
Informatica 32 (2008) 421–427 421

DNA Algorithms for Petri Net Modeling

Alfons Schuster
School of Computing and Mathematics, Faculty of Engineering, University of Ulster, Shore Road, Newtownabbey, Co.
Antrim BT37 0QB, Northern Ireland
E-mail: a.schuster@ulster.ac.uk
http://www.infc.ulst.ac.uk/cgi-bin/infdb/buscard?email=a.schuster

Keywords: DNA computing, algorithms, Petri nets

Received: March 3, 2008

The paper applies, in a theoretical investigation, the DNA computing paradigm to the modeling of Petri
nets. A run-through example demonstrates the feasibility of the approach as well as its potential practical
value.

Povzetek: Podani so DNA algoritmi za Petri mreže.

1 Introduction

A defining moment for DNA computing was Adleman’s
(1) fundamental contribution in which he demonstrated the
potential of this novel computing paradigm by solving an
instance of the Hamiltonian Path Problem in theoretical
as well as practical terms. Since then, DNA computing
has been proposed and tested in numerous areas includ-
ing, finite automata (14), machine learning (12), relational
database modeling (13), and, of course, solving computa-
tionally expensive problems (e.g., (6), (2), and (3)).

This paper investigates Petri nets as a novel DNA com-
puting application area. The paper provides brief intro-
ductions to Petri nets and DNA computing and demon-
strates via an example algorithm how the DNA computing
paradigm can be successfully applied for Petri net model-
ing. It is necessary to mention that the the paper does not
include simulations of the work on a silicon computer or
practical, experimental work involving real-life DNA ma-
terial. Rather, the paper is of theoretical value only and
largely neglects aspects of practical realizations of the pro-
posed work (e.g., error rates). In a sense, the algorithm
presented in this work is a high-level description for a pro-
gram. The program/algorithm describes a sequence of bio-
chemical events and these events are meant to execute/run
in a biochemical environment—a DNA computer. Once
this sequence of events is executed correctly, which is not
a trivial bioengineering task, the result is available as/in the
form of DNA strings. In order to extract the outcome of
the algorithm, it is necessary to readout these strings and
decode their information, but this is similar to reading out
a sequence in a human genome (e.g., identifying a protein-
encoding gene). Perhaps, one could think of the follow-
ing analogy. It is possible to add and subtract two num-
bers with an electronic calculator, but the same thing can
be done with an abacus (the abacus made of wood). Both
procedures produce the same result but use entirely differ-
ent machines and very different algorithms. Similarly, a

DNA computer operates in a biochemical environment, ex-
ecutes real biochemical events, and uses real (usually syn-
thetically modified) DNA.

In the remainder, Section 2 provides a brief introduction
to Petri nets, their design, and working. Section 3 starts
with a summary on DNA computing and then describes a
DNA algorithm for a Petri net example the paper uses as
a run-through vehicle to explain the presented work. Sec-
tion 4 provides a discussion and Section 5 ends the paper
with a summary.

2 Petri nets

Petri nets are the brainchild of Carl Adam Petri (9). Since
their conception, Petri nets are a very lively field where
findings in theoretical and applied work are continually
added to the field. A summary may describe Petri nets as
a formal, graphical, executable technique for the specifi-
cation and analysis of concurrent, discrete-event dynamic
systems (e.g., see http://www.petrinets.info/). Over time,
the field attracted a lot of interest not only in the comput-
ing community but in a diverse spectrum of application
areas including software & hardware (the complete soft-
ware lifecycle from analysis, specification, design, model-
ing, simulation, and testing; e.g., (11) and (5)), complex
systems (16), particle interaction in atomic physics (10),
as well as model validation of biological pathways (4), for
example. This section introduces Petri nets via a simple
example network. The paper uses this example network as
a run-through vehicle in forthcoming sections. For a start,
Figure 1 illustrates the main Petri net components (place,
active place, transition, directed arc, and token).

