuned (pop_size = 5000, p
c

= 0.1, p
m

= 0.2)

the significant level was not reached (α < = 0.01) and this

shows a significant difference between mean values of

both results. This is expected while all results from 100

runs are lower than the result from global optimizer. In

this case the null hypotheses H
null

is rejected and the alter-

native hypotheses H
alt

is accepted.

The same statistical test was performed on control

parameter values, presented in Table 1. In all cases, where

the mutation value is higher than 0.2, the results from GA

are significantly better than results from global optimizer.

Figure 5: Difference between the extraction curve of the model

with estimated parameters of global optimizer and estimated para-

meters of GA for the second problem.

Table 3: One sample t-test for comparison of results from GA and global optimizer. Test value is the AARD value of global optimizer for the first

problem: 2.09499%

GA control parameters
t df

Sig. Mean 99% Confidence Interval
(two tailed) difference of the Difference

pop_size pc pm Lower Upper
1000 0.1 0.05 2.041 99 0.044 0.00533373 –0.0015287 0.0121962

5000 0.1 0.2 –784.487 99 0.000 –0.00344807 –0.0034568 –0.0034393
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6. Conclusions

The aim of this work was to check how the GAs per-

form by fitting the SFE extraction data with Sovova’s

mass transfer model. The comparison of results obtained

with the GA was made with the global optimizer found in

literature. Presented results show that the GA algorithm

proved successful on all tested problems and that the re-

sults were significantly better than results obtained with

global optimizer.

Comparing the time needed for computation, the

GA proved to be faster than the global optimizer, although

the search space was larger, because the boundaries for

model parameters fitted were wider. The GAs are also

easy to implement and can be used for different optimiza-

tion problems. They are robust and capable of obtaining

good solutions for small problems, as in this case as well

as solving much harder problems as in the literature.44 The

algorithm implemented in this case could easily be used,

with minor changes in implementation, for parameter esti-

mation of any other model (even with a higher number of

model parameters and therefore larger search space).
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Notation

y(t) mass of extract (kg)

Q
CO2

solvent mass flow rate (kg/min)

y
r

extract solubility in the solvent at given pressure

and temperature

Z model parameter related to convection in the

fluid phase of the extraction bed

W model parameter related to diffusion in the solid

phase of the extraction bed

t time (min)

t
CER

end of the first extraction period (min)

t
FER

end of the second extraction period (min)

m
SI

mass of non-extractable material (extract-free)

(kg)

m
total

mass of material (extract + extract-free) (kg)

x
0

initial mass of extractable material, relative to

mass of non-extractable material

x
k

initial mass of extractable material in intact

cells, related to mass of non-extractable material
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Povzetek
V ~lanku predstavimo genetski algoritem s spremenljivo populacijo za dolo~itev parametrov modela prenosa snovi So-

vova. Primerjava rezultatov med genetskim algoritmom in globalnim optimizacijskim algoritmom povzetim iz literatu-

re poka`e, da so rezultati genetskega algoritma prav tako dobri ali bolj{i od rezultatov globalnega optimizacijskega al-

goritma na dani mno`ici problemov. Ostale prednosti genetskega algoritma za modeliranje krivulje prenosa snovi so

preprostost, robustnost in u~inkovitost.


