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Abstract. Advanced technologies in power electronics have always been a prominent factor in the development 

of new devices in power systems. Superconducting Fault Current Limiter (SFCL) can be regarded as a key 

component for future electric power systems. It is capable of eliminating the hazards during faults by increasing 

the short-circuit power of the network. SFCL devices can be either resistive (R-SFCL) or inductive (I-SFCL). 

They show negligible resistance or reactance, respectively, under normal operating conditions and they reliably 

switch to a high impedance state in the case of a high current. This paper studies the use of R-SFCL and I-SFCL 

by investigating their impacts on the short-circuit calculations of a high voltage line. The case study is for a 220 

kV transmission line in the northern transmission network of Algeria which is subjected to a phase to ground fault 

in the presence of a fixed fault resistance. The impact of SFCL impedance (ZSFCL) of R-SFCL and I-SFCL on 

short-circuit parameters (symmetrical current components, transmission line currents, voltage symmetrical 

components, and transmission line voltages) is presented using a developed MATLAB program. Analysis and 

comparison of the obtained simulation results lead to the conclusion that using R-SFCL offers a better system 

performance than I-SFCL for the system under study.  

 

Keywords: Power systems, Superconducting fault current limiter, Short-circuit calculations, Symmetrical 

components, Ground fault.  

 

 
Analiza napak faza ozemljitev pri visokonapetostnih 

daljnovodih v prisotnosti uporovnih in induktivnih SFCL 

Superprevodni tokovni omejevalnik (SFCL) je lahko ključen 

gradnik pri bodočih elektroenergetskih sistemih, saj omogoča 

izločitev rizičnih dejavnikov pri kratkostičnih tokovih. SFCL 

je lahko ali uporovni (R-SFCL) ali induktivni (I-SFCL). Ti 

gradniki izkazujejo zanemarljivo upornost in induktivnost pri 

pravilnem delovanju in visoko impedanco v primeru 

kratkostičnega toka. V prispevku analiziramo uporabo           

R-SFCL in I-SFCL ter njun vpliv na izračun kratkostičnih 

tokov na visokonapetostnih vodih. Izvedli smo študijo na 

primeru 220 kV napetostnega voda v Alžiriji. Vpliv 

impedance SFCL na parametre kratkostičnega toka je 

predstavljen s pomočjo računalniškega programa MATLAB. 

Na podlagi dobljenih rezultatov ugotavljamo, da za 

analizirano visokonapetostno omrežje R-SFCL zagotavlja 

boljšo uporabnost kot I-SFCL. 

1 INTRODUCTION 

Short-circuit analysis has always been a vital research 

topic that has been frequently addressed by researchers 

in the power engineering field. Nowadays, short-circuit 

calculations are being investigated particularly in the 

presence of rapidly growing loads and highly 

complicated networks which are frequently subjected to 

various types of faults. As an electrical power system 

continues to expand in size, generation capacity and 

transmission network expansion may be restricted by 

the fault current limit which can affect the reliability of 

the power system adversely [1]. Nowadays, options 

available for utility companies to reduce fault currents 

in a power grid are not only few but they also have 

some significant drawbacks. For example, using high 

impedance transformers and earthing reactors will 

compromise the efficiency and increase the cost. 

Splitting existing networks to reduce fault currents has 

an adverse effect on the grid stability and efficiency [2]. 

 The Superconducting Fault Current Limiter (SFCL) 

has been used in power systems in order to reduce fault 

currents. A decreased fault current results mainly in the 

need for a change in the settings of overcurrent relays, 

coordination and nuisance trip.  

 SFCL is basically a variable impedance that is 

installed in series with a circuit breaker. In the case of a 

fault, the impedance rises to a value at which the fault 

current is correspondingly reduced to a lower level that 

the circuit breaker can cope with [3, 4]. SFCL can offer 

cost-effective means to limit the high level fault currents 

to lower levels which allow circuit breakers contact to 
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open quickly and safely [5]. In [6], effects of different 

types of SFCL on the successful interruption of circuit 

breakers are investigated using the Transient Recovery 

Voltage (TRV), where the simulation results showed 

that the TRV can be damped in the presence of the 

resistive and bridge type SFCL during fault clearing 

period.  

