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Abstract

A digraph Γ is called a 2-Cayley digraph over a group G if there exists a 2-orbit
semiregular subgroup of Aut(Γ) isomorphic to G. In this paper, we completely deter-
mine the algebraic degrees of 2-Cayley digraphs over abelian groups. This generalizes the
main results of Lu and Mönius in 2023. As applications, we consider the algebraic degrees
of Cayley digraphs over finite groups admitting an abelian subgroup of index 2. Special
attention is paid to the algebraic degrees of Cayley (di)graphs over generalized dihedral
groups, generalized dicyclic groups and semi-dihedral groups.
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1 Introduction
A digraph Γ consists of a finite set V (Γ) of vertices and a set E(Γ) of directed edges,
where E(Γ) ⊆ V (Γ)× V (Γ). If (u, v) ∈ E(Γ) implies (v, u) ∈ E(Γ), then Γ is said to be
undirected. For a digraph Γ on n vertices, its adjacency matrix A = (auv)n×n is defined
as

auv =

{
1, if (u, v) ∈ E(Γ),

0, otherwise.

The characteristic polynomial of Γ is the characteristic polynomial of A. The eigenvalues
of A are called the eigenvalues of Γ. The collection of eigenvalues of Γ together with their
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multiplicities is called the spectrum of Γ, denoted by Spec(Γ). Note that A is not always
symmetric, so the eigenvalues of Γ need not be real numbers.

Let G be a finite group and S ⊆ G \ {e} , where e is the identity. The Cayley digraph
Γ = Cay(G,S) of G with respect to S is defined by V (Γ) = G and E(Γ) = {(g, sg) | g ∈
G, s ∈ S}. If S = S−1, then Γ = Cay(G,S) is called a Cayley graph. For a digraph Γ,
the set of all permutations of V (Γ) that preserve the adjacency relation of Γ forms a group,
called the automorphism group of Γ, and is denoted by Aut(Γ). By a theorem of Sabidussi
[15], a digraph Γ is a Cayley digraph over G if and only if there exists a regular subgroup
of Aut(Γ) isomorphic to G. As a generalization of Sabidussi’s Theorem [1], a digraph Γ is
called a 2-Cayley digraph over G if there exists a 2-orbit semiregular subgroup of Aut(Γ)
isomorphic to G. A 2-Cayley graph is also termed as a semi-Cayley graph in [5, 6]. A
special 2-Cayley graph is called a bi-Cayley graph in [19].

For a digraph Γ, its splitting field SF(Γ) is the smallest field extension of Q which
contains all eigenvalues of the adjacency matrix of Γ. The extension degree [SF(Γ) : Q]
is called the algebraic degree of Γ, denoted by deg(Γ). A digraph Γ is called integral
if all the eigenvalues of the adjacency matrix of Γ are integers. A digraph Γ is called
algebraically integral over a number field K if all the eigenvalues of the adjacency matrix
of Γ are algebraic integers of K. There is a close connection between the splitting field and
the algebraic integrality of a digraph. For example, for any number field K, SF(Γ) ⊆ K
if and only if Γ is algebraically integral over K. Integral graphs and algebraically integral
graphs have been extensively studied in the literature [2, 3, 4, 8, 9, 11]. In recent years,
the splitting field and algebraic degree have attracted much attention. In 2020, Mönius [13]
studied the algebraic degrees of circulant graphs Cay (Zp, S) for a prime number p. In
2022, Mönius [14] generalized those results in [13] by determining the splitting fields and
the algebraic degrees of circulant graphs Cay (Zn, S) for arbitrary n. Based on Mönius’s
work, in 2022, Huang et al. [18] determined the splitting fields and algebraic degrees of
mixed Cayley graphs over abelian groups. Lu et al. [12] determined the splitting fields
of Cayley graphs over abelian groups and dihedral groups. They also gave bounds for the
algebraic degrees of Cayley graphs over dihedral groups. Also in 2022, Sripaisan et al.
[16] studied the algebraic degrees of Cayley hypergraphs. For more details, one may refer
to the comprehensive survey [10] in this subject.

In this paper, inspired by the above mentioned results, we completely determine the
splitting fields and algebraic degrees of 2-Cayley digraphs over abelian groups in Section 3,
which generalizes the main results of [12]. From computational viewpoints, we also derive
sharp upper and lower bounds for their algebraic degrees. As applications, in Section 4, we
consider the algebraic degrees of Cayley digraphs over finite groups admitting an abelian
subgroup of index 2. Furthermore, we consider the algebraic degrees of Cayley graphs
over generalized dihedral groups and generalized dicyclic groups, and get improved upper
bounds. Finally, we determine the algebraic degrees of Cayley digraphs over semi-dihedral
groups.

