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Abstract

Let G be a graph and let Γ be its group of automorphisms. Graovac-Pisanski index of
G is GP(G) = |V (G)|

2|Γ|
∑
u∈V (G)

∑
α∈Γ d(u, α(u)), where d(u, v) is the distance from u

to v in G. One can observe that GP(G) = 0 if G has no nontrivial automorphisms, but it
is not known which graphs attain the maximum value of Graovac-Pisanski index. In this
paper we show that among unicyclic graphs on n vertices the n-cycle attains the maximum
value of Graovac-Pisanski index.
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1 Introduction
Wiener index, the sum of distances in a graph, is an important molecular descriptor. It was
introduced by Wiener in 1949, see [18], and since then many other molecular descriptor
have appeared. One of them is the Graovac-Pisanski index [8], originally known as the
modified Wiener index. With this index an algebraic approach for generalizing the Wiener
index was presented. Namely, as the Wiener index also the Graovac-Pisanski index is based
on distances but its advantage is in considering also the symmetries of a graph, and it is
known that symmetries of a molecule have an influence on its properties [14].

In his pioneering paper, Wiener showed a correlation of the Wiener index of alkanes
with their boiling points [18]. It turns out that the Graovac-Pisanski index combines the
symmetry and topology of molecules to obtain a good correlation with some physico-
chemical properties of molecules. Recently, Črepnjak et al. showed that the Graovac-
Pisanski index of some hydrocarbon molecules is correlated with their melting points [6].

This index also drew attention from theoretical point of view. Researchers are interested
in the difference between the Wiener and Graovac-Pisanski index. This difference was
computed in [9] for some families of polyhedral graphs. The Graovac-Pisanski index of
nanostructures was studied in [1, 2, 15, 16, 17] and for some classes of fullerenes and
fullerene-like molecules in [3, 11, 12]. In [13] the symmetry groups and Graovac-Pisanski
index of some linear polymers were computed. Upper and lower bounds for Graovac-
Pisanski index were considered in [11]. In [7] and [16] Graovac-Pisanski index was further
considered from computational point of view. Exact formulae for the Graovac-Pisanski
index for some graph operations are presented in [4]. Recently it was proved that for any
connected bipartite graph, as well as for any connected graph on even number of vertices,
the Graovac-Pisanski index is an integer number [5].

Let G be a connected graph. The Graovac-Pisanski index of G is defined as

GP(G) =
|V (G)|

2|Aut(G)|
∑

u∈V (G)

∑
α∈Aut(G)

distG(u, α(u)),

where Aut(G) is the group of automorphisms of G and distG(u, v) denotes the distance
from u to v inG. However, in the paper we will use a result from [5] to compute this index.
To explain the method we need some additional definitions. Let G be a graph, u ∈ V (G)
and S ⊆ V (G). The distance of u in S, wS(u), is defined as

wS(u) =
∑
v∈S

distG(u, v).

The group of automorphisms of G partitions V (G) into orbits. We say that u, v ∈ V (G)
belong to the same orbit if there is an automorphism α ∈ Aut(G) such that α(u) = v.
Let V1, V2, . . . , Vt be all the orbits of Aut(G) in G. Moreover, for every i, 1 ≤ i ≤ t, let
vi ∈ Vi. That is, vi’s are the representatives of Vi’s. It was shown in [5] that

GP(G) =
|V (G)|

2

t∑
i=1

wVi
(vi). (1.1)

By (1.1), if a graph has no nontrivial automorphisms, that is if all its orbits consist of
single vertices, then its Graovac-Pisanski index is 0. Hence, all graphs with no nontrivial
automorphisms achieve the minimum value of Graovac-Pisanski index. More interesting is
the opposite problem.
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Problem 1.1. Find all graphs on n vertices with the maximum value of Graovac-Pisanski
index.

This problem was solved for trees in [10]. By a long H on n vertices we denote a tree
obtained from a path on n− 4 vertices by attaching two pendent vertices to each endvertex
of the path.

Theorem 1.2. Let T be a tree on n ≥ 8 vertices with the maximum value of Graovac-
Pisanski index. Then T is either a path or a long H . Moreover,

GP(T ) =

{
n3−n

8 if n is odd,
n3

8 if n is even.

For n ≤ 7 there are also three other trees with the maximum value of Graovac-Pisanski
index. However, they have the value of Graovac-Pisanski index as stated in Theorem 1.2.