 An existing medium voltage network in the United 

Kingdom is considered in [7]. It incorporates a 

distributed generation capacity and the performance of 

overcurrent and distance protection schemes in the 

presence of SFCL. In [8], based on the structure and 

theory of voltage compensation in SFCL, the effect of 

the SFCL on the current relay is studied in details, and a 

solution was proposed and applied to 10 kV isolated 

neutral distribution network system. In [9], dynamic 

characteristics of hybrid SFCL are studied for short-

circuit test considering a simple coordination of relays 

in distribution networks. A study on correction of 

protective devices settings in a power distribution 

system with a Distributed Generation (DG) using SFCL 

is represented in [10]. Another study on the 

coordination of protection relays between primary 

feeder and interconnecting transformer grounded by 

SFCL in wind farms is presented in [11]. In [12], the 

application of multiple resistive solid state SFCL for 

fast fault detection in highly interconnected distribution 

systems, based on current division discrimination, is 

proposed as a potential cost-efficient candidate to 

minimize the effect of exposing DG to the distribution 

system. A genetic based algorithm is employed to 

obtain SFCLs optimum number, location and size [13]. 

 In this paper, the effect of using resistive and 

inductive SFCL devices on short-circuit calculations is 

studied and compared by varying the device impedance 

(ZSFCL). A practical case study is considered for a 220 

kV transmission line which connects two 220/60 kV 

substations in Algeria, namely Batna and Biskra. The 

line is subjected to a phase to ground fault while 

maintaining a fixed fault resistance. System modeling 

and simulations obtained from the developed program 

are presented. Finally, the results are compared to 

demonstrate the difference between using R-SFCL and 

I-SFCL devices on system performance under short-

circuit states.   

  

2 MODELING OF SFCL 

There are several types of SFCLs but they fall into two 

basic categories of either resistive or inductive. The 

simplest superconducting limiter concept in both 

categories exploits the nonlinear impedance of 

superconductors (ZSFCL) in a direct way. A 

superconductor is inserted in the circuit. Many models 

or SFCL device have been developed as resistor, 

reactor, and transformer type, etc.                                   

 In this paper, the model used for resistive and 

inductive SFCL is based on [14, 15]. This represents the 

experimental side for the superconducting elements of 

SFCL as well as the quench and recovery 

characteristics. Impedance of SFCL as a function of 

time t is given by: 
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Zn and TF are the convergence impedance being 

saturated at normal temperature and the time constant 

respectively. t0, t1 and t2 denote the starting time of the 

quench, starting time of the first recovery, and starting 

time of the second recovery, respectively. a1, a2, b1 and 

b2 are the coefficients of the first-order linear function 

used for representing the experimentally obtained 

recovery characteristics of SFCL [16]. 

 

3 PHASE TO GROUND FAULT CALCULATIONS 

IN THE PRESENCE OF SFCL DEVICES 

Figure 1 shows the equivalent circuit of a transmission 

line of impedance ZL that connects between bus-bars A 

and B in the case of a phase to ground fault occurring at 

phase (A). The fault location is denoted by nF which 

takes the value of zero if the fault occurs at bus-bar A 

and 100% if it occurs at bus-bar B. 
 

 

Figure 1. Phase to ground fault equivalent circuit with SFCL. 

 

 As shown in the figure, the line is equipped with 

either R-SFCL or I-SFCL of impedance ZSFCL which is 

connected in series with the line impedance. A fault 

resistance (RF) is also used as shown in the equivalent 

circuit diagram while the internal impedance of the 

generator Zs is ignored due to its small magnitude. 

