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A B S T R A C T	   A R T I C L E   I N F O	

Factors	related	to	bulk	cargo	port	scheduling	are	very	complex	and	peculiar.	
Changes	in	the	factors	will	affect	the	reusability	of	a	model,	so	establishing	a	
reliable	scheduling	model	for	bulk	cargo	ports	is	particularly	important.	This	
paper	sorts	the	factors	affecting	bulk	cargo	port	scheduling,	such	as	the	num‐
ber	 of	 vessels,	 the	 number	 of	 berths,	 vessel‐berthing	 constraints	 (basic	 fac‐
tors),	the	service	priority,	and	the	makespan	(special	factors),	and	then	estab‐
lishes	the	non‐deterministic	polynomial	(NP)	model,	which	aims	to	minimize	
the	total	service	time	and	makespan.	Lastly,	it	solves	the	model	based	on	the	
multi‐phase	 particle	 swarm	 optimization	 (MPPSO)	 algorithm	 and	 Matlab.	
Some	important	conclusions	are	obtained.	(1)	For	the	model	neglecting	prior‐
ity,	the	total	service	time	is	the	smallest,	whereas	the	maximum	waiting	time	
and	maximum	operating	 time	 are	 relatively	 large,	 and	 the	makespan	 is	 the	
latest.	(2)	For	the	model	considering	priority,	the	total	service	time	is	relative‐
ly	 large,	whereas	 the	maximum	waiting	 time	 and	maximum	 operating	 time	
are	 relatively	 small,	 and	 the	makespan	 is	 relatively	early.	 (3)	For	 the	model	
considering	the	makespan,	the	total	service	time	is	the	mostlargest,	whereas	
the	maximum	waiting	 time	 and	 especially	 the	maximum	operating	 time	 are	
the	smallest,	and	the	makespan	is	the	earliest.	We	can	choose	different	models	
according	to	different	situations	in	bulk	cargo	port	scheduling.	
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1. Introduction 

Berths	are	scarce	resources	in	bulk	cargo	ports,	and	due	to	the	increased	throughput	of	vessels,	
the	berth	allocation	problem	(BAP)	is	inevitable.	Additionally,	the	uncertainty	of	vessels	at	a	port,	
the	 specific	 demand	 for	 different	 vessels,	 the	 time	 lag	 of	 vessels	 leaving	 a	 port	 and	 vessel‐
berthing	constraints	will	all	affect	the	scheduling	of	bulk	cargo	ports.	The	berth	scheduling	prob‐
lem	deals	with	 the	assignment	of	vessels	 to	berths	 in	a	marine	 terminal,	with	 the	objective	of	
maximizing	 the	ocean	 carriers’	 satisfaction	 (minimize	delays)	 and/or	minimizing	 the	 terminal	
operator's	costs	[1].	

The	vessels	differ	with	each	other	 in	many	aspects,	 such	as	 loaded	cargoes,	 freight	volume,	
and	transport	types,	so	ports	must	provide	different	processes,	facilities,	resources,	etc.	Experi‐
ence,	rather	than	standards,	is	needed	in	bulk	cargo	port	scheduling,	and	the	actual	work	takes	
considerable	personal	 time	 and	 effort	 [2,	 3].	Due	 to	 the	disadvantages	 of	 experience,	 scholars	
began	to	study	the	factors	related	to	scheduling	[4,	5];	also,	the	setting	of	a	scheduling	goal	can	
play	 an	 important	 role	 in	 the	 scheduling	 process	 [6,	 7],	 and	 heuristics	 algorithms,	 simulation	
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technology	and	artificial	intelligence	are	introduced	to	solve	the	scheduling	problem	[8].	Factors	
related	to	bulk	cargo	port	scheduling	are	very	complex	and	peculiar,	and	changes	in	the	factors	
will	affect	the	reusability	of	a	model.	Existing	research	has	not	paid	enough	attention	to	special	
factors	such	as	the	service	priority	and	makespan.	This	paper	establishes	the	NP	model,	which	
aims	 to	 minimize	 the	 total	 service	 time	 and	 makespan,	 and	 solves	 the	 model	 based	 on	 the	
MPPSO	algorithm.	We	organize	this	paper	as	following:	In	the	following	section,	we	present	the	
literature	review.	In	section	3,	we	propose	the	mathematical	model,	which	forms	the	theoretical	
foundation	of	this	study.	In	section	4,	we	solve	the	model	based	on	the	MPPSO	algorithm,	which	
provides	the	basis	for	our	analysis.	Finally,	in	the	last	section,	we	conclude	the	study.	

2. Literature review 

Due	to	the	disadvantage	of	experience,	scholars	began	to	study	the	factors	related	to	scheduling.	
For	example,	Xu	considered	the	BAP	in	container	terminals	in	which	the	assignment	of	vessels	to	
berths	was	limited	by	water	depth	and	tidal	conditions	[4].	Raa	et	al.	dealt	with	the	quay	crane	
assignment	problem	(CAP)	when	scheduling	vessels	 [5].	Meisel	and	Bierwirth	 investigated	the	
combined	problem	of	 berth	 allocation	 and	 crane	 assignment	 in	 container	 terminals,	 and	 their	
proposed	model	considered	the	decrease	of	marginal	productivity	of	quay	cranes	assigned	to	a	
vessel	and	the	increase	in	handling	time	if	vessels	were	not	berthed	at	their	desired	position	at	
the	quay	[10].	Cheong	et	al.	considered	a	BAP	that	required	the	determination	of	exact	berthing	
times	and	positions	of	incoming	vessels	in	a	container	port.	The	proposed	algorithm	was	devel‐
oped	 to	 concurrently	minimize	 the	 three	 objectives	 of	makespan,	waiting	 time,	 and	 degree	 of	
deviation	from	a	predetermined	priority	schedule	[1].	Golias	et	al.	presented	a	berth‐scheduling	
policy	 to	minimize	 delayed	 departures	 of	 vessels	 and	 indirectly	 reduce	 fuel	 consumption	 and	
emissions	produced	by	vessels.	Vessel	arrival	times	were	considered	as	a	variable	and	were	op‐
timized	to	accommodate	the	objectives	of	 the	proposed	policy	[11].	Türkoğulları	et	al.	 focused	
on	 the	 integrated	 planning	 of	 problems	 faced	 at	 container	 terminals.	 The	 problem	 included	
berth	allocation,	quay	crane	assignment,	and	quay	crane	assignment	[12].	