In this paper we prove the following statement.

Theorem 1.3. LetG be a unicyclic graph on n vertices with the maximum value of Graovac-
Pisanski index. Then G is the n-cycle and

GP(Cn) =

{
n3−n

8 if n is odd,
n3

8 if n is even.

Observe that Graovac-Pisanski index for extremal trees and for extremal unicyclic
graphs has the same value. We believe the following holds.

Conjecture 1.4. Let G be a graph on n vertices, n ≥ 8, with the maximum value of
Graovac-Pisanski index. Then G is either a path, or a long H , or a cycle.

To support this conjecture we performed some computer experiments. They showed
the validity of the conjecture for n = 8 and n = 9. We believe that the maximal degree of
extremal graphs is small (at most 3), thus for the cases n = 10 and n = 11 we limited our
computer search to maximal degrees 5 and 4, respectively, and in these cases the conjecture
was confirmed as well. The graphs from the conjecture are extremal also for n ∈ {5, 6, 7},
however when n equals 7 there exists an additional extremal graph.

2 Proof
In this section we prove several claims which imply Theorem 1.3. Obviously, if we consider
graphs of order n, we do not need to consider the multiplicative term n

2 in (1.1). Therefore
we define

GPa(G) =

t∑
i=1

wVi
(vi), (2.1)

where V1, V2, . . . , Vt are all the orbits of Aut(G) in G and v1, v2, . . . , vt are their repre-
sentatives, respectively. Then for given n, graphs on n vertices with the maximum value of
GPa are the solutions of Problem 1.1.

For a cycle on n vertices, GPa(Cn) = wV (v) where v is an arbitrary vertex of Cn and
V = V (Cn). This implies the following statement.
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Proposition 2.1. We have

GPa(Cn) =

{
n2−1

4 if n is odd,
n2

4 if n is even.

In what follows we generalize the GPa-parameter. Let Z = {Z1, . . . , ZtZ} be a parti-
tion of V (G) and let zi ∈ Zi, 1 ≤ i ≤ tZ . Then

GPaZ(G) =

tZ∑
i=1

wZi(zi).

In our proofs, sets Zi will usually be unions of orbits of Aut(G). Nevertheless, GPaZ(G)
will depend on the choice of the representatives zi.

To prove Theorem 1.3 we start with GPa(G), where G is an extremal unicyclic graph
on n vertices different from the n-cycle. Then in a sequence of steps we modify either
the graph or the partition and in each step we obtain a larger value of GPaZ . Since we
terminate this process with Cn and GPa, we get the result.

Hence, let G be a unicyclic graph on n vertices with the maximum value of Graovac-
Pisanski index and such that G is not the n-cycle. Then G consists of a single cycle C and
trees rooted at the vertices of the cycle. In what follows, orbits of vertices of C will be
important.

We start with modifying the partition by merging together some orbits of vertices which
have the same distance from C. We denote by X the new partition of V (G), while the
original partition into orbits is denoted by V . Let v be a vertex of C. If {v} is a trivial orbit
of Aut(G), then orbits in the v-rooted tree form sets of the partition X . But if {v} is not
a trivial orbit of Aut(G), we do the following. Let Ov be the orbit of Aut(G) containig
v and let Ov(G) be the set of vertices of u-rooted trees where u ∈ Ov . We partition the
vertices of Ov(G) according to their distance from C. Hence, Ov alone is one set of X ,
another set of X contains those vertices of Ov(G) which are adjacent to a vertex of C, etc.
We have the following statement.

Lemma 2.2. For arbitrary choice of the representatives of sets in X we have

GPa(G) ≤ GPaX (G).

Proof. Let Xi be a set from X and let xi be an abitrary vertex of Xi. Observe that Xi is a
union of several orbits of Aut(G). Let V0 be an orbit of Aut(G) such that V0 ⊆ Xi. Then
wV0(u) is the same for every u ∈ V0. So let v0 be a vertex of V0 at the shortest distance
from xi. Then both xi and v0 are in the same tree rooted at a vertex of C. Assume that they
are in a v-rooted tree T .

