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Abstract

In this paper, we continue the investigation of different types of (Grundy) dominating
sequences. We consider four different types of Grundy domination numbers and the related
zero forcing numbers, focusing on these numbers in the well-known class of Kneser graphs
Kn,r. In particular, we establish that the Grundy total domination number γtgr(Kn,r) equals(
2r
r

)
for any r ≥ 2 and n ≥ 2r + 1. For the Grundy domination number of Kneser graphs

we get γgr(Kn,r) = α(Kn,r) whenever n is sufficiently larger than r. On the other hand,
the zero forcing number Z(Kn,r) is proved to be

(
n
r

)
−
(
2r
r

)
when n ≥ 3r + 1 and r ≥ 2,

while lower and upper bounds are provided for Z(Kn,r) when 2r + 1 ≤ n ≤ 3r. Some
lower bounds for different types of minimum ranks of Kneser graphs are also obtained
along the way.
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1 Introduction
The Kneser graph, Kn,r, where n, r are positive integers such that n ≥ 2r, has the r-
subsets of the n-set as its vertices, and two r-subsets are adjacent inKn,r if they are disjoint.
The class of graphs became well-known by the celebrated Erdős-Ko-Rado theorem [11],
which determined the independence number α(Kn,r) of the Kneser graphKn,r to be equal
to
(
n−1
r−1
)
. Another famous result is Lovász’s proof of Kneser’s conjecture, which deter-

mines the chromatic number of Kneser graphs [22], see also Matoušek for a combinatorial
proof of this result [23]. Many other invariants were later considered in Kneser graphs by
a number of authors. In particular, the domination number of Kneser graphs was studied in
several papers [16, 19, 24], but there is no such complete solution for domination number
of Kneser graphs as is the case with the chromatic and the independence number.

Various Grundy domination invariants have been introduced in recent years [5, 7, 8],
arising from two standard domination invariants, the domination number and the total dom-
ination number. In the context of domination, we say that a vertex x totally dominates ver-
tices in its (open) neighborhood, N(x) = {y | xy ∈ E(G)}, and that x dominates vertices
in its closed neigborhood, N [x] = N(x) ∪ {x}. A set D in a graph G is a dominating
set (resp., a total dominating set) of G if every vertex in V (G) is dominated (resp., totally
dominated) by a vertex in D. (Clearly, G must not have an isolated vertex to have a total
dominating set.) The minimum cardinality of a dominating set (resp., total dominating set)
is the domination number (resp., the total domination number) of G, and is denoted by
γ(G) (resp., γt(G)). Now, Grundy (total) domination number is introduced while applying
a greedy algorithm to obtain a (total) dominating set D as follows. Vertices are added to
the set D one by one, requiring that a vertex x that was added to D (totally) dominates at
least one vertex that was not (totally) dominated before this vertex was added. The longest
length of such a sequence in a graph G is the Grundy (total) domination number, γgr(G)
(resp., γtgr(G)). By imposing an additional condition on such dominating sequences, one
gets the so-called Z-dominating sequences and Z-Grundy domination number [4], denoted
by γZgr(G). See Section 2 for formal definitions, and [6, 9] for more results on Grundy
domination and Grundy total domination numbers.

In [5] a strong connection between the Z-Grundy domination number and the zero
forcing number of a graph was established. The latter graph invariant has been intensively
studied in recent years; it is closely related to another well-known domination concept
called power domination, cf. [13, 14]. Moreover, the zero forcing number is very useful in
determining the minimum rank of a graph; see the seminal paper about this connection [1]
and some further studies [2, 3, 10]. Minimum rank mr(G) of a graph G is defined as the
minimum rank over all symmetric matrices that have non-zero (real) values in the non-zero
entries of the adjacency matrix A(G) of G, arbitrary real values in the diagonal, and zero
values in all other entries. (See the survey on minimum rank, where many applications and
other interesting results on this parameter can be found [12].) In addition, the skew zero
forcing number (denoted by Z−(G)) was introduced in [18], and studied in the context of
the invariant mr0, which is a version of the minimum rank in which matrices are in addition
required to have empty diagonals. Motivated by the results of [5], Lin [20] noticed a similar
connection between the Grundy total domination number and the skew zero forcing number
of graphs, and also between the Grundy domination number and another version of the
minimum rank parameter, denoted by mr ˙̀. As shown by Lin [20], the following bounds
hold:

γgr(G) ≤ mr ˙̀(G), γtgr(G) ≤ mr0(G), γZgr(G) ≤ mr(G).
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Consequently, any lower bound on a Grundy domination parameter gives a lower bound on
the corresponding minimum rank parameter.