For	the	BAP,	the	mathematical	model	cannot	cover	all	the	factors,	and	the	objective	function	
can	influence	the	scheduling	results	greatly.	For	example,	Imai	et	al.	minimized	the	waiting	time	
to	a	dynamic	berth	assignment	for	vessels	in	the	public	berth	system	[6].	Guan	et	al.	considered	a	
scheduling	model	in	which	the	objective	was	to	minimize	the	total	weighted	completion	time	of	
the	jobs,	and	this	problem	was	motivated	by	the	operation	of	berth	allocation	[7].	Imai	et	al.	dis‐
cussed	two	typical	schemes	for	berth	allocation:	one	in	discrete	locations	and	the	other	in	con‐
tinuous	locations.	The	former	had	the	advantage	of	being	easy	to	schedule,	and	the	latter	exhib‐
ited	the	complete	opposite	characteristics	[13].	Legato	et	al.	presented	a	queuing	network	model	
of	logistic	activities	related	to	the	arrival,	berthing,	and	departure	processes	of	vessels	at	a	con‐
tainer	terminal,	and	argued	that	non‐standard	service	stations,	time‐dependent	priority	mecha‐
nisms,	and	complex	resource	allocation	policies	could	prevent	the	use	of	analytical	approaches	
to	the	solution	[14].	Robenek	proposed	an	exact	solution	algorithm	based	on	a	branch	and	price	
framework	 to	 solve	 the	 BAP.	 The	 objective	was	 to	minimize	 the	 total	 service	 time	 of	 vessels	
berthing	at	the	port	[15].	Arango	et	al.	put	forward	allocation	planning	aimed	at	minimizing	the	
total	service	time	for	each	vessel	and	considered	a	first‐come‐first‐served	allocation	strategy	[8].	

A	variety	of	heuristics	algorithms,	simulation	technology	and	artificial	 intelligence	has	been	
introduced	to	solve	the	scheduling	problem.	For	example,	Arango	et	al.	proposed	a	mathematical	
model	 and	 developed	 a	 heuristic	 procedure	 based	 on	 a	 genetic	 algorithm	 to	 solve	 non‐linear	
problems,	 and	 Arena	 software	 computational	 experiments	 showed	 that	 the	 proposed	 model	
could	improve	the	current	berth	management	strategy	[8].	Galzina	et	al.	proposed	a	novel	adap‐
tive	 model	 with	 fuzzy	 particle	 swarm	 optimization	 to	 solve	 flow‐shop	 scheduling	 problem,	
benchmark	 examples	were	 utilized	 to	 evaluate	 the	 proposed	model	which	 is	 applied	 on	 flow	
production	 problem	 [9].	 Nishimura	 et	 al.	 developed	 a	 heuristic	 procedure	 based	 on	 a	 genetic	
algorithm	 to	obtain	a	 good	 solution	with	 considerably	 small	 computational	 effort,	 and	experi‐
ments	showed	that	the	proposed	algorithm	was	adaptable	to	real	world	applications	[16].	Imai	
et	al.	addressed	a	two‐objective	berth	allocation	problem:	the	vessel	service	quality,	expressed	
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by	the	minimization	of	delay	in	vessels'	departure,	and	berth	utilization,	expressed	by	the	mini‐
mization	of	the	total	service	time.	A	genetic	algorithm	was	proposed	to	solve	this	problem.	The	
numerical	experiments	showed	that	the	genetic	algorithm	outperformed	subgradient	optimiza‐
tion	 [17].	Fu	et	 al.	presented	a	 genetic	algorithm	 to	 analyze	 the	 integrated	quay	crane	assign‐
ment	and	scheduling	problem	due	to	its	complexity,	and	the	computational	results	validated	the	
performance	 of	 the	 proposed	 algorithm	 [18].	 To	 optimize	 the	 process	 plans	 generated	 from	
complex	parts,	Wang	et	al.	modified	the	traditional	particle	swarm	optimization	(PSO)	algorithm	
[19].	Mocnik	 et	 al.	 put	 forward	 the	modeling	 of	 dimensional	 deviation	 of	workpiece	 using	 re‐
gression,	ANN	and	PSO	models	[20].	Ting	et	al.	focused	on	the	discrete	and	dynamic	berth	alloca‐
tion	 problem,	 assigning	 vessels	 to	 discrete	 berth	 positions	 and	 minimizing	 the	 total	 waiting	
times	and	handling	times	for	all	vessels.	The	particle	swarm	optimization	approach	was	devel‐
oped	to	solve	the	BAP	[21].		

The	current	studies	mainly	 focus	on	 influencing	factors,	objective	 functions	and	algorithms.	
Factors	such	as	the	priority	service	and	makespan	are	not	considered	in	these	models,	and	any	
changes	 in	 factors	will	 affect	 the	model	reusability.	Therefore,	 the	 following	research	problem	
arises:	how	do	specific	factors	affect	model	reusability,	and	what	are	the	differences	among	dif‐
ferent	models?	No	related	work	solves	this	problem.	Based	on	the	analysis	of	scheduling	factors,	
combined	with	 the	MPPSO	algorithm,	bulk	 cargo	port	 scheduling	model	 is	 formed	and	 solved	
considering	the	priority	and	makespan.	The	models	can	make	sense	of	bulk	cargo	port	schedul‐
ing.	