In order to build a network, the components in Figure 1
are combined in a systematic way by a set of relatively
straightforward rules. Note that some of these definitions
are adopted from (8), which is one of several excellent
books available on Petri nets. The main design rules are:



422 Informatica 32 (2008) 421–427 A. Schuster

Place Token

Transition

Directed arc

Active place

Figure 1: Main Petri net components.

t
1

p
1

p
2

p
3

p
4

t
2

t
3

Figure 2: A Petri net with four places and three transitions.

– An arc always connects a place to a transition (in ei-
ther direction).

– An arc never connects a place directly to another place
nor a transition directly to another transition.

– Each place and each transition should have at least one
incoming and at least one outgoing arc.

– There is no upper limit to the number of arcs that can
connect to a place or a transition.

The Petri net in Figure 2, for example, is constructed by
these rules. The network has four places (p1, p2, p3, and p4)
and three transitions (t1, t2, and t3). Directed arcs connect
places and transitions, and place p3 is an active place with
one token in it. The main rules for Petri net tokens, and
Petri net operations in general, are equally simple:

– Tokens are used to indicate which places are “active”
(see Figure 1 and Figure 2). An active place may con-
tain more than one token.

– If all its incoming places are active, a transition will
“fire”.

– When a transition fires then (a) all its incoming places
lose a token, and (b) all its outgoing places gain a to-
ken.

P = {p1, p2, p3, p4}
T = {t1, t2, t3}

I(t1) = {p1}
I(t2) = {p2, p3}
I(t3) = {p4}

O(t1) = {p2}
O(t2) = {p4}
O(t3) = {p1, p3}

Figure 3: Petri net structure C = {P, T, I,O} for the Petri
net in Figure 2.

Although Petri nets and their operations are relatively
easy to understand via graphical illustrations, it is neces-
sary mentioning that the field rests on a rigorous mathemat-
ical underpinning (e.g., see (8)). In formal terms, a Petri net
is composed of four parts:

– A set P of places.

– A set T of transitions.

– An “input” function I . The input function I is a map-
ping from a transition tj to a collection of places (in-
put places) I(tj).

– An “output” function O. The output function O is a
mapping from a transition tj to a collection of places
(output places) O(tj).

– The “structure” C of a Petri net is defined by its
places, transitions, input function, and output func-
tion; C = (P, T, I,O).

Figure 3 uses the latter definitions for the description of
the Petri net in Figure 2.

It is possible to describe a Petri net and its working en-
tirely in a rigorous mathematical way. The paper uses a
simpler approach. It keeps the mathematical notation to a
minimum, and instead uses graphical illustrations for the
sake of ease of understanding. The paper uses Figure 4 to
demonstrate the operating behavior of the Petri net in Fig-
ure 2.

Figure 4 (a) illustrates an “unmarked” Petri net. An un-
marked Petri net has no tokens assigned to any of its places.
In Figure 4 (b) the Petri net is “marked” with two tokens,
one token is in place p1, and the other token in place p3.
The previous text mentioned that the dynamic behavior of
a Petri net is determined by the number and distribution of
tokens in the Petri net. According to these rules, transition
t1 fires, because all its incoming places (p1) have a token.
Consequently, place p1 loses its token and place p2 gains a
token (see Figure 4 (c)). Now, transition t2 fires, because
all its incoming places (p2, and p3) have a token. As a re-
sult, place p2 and place p3 lose their token, and place p4

receives a token (see Figure 4 (d)). Next, transition t3 fires,



DNA ALGORITHMS FOR PETRI NET MODELING Informatica 32 (2008) 421–427 423

T1

P1

P2 P3

P4

T2

T3

T1

P1

P2 P3

P4

T2

T3

T1

P1

P2 P3

P4

T2

T3

(d) (e)

T1

P1

P2 P3

P4

T2

T3

T1

P1

P2 P3

P4

T2

T3

(a) (b) (c)

Figure 4: Execution sequence for the Petri net in Figure 2.

causing p4 losing its token, and placing tokens into place
p1 and place p3 (see Figure 4 (e)). A closer look reveals
that Figure 4 (e) is equivalent to Figure 4 (b), and it should
be clear that the example illustrates a loop.

