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Abstract. The paper presents a new direct-torque control (DTC) strategy based on a second-order sliding mode 

of a doubly-fed induction generator (DFIG) integrated in a wind turbine system (WTS). In the first step we 

propose to use a five-level inverter based on the space-vector pulse-width modulation (SVPWM) to supply the 

DFIG rotor side. This is the harmonic distortion of the DFIG rotor voltage and then performs provides the power 

to the grid by the stator side. The conventional DTC (C-DTC) using hysteresis controllers has considerable flux 

and torque ripples at a steady-state operation. In order to ensure a robust DFIG DTC strategy and reduce the flux 

and torque ripples, a second-order sliding-mode method is used in the second step. The Simulation results show 

the efficiency of the proposed control method especially in terms of the quality of the provided power compared 

to C-DTC.  
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Neposredno krmiljenje navora v drsnem načinu drugega 

reda pri dvojno napajanem asinhronskem generatorju v 

vetrnih elektrarnah 

V prispevku smo predstavili neposredno krmiljenje navora v 

drsnem načinu drugega reda pri dvojno napajanem 

asinhronskem generatorju v vetrnih elektrarnah. V prvem 

koraku smo predlagali uporabo petstopenjskega pretvornika, 

ki temelji na prostorski vektorski pulznoširinski modulaciji. S 

tem zmanjšamo vpliv višjeharmonskih komponent. 

Zmanjšanje magnetnega pretoka in nihanje navora smo 

dosegli z uporabo drsnega načina drugega reda. Rezultati 

simulacij potrjujejo učinkovitost predlaganega krmiljenja, še 

zlasti kakovost električne energije v primerjavi s klasičnim 

načinom krmiljenja.   

1 INTRODUCTION  

In the recent years, wind-energy technology has drawn 

much attention of research groups and industry. This 

has been confirmed by a large number of research 

papers published over this period of time. Nowadays, 

the variable-speed WTS based on DFIG is the most 

used system in onshore wind farms [1]. The major 

DFIG advantage is that the rotor-side converter is sized 

for only 30% of rated power compared to other 

generators used in the variable-speed WTSs. So, the 

cost of the converter is lowered [2]. 

In a usual DFIG-based WTS, the generator rotor 

side is generally fed by a two-level inverter. Due to its 

advantages, which include a minimized (dv/dt) stress, 

lower harmonics and lesser common-mode voltages, the 

multi-level inverters has found several applications in 

the domain of high-power medium-voltage systems [3] 

such as electric vehicles, traction drives [4], static 

variable compensators [5], and more recently, wind 

power systems [6]. These features have made it suitable 

for application in large and medium induction-machine 

drives. In this work, a five-level SVPWM inverter is 

used in the DFIG drive.  

The stator-field-oriented control using proportional-

integral (PI) controllers is conventional control scheme 

used for the DFIG-based WTS [7, 8]. In this control 

scheme, decoupling between the d and q axis current is 

achieved with a feed-forward compensation making the 

DFIG model less complex and making the use of PI 

controllers. However, this control strongly depends on 

the machine parameters, it uses multiple loops and 

requires much control effort to guarantee the structure 

stability over the total speed range [9]. 

To overcome the disadvantages of the vector 

control, DTC is used [10]. In C-DTC, the torque and 

flux can be directly controlled by using a switching 

table and hysteresis controllers. Nevertheless, there are 

a few difficulties that limit the use of these controllers, 

such as a variable switching frequency and torque 

ripple [11]. In many research papers, these adverse 

effects are reduced by using a space-vector modulation 

(SVM) technique, however the robustness of the control 

is immolated [12, 13]. 

Recently, the sliding-mode control (SMC) 

methodology has been widely used for a robust control 

of nonlinear systems. SMC based on the theory of 
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variable-structure systems has attracted a lot of research 

on control systems. In the last two decades [14]. A 

robust control is achieved by adding a discontinuous 

control signal across the sliding surface to satisfy the 

sliding condition. However, the deficiency  of this type 

of control is the chattering phenomenon caused by a 

discontinuous control action. To resolve this problem, 

several modifications to the usual control law have been 

proposed. In most cases, the boundary-layer approach is 

applied [15]. 