3. Mathematical model 

In	this	paper,	four	main	assumptions	are	made	regarding	the	status	of	a	vessel:	(a)	all	vessels	to	
be	served	are	already	in	the	port	before	the	planning	period	starts,	(b)	the	vessels	are	scheduled	
to	arrive	after	the	planning	period	starts,	(c)	the	vessels	cannot	move	to	other	berths	if	the	berth	
allocation	is	finished,	and	(d)	the	time	of	vessels	moving	is	ignored.	

3.1 The standard model 

There	are	two	kinds	of	vessel‐berthing	constraints	in	the	process	of	berth	allocation:	the	physi‐
cal	conditions	and	the	operating	conditions.	The	constraints	can	be	set	as	follows:	

෍ݒ௜

௡

௜ୀଵ

ൌ ܸ and ෍ ௝ܾ

௠

௝ୀଵ

ൌ 	ܤ

௜ሻݒሺ݋݃ݎܽܿ ൌ ௖ܸ௔௥௚௢ 

෍ ௖ܸ௔௥௚௢ ൌ෍ܤ௧௬௣௘  

௖ܸ௔௥௚௢ ൌ ௧௬௣௘ܤ ൌ ሺ ௖ܸ௔௥௚௢,
ଵ

௖ܸ௔௥௚௢,
ଶ

௖ܸ௔௥௚௢
ଷ ሻ → ௜ሻݒሺ݄ݐݎܾ݁ ൌ ௝ܾ 	 (1)

where	vi	is	the	vessel,	bj	is	the	berth,	V	is	the	vessels	set,	B	is	the	berth	set,	cargo(vi)	is	the	cargo,	
Vcargo	is	the	cargo	type	set,	and	Btype	is	the	berth	type	set.	Only	if	the	cargo	type	is	in	accordance	
with	the	berth	type	can	the	job	start	in	the	berth.	berth(vi)	indicates	berth	j	provides	service	for	
vessel i .	Therefore,	the	matrix	of	vessel‐berthing	constraints	can	be	set	as	follows:	

ܣ ൌ ൥
ଵଵݕ ⋯ ଵ௡ݕ
⋮ ⋱ ⋮

௠ଵݕ ⋯ ௠௡ݕ

൩	 (2)

where	0	<	I	≤	m,	0	<	j	≤	m,	I	≤	m,	yij		=	(0,1)	
The	scheduling	model	 should	comprehensively	consider	 the	specific	needs	of	different	ves‐

sels,	so	the	priority	factor	is	included	in	the	model:	
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௜ܲ ൌ ௜ݒߙ
௖௨௧௢௠௘௥ ൅ ௜ݒߚ

௖௔௥௚௢ ൅ ௜ݒߛ
௧௥௔ௗ௘	 (3)

where	α,	β,	and	γ	are	the	coefficients	and	vicustomer,	vicargo,	and	vitrade	are	the	weights	of	factors	(ves‐
sel,	its	cargo	and	trade	type),	respectively.	Therefore,	priority	Xijk	can	be	generated	by	Pi.	

There	are	many	variables	and	parameters	included	in	the	bulk	cargo	port	scheduling	model,	
such	 as	 the	 number	 of	 vessels,	 the	 number	 of	 berths,	 vessel‐berthing	 constraints,	 the	 service	
priority,	 the	operating	time	and	the	waiting	time.	Therefore,	scheduling	can	be	affected	by	the	
following	multi‐tuple:	

,ሺܸ݊݁ܿ݅ܿݎ݁ݏ_݌ܽܥ ,௜ݏܹ,݊ܤ ܶ ௜݂, ,௜ݏܶ ܶ݁௜, ,௜ݓܶ ܤ ௝ܸ, ܤ ௝݁, ௜ܺ௝௞, 	௜௝ሻݕ (4)

where	Vn	is	the	number	of	vessels,	Bn	is	the	number	of	berths,	Wsi	is	the	outturn	for	vessel	i,	Tfi	is	
the	arrival	time	for	vessel	i,	Tsi	is	the	job	starting	time	for	vessel	i,	Tei	is	the	job	finishing	time	for	
vessel	 i,	Twi	 is	the	waiting	time	for	vessel i ,	BVj	 is	the	job	velocity	for	berth	 j,	Bej	 is	the	job	fin‐
ished	time	for	vessel	in	berth	j,	Xijk	is	the	job	sequence	k	for	vessel i in	berth	j,	and	yij	is	the	vessel‐
berthing	constraints.	

The	multi‐tuple	can	be	prolonged	if	more	factors	and	parameters	are	added	in	the	model,	and	
the	multi‐tuple	can	affect	the	model	reusability.	Scheduling	should	pay	attention	to	the	job	effi‐
ciency	of	berths.	Therefore,	the	objective	of	the	model	can	be	minimizing	the	makespan,	that	is	
Min(Max(Tei)).	The	paper	will	analyze	the	standard	model	firstly.	

To	minimize	the	total	service	time	(waiting	time	and	operating	time)	for	vessel	i,	that	is	

௜ݏܶ െ ܶ ௜݂ ൅ܹݏ௜/ܤ ௝ܸ	 (5)

The	objective	of	standard	model	is	

௜ݏ෍෍ሺܶ݊݅ܯ െ ܶ ௜݂ ൅ ܤ/௜ݏܹ ௝ܸሻ

஻௡

௝ୀ଴

௏௡

௜ୀ଴

௜ܺ௝௞	 (6)

subjected	to	

෍෍ ௜ܺ௝௞ ൌ 1

஻௡

௝ୀ଴

௏௡

௜ୀ଴

, ݁ݎ݄݁ݓ ݅ ൌ 1,2, … , ܸ݊	 (7)

Each	vessel	should	be	allocated	by	berth,	where	they	can	be	allocated	only	one	time:	

෍ ௜ܺ௝௞ ൑ 1

௏௡

௜ୀ଴

, ݁ݎ݄݁ݓ ݆ ൌ 1,2, … , 	݊ܤ (8)

Each	berth	can	provide	service	for	only	one	vessel	at	a	time:	

௜ܺ௝௞ ൑ 	௜௝ݕ (9)

yij	is	the	vessel‐berthing	constraints	that	the	job	must	obey.	
Tfi	≤	Tsi	 if	 the	vessel	 arrival	 time	 is	 earlier	 than	 the	 job	 starting	 time,	 and	Bej	≤	Tsi	 if	 the	 job	

starting	time	of	vessel i is	later	than	the	job	finishing	time	of	vessel	j	in	berth	j.	