In this paper, we study four types of Grundy domination parameters (beside the men-
tioned ones also the L-Grundy domination number) in Kneser graphs, and apply the ob-
tained results to give some bounds or exact results about zero forcing parameters and
minimum rank parameters in Kneser graphs. In the next section, we give all the nec-
essary definitions, establish the notation and present some preliminary results. In Sec-
tion 3 we prove that γgr(Kn,2) = α(Kn,2) = n − 1 for n ≥ 6, while γgr(K5,2) = 5.
More generally, for Kneser graphs Kn,r when r > 2 we establish an asymptotic result,
which states that there exists an n0 ∈ N dependent on r such that for all n, n ≥ n0,
we have γgr(Kn,r) = α(Kn,r) =

(
n−1
r−1
)
. The most complete result is obtained for

the Grundy total domination number, where we show that for r ≥ 2 and n ≥ 2r + 1,
γtgr(Kn,r) =

(
2r
r

)
. This result is proven in Section 4, using a set theoretic result due to

Gyárfás and Hubenko [15], which is the ordered version of Lovász’s result for set-pair col-
lections [21]. Section 5 is about Z-Grundy domination number of Kneser graphs. We prove
that for any r ≥ 2 and n ≥ 3r + 1, we have γZgr(Kn,r) =

(
2r
r

)
. This immediately implies

the result for Kneser graphs with r ≥ 2 and n ≥ 3r + 1 about their zero forcing number,
notably Z(Kn,r) =

(
n
r

)
−
(
2r
r

)
; and a lower bound for the minimum rank, which reads as

mr(Kn,r) ≥
(
2r
r

)
. On the other hand, when 2r+ 1 ≤ n ≤ 3r and r ≥ 2 we only prove the

lower bound for Z-Grundy domination number: γZgr(Kn,r) ≥
(
2r
r

)
−
(
4r−1−n
3r−n

)
, which is

dependent on both r and n. In Section 6, we investigate the L-Grundy domination number
of Kneser graphs Kn,r, provide the exact result when r = 2, and when r is bigger than 2
we prove a lower and an upper bound, which are not far apart. Finally, in the concluding
section, we rephrase the Z-Grundy domination number and the Grundy domination number
as set-theoretic problems.

2 Preliminaries and notation
Let [n] = {1, 2, . . . , n}, where n ∈ N. In [7] the first type of Grundy dominating sequences
was introduced.

Let S = (v1, . . . , vk) be a sequence of distinct vertices of a graphG. The corresponding
set {v1, . . . , vk} of vertices from the sequence S will be denoted by Ŝ. The initial segment
(v1, . . . , vi) of S will be denoted by Si. Given a sequence S′ = (u1, . . . , um) of vertices
in G such that Ŝ ∩ Ŝ′ = ∅, S ⊕ S′ is the concatenation of S and S′, i.e., S ⊕ S′ =
(v1, . . . , vk, u1, . . . , um). A sequence S = (v1, . . . , vk), where vi ∈ V (G), is called a
closed neighborhood sequence if, for each i

N [vi] \
i−1⋃
j=1

N [vj ] 6= ∅. (2.1)

If for a closed neighborhood sequence S, the set Ŝ is a dominating set of G, then S is
called a dominating sequence of G. We will say that vi footprints the vertices from N [vi] \⋃i−1

j=1N [vj ], and that vi is the footprinter of any u ∈ N [vi]\
⋃i−1

j=1N [vj ]. For a dominating

sequence S, any vertex in V (G) has a unique footprinter in Ŝ. Clearly, the length k of a
dominating sequence S = (v1, . . . , vk) is bounded from below by the domination number
γ(G) of a graphG. We call the maximum length of a dominating sequence inG the Grundy
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domination number of a graph G and denote it by γgr(G). The corresponding sequence is
called a Grundy dominating sequence of G or γgr-sequence of G.