2 Preliminaries

Let G be a finite group. A representation of G is a homomorphism ρ : G → GL(V )
for some n-dimensional vector space over the complex field C, where GL(V ) denotes
the group of automorphisms of V . The dimension of V is called the degree of ρ . Two
representations ρ1 and ρ2 of G on V1 and V2 respectively are equivalent if there is an
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isomorphism T : V1 → V2 such that Tρ1(g) = ρ2(g)T for all g ∈ G.
Let ρ : G → GL(V ) be a representation. The character χρ : G → C of ρ is defined

by setting χρ(g) = Tr(ρ(g)) for g ∈ G, where Tr(ρ(g)) is the trace of the representation
matrix of ρ(g) with respect to a specified basis of V . By the degree of χρ we mean the
degree of ρ, which is simply χρ(1). If W is a ρ(g)-invariant subspace of V for each g ∈ G,
then we call W a ρ(G)-invariant subspace of V . If the only ρ(G)-invariant subspace of V
are {0} and V , we call ρ an irreducible representation of G, and the corresponding charac-
ter χρ an irreducible character of G. We denote by IRR(G) and Irr(G) the complete set
of non-equivalent irreducible representations of G and the complete set of non-equivalent
irreducible characters of G, respectively.

For any subset X ⊆ G, we denote by δX = (δg)g∈G the characteristic vector of X over
G, where δg = 1 if g ∈ X and δg = 0 if g /∈ X . For any multi-subset X ⊆ G, we denote
by δ′X =

(
δ′g
)
g∈G

the characteristic vector of X over G, where δ′g = k if g appears k times
in X and δ′g = 0 if g /∈ X . Throughout this paper, we use X = [x | x ∈ X] to denote
the multi-set X , and φ(n) to denote the Euler totient function of a natural number n (it is
the number of the positive integers which are smaller than n and coprime to n). Firstly, we
state an equivalent definition of 2-Cayley digraphs.

Lemma 2.1 ([1]). A digraph Γ is a 2-Cayley digraph over G if and only if there exist
subsets Tij of G, where 1 ⩽ i, j ⩽ 2, such that Γ is isomorphic to a digraph Υ with

V (Υ) = G× {1, 2}, E(Υ) =
⋃

1⩽i,j⩽2

{((g, i), (tg, j)) | g ∈ G and t ∈ Tij} .

By Lemma 2.1, a 2-Cayley digraph is characterized by a group G and four subsets
Tij of G. Thus we denote a 2-Cayley digraph with respect to four subsets Tij by Γ =
Cay (G;Tij | 1 ⩽ i, j ⩽ 2). Note that V (Γ) = G × {1, 2}, (g, i) ∼ (h, j) if and only if
hg−1 ∈ Tij , and Γ is undirected if and only if for all 1 ⩽ i, j ⩽ 2, Tij = T−1

ji . Note also
that Γ is a digraph without loops if and only if Tii ⊆ G\{e}, for all 1 ⩽ i ⩽ 2.

Let ωn = exp
(
2πi
n

)
be the primitive n-th root of unity. We consider an abelian group

G of order n. It is well known that

G ∼= Zn1 ⊕ · · · ⊕ Znr ,

where n =
∏r

i=1 ni, and ni is a prime power for 1 ≤ i ≤ r. Without loss of generality, we
assume that G = Zn1

⊕ · · · ⊕ Znr
and 0 = (0, . . . , 0) ∈ G is the identity of G.

Lemma 2.2 ([17]). Let G = Zn1
⊕· · ·⊕Znr

be an abelian group of order n. Then Irr(G) =
{χl | l ∈ G}, where χl(g) =

∏r
i=1 ω

ligi
ni

for all l = (l1, . . . , lr) , g = (g1, . . . , gr) ∈ G,

and ωni
= exp( 2πini

).

For simplicity, for any (multi-)subset S of G, we denote

χl(S) =
∑
s∈S

χl(s).

Arezoomand [1] obtained the following result.

Lemma 2.3 ([1]). Let Γ = Cay (G,Tij | 1 ⩽ i, j ⩽ 2) be a 2-Cayley digraph over an
abelian group G = Zn1 ⊕ · · · ⊕ Znr of order n. Then Γ has eigenvalues

χl(T11) + χl(T22)±
√
(χl(T11)− χl(T22))

2
+ 4χl(T21)χl(T12)

2
, l ∈ G.
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Let K be a field. In what follows, we will refer to the subgroup

K×2 =
{
x2 : x ∈ K

}
⊂ K×,

where K× = K \ {0}. More precisely, we shall encounter quite often the quotient
K×/K×2. The image of x ∈K×in K×/K×2 will be denoted by [x]K .