Let u be a vertex of V0. If u is not in T then distG(xi, u) = distG(v0, u) since
distG(xi, v) = distG(v0, v). So let u be a vertex in T . Let z be a vertex on the (unique)
(v0, u)-path at the shortest distance from v. Since v0 is a vertex of V0 at the shortest dis-
tance from xi, the shortest (xi, u)-path must contain z. Thus distG(v0, u) ≤ distG(xi, u)
and so wV0(v0) ≤ wV0(xi). Consequently, GPa(G) ≤ GPaX (G) as required.

Now we modify the graph G, and we consider a partition Y of the vertex set of the
modified graph inherited from the partition X of G. So let v be a vertex of C. If {v} is a
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trivial orbit of Aut(G) then we do not change the v-rooted tree, and its orbits form sets of
the partition Y . Hence, in this case the sets of Y coincide with the sets of X (and also with
the orbits of V). But if {v} is not a trivial orbit of Aut(G) then we change the v-rooted
tree. If the v-rooted tree has p vertices inG then we replace it by a path on p vertices rooted
at the endvertex, which we again denote by v. Denote by F the graph which results when
all these replacements are made. Since we did not change the cycle, we denote the cycle of
F again by C. Let Ov be the orbit of Aut(G) containing v. By our assumption |Ov| ≥ 2.
Analogously as above, let Ov(F ) be the set of vertices of u-rooted trees where u ∈ Ov .
Partition Ov(F ) into p disjoint sets of Y according to their distance from C.

Observe that for every Yi ∈ Y and for every two vertices y1
i , y

2
i ∈ Yi we have

wYi
(y1
i ) = wYi

(y2
i ). Hence when computing GPaY(F ), we can choose the representa-

tives yi in Yi arbitrarily. However, orbits of F may be strictly larger than the sets Yi. This
is caused by the fact that two non-isomorphic rooted trees may have the same numbers of
vertices. Our next statement follows.

Lemma 2.3. For arbitrary choice of representatives of sets in Y we have

GPaX (G) ≤ GPaY(F ).

Proof. Let H be a graph. A ray in H is a subgraph of H which is isomorphic to a path,
its first vertex has degree at least 3 in H , its last vertex has degree 1 in H and all the other
vertices have degree 2 in H .

We do not prove the inequality directly. Instead, we construct a sequence of graphs
G = G0, G1, . . . , Gq = F , each Gi with a partition X i, such that

GPaX
i

(Gi) ≤ GPaX
i+i

(Gi+1)

for a special choice of representatives inX i+1, where 0 ≤ i ≤ q−1,X 0 = X andX q = Y .
We remark that for every i, Gi will be a unicyclic graph with the cycle C such that if O =
{v1, . . . , vt} is an orbit of vertices of C in G, then all vj-rooted trees in Gi are mutually
isomorphic, 1 ≤ j ≤ t. If t = 1 then the v1-rooted trees in G,G1, . . . , F are mutually
isomorphic and all X ,X 1, . . . ,Y coincide on the vertex sets of these trees. However if
t ≥ 2, then the vertex set Ov1(Gi) of the vj-rooted trees, 1 ≤ j ≤ t, is partitioned in X i
according to the distance from C, and we assume that all the representatives of these sets
are in the v1-rooted tree. This assupmtion is possible since O is an orbit in G, and although
O does not need to be an orbit ofGi, the vertices ofO are nicely distributed along the cycle
C in Gi.

So consider i, 0 ≤ i < q. We assume that Gi is already known and we construct Gi+1.
For this, let O = {v1, . . . , vt} be an orbit of vertices of C in G, where t ≥ 2. If the v1-
rooted tree (and so also vj-rooted trees for 2 ≤ j ≤ t) is a path rooted at the endvertex,
then we are done with this orbit of G. So suppose that the v1-rooted tree has at least
two endvertices different from v1, and consequently, at least two distinct rays starting at a
common vertex. Let R1 and R2 be two rays starting at a vertex c such that distGi(v1, c) is
maximum possible. We assume thatR1 is not shorter thanR2. If there is a representative xij
ofXi

j which is inR2, then replace it by a vertex ofXi
j inR1. Observe that this replacement

does not change GPaX
i

(Gi). Now delete R2 from the v1-rooted tree and attach it to the
second vertex of R1. Moreover, repeat the same procedure in all the other vj-rooted trees,
2 ≤ j ≤ t, and denote by Gi+1 the resulting graph. Denote by T i and T i+1 the v1-rooted
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tree in Gi and Gi+1, respectively. If R1 and R2 have the same length, then this operation
may create a new set in X i+1, because T i may have smaller depth than T i+1. (As is the
custom, by depth we denote the largest distance from the root.) In such a case choose a
representative of this new set in R2. This is the unique case when a representative will be
in R2 in T i+1.