3 DNA computing

DNA computing is a relatively young computing paradigm.
Among other things, the potential of DNA computing lies
in its inherent capacity for vast parallelism, the scope for
high-density storage, and its intrinsic ability for potentially
solving many combinatorial problems. In simple terms,
DNA computing is based on the design, manipulation, and
processing of nucleotides. These nucleotides are chemical
compounds including a chemical base, a sugar, and a phos-
phate group. Four main nucleotides are distinguished, ade-
nine (A), guanine (G), cytosine (C) and thymine (T). Nu-
cleotides can combine or bond as “single stranded” DNA,
or “double stranded” DNA. Single stranded DNA is gen-
erated through the subsequent bonding of any of the four
types of nucleotides, and is often illustrated as a string

of letters (e.g., TATCGGATCGGTATATCCGA). Double
stranded DNA is generated from single stranded DNA and
its complementary strand. This type of bonding follows
“Watson-Crick Complementary”, which says that base A
only bonds with base T, base G only with base C, and vice
versa. For example, the strand ATAGCCTAGCCATATAG-
GCA is the Watson-Crick Complement of the DNA strand
TATCGGATCGGTATATCCGA just mentioned. The liter-
ature often illustrates a resulting double strand as two paral-
lel strands (e.g., TATCGGATCGGTATATCCGA

ATAGCCTAGCCATATAGGCA , where the
fraction line symbolizes bonding).

From a computing perspective, the field aims for the con-
struction of DNA computers and programs that run on such
a computer. Typically, the four nucleotides mentioned be-
fore provide the basis for an alphabet (e.g., Σ = {A, G,
C, T}). From this alphabet a particular language (L) may
be constructed. This language is used to define algorithms
and computer programs. In practical terms, a DNA com-
puter bears similarity to a biochemical machine in which
biochemical events perform algorithms and execute pro-
grams by manipulating DNA strands in a series of care-
fully orchestrated biochemical processes. They are usually



424 Informatica 32 (2008) 421–427 A. Schuster

mediated by molecular entities called enzymes and include
the lengthening, shortening, cutting, linking, and multiply-
ing of DNA, for example. It is necessary to point out that
these events and processes are quite challenging from a
biochemical engineering perspective, but it is beyond the
scope of this paper to indulge into the many challenges the
field holds in this regard. There is a large body of liter-
ature available on the subject, and the interested reader is
referred to one of the excellent books (7) available for the
field. It may be useful however to direct a reader to some
of the major contributions in the field (e.g., (15), (1), and
(6)). The more imminent goal is to demonstrate the po-
tential application of the DNA computing paradigm to the
field of Petri nets.

3.1 DNA-based model for Petri nets
The goal is the design and behavioral modeling of Petri
nets via DNA computing principles. The paper mentioned
that the behavior of a Petri net is linked to the firing of
transitions, which essentially boils down to the monitoring
of activated places (i.e., places with tokens in them). For
example, transition t2 in Figure 4 (a) fires only if place p2

and place p3 at least hold one token each. This could be
presented by a simple it-then rule: if p2 and p3 then t2.
The presented approach therefor has two main features:

1. It models activated places via DNA strands. For ex-
ample, it is possible to represent the active place p1 in
Figure 4 (b) via the DNA strand s1 = TATCGGATCG-
GTATATCCGA.

2. An algorithm describes the behavior or logic of a Petri
net. This algorithm is similar to a sequence of bio-
chemical reactions on DNA strands.

For the forthcoming sections it is necessary to introduce
some of the most common operations (biochemical reac-
tions) on DNA strands. Note that some of the following
definitions are adopted from (7).

– amplify: Given a tube N , amplify(N ) produces two
copies of it.