Some useful solutions for the sliding mode DTC 

with lower torque and flux ripples used in the 

induction-motor drive are described in [10, 16]. In [16], 

the authors propose to use DTC with a super twisting 

SMC applied to the induction-motor drive.  

In a robust DTC without torque and flux ripples 

and with a lower chattering phenomenon, the paper we 

proposes to use a second-order sliding-mode direct-

torque control (SOSM-DTC) for the DFIG drive 

integrated in WTS. This contol reduces the mechanical 

stress and improves the power quality provided to the 

grid. The newly developed second-order sliding-mode 

generalizes the basic sliding-mode scheme that acts on 

the second-order time derivatives of the structure 

variation since the constraint instead of influencing the 

initial variation derivative as it occurs in usual sliding 

modes [17]. Some of such controllers were reported in 

the literature [18-21]. 

The paper is organizred as follows. The DFIG model 

is presented in Section 2. Modeling and control of a 

five-level SVPWM are discussed in Section 3. In 

Section 4 DFIG SOSM-DTC scheme is applied. The 

effectiveness of the proposed strategy is demonstrated 

by simulation results given in Section 5. 

2 MODEL DFIG 

In literature, the DFIG Park model is widely used 

[22]. The equations voltage and flux for the DFIG stator 

and rotor in the Park reference frame are given by: 
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where (Vds, Vqs, Vdr, Vqr), (Ids, Iqs, Idr, Iqr), (ψds, ψqs, ψdr, 

ψqr) are the stator and rotor voltages, currents and fluxes, 

respectively Rs and Rr are the resistances of the rotor and 

stator windings, respectively Ls, Lr and M are the 

inductance own stator, rotor, and the mutual inductance 

between the two coils respectively. 

The stator and rotor pulsations and the rotor speed are 

interconnected by the following equation:  

ωs = ω+ωr. 

where ωs and ωr are the stator and rotor electrical 

pulsations respectively, and ω is the mechanical one. 

The DFIG mechanical equation is: 




 rrem F
dt

d
JCC(2)                                      

where we the electromagnetic torque Cem can be 

expressed as follows:
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where Cr is the load torque, Ω is the mechanical rotor 

speed, J is the inertia, Fr is the viscous friction 

coefficient and np is the number of pole pairs. 

The active and reactive powers of the stator side are 

defined as : 
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To develop a decoupled control of the stator active 

and reactive power, the Park reference frame linked to 

the stator flux is used (Figure 1). 

Assuming that the is d-axis oriented along the stator 

flux position following equation (1) and disregarding Rs, 

we can write : 
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By using equations (6) and (7), equation (4) can be 

written as follows : 
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The electromagnetic torque can then be expressed by: 
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Figure 1. Field-oriented control technique.     
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3 FIVE-LEVEL SOURCE-VOLTAGE-INVERTER 

MODELING 

3.1. CONFIGURATION OF A FIVE-LEVEL 

CONVERTER  

The principal circuit structure of a three-phase source 

vector inverter is shown in Figure 2. Each of the 

converter phases is composed of eight IGBT switches 

with six clamp diodes. The higher number of levels 

increases the power rating and lower the output 

harmonics [23]. 

For each device in Figure 2, the On/Off sequence 

should take into account two imperatives; three of the 

switches should be constantly  “on” and the other three 

constantly “off”. For a similar leg, the superior and 

inferior switches are controlled with two reverse 

pulseing signals. Consequently, no perpendicular 

conduction is feasible and care should be taken that 

there is no interruption in the power switch transition. 

As  shown in Table, for each phase leg, the five-level 

inverter has 125 switching combinations, eight 

switching devices, six clamping diodes and four DC-

side capacitors. It generates a five-level phase voltage, 

nine-level line voltage waves, 53-(5-1)3 voltage space 

vectors and 6(5-1) number of the triangle (Figure 3) [23]. 

3.2  SVPWM technique  

The SVPWM technique refers to a particular 

switching cycle of the higher three switches of a six-

phase power inverter. This technique is applied to 

produce less harmonic distortions in the DFIG rotor-side 

voltages and guarantees a more efficient use of the 

supply voltage unlike is the case with the conventional 

sinusoidal modulation technique. 