Let d = distGi(v1, c) and let ` be the length of R2. Assume that the indices of sets
in X i and X i+1 are chosen so that Xi+1

j in Gi+1 was obtained from Xi
j in Gi and the

representatives of Xi
j and Xi+1

j coincide whenever possible. Then wXi
j
(xij) in Gi may

differ from wXi+1
j

(xi+1
j ) in Gi+1 only if Xi+1

j contains vertices of vk-rooted trees, 1 ≤
k ≤ t, which are at distance d+ 1, d+ 2, . . . , d+ `+ 1 from C. We distinguish three cases.

Case 1: Xi+1
j contains vertices at distance d+1 from C. Then in the v1-rooted tree, Xi+1

j

is smaller than Xi
j by exactly one vertex. Consequently |Xi

j | − |X
i+1
j | = t. Comparing to

GPaX
i

(Gi), GPaX
i+1

(Gi+1) is decreased by 2 due to a missing vertex in T i+1 and it is
decreased by (t−1)2(d+1)+c due to missing vertices in vk-rooted trees 2 ≤ k ≤ t. Here
c represents the distances using the edges of C, that is c =

∑t
k=2 distG(v1, vk). Hence,

wXi+1
j

(xi+1
j )− wXi

j
(xij) = −2− (t− 1)2(d+ 1)− c. (2.2)

Case 2: Xi+1
j contains vertices at distance d + a from C, where 2 ≤ a ≤ `. Then

|Xi+1
j | = |Xi

j | and comparing to GPaX
i

(Gi), GPaX
i+1

(Gi+1), is decreased by 2 due to
a shorter distance to a vertex of Xi+1

j in R2. Hence,

wXi+1
j

(xi+1
j )− wXi

j
(xij) = −2. (2.3)

Case 3: Xi+1
j contains vertices at distance d + ` + 1 from C. Then in the v1-rooted tree,

Xi+1
j is larger thanXi

j by exactly one vertex. Consequently |Xi+1
j |−|Xi

j | = t. Comparing

to GPaX
i

(Gi), GPaX
i+1

(Gi+1) is increased by (t−1)2(d+`+1)+c due to new vertices
in vk-rooted trees, 2 ≤ k ≤ t. Here c is the very same constant as in Case 1, that is
c =

∑t
k=2 distG(v1, vk). In some cases, namely if Xi

j is not empty, GPaX
i

is increased
by at least 2 due to a new vertex in T i+1, but we do not need to consider this contribution
in our calculations. Hence,

wXi+1
j

(xi+1
j )− wXi

j
(xij) ≥ (t− 1)2(d+ `+ 1) + c. (2.4)

Since wXi+1
j

(xi+1
j ) = wXi

j
(xij) when Xi

j 6⊆ Ovi(G
i), summing the expressions (2.2),

(2.3) and (2.4) we get

GPaX
i+1

(Gi+1)−GPaX
i

(Gi) ≥
(
−2− (t− 1)2(d+ 1)− c

)
− (`− 1)2

+
(
(t− 1)2(d+ `+ 1) + c

)
= (t− 2)2` ≥ 0

since t ≥ 2.

Let Yi ∈ Y . Observe that if Yi ∩ V (C) 6= ∅, then Yi ⊆ V (C). Let Y ′ be those sets of
Y which contain vertices of V (C). We define a new partition Z of F as follows:

Z = Y \ Y ′ ∪ V (C).
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That is, we merge together all sets Yi containing vertices of V (C). All the other sets of Z
coincide with the sets of Y . We have the following statement.

Lemma 2.4. For arbitrary choice of representatives of sets in Z we have

GPaY(F ) ≤ GPaZ(F ).