– detect: Given a tube N , detect(N ) returns true if N
contains at least one DNA strand, otherwise return is
false.

– merge: Given tubes N1 and N2, merge(N1, N2) pro-
duces a new tube N3 that forms the union N1 ∪N2 of
the two tubes.

– separate: Given a tube N and a DNA strand w
composed of nucleotides m ∈ {A, T, C, G}, sepa-
rate(+N,w) produces a new tube N1 that consists of
all strands in N which contain w as a consecutive sub-
strand. Similarly, separate(−N, w) produces a new
tube N1 that consists of all strands in N which do not
contain w as a consecutive sub-strand.

– lengthSeparate: Given a tube N and an integer n,
lengthSeparate(N,≤ n) produces a new tube N1 con-
sisting of all strands in N with length less then or
equal to n.

Without further ado, the paper uses Figure 5 to illustrate
a DNA algorithm for the Petri net scenario in Figure 4.

The algorithm starts in line one with tube N0. This tube
is completely empty (indicated by the symbol ). It is help-
ful to imagine that this state is equivalent to the unmarked
Petri net in Figure 4 (a). The algorithm uses four boolean
variables (b1 to b4 in line two) to represent the presence of
any of the strands s1 to s4 in tube N0. Remember that the
presence of a strand is similar to an active place in the Petri
net. For example, the presence of strand s1 in tube N0 indi-
cates that there is a token in place p1. The boolean variables
indicate the presence of a strand by the value true, and its
absence by the value false. Initially tube N0 is empty, and
so b1 = b2 = b3 = b4 = false in line two. Please note
that the discussion in Section 4 comments on these vari-
ables in more detail.

Line three to ten mark the Petri net. There are several
possibilities for marking this particular net, and the current
example uses one of them. It is possible therefore, to com-
pare line three to ten to a function call, for instance func-
tion Mark_Petri_net(), in a computer programme where
parameters are passed to the function. Line four is a simple
comment. A double slash (//) always indicates a comment
in the algorithm. Anyhow, line five adds strand s1 into tube
N0, which is equivalent to adding a token into place p1,
and line six adds strand s3 into tube N0, which is equiva-
lent to adding a token into place p3. The Petri net is now
in the state illustrated by Figure 4 (b). The settings of vari-
able b1 = true, and b3 = true in line seven and line eight
reflect the presence of these strands in tube N0. Petri nets
are often models of real world systems. The appearance of
a token in a place usually triggers some event in this sys-
tem. This is the reason for line nine, which is a reference to
some external task that my be executed by the algorithm.

Line 11 introduces the variable n. The algorithm uses
this variable in the repeat-until loop where it defines an
application specific exit criterion (line 36). The repeat-
until loop extends from line 12 to line 36, and contains
three if-then statements. Essentially, each if-then statement
does two things, first, it checks the firing status of a par-
ticular transition, and second, it contains instructions for
what happens when a transition fires. For example, line 14
checks for strand s1 in tube N0. In case the result is neg-
ative, nothing happens, and the algorithm advances to the
next if-then statement. If the result is positive then place
p1 loses a token (line 15, b1 = false) and place p2 gains
a token (line 16, b2 = true). In a similar fashion, the sec-
ond if-then statement monitors transition t2, and the third
if-then statement transition t3. The comment in line 16 in-
dicates that setting any of the boolean variables to true is
equal to adding a corresponding strand to tube N1. Note
that the algorithm deals with this at a later stage (lines 30
to 33).



DNA ALGORITHMS FOR PETRI NET MODELING Informatica 32 (2008) 421–427 425

(1) input(N0) =
(2) b1 = b2 = b3 = b4 = false,
(3) Mark Petri net begin
(4) //For example
(5) add(s1, N0)
(6) add(s3, N0)
(7) b1 = true
(8) b3 = true
(9) Do some task.