In a similar way total dominating sequences were introduced in [8], when G is a graph
without isolated vertices. Using the same notation as in the previous paragraph, we say that
a sequence S = (v1, . . . , vk), where vi ∈ V (G), is called an open neighborhood sequence
if, for each i

N(vi) \
i−1⋃
j=1

N(vj) 6= ∅. (2.2)

We also speak of total footprinters of which meaning should be clear. It is easy to see that an
open neighborhood sequence S in G of maximum length yields Ŝ to be a total dominating
set; the sequence S is then called a Grundy total dominating sequence or γtgr-sequence, and
the corresponding invariant the Grundy total domination number of G, denoted γtgr(G).
Any open neighborhood sequence S, where Ŝ is a total dominating set is called a total
dominating sequence.

Two additional variants of the Grundy (total) domination number were introduced
in [5]. Let G be a graph without isolated vertices. A sequence S = (v1, . . . , vk), where
vi ∈ V (G), is called a Z-sequence if, for each i

N(vi) \
i−1⋃
j=1

N [vj ] 6= ∅. (2.3)

Then the Z-Grundy domination number γZgr(G) of the graph G is the length of a longest
Z-sequence. Note that such a sequence is also a closed neighborhood sequence and hence
γZgr(G) ≤ γgr(G) . Given a Z-sequence S, the corresponding set Ŝ of vertices will be
called a Z-set. Note that γZgr(G) = γgr(G) if and only if there exists a Grundy dominating
sequence for G each vertex of which footprints some of its neighbors.

γZgr

γtgr γgr

γLgr

mr

mr0 mr ˙̀

mrL

Figure 1: Connections between different Grundy domination and minimum rank parame-
ters.
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While observing the defining conditions of the three concepts in (2.1), (2.2) and (2.3),
it is natural to consider also the fourth concept. It gives the longest sequences among all
four versions, and we call it L-Grundy domination. Given a graph G, a sequence S =
(v1, . . . , vk), where vi are distinct vertices from G, is called an L-sequence if, for each i

N [vi] \
i−1⋃
j=1

N(vj) 6= ∅. (2.4)

Then the L-Grundy domination number γLgr(G) of the graph G is the length of a longest
L-sequence. Given an L-sequence S, the corresponding set Ŝ of vertices will be called an
L-set (the requirement that all vertices in S are distinct, indeed makes Ŝ to be a set, and
prevents the creation of an infinite sequence by repetition of one and the same vertex). Note
that it is possible that vi L-footprints only itself. We will make use of the following result.

Proposition 2.1 ([5, Proposition 3.1]). If G is a graph with no isolated vertices, then

(i) γZgr(G) ≤ γgr(G) ≤ γLgr(G)− 1,

(ii) γZgr(G) ≤ γtgr(G) ≤ γLgr(G)

and all the bounds are sharp.

As mentioned earlier, Lin established the connections between different Grundy dom-
ination numbers, zero forcing numbers and minimum rank invariants. (For definitions of
different zero forcing and minimum rank parameters we refer to [20].)

Theorem 2.2 ([20]). If G is a graph without isolated vertices, then

(1) |V (G)| − Z ˙̀(G) = γgr(G) ≤ mr ˙̀(G),

(2) |V (G)| − Z−(G) = γtgr(G) ≤ mr0(G)

(3) |V (G)| − Z(G) = γZgr(G) ≤ mr(G).

(4) |V (G)| − ZL(G) = γLgr(G) ≤ mrL(G).

The connections between different Grundy domination and minimum rank parameters
that follow from Proposition 2.1 and Theorem 2.2 are presented in the Hasse diagram in
Figure 1.

3 Grundy domination number
It is easy to check (we did this by computer) that the Grundy domination number of the
Petersen graph, K5,2, equals 5. Since this is bigger (by 1) than the independence number
of the Petersen graph, it is somewhat surprising that for all n bigger than 5, the Grundy
domination number equals the independence number of Kn,2.