 While having the SFCL device installed, the new 

impedance of the transmission line (ZL-SFCL) becomes:   
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where; 

      
 for resistive SFCL (R-SFCL)

for inductive SFCL (I-SFCL)
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 Basic equations for this type of fault at phase A are 

given by, [16-21]:  
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 The symmetrical components of line currents are 

given by [16, 21]: 
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 From equations (4) and (6), the current symmetrical 

components take the following form:  
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 The voltage symmetrical components are given by 

[16, 21]: 
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 From equation (5), the direct voltage component is 

given by:  
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 The impedances symmetrical components are given 

by [16, 21]: 
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 Therefore, the symmetrical components of the 

transmission line impedance ZL and the apparent 

impedance of the SFCL device ZSFCL are defined 

according to equation (10) as follows:  
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From Figure 1, V1 , V0 and V2 take the following form: 
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 Substituting by the above equations (13), (14) and 

(15) in equation (9) using equation (7) yields: 
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 From equation (16), the current of phase (A) in the 

presence of a SFCL device is given by: 
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 From equations (7) and (17), the current symmetrical 

components in the presence of a SFCL device take the 

following form: 
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 Substituting by I1 from equation (18) into equation 

(13) while using equations (11) and (12), the direct 

voltage component takes the following form: 
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 Similarly, using equations (14) and (18), the inverse 

voltage component becomes:  
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 Using equations (15) and (18), the zero component of 

the voltage becomes:  
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 In order to obtain the phase voltages at the fault point 

in the presence of SFCL device and fault resistance, the 

following equation is used [16, 21]: 
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 Substituting equations (19), (20) and (21) into 

equation (22) yields: 

 

                 

 
3. .

. 3.

F S
A

F L SFCL F

R V
V

n Z Z R


 
                   (23) 

 

   

   
 

2 2 2

2 0. ' 1 ' 3. . )

. 3.

S F

B

F L SFCL F

V a a Z a Z a R
V

n Z Z R

    
 

 

        

(24) 

 

    

   

 

2

2 0. ' 1 ' 3. . )

. 3.

S F

C

F L SFCL F

V a a Z a Z a R
V

n Z Z R

    
 

 
         

(25) 

 

Coefficients Z2' and Z0' are defined as: 
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 This analysis shows that short-circuit calculations in 

this case are mainly related to the impedance of used 

SFCL (ZSFCL), fault location (nF) and fault resistance 

(RF). Below, the effect of changing ZSFCL on short-

circuit parameters is studied in the case of using either 

R-SFCL or I-SFCL, while both fault location and fault 

resistance are maintained at constant values.  

 

4 CASE STUDY AND SIMULATION RESULTS 

In this paper, the selected case study is for a 220 kV 

transmission line in the Algerian transmission network, 

Sonelgaz group [22]. The line connects bus-bar A at 

Batna and bus-bar B at Biskra. The relay measuring the 

fault current is located at Batna to protect the line. The 

system is modeled using MATLAB where obtained 

simulation results are presented and discussed.  

 Transmission line parameters are given as follows: 

length = 113 km, frequency = 50 Hz, direct and inverse 

sequence impedances ZL.1 = ZL.2 = 0.121 + j 0.421 Ω/km 

and zero sequence impedance ZL.0 = 0.361 + j 1.263 

Ω/km. The ranges of R-SFCL and I-SFCL impedances 

are given by 0 - 3.5 Ω and 0 - 4.5 Ω, respectively.  

These ranges are determined based on practical 

considerations related to the understanding of the 

system operation.  

 For the given results, the fault location is assumed to 

occur at bus-bar B (nF = 100 %) in the presence of a 

fixed fault resistance RF which takes the value of 30 Ω.   

 Figures 2.a, b, c represent the variations in the 

current symmetrical components, I1, I2 and I0, as a 

function of ZSFCL while using either R-SFCL or I-SFCL. 

It is noticed that the three symmetrical current 

components are equal for each case, according to 

equation (7). It is also noticed that increasing ZSFCL 

leads to a decrease in the current components which is 

expected whenever using SFCL devices. When 

comparing the magnitudes of the two cases, it is clear 

that the magnitudes of the current symmetrical 

components in the case of using R-SFCL are less than 

those obtained when using I-SFCL.  