(10) end
(11) n = 0
(12) repeat
(13) input(N1) =
(14) if detect(N0(s1)) then begin
(15) b1 = false
(16) b2 = true, //add(s2, N1) later
(17) Do some task.
(18) end
(19) if detect((N0(s2) and N0(s3)) then begin
(20) b2 = b3 = false
(21) b4 = true, //add(s4, N1) later
(22) Do some task.
(23) end
(24) if detect(N0(s4)) then begin
(25) b4 = false
(26) b1 = true, //add(s1, N1) later
(27) b3 = true, //add(s3, N1) later
(28) Do some task.
(29) end
(30) if b1 = true then add(s1, N1)
(31) if b2 = true then add(s2, N1)
(32) if b3 = true then add(s3, N1)
(33) if b4 = true then add(s4, N1)
(34) N0 = N1

(35) n = n + 1
(36) until (some condition regarding n is met)

Figure 5: DNA-based algorithm for the Petri net in Figure 4 (a).

The final lines requiring explanation are line 13 and lines
30 to 35. Line 13 introduces a new tube N1. This tube is
always empty (N1 = ) when the repeat-until loop enters
a new iteration. Between line 30 to line 33, it depends on
the values for b1 to b4, which strands (s1, s2, s3, or s4) are
added to tube N1. It is important to understand that at line
35, the Petri net went through one complete state transition
(e.g., from Figure 4 (b) to Figure 4 (c)). Inside the repeat-
until loop, the current “state” is always represented by the
content of tube N0, and the so-called “next-state” by that
of tube N1 in line 34. Line 13 empties tube N1 in order to
prepare it for the new next state. Line 36 decides whether
the loop enters a new iteration. This depends on the new
value for n, which was incremented in line 35.

The paper now goes through a couple of iterations to
demonstrate the algorithm in more detail. A decision ta-
ble (Table 1) keeps track of the boolean variables (which

represent the behavior of the Petri net in terms of active
places and content of tube N0).

Column “Start” in Table 1 captures line one and two of
the algorithm and is equivalent to the unmarked Petri net
in Figure 4 (a). Column “Marking” represents line three
to line ten in the algorithm and is equivalent to the marked
Petri net in Figure 4 (b). Note two things here, first that
strands are added to tube N0 (line five and six), and sec-
ond that this is reflected by corresponding settings by the
boolean variables (line seven and eight). Note also that Ta-
ble 1 indicates changes in boolean variable values (as the
Petri net moves from one state to the next) by underlin-
ing these values. For instance, from the “Start” state to
the “Marking” state in Table 1 the values for b1 and b3
change and therefore are underlined. Anyhow, at line ten
the settings are b1 = true, b2 = false, b3 = true, and
b4 = false.



426 Informatica 32 (2008) 421–427 A. Schuster

Iteration, repeat loop
Start Marking 1 2 3 4 5 6

b1, detect(N0(s1)) 0 1 0 0 1 0 0 1
b2, detect(N0(s2)) 0 0 1 0 0 1 0 0
b3, detect(N0(s3)) 0 1 1 0 1 1 0 1
b4, detect(N0(s4)) 0 0 0 1 0 0 1 0

State similar to Figure 4 (a) (b) (c) (d) (b) (c) (d) (b)

Table 1: Decision table, illustrating the behavior of the Petri net in Figure 4.

Next, variable n is set to nil in line 11. According to the
values for b1 to b4, the repeat loop enters the first if-then
statement (line 14) only. Consequently, when the index n
is incremented in line 35 then b1 = false (line 15) and
b2 = true (line 16), whereas b3 and b4 remain unaltered
(b3 = true from line eight, and b4 = false from line two).
So, the settings after the first iteration are b1 = false, b2 =
true, b3 = true, and b4 = false. This state is equivalent
to Figure 4 (c).

In the second iteration these settings activate the second
if-then statement only (b2 = true, and b3 = true). Con-
sequently, b2 = b3 = false (line 20), b4 = true (line 21),
and variable b1 remains unaltered (false). Now, the settings
are b1 = false, b2 = false, b3 = false, and b4 = true.
This state is equivalent to Figure 4 (d).