Proof. Observe that there are three types of sets in Z . First, if v1 ∈ V (C) is a trivial orbit
in G, then orbits of vertices of the v1-rooted tree are sets of Z . Second, if {v1, . . . , vt} ⊆
V (C) is a non-trivial orbit in G, that is if t ≥ 2, then the vi-rooted trees are paths with
endvertices vi, and sets of vertices of Ov1(F ) in Z contain vertices of these t rooted trees
which are at the same distance from C. Finally, Z contains V (C). If Zi is a set of Z of the
first type or of the second type and u, v ∈ Zi, then wZi

(u) = wZi
(v). Hence, to prove the

statement it suffices to show that∑
Yi∈Y′

wYi(yi) ≤ wV (C)(z) =
∑
Yi∈Y′

wYi(z)

where z is an arbitrary vertex of V (C) and Y ′ is defined before Lemma 2.4. (Recall that yi
is a representative of Yi in Y .)

Thus, let z ∈ V (C) and let Yi ∈ Y ′. In what follows we show that wYi
(yi) ≤ wYi

(z).
We distinguish four cases.

Case 1: |Yi| = 1. Since wYi
(yi) = 0 ≤ distF (z, yi) = wYi

(z), we have wYi
(yi) ≤

wYi
(z).

Case 2: |Yi| = 2. let Yi = {yi, y}. Then by triangle inequality

wYi
(yi) = distF (yi, y) ≤ distF (z, yi) + distF (z, y) = wYi

(z).

Hence, in the sequel we assume that |Yi| ≥ 3. Since Yi is an orbit of vertices of C inG,
there is a nontrivial rotational automorphism α in Aut(G) such that {αk(yi) | k ∈ N} ⊆
Yi. Let r be the biggest order of a rotational automorphism of this type and let α be the
corresponding automorphism. Observe that r ≥ 2. Since wYi

(u) = wYi
(v) for u, v ∈ Yi,

we assume that yi is chosen so that distF (z, yi) is smallest possible.

Case 3: r is even. Let Y ′i = {αk(yi) | 0 ≤ k < r}. We rename vertices of Y ′i as
{y0, y1, . . . , yr−1} so that distF (yi, y

k) ≤ distF (yi, y
k+1) whenever 0 ≤ k < r − 1.

Observe that y0 = yi, the vertices y2`−1 and y2` have the same distance from yi if 1 ≤ ` <
r/2 and yr−1 is the unique vertex of Y ′i with the largest distance from yi. Since yi is the
vertex of Yi with the smallest distance from z, we have

distF (y2`−1, yi) + distF (yi, y
2`) = distF (y2`−1, z) + distF (z, y2`)

for 1 ≤ ` < r/2 and also

distF (yi, y
r−1) = distF (yi, z) + distF (z, yr−1) = 1

2 |V (C)|.

Hence, wY ′i (yi) = wY ′i (z). If Yi = Y ′i , we are done. Therefore, in the sequel assume that
there is also a reflexion β such that β(Y ′i ) ⊆ Yi and β(Y ′i )∩Y ′i = ∅. Then Yi = Y ′i ∪β(Y ′i )
and |Yi| = 2r. Observe that all the vertices of β(Y ′i ) are obtained from arbitrary one of
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them using α. Thus, let yβi be a vertex of β(Y ′i ) with the smallest distance from yi. Then
using the same arguments as above we get

wβ(Y ′i )(y
β
i ) = wβ(Y ′i )(yi).

Since wβ(Y ′i )(y
β
i ) = wY ′i (yi), we get

wYi(yi) = 2wY ′i (yi).

Analogously, if yβzi is a vertex of β(Y ′i ) at the smallest distance from z, we get

wβ(Y ′i )(y
βz
i ) = wβ(Y ′i )(z).

Since wβ(Y ′i )(y
βz
i ) = wY ′i (yi), we obtain wYi

(yi) = wYi
(z).

Case 4: r is odd. Let Y ′i = {αk(yi) | 0 ≤ k < r}. Then proceeding analogously as in
Case 3 one gets

wY ′i (z) = wY ′i (yi) + distF (yi, z),

and so wYi
(yi) ≤ wYi

(z) if Yi = Y ′i . Hence, assume that there is a reflexion β such that
β(Y ′i ) ⊆ Yi and β(Y ′i ) ∩ Y ′i = ∅. Again, Yi = Y ′i ∪ β(Y ′i ) and |Yi| = 2r, and all the
vertices of β(Y ′i ) are obtained from arbitrary one of them using α. Thus, let yβi be a vertex
of β(Y ′i ) with the shortest distance from yi. Then analogously as in Case 3 one gets

wY ′i (yi) = wβ(Y ′i )(y
β
i ) = wβ(Y ′i )(yi)− distF (yβi , yi)

and so
wYi

(yi) = 2wY ′i (yi) + distF (yβi , yi).