Lemma 2.4 ([7, Corollary 1.23]). Suppose K is a field containing a primitive 2-th root of
unity, and let F = K

[√
a1, . . . ,

√
ak
]
, where ai ∈ K. Then Gal(F/K) is isomorphic to

the subgroup of K×/K×2 generated by [a1]K , . . . , [ak]K .

3 2-Cayley digraphs over abelian groups
In this section, we always assume that G = Zn1 ⊕· · ·⊕Znr is an abelian group of order n.
Let Γ = Cay (G,Tij | 1 ⩽ i, j ⩽ 2) be a 2-Cayley digraph over G. For any two subsets X
and Y of G, we define the multi-set X + Y = [x+ y | x ∈ X, y ∈ Y ]. For any (multi-)set
X and k ∈ N, k ∗X denotes the multi-set in which each element of X appears k times. For
example, if X = [1, 1, 2, 2, 2, 3, 4] and k = 2, then k ∗X = 4 ∗ {1} ∪ 6 ∗ {2} ∪ 2 ∗ {3, 4},
with duplicate elements allowed in the union.

For two multi-sets U = k1 ∗ {g1} ∪ k2 ∗ {g2} ∪ . . . ∪ ks ∗ {gs} and V = q1 ∗ {g1} ∪
q2 ∗ {g2} ∪ . . . ∪ qt ∗ {gt} ∪ ks+1 ∗ {gs+1} ∪ . . . ∪ ks+m ∗ {gs+m}, where ki ≥ qi, s > t
and gi, 1 ≤ i ≤ s + m are pairwise distinct, we define U \ V = (k1 − q1) ∗ {g1} ∪
(k2 − q2) ∗ {g2} ∪ . . . ∪ (kt − qt) ∗ {gt} ∪ kt+1 ∗ {gt+1} ∪ . . . ∪ ks ∗ {gs}, V \ U =
ks+1 ∗ {gs+1} ∪ . . . ∪ ks+m ∗ {gs+m}.

Using the symbols in Lemma 2.3, we let

I1 = [t | t ∈ T11 or t ∈ T22] ,

I2 = [t | t ∈ (T11 + T11) or t ∈ (T22 + T22) or t ∈ 4 ∗ (T12 + T21)],

I3 = [t | t ∈ 2 ∗ (T11 + T22)],

where I1, I2 and I3 are multi-sets. For example, for the group G = Z4, if T11 = {1, 2},
T12 = {1}, T21 = {2} and T22 = {3}, then I1 = {1, 2, 3}, I2 = 6 ∗ {3} ∪ 2 ∗ {2} ∪ {0}
and I3 = 2 ∗ {0, 1}.

By Lemma 2.3, we have the following result.

Lemma 3.1. Let Γ = Cay (G,Tij | 1 ⩽ i, j ⩽ 2) be a 2-Cayley digraph over an abelian
group G of order n. Then Γ has eigenvalues

χl(I1)±
√
χl(I2 \ I3)− χl(I3 \ I2)

2
, l ∈ G,

where I1, I2, I3 are described as above.

Proof. Firstly, we have
χl(T11) + χl(T22) = χl(I1).

In addition,

(χl(T11)− χl(T22))
2
+ 4χl(T21)χl(T12)

=χl(T11 + T11) + χl(T22 + T22) + χl (4 ∗ (T12 + T21))− χl (2 ∗ (T11 + T22))

=χl(I2)− χl(I3)

=χl(I2 \ I3)− χl(I3 \ I2),
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so the result follows from Lemma 2.3.

Using the symbols in Lemma 3.1, for l ∈ G, let

βl = χl(I1) and γl = χl(I2 \ I3)− χl(I3 \ I2). (3.1)

As βl, γl ∈ Q (ωn) , where n = |G|, without loss of generality, we assume that K is a field
such that Q ⊆ K ⊆ Q (ωn). Therefore, Gal (Q (ωn) /K)) ≤ Gal (Q (ωn) /Q) ∼= Z∗

n =
{k ∈ Zn | gcd(k, n) = 1}. Let

η : Gal (Q (ωn) /Q) → Z∗
n

be the isomorphism such that σ (ωn) = ω
η(σ)
n , where σ ∈ Gal (Q (ωn) /Q). Let

H = η (Gal (Q (ωn) /K)) .