In iteration three, these settings activate the third if-
then statement (line 24) only (b4 = true). Therefore,
b4 = false (line 25), b1 = true (line 26), b3 = true
(line 27), and b2 remains unaltered false. So, the settings
are b1 = true, b2 = false, b3 = true, and b4 = false.
This state is equivalent to Figure 4 (b) again, and the Petri
net process illustrated in Figure 4 starts again. Table 1 cap-
tures a few more iterations. Playing these iterations through
demonstrates that the algorithm indeed models the behav-
ior of the Petri net in Figure 4, however, this also indicates
that the paper achieved its main goal.

4 Discussion
The previous sections successfully led to our goal, the mod-
eling of Petri nets based on DNA computing principles. It
is necessary, however, mentioning that the algorithm pre-
sented here is an ad hoc solution to the problem. It is
possible, for instance, to use only one tube N0, and to
write the algorithm without any of the four boolean vari-
ables by replacing them with corresponding biochemical
operations. For example, imagine the state in Figure 4 (c)
equivalent to strand s2 and strand s3 in tube N0. Now,
imagine a progression to Figure 4 (d) where strands s2

and s3 need to be separated from tube N0 and strand s4

added to the same tube. This could be achieved by the fol-
lowing biochemical operations, separate(−N0, s2), sepa-
rate(−N0, s3), and add(s4, N0). We found, however, state-
ments such as b2 = false, b3 = false, etc. much sim-
pler to handle and follow, helping a reader to better un-
derstand the logic of the algorithm, and also providing an

easier mapping between the logic of the algorithm and the
behavior of the Petri net in Figure 4.

Another possible modification relates to the modeling of
active places. Currently, an active place is modeled by a
single DNA strand, and the firing conditions for a transi-
tion are determined by checking for the activity of its in-
put places (i.e., corresponding DNA strands). Line 19 in
the algorithm, for example, checks for the two individual
stands s2 and s3 in tube N0. Another way would be to
model a transition by connecting all its active places into a
single strand. The Watson-Crick complement can be used
for connecting two stands in a pre-defined fashion. One
possibility would be to connect s2 and s3 via the strand
(e2→3), where (e2→3) is the Watson-Crick complement of
the second half of s2 concatenated with the Watson-Crick
complement of the first half of s3. If the complements for
s2 and s3 are s′2 and s′3, respectively, then we may have
the example illustrated in Figure 6 (a), and in case strands
s2, s3, and e2→3 where mixed together in a tube (e.g., N0)
then the double strands illustrated in Figure 6 (b) might be
generated by bonding.

It is now possible to write an algorithm including some
of the biochemical procedures mentioned in Section 3.1, as
well as others, to check for the existence of strand s2s3 in
tube N0. If the strand exists then the code executed after
may be similar to that following line 19 in Figure 5. The
paper does not go into further details here about biochemi-
cal procedures or the algorithm reflecting these procedures,
but the reader is directed to Adleman’s (1) work, which en-
tails details that are very similar to the facts just mentioned.

In terms of other issues, there is also the fact that the pre-
sented work deals with a single example only. Although
the example may not really bring to the fore the great ad-
vantage DNA computing provides, namely parallelism, it
is not difficult to envisage two or more Petri nets running
in parallel and interacting amongst each other (e.g., inter-
actions may be messages exchanged in the form of tokens).
This should not devalue the paper, because the major con-
tribution of in this work is the synergy of two fields—Petri
nets and DNA computing. A final though considers the
purely theoretical treatment of the subject. Such a treat-
ment should not suggest any ignorance of the many chal-
lenges DNA computing still poses for engineers working in
a broad variety of disciplines involved with DNA comput-
ing.