Also, let yβzi be a vertex of β(Y ′i ) with the shortest distance from z. Then analogously as
above we get

wY ′i (yi) = wβ(Y ′i )(y
βz
i ) = wβ(Y ′i )(z)− distF (yβzi , z)

and so
wYi

(z) = 2wY ′i (yi) + distF (yβzi , z) + distF (yi, z).

Since
distF (yβi , yi) ≤ distF (yβzi , yi) ≤ distF (yβzi , z) + distF (yi, z),

we get wYi
(yi) ≤ wYi

(z).

Finally, we are in a position to prove the last lemma which implies Theorem 1.3. Ob-
serve that there is a strict inequality in Lemma 2.5.

Lemma 2.5. We have
GPaZ(F ) < GPa(Cn).

Proof. Analogously as in Lemma 2.3, we prove the statement by a sequence of steps. Let
O1, . . . , Oq be all orbits of vertices of C in G, such that for every v ∈ Oi the v-rooted tree
is nontrivial (i.e., it has more than one vertex). Observe that if the v-rooted tree is nontrivial
inG, then the v-rooted tree in F is also nontrivial. Assume that |O1| ≥ |O2| ≥ · · · ≥ |Oq|.



M. Knor et al.: Unicyclic graphs with the maximal value of Graovac-Pisanski index 463

We consecutively create unicyclic graphs F = F 0, F 1, . . . , F q = Cn with partitions
Z = Z0,Z1, . . . ,Zq , respectively, and for every i, 0 ≤ i < q, we show that GPaZ

i

(F i) <

GPaZ
i+1

(F i+1). The graph F i+1 is obtained from F i by moving the vertices of v-rooted
trees, where v ∈ Oi+1, into the unique cycle Ci of F i. Now we describe the process in
detail.

Choose i, 0 ≤ i < q. For v ∈ Oi+1, let p+ 1 be the number of vertices of v-rooted tree
in F i (or inG, since the numbers of vertices of v-rooted trees inG and F are the same). By
our assumption p ≥ 1. Orient the cycle Ci of F i and for every vertex u ∈ V (Ci) let uf be
the vertex following u on Ci. Let v ∈ Oi+1. Delete the p non-root vertices of the v-rooted
tree from F i and subdivide the edge vvf exactly p times. Repeat this procedure for all
vertices of Oi+1 and denote by F i+1 the resulting unicyclic graph. The partition Zi+1 is
exactly the same as Zi, the only exception is that instead of the set V (Ci) and various sets
partitioning Ov(F i) for v ∈ Oi+1 we have just the set V (Ci+1) in Zi+1. We assume that
if a set of Zi is identical with a set of Zi+1, then they have the same representatives.

Let Z ′ ∈ Zi and Z∗ ∈ Zi+1 such that Z ′ = Z∗. Then Z ′ is a collection of vertices of
Ou(F i), i.e., of u-rooted trees for u ∈ Oj , where j > i + 1. Since the distances between
these vertices cannot be shorter in F i+1 than in F i (they can be only larger due to the
extension of Ci to Ci+1), we have wZ′(z′) ≤ wZ∗(z

∗) where z′ is a representative of Z ′

in F i and z∗ is a representative of Z∗ in F i+1. Hence, it suffices to check the contribution
of V (Ci+1) in GPaZ

i+1

(F i+1) and in GPaZ
i

(F i) the contribution of V (Ci) and of the
sets of non-root vertices of v-rooted trees for v ∈ Oi+1. Let t = |Oi+1|. Analogously as
in the proof of Lemma 2.4 we distinguish four cases. In these cases, we set c = |V (Ci)|.
Moreover, by δa we denote the parity of a. That is δa = 1 if a is odd and δa = 0 if a is
even.

Case 1: t = 1. By Proposition 2.1, V (Ci) contributes 1
4 (c2 − δc) to GPaZ

i

(F i) and

V (Ci+1) contributes 1
4 ((c + p)2 − δc+p) to GPaZ

i+1

(F i+1). Let Oi+1 = {v1}. Denote
by T the v1-rooted tree in F i. Since T is a tree on p+ 1 vertices, the orbits of T contribute
to GPaZ

i

(F i) at most 1
4 ((p+ 1)2 − δp+1) by Theorem 1.2. So

4
(
GPaZ

i+1

(F i+1)−GPaZ
i

(F i)
)
≥ (c+ p)2 − δc+p − c2 + δc − (p+ 1)2 + δp+1

≥ (c+ p)2 − c2 − (p+ 1)2 − 1

= 2p(c− 1)− 2 > 0

since c ≥ 3 and p ≥ 1.