Proposition 3.1. For n ≥ 6, γgr(Kn,2) = α(Kn,2) = n− 1.
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Proof. Clearly, as a sequence of vertices forming a maximum independent set is a Grundy
dominating sequence, we have γgr(Kn,2) ≥ α(Kn,2) = n − 1. In addition, we have
checked by computer small cases, establishing γgr(Kn,2) = n− 1, for 6 ≤ n ≤ 8.

For the proof of the reversed inequality for n > 8, let S = (v1, . . . , vk) be a Grundy
dominating sequence of Kn,2. Suppose k > n − 1. Hence, Ŝ is not a stable set. We may
assume that Ŝi is a stable set for some i ≥ 1, while vi+1 is adjacent to some vj ∈ Ŝi.
Note that, since n ≥ 6, we may assume without loss of generality that vj = {1, j + 1}
for 1 ≤ j ≤ i (if i = 3 and Ŝi = {{1, 2}, {1, 3}, {2, 3}}, then all vertices are already
dominated by Ŝi, a contradiction).

First, if i ≤ 2, then after S3 = (v1, v2, v3), or S2 = (v1, v2) if i = 1, at most four
vertices remain undominated, notably vertices from {{1, 3}, {1, 4}, {2, 3}, {2, 4}}. Hence,
counting the largest possible number of steps, we get k ≤ 7. As n ≥ 8, this is only possible
when n = 8, in which case we have γgr(K8,2) = 7, already noticed above.

Hence, we may assume that i > 2. Therefore, after the segment Si is included, only
the vertices in {{1, i + 2}, . . . , {1, n}} remain undominated. Since each vertex in the
sequence S has to dominate some undominated vertex k ≤ i + n − (i + 1) = n − 1, a
contradiction.

While we could not find exact values of Grundy domination number for all Kneser
graphs Kn,r, we prove in some sense similar result as we have for Kn,2. Namely, as soon
as n is large enough with respect to a given r (e.g., when r = 2, this was n ≥ 6), we can
prove that γgr(Kn,r) = α(Kn,r).

Theorem 3.2. For any r ≥ 2, there exists n0 ∈ N such that for all n, n ≥ n0, we have

γgr(Kn,r) = α(Kn,r) =

(
n− 1

r − 1

)
.

Proof. The result is proven for r = 2 by Proposition 3.1. Fix r ≥ 3, and consider a
dominating sequence S = (v1, . . . , vm) of Kn,r, assuming that S is not a stable set.

In the first case, suppose that already v1 and v2 are adjacent, and without loss of gen-
erality we may assume that v1 = {1, . . . , r} and v2 = {r + 1, . . . , 2r}. Let V ′ be the
set of vertices, not dominated by {v1, v2}. Note that every element in V ′ is an r-set that
contains at least one element from v1 and at least one element from v2. Denoting by
c = {2r+1, . . . , n}, any element in V ′ consists of i elements from c, where 0 ≤ i ≤ r−2,
j elements from v1, where 1 ≤ j ≤ r − i− 1, and consequently, r − i− j elements from
v2 (note that r − i− j ≥ 1).

Hence

|V ′| =
r−2∑
i=0

(
n− 2r

i

) r−i−1∑
j=1

(
r

j

)(
r

r − j − i

)
.

Note that
∑r−i−1

j=1

(
r
j

)(
r

r−j−i
)

is not dependent on n, hence for fixed r this is a constant,

while
∑r−2

i=0

(
n−2r

i

)
is a polynomial in n of degree r − 2. Hence |V ′| = O(nr−2). On the

other hand, α(Kn,r) =
(
n−1
r−1
)
, hence the resulting dominating sequence is of size Ω(nr−1).

Note that the length of the sequence S is at most 2 + |V ′|. Hence, if n is big enough, S is
not a Grundy dominating sequence, because its length is less than

(
n−1
r−1
)
.