The SVPWM technique is used to estimate the 

popular reference-voltage vector for the eight switching 

designs. Eq. (10) demonstrates that for each PWM 

period, the voltage can be estimated by having the 

power inverter in switching model Vx, 60xV  and zero-

vector O(000) or (111) T1, T2 and T0 for the time 

interval. 

)or(T.T.T.T 11100006021PWM OOVVV xx                     
(10)

                                                                                                                
 

where T1 + T2 + T3 = TPWM. 

As shown in Figure 3, in the cover of the hexagonal 

shaped by the diverse switching locations of the five-

level inverter, the angle between the two neighboring 

non-zero vectors is 60°, The zero vectors are at the 

starting point and by affect the DFIG zero voltage [23]. 

The hexagonal is the location of maximum v Thus, the v 

magnitude should be restricted to a smaller radius of 

this cover when v is a turning vector. This gives the 

maximum magnitude of Vdc / 2 for v. Likewise, as seen 

in Figure 3, the greatest rms values of the basic line-to-

line and line to neutral output voltage are Vdc / 2 and 

Vdc / 2 , which is 2/ 3  times more than the sinusoidal 

PWM strategy can produce. 

If should be note of that the obtained waveforms are a 

time-averaged edition of the PWM switching signals 

they apparently illustrate the fundamental frequency at 

ωs and the third harmonic at 3ωs which is intrinsically 

caused by the space-vector approach. 

 

Figure 2. Five-level circuit configuration. 

 

 

Figure 3. Space vector locations for the five-level inverter. 
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4 SECOND-ORDER SLIDING-MODE DIRECT-

TORQUE CONTROL (SOSM-DTC) OF 

DFIG 

The SOSM-DTC technique is used to control the 

DFIG torque and  rotor-flux magnitude. The flux is 

controlled by direct-axis voltage (Vdr), and the torque is 

controlled by quadrature-axis voltage (Vqr). 

The chattering phenomenon which represents a big 

problem for the conventional SMC can be very 

hazardous for DFIG because an interrupted control can 

overheat of the coils and excite some undesirable high-

frequency dynamics [23]. Some solutions to avoid this 

drawback are in[14, 24]. 

The major idea is to adjust the dynamics in small 

region of the discontinuity surface to evade a real 

discontinuity and at the same time to conserve the major 

characteristics of the whole system. The proposed, high-

order sliding-mode (HOSM) generalizes the basic 

sliding-mode idea that affects on the high-order time 

derivatives of the system deviation from the constraint 

instead of affecting the first deviation derivative as it 

happens in standard sliding modes [25-27]. Besides 

advantages the major privileges of the original 

technique, the chattering effect and need of higher 

accuracy are discussed in a practical implementation. in 

the last two decades these controllers have been subject 

of many research papers [18, 19].  

The major difficulty in the HOSM algorithm 

implementation is the increasing need for information. 

In fact, the knowledge of )1( , ... , , nSSS   is necessary for 

the designing an nth-order controller. Among all the 

algorithms proposed for HOSM, the super-twisting 

algorithm is an exception, as it requires only the 

information about the sliding surface [20]. 

Consequently, this algorithm is used for the proposed 

control strategy. As shown in [21], using this algorithm 

assures stability of any SOSM controller. 

The proposed SOSM-DTC is designed to control the 

DFIG rotor flux and electromagnetic torque shown in 

Figure 4. 

The SOSM controller of the rotor flux and torque is 

used to affect the two rotor voltage components as in 

Eqs. (11) and (12) [16,28].  
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where the sliding-mode variables are the flux        

(Sφr = φr
*-φr)and the torque error (SCem = Cem

*- Cem) and 

the control gains (K1 and K2) check the stability 

condition. 

 

 

4.1. STABILITY AND GAIN CHOICE  

Let us consider a dynamic system with input u, state 

x and output y given by : 
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It is difficult  to determine the input function  

(u = f(y, y )) which drives the system trajectories 

toward the starting point of the phase plane in a limited 

period of time. The input (u) is a novel state variable, 

whereas the switching control is appended to its time 

derivative ( u ). The output (y) is controlled by an SOSM 

controller. 
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Where the sliding variable is S = y* - y. 