Case 2: t = 2. In this case the v-rooted trees are paths whenever v ∈ Oi+1. Since the
contribution to GPaZ

i

(F i) of j-th vertices of these paths (i.e., of vertices at distance j
from the roots) is at most j+c/2+ j, the total contribution of non-root vertices of v-rooted
trees, v ∈ Oi+1, is at most 2

(
p+1

2

)
+ 1

2cp. Since the contribution of V (Ci) is 1
4 (c2 − δc)

and the contribution of V (Ci+1) is 1
4 ((c+ 2p)2 − δc+2p), where δc+2p = δc, we get

4
(
GPaZ

i+1

(F i+1)−GPaZ
i

(F i)
)
≥ (c+ 2p)2 − δc − c2 + δc − 8

(
p+1

2

)
− 2cp

≥ (c+ 2p)2 − c2 − 4p2 − 4p− 2cp

= 2p(c− 2) > 0

since c ≥ 3 and p ≥ 1 .
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In the remaining cases we may assume that there is a nontrivial rotational automorphism
α of F i such that when v ∈ Oi+1 then also α(v) ∈ Oi+1. Let r be the biggest order of
such a rotational automorphism α, and moreover, let α be such that the distance s between
v and α(v) is the smallest possible. Then c = r · s.

Case 3: r is even. Then r ≥ 2. Let v0 ∈ Oi+1. Denote O′ = {αk(v0) | 0 ≤ k < r}. First
assume that |Oi+1| = 2r. Hence there is also a reflexion β such that β(O′) ⊆ Oi+1 and
β(O′) ∩O′ = ∅. Let v1 ∈ Oi+1 such that the distance t between v0 and v1 is the smallest
possible. Then t ≤ s/2 and v1 ∈ β(O′). Observe that now t ≥ 1 and s ≥ 2. Since c = rs

is even, the contribution of V (Ci) to GPaZ
i

(F i) is 1
4r

2s2. The contribution of V (Ci+1)

to GPaZ
i+1

(F i+1) is 1
4r

2(s+2p)2. Now we calculate the contribution of non-root vertices
of v-rooted trees when v ∈ Oi+1. These trees are paths and the contribution of j-th vertices
is

2(s+ 2j) + 2(2s+ 2j) + · · ·+ 2
(
( r2 − 1)s+ 2j

)
+ ( r2s+ 2j)

+ (t+ 2j) + (s+ t+ 2j) + · · ·+
(
( r2 − 1)s+ t+ 2j

)
+ (s− t+ 2j)

+ (2s− t+ 2j) + · · ·+
(
( r2 − 1)s− t+ 2j

)
+ ( r2s− t+ 2j)

= 4(s+ 2j) + 4(2s+ 2j) + · · ·+ 4
(
( r2 − 1)s+ 2j

)
+ 2( r2s+ 2j) + 2j

= 1
2r

2s+ 2j(2r − 1).

So the contribution of non-root vertices of v-rooted trees, v ∈ Oi+1, is

p∑
j=1

(
1
2r

2s+ 2j(2r − 1)
)

= 1
2r

2sp+ (p2 + p)(2r − 1).

Hence

GPaZ
i+1

(F i+1)−GPaZ
i

(F i) ≥ 1
4r

2s2 + r2sp+ r2p2 − 1
4r

2s2

− 1
2r

2sp− 2rp2 − 2rp+ p2 + p

= p2(r−1)2 + p
(
r( 1

2rs−2) + 1
)
> 0

since r ≥ 2, s ≥ 2 and p ≥ 1.
In the case when |Oi+1| = r, the contribution of V (Ci+1) is 1

4r
2(s + p)2 and the

contribution of j-th vertices in v-rooted trees, v ∈ Oi+1, is

2(s+ 2j) + 2(2s+ 2j) + · · ·+ 2
(
( r2 − 1)s+ 2j

)
+ ( r2s+ 2j) = 1

4r
2s+ 2j(r − 1).