In the second case, the initial segment of S, Sk, is a stable set, for some k > 1, while
vk+1 is adjacent to some vertex in Sk. Without loss of generality, we may assume that
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vk = {1, . . . , r} and vk+1 = {r + 1, . . . , 2r}. Note as above that the size of the set V ′ of
vertices in Kn,r, which are not in N(vk) ∪ N(vk+1) is O(nr−2). To complete the proof
of this case, consider the subgraph G′ = Kn,r − (∪v∈Sk

N [v]). Note that G′ must have an
edge, for otherwise the proof is already done (indeed, no edges in this graph means, that
an optimal sequence S consists of the stable set Ŝk ∪ V (G′)). Let ab be an edge in V (G′).
Clearly, for all vertices v in Sk, v is not adjacent to the endvertices of ab, i.e., we have
v ∩ a 6= ∅ and v ∩ b 6= ∅. In the same way as above we get that the longest such sequence
Sk has at most

∑r−2
i=0

(
n−2r

i

)∑r−i−1
j=1

(
r
j

)(
r

r−j−i
)

vertices, and so |Sk| = k is of the order
O(nr−2). Note that the set of vertices not footprinted by vertices in Sk+1 is contained in
V ′. Then |Sk+1| + |V ′| = k + 1 + |V ′| is an upper bound for |S| and remains of the
order O(nr−2). Therefore, for n big enough, |S| will not be greater that

(
n−1
r−1
)
, which is of

order Ω(nr−1).

For the zero forcing parameter Z ˙̀ and minimum rank parameter mr ˙̀ Theorem 3.2 gives
the following observation.

Corollary 3.3. For any r ≥ 2, there exists n0 ∈ N such that for all n, n ≥ n0, we have

Z ˙̀(Kn,r) =

(
n− 1

r

)
and

mr ˙̀(Kn,r) ≥ α(Kn,r) =

(
n− 1

r − 1

)
.

Note that for 2r + 1 ≤ n < n0 a lower bound could be improved by improving
the values of γgr(Kn,r). It would be even more interesting to find an upper bound for
mr ˙̀(Kn,r), which might require tools from linear algebra.

Unfortunately, we do not know how large must be n0 in Theorem 3.2 and Corollary 3.3
when r ≥ 3. This is an interesting issue yet to be investigated. We could only check by
computer that γgr(K7,3) = 20, while clearly α(K7,3) = 15.

4 Grundy total domination number
Unlike the Grundy domination number, we prove that the Grundy total domination number
of Kn,r does not depend on n. Moreover, we provide the exact value of γtgr(Kn,r) for all
cases. To this end, we use an ordered version of Lovász’s result for set-pair collections [21]
provided by Gyárfás and Hubenko [15].

Lemma 4.1 ([15, Lemma 1]). Let T = {(Ai, Bi) | 1 ≤ i ≤ k} be a set-pair collection
with |Ai| = a, |Bi| = b satisfying the following conditions:

1. Ai ∩Bi = ∅ for 1 ≤ i ≤ k;

2. Ai ∩Bj 6= ∅ for 1 ≤ i < j ≤ k.

Then k ≤
(
a+b
a

)
.

Proposition 4.2. For r ≥ 2 and n ≥ 2r + 1, γtgr(Kn,r) =
(
2r
r

)
.

Proof. In order to obtain the lower bound, it is enough to note that any sequence S such
that Ŝ = {A ⊂ [2r] | |A| = r} is a total dominating sequence of Kn,r.
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To prove the upper bound, let S = (v1, . . . , vk) be a total dominating sequence ofKn,r.
For 1 ≤ i ≤ k, let ui be a vertex totally footprinted by vi. It is not hard to see that the
set-pair collection T = {(vi, ui) | 1 ≤ i ≤ k} satisfies both conditions in Lemma 4.1.
Since |vi| = |ui| = r for 1 ≤ i ≤ k, then k ≤

(
2r
r

)
and the result follows.

For the skew zero forcing number Z−(G) and the minimum rank parameter mr0(G)
we get the following consequences.

Corollary 4.3. If r ≥ 2, n ≥ 2r+1, then Z−(Kn,r) =
(
n
r

)
−
(
2r
r

)
and mr0(Kn,r) ≥

(
2r
r

)
.