 

 

        (a) 

 

        (b) 

 

         (c) 

Figure 2. Impact of ZSFCL on current symmetrical components: 

(a). I1 = f (ZSFCL), (b). I2 = f (ZSFCL), (c). I0 = f (ZSFCL). 
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        (a) 

 

        (b) 

 

       (c) 

Figure 3. Impact of ZSFCL on voltage symmetrical components: 

(a). V1 = f (ZSFCL), (b). V2 = f (ZSFCL), (c). V0 = f (ZSFCL). 

 

Figures 3.a, b, c represent the variations in the 

voltage symmetrical components, V1, V2 and V0, as a 

function of ZSFCL for both cases. Increasing ZSFCL leads 

to an increase in the direct voltage component and a 

decrease in the inverse and zero voltage components for 

both cases, as in equations (19), (20) and (21). This 

reflects an improvement in the system performance 

when using SFCL. Results obtained for the voltage 

symmetrical components when using R-SFCL are 

shown to be better than those obtained when using I-

SFCL. This is represented in the larger voltage 

magnitudes exhibited by the direct sequence component 

and the smaller voltage magnitudes exhibited by both 

the indirect and zero sequence components in the case 

of using R-SFCL and when compared with their 

corresponding values when using I-SFCL, for the same 

ZSFCL.  

 

 

         (a) 

 

          (b) 

 

          (c) 

Figure 4. Impact of ZSFCL on transmission line currents: 

(a). IA = f (ZSFCL), (b). IB = f (ZSFCL), (c). IC = f (ZSFCL). 
 

Figures 4.a, b, c represent the variations in the line 

currents, IA, IB and IC, as a function of ZSFCL for both 

cases. The line currents of phases B and C are always 

zero since the phase to ground fault occurs at phase A, 
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as in equation (4). While using R-SFCL or I-SFCL, the 

increase of ZSFCL leads to a reduced magnitude of the 

line current of the faulty phase (A) which is an 

advantage gained from using SFCL devices. Comparing 

the magnitudes of the fault current in both cases, it is 

shown that less magnitude is exhibited when using R-

SFCL than that obtained when using I-SFCL for the 

same ZSFCL, particularly for significant values of ZSFCL. 

This means that R-SFCL leads to a reduced magnitude 

of fault current. 

 

 

         (a) 

 

          (b) 

 

           (c) 

Figure 5. Impact of ZSFCL on transmission line voltages: 

(a). VA = f (ZSFCL), (b). VB = f (ZSFCL), (c) VC = f (ZSFCL). 

 

Figures 5.a, b, c represent the variations in the voltages, 

VA, VB and VC, as a function of ZSFCL for both cases. It is 

clear that the increase in ZSFCL leads to an increase in the 

system phase voltages under fault conditions. R-SFCL 

shows better performance than I-SFCL which is 

represented in the exhibited higher magnitudes of the 

system three phase voltages under short-circuit. 

 

5 CONCLUSIONS 

This research work investigates the effect of using two 

Superconducting Fault Current Limiters (SFCL), one 

resistive and the other inductive (R-SFCL and I-SFCL), 

on short-circuit calculations of a 220 kV transmission 

line operating in the Algerian power network in the case 

of a phase to ground fault and a fixed fault resistance.  

 The presented theoretical analysis shows that the 

short-circuit calculations for this type of fault are 

directly related to the magnitude of the impedance of 

the used SFCLs device, whose effect was explored in 

this research work, as well as to the fault location and 

fault resistance which are both maintained at fixed 

values in this paper. 

 The simulations results obtained by using the 

developed MATLAB program, highlight the advantages 

of using both SFCL devices presenting from their 

reducing the fault current and increasing the system 

phase voltages under fault conditions while increasing 

the impedance of the device.  

 Furthermore, it was concluded that R-SFCL offers a 

better system performance under fault than I-SFCL for 

the considered case. Increasing the impedance of R-

SFCL was met by a less magnitude of the fault current 

and higher magnitudes of the system phase voltages 

than those noticed when using I-SFCL for the same 

device impedance. This can be mainly attributed to the 

direct effect of using pure resistance in controlling the 

magnitude of the fault current.  

 Further research studies are currently conducted 

towards determining an optimal location of SFCL 

devices using suitable optimization algorithms in 

meshed and radial power systems.  
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