So the contribution of non-root vertices of v-rooted trees, v ∈ Oi+1, is

p∑
j=1

(
1
4r

2s+ 2j(r − 1)
)

= 1
4r

2sp+ (p2 + p)(r − 1).

Hence

GPaZ
i+1

(F i+1)−GPaZ
i

(F i) ≥ 1
4r

2s2 + 1
2r

2sp+ 1
4r

2p2 − 1
4r

2s2

− 1
4r

2sp− rp2 − rp+ p2 + p

= p2( r2 − 1)2 + p
(
r( 1

4rs− 1) + 1
)
> 0
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since in this case r ≥ 4, s ≥ 1 and p ≥ 1.

Case 4: r is odd. Then r ≥ 3. Let v0 ∈ Oi+1 and O′ = {αk(v0) | 0 ≤ k < r}. First
assume that |Oi+1| = 2r. Hence there is also a reflexion β such that β(O′) ⊆ Oi+1 and
β(O′) ∩O′ = ∅. Let v1 ∈ Oi+1 such that the distance t between v0 and v1 is the smallest
possible. Then t ≤ s/2 and v1 ∈ β(O′). The contribution of V (Ci) to GPaZ

i

(F i)

is 1
4 (r2s2 − δrs). The contribution of V (Ci+1) to GPaZ

i+1

(F i+1) is 1
4

(
r2(s + 2p)2 −

δr(s+2p)

)
. Now we calculate the contribution of non-root vertices of v-rooted trees when

v ∈ Oi+1. These trees are paths and the contribution of j-th vertices is

2(s+ 2j) + 2(2s+ 2j) + · · ·+ 2( r−1
2 s+ 2j)

+ (t+ 2j) + (s+ t+ 2j) + · · ·+ ( r−1
2 s+ t+ 2j)

+ (s− t+ 2j) + (2s− t+ 2j) + · · ·+ ( r−1
2 s− t+ 2j)

= 4(s+ 2j) + 4(2s+ 2j) + · · ·+ 4( r−1
2 s+ 2j) + (t+ 2j)

= 1
2 (r2 − 1)s+ 2j(2r − 1) + t.

So the contribution of non-root vertices of v-rooted trees, v ∈ Oi+1, is

p∑
j=1

(
1
2 (r2 − 1)s+ 2j(2r − 1) + t

)
= 1

2 (r2 − 1)sp+ (p2 + p)(2r − 1) + pt

≤ 1
2r

2sp+ (p2 + p)(2r − 1)

since − 1
2sp+ pt ≤ 0. Hence

GPaZ
i+1

(F i+1)−GPaZ
i

(F i) ≥ 1
4r

2s2 + r2sp+ r2p2 − 1
4δrs −

1
4r

2s2 + 1
4δrs

− 1
2r

2sp− 2rp2 − 2rp+ p2 + p

= p2(r − 1)2 + p
(
r( 1

2rs− 2) + 1
)
> 0

since r ≥ 3, s ≥ 2 and p ≥ 1.
In the case when |Oi+1| = r, the contribution of V (Ci+1) to GPaZ

i+1

(F i+1) is
1
4

(
r2(s+ p)2 − δr(s+p)

)
and the contribution of j-th vertices in v-rooted trees, v ∈ Oi+1,

is
2(s+ 2j) + 2(2s+ 2j) + · · ·+ 2( r−1

2 s+ 2j) = 1
4 (r2 − 1)s+ 2j(r − 1).

So the contribution of non-root vertices of v-rooted trees, v ∈ Oi+1, is

p∑
j=1

(
1
4 (r2 − 1)s+ 2j(r − 1)

)
= 1

4 (r2 − 1)sp+ (p2 + p)(r − 1).

Hence

GPaZ
i+1

(F i+1)−GPaZ
i

(F i) ≥ 1
4r

2s2 + 1
2r

2sp+ 1
4r

2p2 − 1
4 −

1
4r

2s2

− 1
4 (r2 − 1)sp− rp2 − rp+ p2 + p

= p2( r2 − 1)2 + p
(
r( 1

4rs− 1) + 1
4s+ 1

)
− 1

4 > 0

since in this case r ≥ 3, s ≥ 1 and p ≥ 1. (Observe that the second bracket is at least 2
4 if

r = 3 and s = 1.)
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