3.2 The improved model 

Priority	Pi	is	an	important	factor	affecting	scheduling,	so	Pi	is	added	in	the	standard	model.	The	
waiting	time	or	operating	time	is	given	the	weight):	
	

௜ݏ෍෍ሺܶ݊݅ܯ െ ܶ ௜݂ ൅ ܤ/௜ݏܹ ௝ܸሻ

஻௡

௝ୀ଴

௏௡

௜ୀ଴

௜ܺ௝௞ ௜ܲ 	 (10)
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௜ݏ෍෍ሺሺܶ݊݅ܯ െ ܶ ௜݂ሻ ௜ܲ ൅ ܤ/௜ݏܹ ௝ܸሻ

஻௡

௝ୀ଴

௏௡

௜ୀ଴

௜ܺ௝௞	 (11)

In	Eq.	10,	the	waiting	time	and	operating	time	are	given	weights,	and	in	Eq.	11,	the	waiting	
time	is	given	the	weight.	

,ሺܶ݁௜ሻ൯ݔܽܯ൫݊݅ܯ ݅ ∈ ܸ	 (12)

ሺܶ݁௜ሻݔܽܯ ൒ ௜ݏܶ െ ܶ ௜݂ ൅ ܤ/௜ݏܹ ௝ܸ	 (13)

ሺܶݏ௜ െ ܶ ௜݂ ൅ ܤ/௜ݏܹ ௝ܸሻ െ ሺܶݏ௜ାଵ െ ܶ ௜݂ାଵ ൅ܹݏ௜ାଵ/ܤ ௝ܸାଵሻ ൒ 0	 (14)

Eq.	12	minimizes	the	makespan.	

4. MPPSO for BAP and computational experiments 

4.1 Algorithm design 

MPPSO	is	developed	to	solve	the	BAP	for	a	bulk	cargo	port.	

(1)	Position	coding	
Each	vessel	 has	 information	 about	 the	 job	berths	 and	 job	 sequence,	 so	 each	particle	has	 two‐
dimensional	information	about	the	job	berths	and	job	sequence.	Job	berths	are	affected	by	a	ves‐
sel's	own	properties	and	berth	conditions.	Thus,	we	need	to	obtain	the	berths	arrays	firstly.	For	
example,	if	berths	1,	3,	and	6	are	available	for	each	vessel,	the	berths	array	is	[1	3	6	0	0	0]	(as‐
suming	six	berths).	The	job	sequence	of	particles	can	be	explained	by	the	continuous	value;	the	
smaller	the	value	is,	the	earlier	the	vessel	will	obtain	service	(more	details	in	Table	1).	

Table	1	Example	of	position	coding	
Dimension	 1	 2 3	
Berths	 [1	3	6	0	0	0]	 [1	3	0	0	0	0] [6	0	0	0	0	0	]	
Sequence	 2	 0.6173	 2 0.3214 1	 0.4142	
	
In	Table	1,	we	can	obtain	the	job	berths	and	job	sequence	through	the	position	decoding;	that	

is,	vessels	1	and	2	obtain	service	in	berth	3,	where	berth	3	provides	service	for	vessel	2	firstly,	
and	vessel	3	obtains	service	in	berth	6.		

(2)	Position	renewal	
The	parameter	setting	of	MPPSO	is	as	follows:	

 T:	maximum	iterations	
 N:	number	of	particle	swarms		
 D:	dimension	
 vid(t):	velocity	of	the	i‐th	particle	with	the	d‐th	dimension	at	time	t	
 xid(t):	position	of	the	i‐th	particle	with	the	d‐th	dimension	at	time	t		
 gd(t):	best	positions	discovered	by	all	particles	at	time	t	or	earlier,	with	d‐th	dimension	
 ph:	number	of	phases	
 pcf:	phase	change	frequency	
 g:	number	of	groups	within	each	phase	
 Cv	,	Cx,	and	Cg:	coefficient	value	in	each	group	within	each	phase	
 sl:	sub‐length	of	the	dimension	
 VC:	velocity	change	variable	

Therefore,	the	renewal	process	of	velocity	and	position	is	expressed	as	follows:	

ݐ௜ௗଵሺݒ ൅ 1ሻ ൌ ሻݐ௜ௗଵሺݒ௩ܥ ൅ ሻݐ௜ௗଵሺݔ௫ܥ ൅ 	ሻݐ௚݃ௗଵሺܥ (15)

ݐ௜ௗଵሺݔ ൅ 1ሻ ൌ ሻݐ௜ௗଵሺݔ ൅ ݐ௜ௗଵሺݒ ൅ 1ሻ	 (16)
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ݐ௜ௗଶሺݒ ൅ 1ሻ ൌ ሻݐ௜ௗଶሺݒ௩ܥ ൅ ሻݐ௜ௗଶሺݔ௫ܥ ൅ 	ሻݐ௚݃ௗଶሺܥ (17)

ݐ௜ௗଶሺݔ ൅ 1ሻ ൌ ሻݐ௜ௗଶሺݔ ൅ ݐ௜ௗଶሺݒ ൅ 1ሻ	 (18)