DNA ALGORITHMS FOR PETRI NET MODELING Informatica 32 (2008) 421–427 427

TATCGGATCGGTATATCCGAGCTATTCGAGCTTAAAGCTA

 CATATAGGCTCGATAAGCTC

s
3

s
2

e
2->3

s
2
 =

s
3
 =

s
2
s
3
 =

s’
2
 =

s’
3
 =

e
2 3
 = s’

2
s’
3
 =

TATCGGATCGGTATATCCGA

GCTATTCGAGCTTAAAGCTA

TATCGGATCGGTATATCCGAGCTATTCGAGCTTAAAGCTA

CATATAGGCT

CGATAAGCTC
CATATAGGCTCGATAAGCTC

(a)

(b)

Figure 6: Alternative modeling of transitions and places.

5 Summary

The paper suggests Petri nets as a novel DNA computing
application area. The paper demonstrated the feasibility of
the approach in theory. The paper indicates that real-life
applications of the presented work may be problematic to
achieve because of various engineering challenges in the
field of DNA computing. This does not mean, however,
that the approach could not be verified in vitro in a DNA
computing project.

References
[1] Adleman, L. (1994). Molecular computation of solu-

tions to combinatorial problems. Science, 266:1021–
1024.

[2] Chang, W. and Guo, M. (2003). Solving the set-cover
problem and the problem of exact cover by 3-sets in the
Adleman-Lipton’s model. BioSystems, 72(3):263–275.
Elsevier Science.

[3] Chang, W. and Guo, M. (2004). Molecular solutions
for the subset-sum problem on DNA-based supercom-
puting. BioSystems, 73(2):117–130. Elsevier Science.

[4] Heiner, M., K. I. and Willa, J. (2004). Model validation
of biological pathways using Petri nets–demonstrated
for apoptosis. Biosystems, 75:15–28. Computational
Systems Biology.

[5] Kounev, S. and Buchmann, A. (2006). SimQPN–a tool
and methodology for analyzing queueing Petri net mod-
els by means of simulation. Performance Evaluation,
63(4–5):364–394.

[6] Lipton, J. (1995). DNA solution to hard computational
problems. Science, 268:542–545.

[7] Paun, G., R. G. and Salomaa, A. (1998). DNA
Computing–New Computing Paradigms. Springer-
Verlag, N.Y.

[8] Peterson, J. (1981). Petri Net Theory And The Mod-
elling Of Systems. Prentice Hall, Inc., Englewood Cliffs,
N.J.

[9] Petri, C. (1961). Kommunikation mit Automaten. PhD
thesis, University Bonn, Germany. PhD thesis.

[10] Petri, C. (1982). State-transition structures in physics
and in computation. International Journal of Theoreti-
cal Physics, 21(12):979–992.

[11] Reza, H. (2006). A methodology for architectural de-
sign of concurrent and distributed software systems. The
Journal of Supercomputing, 37(3):227–248.

[12] Schuster, A. (2003). DNA algorithms for rough set
analysis. In Liu, J., Cheung, Y.M, and Yin, H., editors,
Intelligent Data Engineering and Automated Learning,
volume 2690 of Lecture Notes in Computer Science,
pages 498–513. Springer-Verlag, Berlin.

[13] Schuster, A. (2005). DNA databases. BioSystems,
81(3):234–246. Elsevier Science.

[14] Soreni, M., Yogev, S., Kossoy, E., Shoham, Y., and
Keinan, E. (2005). Parallel biomolecular computation
on surfaces with advanced finite automata. J. Am. Chem.
Soc. (Article), 127(11):3935–3943.

[15] Watson, J. and Crick, F. (1953). Molecular structure
of nucleic acids. Nature, 171:734–737.

[16] Zhu, P. and Schnieder, E. (2000). Holistic mod-
eling of complex systems with Petri nets. In Pro-
ceedings IEEE International Conference on Systems,
Man, and Cybernetics (SMC’2000), 8-11 October 2000,
Nashville, TN, volume 4, pages 3075–3080.