5 Z-Grundy domination number
It is easy to check that the Z-Grundy domination number of the Petersen graph K5,2 and
of K6,2 equal to 5. Note that Proposition 4.2 provided a general upper bound, i.e., for
r ≥ 2 and n ≥ 2r + 1, γZgr(Kn,r) ≤

(
2r
r

)
. We can prove that this bound is reached in the

following cases.

Proposition 5.1. For r ≥ 2 and n ≥ 3r + 1, γZgr(Kn,r) =
(
2r
r

)
.

Proof. Let us consider the following sets

Ŝ1 = {A | A ⊂ [2r], 1 ∈ A, |A| = r},

Ŝ2 = {A | A ⊂ {r + 2, r + 3, . . . , 3r}, |A| = r} − {2r + 1, . . . , 3r}.

Let S1 be any sequence of Ŝ1 and let S2 be any sequence of Ŝ2. We claim that S =

S1⊕({2r+1, . . . , 3r})⊕S2 is a Z-dominating sequence. Indeed, each u ∈ Ŝ1 Z-footprints
at least f = [2r] − u, {2r + 1, . . . , 3r} Z-footprints [r − 1] ∪ {3r + 1} and each v ∈ Ŝ2

Z-footprints at least f = {1} ∪ ({r + 2, r + 3, . . . , 3r} − v). Hence, γZgr(Kn,r) ≥ |S| =
|S1|+ 1 + |S2| = 2

(
2r−1

r

)
=
(
2r
r

)
.

As we have mentioned, the equality follows directly from Proposition 2.1 and 4.2.

Proposition 5.2. For r ≥ 2 and 2r + 1 ≤ n ≤ 3r, γZgr(Kn,r) ≥
(
2r
r

)
−
(
4r−1−n
3r−n

)
.

Proof. Let us consider the following sets

Ŝ1 = {A | A ⊂ [2r], 1 ∈ A, |A| = r},

Ŝ2 = {A | A ⊂ {n− 2r + 2, n− 2r + 3, . . . , n}, {2r + 1, . . . , n} 6⊂ A, |A| = r}.

Note, that

|Ŝ2| =
(

2r − 1

r

)
−
(

2r − 1− (n− 2r)

r − (n− 2r)

)
=

(
2r − 1

r

)
−
(

4r − 1− n
3r − n

)
.

Let S1 be any sequence of Ŝ1 and let S2 be any sequence of Ŝ2. We claim that S = S1⊕S2

is a Z-dominating sequence. Indeed, each u ∈ Ŝ1 Z-footprints at least f = [2r] − u and
each v ∈ Ŝ2 Z-footprints at least f = {1}∪ ({n− 2r+ 2, n− 2r+ 3, . . . , n}− v). Hence,
γZgr(Kn,r) ≥ |S| = |S1|+ |S2| = 2

(
2r−1

r

)
−
(
4r−1−n
3r−n

)
=
(
2r
r

)
−
(
4r−1−n
3r−n

)
.

Perhaps the most interesting case is that of odd graphs K(2r + 1, r):
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Corollary 5.3. For r ≥ 2, γZgr(K2r+1,r) ≥
(
2r
r

)
−
(
2r−2
r−1

)
= 3r−2

r

(
2r−2
r−1

)
.

For the zero forcing numbers of Kneser graphs we get the following.

Corollary 5.4.

(i) For r ≥ 2 and 2r + 1 ≤ n ≤ 3r, Z(Kn,r) ≤
(
n
r

)
−
(
2r
r

)
+
(
4r−1−n
3r−n

)
.

(ii) For r ≥ 2 and n ≥ 3r + 1, Z(Kn,r) =
(
n
r

)
−
(
2r
r

)
.

Propositions 5.1 and 5.2 yield the following consequences for the minimum ranks,
mr(Kn,r).

Corollary 5.5.

(i) For r ≥ 2 and 2r + 1 ≤ n ≤ 3r, mr(Kn,r) ≥
(
2r
r

)
−
(
4r−1−n
3r−n

)
.

(ii) For r ≥ 2 and n ≥ 3r + 1, mr(Kn,r) ≥
(
2r
r

)
.