The	pseudo‐code	for	MPPSO	is	shown	in	Table	2:	

Table	2	Pseudo‐code	for	MPPSO	
Step 0 read data: Vn and Bn 
Step 1 get the berths arrays based on data 
Step 2 T D N ph pcf g VC 
Step 3 initialize the velocity and position for particles, get the best of positions Pgx and the best 
           fitness value Pg 
Step 4 iteration 
for t = 1 : T 
     if t is a multiple of VC reinitiate velocity 
     determine its phase 
       for i = 1 : N 
         determine its group 
         choose sl randomly from [1,min(10,n)] 
         sl = roundn(rand*(min(10,D)‐1)+1,0); 
         deal with each dimension of particle 
         d = 1;  
         initialize the current dimension 
         dimension limited 
       while ( d <= D ) 
            Cache the initial position of particle 
            temp (1,: ,:) = x(i,: ,:); 
            deal with the sub dimension of particle 
            for j = 0 : sl 
                updating dimension 
                d_temp = d + j; 
                  if d_temp >D,break 
                    Step 4.1 updating the berth 
                get the coefficient of velocity formula 
                update the velocity of berth based on formula(12) 
                update the position of berth based on formula(13) 
                  if out of berth array scope, reinitiate position 
                    Step 4.2 updating the sequence 
                get the coefficient of velocity formula 
                update the velocity of vessel based on formula(14) 
                update the position of vessel based on formula(15) 
            end 
            judge the fitness  
            if fitness(temp) < fitness(x(i,: ,:)) 
                   accept the updating 
                x(i,: ,:) = temp(1,: ,:); 
            end 
        end 
        update the best of positions in particle swarm 
        if  fitness(x(i,: ,:)) <Pg 
            Pgx = x(i,: ,:); 
            Pg = f; 
        end 
    end 
end 
Step 5 decoding	
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4.2 Computational experiments 

Table	3	and	Table	4	provide	the	data	for	vessels	in	the	bulk	cargo	port	and	the	data	for	berths,	
respectively.	

Table	3	Data	of	vessels	

ID	 Length	 Width	 Trade	type Arrival	time Draft Cargo
Cargo	
weight	

Rating

1	 224	 32	 foreign 2014‐8‐13	1:00 14.6 coal 73900	 9

2	 228	 38	 foreign 2014‐8‐13	19:00 13.7 bean 77000	 7

3	 98	 14	 foreign 2014‐8‐13	9:30 6.25 fishmeal	 2600	 8

4	 228	 32	 foreign 2014‐8‐13	12:00 12.3 coal 64400	 7

5	 201	 27	 domestic 2014‐8‐13	5:00 11.6 coal 39500	 8

6	 191	 31	 domestic 2014‐8‐13	20:00 12.4 coal 18000	 9

7	 214	 32	 domestic 2014‐8‐13	7:00 12 coal 49600	 3

8	 201	 32	 domestic 2014‐8‐13	18:00 12.5 coal 56100	 7

9	 200	 32	 domestic 2014‐8‐13	23:00 12 coal 54200	 8

10	 226	 32	 domestic 2014‐8‐13	5:00 12.5 coal 63400	 5

11	 201	 32	 domestic 2014‐8‐13	17:00 12.5 coal 54500	 8

12	 226	 32	 domestic 2014‐8‐13	19:00 12.5 coal 61600	 6

13	 224	 32	 foreign 2014‐8‐13	0:00 13.2 coal 60000	 9

14	 224	 32	 foreign 2014‐8‐13	0:00 13.4 bean 66400	 8
Note:	the	unit	of	the	vessel	length,	vessel	width	and	draft	is	meters;	the	unit	of	the	cargo	weight	is	tons. 

	

Table	4	Data	of	berths	

ID	 Depth	 Length	 Velocity Type
The	finished	time	of	
operating	vessel

1	 15.5	 250	 5000 Coal	 2014‐08‐12	20:00

2	 13.5	 230	 4000 Coal 2010‐08‐12	11:00

3	 12.5	 165	 3500 general 2014‐08‐12	23:00

4	 12	 231	 2000 Coal 2014‐08‐12	17:00

5	 13	 215	 5000 Coal 2014‐08‐13	05:00

6	 14	 230	 4000 Bulk	grain 2014‐08‐12	19:00
Note:	the	units	of	berths	depth,	berth	length,	and	velocity	are	meters,	and	tons	per	hour,	respectively.	

	
The	weights	of	coal,	bean,	and	 fishmeal	are	4,	4,	 and	8,	 respectively;	 the	weights	of	 foreign	

trade	and	domestic	trade	are	10	and	2,	respectively,	and	α	=	0.5,	β	=	0.3,	and	γ	=	0.2,	so	the	prior‐
ity	index	can	be	calculated	(Table	5).	The	larger	the	priority	index	is,	the	earlier	the	vessel	will	
receive	service.	A	comparative	analysis	of	 the	 four	model	proposed	 in	Section	3	 is	 carried	out	
below:	ph	=	2;	pcf	=	5;	g	=	2;	sl	∈	[1,	min	(10,D)];	VC	=	10;	Cv	=	rand;	T	=	500;	D	=	14;	N	=	30;	Cx	=	
rand;	Cg	=	–rand	(particle	1	is	in	phase	1	or	particle	2	is	in	phase	2);	Cx	=	–rand,	Cg	=	rand	(parti‐
cle	1	is	in	phase	2	or	particle	2	is	in	phase	1).		