The controller does not use the derivative of the 

sliding variable. As in Eq. (14), an adequate condition is 

required for convergence to the sliding surface and for 

the gain stability [16]: 
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Where AM A and BM  B Bm are upper and lower 

limit of A and B in the second derivative of y.   
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5 SIMULATION RESULTS 

simulations are carried out with a 1.5 MW DFIG 

attached to a 398V/50Hz grid and supplied through the 

rotor side of a five-level SVPWM inverter by using the 

Matlab/Simulink environment. The machine parameters 

are: np = 2, Rs = 0.012 Ω, Rr = 0.021 Ω, Ls = 0.0137 H, 

Lr = 0.0136 H, M = 0.0135 H, Fr = 0.0024 Nm/s, J = 

1000 kg.m2 and R = 35.25 m. 

The DTC and SOSM-DTC control strategies are 

simulated and compared in terms of reference tracking, 

stator-current harmonic distortion and robustness against 

the machine-parameter variations. 

5.1. REFERENCE TRACKING TEST 

The objective of this test is to study the behaviour of 

the two DTC control strategies while the DFIG speed is 

kept at its nominal value. Figures 5-8 show the obtained 

simulation results. As seen from Figures 5 and 6, the 

torque and rotor flux almost perfectly track their 

reference values. Contrary to the C-DTC strategy where 

the coupling effect between the two axes is apparent, the 

SOSM-DTC decouples them. On the other hand, Figures 

7 and 8 show the harmonic spectra of one DFIG phase-

stator current obtained using the Fast Fourier Transform 

(FFT) technique for each control strategy. As well seen 

from Figure 7, for SOSM-DTC (THD = 1.31%) the total 

harmonic distortion (THD) is reduced compared to C-

DTC (THD = 2.22%) with a two-level inverter and THD 
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is further reduced when using the five-level SVPWM 

inverter (THD = 0.85%) (Figure 8). on following the 

above, SOSM-DTC is more competitive than C-DTC for 

the DFIG-based WTS applications, especially when 

using a five-level SVPWM inverter. 

5.2. ROBUSTNESS TEST 

To analyze  robustness of the employed DTC control 

strategies, the machine are changed. The values of the 

stator and rotor resistances (Rs and Rr) are doubled and 

the values of the inductances (Ls, Lr and M) are divided 

by 2. The machine runs at its nominal speed. As seen 

from the simulation results given in Figure 9. The DFIG 

parameter variations increase slightly the time response 

of the C-DTC strategy. On the other hand these 

variations affect the torque and flux curves, this effect is 

more important for C-DTC than the SOSM-DTC effect. 

Thus, the conclusion to be drawn is that the SOSM-DTC 

strategy is more robust than the C-DTC one. 

6 CONCLUSION 

The paper presentes a SOSM-DTC scheme of a DFIG 

connected directly to the grid by the stator side and fed 

by a five-level SVPWM inverter from the rotor side. 

First, a DFIG model is made .To provide power to the 

grid by the DFIG stator side, a five-level SVPWM 

power inverter is used. SOSM-DTC is synthesized and 

compared to C-DTC. In ideal condition (no parameters 

variations and no disturbances), both DTC strategies 

track almost perfectly their references except that a 

coupling effect appeares in the C-DTC responses and 

there is none in the SOSM-DTC ones. The simulation 

results show that SOSM-DTC operates with a much 

lower chattering phenomenon. Using a five-level 

SVPWM inverter minimizes the power harmonic 

distortion. A robustness test is made after modifying the 

DFIG parameters, the modification induces some 

disturbances in the torque and flux responses, with an 

almost double effect when using the C-DTC strategy. 

The conclusion drawn from these results is that SOSM-

DTC equipped with a five-level SVPWM inverter 

provides a robust control and can be considered a very 

attractive solution for the devices using DFIG, such as 

the wind-energy conversion systems. 

 

 

 

 

 

Figure 4  . Bloc diagram of DFIG with SOSM-DTC. 
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Figure 5.  C-DTC strategy responses (reference tracking test). 

 

                  

        

Figure 6.  SOSM-DTC strategy responses (reference tracking test). 
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        (a): C-DTC                                                                          (b) : SOSM-DTC 

Figure 7.  THD of a one-phase stator current for DFIG supplied by a two-level inverter. 

 

Figure 8.  THD of a one-phase stator current for a DFIG supplied by a five-level SVPWM inverter. 

 

        

Figure 9.  Error curves (robustness test). 
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