6 L-Grundy domination number
Proposition 6.1. For n ≥ 5, γLgr(Kn,2) = n+ 2.

Proof. First, we prove that S = ({1, 2}, {1, 3}, {1, 4}, . . . , {1, n}, {2, 3}, {2, 4}, {3, 4}) is
a L-sequence ofKn,2, where n ≥ 5. Note that S is an L-sequence, since each {1, i}, where
i ∈ [n]−{1}, L-footprints itself, {2, 3} L-footprints {1, 4}, {2, 4} L-footprints {1, 3}, and
{3, 4} L-footprints {1, 2}. Hence, γLgr(Kn,2) ≥ n+ 2.

For the proof of the reversed inequality for n ≥ 5, let S = (v1, . . . , vk) be a maximal
L-sequence of Kn,2. We may assume without loss of generality that v1 = {1, 2}. Clearly,
v1 L-footprints itself and vertices of the form {i, j}, where i, j ∈ [n] − {1, 2} and i 6= j.
Next, assume v2 is a neighbor of v1. Without loss of generality we may assume v2 =
{3, 4}. Thus, v2 L-footprints itself and vertices of the form {i, j}, where i ∈ {1, 2}, j ∈
[n] − {3, 4} and i 6= j. Hence, just the vertices {1, 3}, {1, 4}, {2, 3} and {2, 4} remain
not L-dominated by S2. The rest can be L-dominated with at most 4 vertices. Follows,
|S| ≤ 6 < n+ 2.

Next, suppose v2 is not a neighbor of v1. Without loss of generality let v2 = {1, 3}. In
this case, the vertex {2, 3} and the vertices of the form {1, i}, where i ∈ [n]− {1}, remain
not L-dominated by S2. Next, we distinguish again 4 cases:

(i) v3 is a neighbor of v1 and v2 (v3 is of the form {i, j}, where i, j ∈ [n] − {1, 2, 3}
and i 6= j),

(ii) v3 is a neighbor of v1 and not of v2 (v3 is of the form {3, i}, where i ∈ [n]−{1, 2, 3}),

(iii) v3 is a neighbor of v2 and not of v1 (v3 is of the form {2, i}, where i ∈ [n]−{1, 2, 3}),
and

(iv) v3 is not a neighbor of v1 or v2 (v3 is {2, 3} or is of the form {1, i}, where i ∈
[n]− {1, 2, 3}).

In the cases (i), (ii), (iii) or if v3 = {2, 3} in the case (iv), there are at most 3 vertices left,
that are not L-dominated by Ŝ3. In all cases we can L-dominate the rest with at most 4
vertices. Hence, |S| ≤ 7 ≤ n+ 2.
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In the case (iv), where v3 = {1, i} (i ∈ [n]− {1, 2, 3}), the vertex v3 L-footprints just
itself and {2, 3}. Hence, just the vertices of the form {1, i}, where i ∈ [n] − {1}, remain
not L-dominated by Ŝ3. Note, that it is possible that vi is first L-footprinted by itself and
then later again by another vertex from S. Next, if v4 = {1, 4}, then v4 just L-footprints
itself and the same vertices stay not L-dominated. Hence, to make the sequence S as large
as possible, next in the sequence can be vertices vi−1 = {1, i} for i = 4, . . . , n.

Without loss of generality let vn = {2, 3} (until now in the sequence are all vertices
that contain 1). Hence, just the vertices {1, 2} and {1, 3} remain not L-dominated by Ŝn.
Follows, |S| ≤ n+ 2.

Proposition 6.2. For r ≥ 2 and n ≥ 2r + 1, γLgr(Kn,r) ≥
(
n−1
r−1
)

+
(
2r−1

r

)
.

Proof. Let Ŝ1 = {A | A ⊂ [n], 1 ∈ A, |A| = r} and let Ŝ2 = {A | A ⊂ [2r]− {1}, |A| =
r}. Let S1 be any sequence of Ŝ1 and let S2 be any sequence of Ŝ2. We claim that
S = S1 ⊕ S2 is an L-dominating sequence.