	
Table	5	The	priority	index	

ID	 Value	 ID Value	

1	 7.7	 8 5.1	

2	 6.7	 9 5.6	

3	 8.4	 10 4.1	

4	 6.7	 11 5.6	

5	 5.6	 12 4.6	

6	 6.1	 13 7.7	

7	 3.1	 14 7.2	
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(1) 	Model	1	–	Eq.	6	
The	priority	 and	makespan	 are	 not	 considered	 in	 this	model.	We	use	 the	 setting	 as	 shown	 in	
Table	 6.	 MPPSO	 is	 used	 to	 solve	 the	 model.	 The	 program	 runs	 approximately	 900	 times	 to	
achieve	the	optimal	results	when	the	objective	function	becomes	stable	and	convergent,	Fig.	1(a).	
The	results	are	shown	 in	Table	10.	 In	Table	10,	vessels	1,	4,	 and	12	obtain	service	 in	berth	1;	
vessels	13,	10,	and	9	obtain	service	in	berth	2;	vessel	3	obtains	service	in	berth	3;	vessel	5	ob‐
tains	service	in	berth	4;	vessel	7,	11,	6,	and	8	obtain	service	in	berth	5;	and	vessels	14	and	2	ob‐
tain	 service	 in	 berth	 6.	 The	 total	 service	 time	 is	 9.55	 days,	 and	 the	makespan	 is	 2014‐08‐14	
20:24.	

Table	6	Model	1	setting	
berths_shipsሺi,4ሻ ൌ arrivedTime;
berths_shipsሺi,5ሻ ൌ startTime;
waitingTime	ൌ	startTime‐arrivedTime;	
berths_shipsሺi,6ሻ	ൌ	waitingTime;	
workingTime ൌ ceilሺweight*60/effeciencyሻ/60/24;
sum	ൌ	sum	൅ ሺwaitingTime ൅workingTimeሻ.

	
	(2)	Model	2	–	Eq.	10	
Priority	is	added	in	this	model,	and	the	waiting	time	and	operating	time	are	given	weights.	We	
use	the	setting	as	shown	in	Table	7.	MPPSO	is	used	to	solve	the	model,	the	program	runs	approx‐
imately	 190	 times	 to	 achieve	 the	optimal	 results,	when	 the	objective	 function	becomes	 stable	
and	convergent,	Fig.	1(b).	The	results	are	shown	in	Table	10.	In	Table	10,	vessel	1,	11,	12	obtain	
service	in	berth	1;	vessel	13,4,	10	obtain	service	in	berth	2;	vessel	3	still	obtains	service	in	berth	
3;	vessel	7	obtains	service	 in	berth	4;	vessel	5,6,9,8	obtain	service	 in	berth	5;	vessel	14,	2	still	
obtain	service	in	berth	6;	the	total	service	time	is	9.79	days;	the	makespan	is	2014‐08‐14	22:57.	

	
Table	7	Model	2	setting	

berths_shipsሺi,4ሻ	ൌ arrivedTime;
berths_shipsሺi,5ሻ	ൌ startTime;
waitingTime	ൌ	startTime‐arrivedTime;	
berths_shipsሺi,6ሻ	ൌ	waitingTime;	
workingTime	ൌ	ceilሺweight*60/effeciencyሻ/60/24;
sum	ൌ	sum	൅	ሺwaitingTime ൅workingTimeሻ*priorityIndex.

	
	(3)	Model	3	–	Eq.	11	
Priority	 is	 added	 in	 this	model,	 and	 the	waiting	 time	 is	 given	 a	weight.	We	use	 the	 setting	 as	
shown	in	Table	8.	MPPSO	is	used	to	solve	the	model.	The	program	runs	approximately	50	times	
to	achieve	the	optimal	results,	when	the	objective	function	becomes	stable	and	convergent,	Fig.	
1(c).	The	results	are	shown	in	Table	10.	In	Table	10,	vessels	1,	4,	and	10	obtain	service	in	berth	1;	
vessels	13,	6,	and	12	obtain	service	in	berth	2;	vessel	3	still	obtains	service	in	berth	3;	vessels	5	
and	9	obtain	service	in	berth	4;	vessels	7,	11,	and	8	obtain	service	in	berth	5;	and	vessels	14	and	
2	still	obtain	service	in	berth	6.	The	total	service	time	is	9.81	days;	and	the	makespan	is	2014‐
08‐15	03:51.	
	

Table	8	Model	3	setting	
berths_shipsሺi,4ሻ	ൌ arrivedTime;
berths_shipsሺi,5ሻ	ൌ startTime;
waitingTime	ൌ	startTime‐arrivedTime;	
berths_shipsሺi,6ሻ	ൌ	waitingTime;	
workingTime	ൌ	ceilሺweight*60/effeciencyሻ/60/24;
sum	ൌ	sum	൅	ሺwaitingTime*priorityIndex	൅ workingTimeሻ.

	
	(4)	Model	3	–	Eq.	12	
This	model	will	minimize	the	makespan	neglecting	the	priority.	We	use	the	setting	as	shown	in	
Table	9.	MPPSO	is	used	to	solve	the	model.	The	program	runs	120	times	to	achieve	the	optimal	
results	when	 the	 objective	 function	 becomes	 stable	 and	 convergent,	 Fig.	 1(d).	 The	 results	 are	
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shown	in	Table	10.	In	Table	10,	vessels	1,	12,	and	4	obtain	service	in	berth	1;	vessels	13,	10,	and	
9	obtain	service	in	berth	2;	vessel	5	obtains	service	in	berth	4;	vessels	7,	8,	11,	and	6	obtain	ser‐
vice	in	berth	5;	vessels	14,	3,	and	2	obtain	service	in	berth	6;	and	berth	3	is	idle.	The	total	service	
time	is	10.54	days,	and	the	makespan	is	2014‐08‐14	20:24.	

	
Table	9	Model	4	setting	

Sum	ൌ	sum ൅ ሺwaitingTime ൅workingTimeሻ;
start_time ൌ	start_time	൅ workingTime;
berths_shipsሺi,7ሻ	ൌ	start_time;	
if		berths_shipsሺi,7ሻ	൐	max_finish_time	
								max_finish_time ൌ berths_shipsሺi,7ሻ;
end	

	

 
Fig.	1	Iteration	process	and	fitness	value	

	
Table	10	MPPSO	results	

Model	
Berth	
ID	

Vessel	ID	 Starting	time	 Waiting	time	 Finishing	time	 Operating	time	

1	

1	

1	 2014‐08‐13	01:00	 0.00	 2014‐08‐13	15:47	 0.62	

4	 2014‐08‐13	15:47	 0.16	 2014‐08‐14	04:40	 0.54	

12	 2014‐08‐14	04:40	 0.40	 2014‐08‐14	17:00	 0.51	

2	

13	 2014‐08‐13	00:00	 0.00	 2014‐08‐13	15:00	 0.63	

10	 2014‐08‐13	15:00	 0.42	 2014‐08‐14	06:51	 0.66	

9	 2014‐08‐14	06:51	 0.33	 2014‐08‐14	20:24	 0.56	

3	 3	 2014‐08‐13	09:30	 0.00	 2014‐08‐13	10:15	 0.03	

4	 5	 2014‐08‐13	05:00	 0.00	 2014‐08‐14	00:45	 0.82	
	

(a)	 (b)

(c)	 (d)
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Table	10	MPPSO	results	(continuation)	
	

5	

7	 2014‐08‐13	07:00	 0.00	 2014‐08‐13	16:56	 0.41	

11	 2014‐08‐13	17:00	 0.00	 2014‐08‐14	03:54	 0.45	

6	 2014‐08‐14	03:54	 0.33	 2014‐08‐14	07:30	 0.15	

8	 2014‐08‐14	07:30	 0.56	 2014‐08‐14	18:44	 0.47	

6	
14	 2014‐08‐13	00:00	 0.00	 2014‐08‐13	16:36	 0.69	

2	 2014‐08‐13	19:00	 0.00	 2014‐08‐14	14:15	 0.80	

2	

1	

1	 2014‐08‐13	01:00	 0.00	 2014‐08‐13	15:47	 0.62	
11	 2014‐08‐13	17:00	 0.00	 2014‐08‐14	03:54	 0.45	
12	 2014‐08‐14	03:54	 0.37	 2014‐08‐14	16:14	 0.51	

2	

13	 2014‐08‐13	00:00	 0.00	 2014‐08‐13	15:00	 0.63	
4	 2014‐08‐13	15:00	 0.13	 2014‐08‐14	07:06	 0.67	
10	 2014‐08‐14	07:06	 1.09	 2014‐08‐14	22:57	 0.66	

3	 3	 2014‐08‐13	09:30	 0.00	 2014‐08‐13	10:15	 0.03	
4	 7	 2014‐08‐13	07:00	 0.00	 2014‐08‐14	07:48	 1.03	

5	

5	 2014‐08‐13	05:00	 0.00	 2014‐08‐13	12:54	 0.33	
6	 2014‐08‐13	20:00	 0.00	 2014‐08‐13	23:36	 0.15	
9	 2014‐08‐13	23:36	 0.03	 2014‐08‐14	10:27	 0.45	
8	 2014‐08‐14	10:27	 0.69	 2014‐08‐14	21:41	 0.47	

6	
14	 2014‐08‐13	00:00	 0.00	 2014‐08‐13	16:36	 0.69	
2	 2014‐08‐13	19:00	 0.00	 2014‐08‐14	14:15	 0.80	

3	

1	

1	 2014‐08‐13	01:00	 0.00	 2014‐08‐13	15:47	 0.62	
4	 2014‐08‐13	15:47	 0.16	 2014‐08‐14	04:40	 0.54	
10	 2014‐08‐14	04:40	 0.99	 2014‐08‐14	17:21	 0.53	

2	

13	 2014‐08‐13	00:00	 0.00	 2014‐08‐13	15:00	 0.63	
6	 2014‐08‐13	20:00	 0.00	 2014‐08‐14	00:30	 0.19	
12	 2014‐08‐14	00:30	 0.23	 2014‐08‐14	15:54	 0.64	

3	 3	 2014‐08‐13	09:30	 0.00	 2014‐08‐13	10:15	 0.03	

4	
5	 2014‐08‐13	05:00	 0.00	 2014‐08‐14	00:45	 0.82	
9	 2014‐08‐14	00:45	 0.07	 2014‐08‐15	03:51	 1.13	

5	

7	 2014‐08‐13	07:00	 0.00	 2014‐08‐13	16:56	 0.41	
11	 2014‐08‐13	17:00	 0.00	 2014‐08‐14	03:54	 0.45	
8	 2014‐08‐14	03:54	 0.41	 2014‐08‐14	15:08	 0.47	

6	
14	 2014‐08‐13	00:00	 0.00	 2014‐08‐13	16:36	 0.69	
2	 2014‐08‐13	19:00	 0.00	 2014‐08‐14	14:15	 0.80	

4	

1	

1	 2014‐08‐13	01:00	 0.00	 2014‐08‐13	15:47	 0.62	
12	 2014‐08‐13	19:00	 0.00	 2014‐08‐14	07:20	 0.51	
4	 2014‐08‐14	07:20	 0.81	 2014‐08‐14	20:13	 0.54	

2	

13	 2014‐08‐13	00:00	 0.00	 2014‐08‐13	15:00	 0.63	
10	 2014‐08‐13	15:00	 0.42	 2014‐08‐14	06:51	 0.66	
9	 2014‐08‐14	06:51	 0.33	 2014‐08‐14	20:24	 0.56	

4	 5	 2014‐08‐13	05:00	 0.00	 2014‐08‐14	00:45	 0.82	

5	

7	 2014‐08‐13	07:00	 0.00	 2014‐08‐13	16:56	 0.41	
8	 2014‐08‐13	18:00	 0.00	 2014‐08‐14	05:14	 0.47	
11	 2014‐08‐14	05:14	 0.51	 2014‐08‐14	16:08	 0.45	
6	 2014‐08‐14	16:08	 0.84	 2014‐08‐14	19:44	 0.15	