Indeed, each u ∈ Ŝ1 L-footprints at least itself and each v ∈ Ŝ2 L-footprints at least
f = [2r]− v. Hence, γLgr(Kn,r) ≥ |S| = |S1|+ |S2| =

(
n−1
r−1
)

+
(
2r−1

r

)
.

For the upper bound, we first present a general result bounding the L-Grundy domi-
nation number of a graph G with no isolated vertices by using the independence number
α(G) and the Grundy total domination number γtgr(G).

Proposition 6.3. For a graph G with no isolated vertices, γLgr(G) ≤ α(G) + γtgr(G)− 1.

Proof. Let S = (v1, . . . , vk) be an L-sequence of G. Let A, B and C be the sets of
vertices of Ŝ such that every vertex in A only L-footprints itself, every vertex in B L-
footprints itself and (at least) one more vertex and every vertex in C does not L-footprint
itself. Note that {A,B,C} is a partition of Ŝ. Besides, A ∪ B is a stable set of G. Hence,
|A|+ |B| ≤ α(G). Let S′ = (w1, . . . , wm) be the subsequence of S (respecting the order
in S) such that Ŝ′ = B ∪ C. Clearly, S′ is an open neighborhood sequence in G, thus
m ≤ γtgr(G).

Therefore, |S| = |A|+ |B|+ |C| ≤ α(G)+γtgr(G)−|B| ≤ α(G)+γtgr(G)−1, since
v1 ∈ B.

Corollary 6.4. For r ≥ 2 and n ≥ 2r + 1, γLgr(Kn,r) ≤
(
n−1
r−1
)

+
(
2r
r

)
− 1.

Note that the gap between the lower and the upper bound in Proposition 6.2 and Corol-
lary 6.4 is

(
2r−1

r

)
− 1, which is fixed with respect to n.

7 Set-theoretic connections
Following the set-theoretic connections as in the case of Grundy total domination number
(see Lemma 4.1), we ask the following.

Problem 7.1. Let T = {(Ai, Bi) | (Ai ∪Bi) ⊆ [n], |Ai| = |Bi| = r, for all i ∈ [k]} be a
set-pair collection satisfying the following conditions:

1. Ai ∩Bi = ∅ or Ai = Bi for 1 ≤ i ≤ k;

2. Ai ∩Bj 6= ∅ and Ai 6= Bj for 1 ≤ i < j ≤ k.
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Note that |T | = k.
Determine the smallest value f(n, r) for which k ≤ f(n, r) for all such set-pair collec-

tions T .

From Theorem 3.2, for any r ≥ 2 there exists n0 ∈ N such that for all n, n ≥ n0, we
have f(n, r) = γgr(Kn,r) = α(Kn,r) =

(
n−1
r−1
)
. Note that in this case, the cardinality n of

the universal set in which Ai and Bi are contained plays an important role in determining
f(n, r). As we see in the next case, allowing condition Ai = Bi is also relevant to the
problem.

In a similar way, we propose the corresponding question for the Z-Grundy domination
number.

Problem 7.2. Let T = {(Ai, Bi) | (Ai ∪Bi) ⊆ [n], |Ai| = |Bi| = r, for all i ∈ [k]} be a
set-pair collection satisfying the following conditions:

1. Ai ∩Bi = ∅ for 1 ≤ i ≤ k;

2. Ai ∩Bj 6= ∅ and Ai 6= Bj for 1 ≤ i < j ≤ k.

Note that |T | = k.
Determine the smallest value fZ(n, r) for which k ≤ fZ(n, r) for all such set-pair

collections T .

Note that fZ(n, r) = γZgr(Kn,r) =
(
2r
r

)
for n ≥ 3r + 1. In this case fZ(n, r) is

independent of n, but it is unclear whether this function is dependent on n when 2r + 1 ≤
n ≤ 3r.
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[7] B. Brešar, T. Gologranc, M. Milanič, D. F. Rall and R. Rizzi, Dominating sequences in graphs,
Discrete Math. 336 (2014), 22–36, doi:10.1016/j.disc.2014.07.016.



430 Ars Math. Contemp. 17 (2019) 419–430
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