6	

14	 2014‐08‐13	00:00	 0.00	 2014‐08‐13	16:36	 0.69	
3	 2014‐08‐13	16:36	 0.30	 2014‐08‐13	17:15	 0.03	
2	 2014‐08‐13	19:00	 0.00	 2014‐08‐14	14:15	 0.80	

Note:	the	unit	of	the	waiting	time	and	operating	time	is	days.		
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4.3 Discussion 

On	the	condition	of	small	samples	(Vn	=	14,	Bn	=	6),	for	Model	1,	the	total	service	time,	the	max‐
imum	waiting	time	and	the	maximum	operating	time	are	minimal,	and	the	makespan	is	the	ear‐
liest.	For	Model	2	and	Model	3,	the	total	service	time,	the	maximum	waiting	time	and	the	maxi‐
mum	operating	time	will	be	increased	slightly,	and	the	makespan	can	be	delayed.	For	model	4,	
the	total	service	time	is	the	highest,	but	the	maximum	waiting	time	and	the	maximum	operating	
time	are	relatively	small.	The	makespan	is	also	the	earliest	(Table	11).	

On	the	condition	of	big	samples	(Vn	=	24,	Bn	=	6),	for	Model	1,	the	total	service	time	is	still	the	
smallest,	but	the	maximum	waiting	time	and	the	maximum	operating	time	are	increased.	Addi‐
tionally,	the	makespan	is	the	latest.	For	Model	2	and	Model	3,	the	total	service	time	is	still	large,	
but	 the	maximum	waiting	 time	and	 the	maximum	operating	 time	are	 relatively	small,	 and	 the	
makespan	is	competitive	compared	with	Model	1.	For	model	4,	the	total	service	time	is	still	the	
highest,	but	 the	maximum	operating	time,	especially	the	maximum	waiting	time,	 is	 the	 lowest.	
The	makespan	is	the	earliest	(Table	11).		

On	one	hand,	the	total	service	time	of	berth	needs	to	be	decreased	to	satisfy	the	general	re‐
quirements,	so	the	model	considering	priority	offers	a	great	advantage.	On	the	other	hand,	the	
total	 service	 time	of	berths	 reflects	 the	capacity;	 the	 longer	 the	service	 time	 is,	 the	higher	 the	
berth	service	capacity	will	be.	The	departure	time	of	the	last	vessel	needs	to	considered,	so	the	
model	minimizing	makespan	offers	a	great	advantage.	In	short,	we	can	choose	a	suitable	model	
according	to	the	actual	situation	in	bulk	cargo	port	scheduling.	

	
Table	11	Comparative	results	of	four	models	

Model	
Total	service	time	

Maximum	waiting	
time	

Maximum	operating	
time	

Makespan	

Small	
samples	

Big		
samples	

Small		
samples	

Big		
samples

Small
samples	

Big	
samples	

Small	
samples	

Big		
samples	

1	 9.55		 24.01	 0.56	 2.20	 0.82 1.04 2014‐08‐14	20:24	 2014‐08‐16	00:25
2	 9.79	 24.39	 1.09	 2.09	 1.03 1.09 2014‐08‐14	22:57	 2014‐08‐15	19:18
3	 9.81	 24.30	 0.99	 2.08	 0.82 1.09 2014‐08‐15	03:51	 2014‐08‐15	19:18
4	 10.54	 27.54	 0.84	 1.52	 0.82 1.09 2014‐08‐14	20:24	 2014‐08‐15	17:49

5. Conclusion 

Social	and	economic	progress	drives	the	development	of	bulk	cargo	port	transportation,	so	the	
transportation	 demand	 is	 also	 growing.	 However,	 scheduling	 management	 and	 efficiency	 are	
incompatible	with	its	development.	The	problems	are	as	follows:	(1)	The	scheduling	is	dispersed.	
Due	 to	 multi‐level	 allocation,	 vessel	 scheduling	 is	 cumbersome,	 and	much	 repetitive	 work	 is	
done,	 thereby	 affecting	 the	 efficiency	 of	 scheduling.	 (2)	 The	 management	 mode	 lags	 behind.	
People	basically	 rely	 on	 experience	 to	manage	berth	 scheduling.	Therefore,	 reducing	 the	 total	
service	time	of	berths	and	maximizing	their	operational	capabilities	(minimizing	the	makespan)	
are	of	great	importance	to	improving	the	efficiency	and	management	of	bulk	cargo	port	schedul‐
ing.	

This	paper	sorts	the	factors	affecting	bulk	cargo	port	scheduling,	such	as	the	number	of	ves‐
sels,	the	number	of	berths,	vessel‐berthing	constraints,	the	service	priority,	and	the	makespan,	
and	establishes	the	NP	model,	which	aims	to	minimize	the	total	service	time	and	makespan,	and	
solves	 the	model	based	on	 the	MPPSO	algorithm.	Through	computational	experiments,	we	ob‐
tain	 information	not	only	 about	 the	berth	allocation	 (the	 starting	 time,	 finishing	 time,	waiting	
time,	and	operating	time)	but	also	the	comparative	results	of	different	modes	(the	total	service	
time,	maximum	waiting	time,	maximum	operating	time,	and	makespan).	We	can	choose	a	suita‐
ble	model	according	to	the	actual	situation	in	bulk	cargo	port	scheduling.	

Of	course,	like	all	studies,	this	paper	has	certain	limitations	and	deficiencies.	To	guarantee	the	
computability	of	the	model,	this	paper	assumes	that	the	vessels	cannot	move	to	other	berths	if	
the	berth	allocation	 is	complete,	and	 the	time	of	vessels	moving	 is	 ignored.	We	should	 further	
study	these	topics.	
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