Then H is a subgroup of Z∗
n. We consider the action of Z∗

n on G = Zn1
⊕ · · · ⊕ Znr

by
setting kg = k (g1, . . . , gr) = (kg1, . . . , kgr) for any k ∈ Z∗

n and g ∈ G. Then

σ
(
ωli
ni

)
= σ

(
ωnli/ni
n

)
= ωη(σ)·nli/ni

n = ωη(σ)li
ni

,

where li ∈ Zni
(1 ≤ i ≤ r). Note that for any σ ∈ Gal (Q (ωn) /Q), we have

σ (βl) = σ (χl(I1)) = σ

(∑
t∈I1

r∏
i=1

ωliti
ni

)
=
∑
t∈I1

r∏
i=1

σ
(
ωliti
ni

)
=
∑
t∈I1

r∏
i=1

ωη(σ)liti
ni

= χl(η(σ)I1),

where η(σ)I1 = {(η(σ)t1, . . . , η(σ)tr) | (t1, . . . , tr) ∈ I1}. Similarly, we have

σ (γl) = σ (χl(I2 \ I3)− χl(I3 \ I2))
= χl (η(σ)(I2 \ I3))− χl (η(σ)(I3 \ I2)) ,

where I2 \ I3 and I3 \ I2 are multi-sets as stated in Lemma 3.1.
We first prove the following results.

Proposition 3.2. For the symbols in (3.1), we have βl ∈ K for all l ∈ G if and only if
hI1 = I1 for all h ∈ H , where H = η (Gal (Q (ωn) /K)).

Proof. Assume that hI1 = I1 for all h ∈ H . Then for any σ ∈ Gal (Q (ωn) /K), we have
η(σ) ∈ H . Thus for any l ∈ G, we have

σ (βl) = χl(η(σ)I1) = χl(I1) = βl.

It follows that βl ∈ K for all l ∈ G.
Conversely, assume that βl ∈ K for all l ∈ G. For any h ∈ H , there exists some

σ ∈ Gal (Q (ωn) /K) such that η(σ) = h. Then

χl(hI1) = χl(η(σ)I1) = σ (βl) = βl = χl(I1).
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Let M = (χl (g))l,g∈G. We get
Mδ′hI1 = Mδ′I1 .

Note that M is invertible by the orthogonal relations of irreducible characters of G. So we
have

δ′hI1 = δ′I1 .

This implies hI1 = I1. Since h is arbitrary, the result follows.

Proposition 3.3. For the symbols in (3.1), we have γl ∈ K for all l ∈ G if and only if
h(I2 \ I3) = I2 \ I3, h(I3 \ I2) = I3 \ I2 for all h ∈ H , where H = η (Gal (Q (ωn) /K)).

Proof. Assume that h(I2 \ I3) = I2 \ I3, h(I3 \ I2) = I3 \ I2 for all h ∈ H . Then for any
σ ∈ Gal (Q (ωn) /K), we have η(σ) ∈ H . Thus, for any l ∈ G, we have

σ (γl) = χl (η(σ)(I2 \ I3))− χl (η(σ)(I3 \ I2)) = χl(I2 \ I3)− χl(I3 \ I2) = γl.

It follows that γl ∈ K for all l ∈ G.
Conversely, assume that γl ∈ K for all l ∈ G. For any h ∈ H , there exists some

σ ∈ Gal (Q (ωn) /K) such that η(σ) = h. Then

χl (η(σ)(I2 \ I3))− χl (η(σ)(I3 \ I2)) = σ (γl) = γl = χl(I2 \ I3)− χl(I3 \ I2).

This means that

χl (h(I2 \ I3))− χl (h(I3 \ I2)) = χl(I2 \ I3)− χl(I3 \ I2).

Let M = (χl (g))l,g∈G. We get

Mδ′h(I2\I3) −Mδ′h(I3\I2) = Mδ′I2\I3 −Mδ′I3\I2 .

Note that M is invertible and I2 \I3 is disjoint with I3 \I2. So we have h(I2 \I3) = I2 \I3
and h(I3 \ I2) = I3 \ I2. As h is arbitrary, the result follows.

Note that β0, γ0 ∈ Z, so we let

L = K = Q (βl, γl | l ∈ G \ {0}) (3.2)

and

H ′ = {h ∈ Z∗
n | hI1 = I1, h(I2 \ I3) = I2 \ I3, h(I3 \ I2) = I3 \ I2} . (3.3)

Then we have the following result.

Proposition 3.4. Using the symbols in (3.2) and (3.3), we have H ′ = η (Gal (Q (ωn) /L)).

Proof. By Propositions 3.2 and 3.3, it is clear that

η (Gal (Q (ωn) /L)) ⊆ H ′.

Now we prove
H ′ ⊆ η (Gal (Q (ωn) /L)) .
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For each h′ ∈ H ′, let σ = η−1(h′). It follows that h′ = η(σ). For any l ∈ G, we have

σ (βl) = χl(η(σ)I1) = χl(h
′I1) = χl(I1) = βl.

Similarly, for any l ∈ G,

σ (γl) = χl (η(σ)(I2 \ I3))− χl (η(σ)(I3 \ I2)) = χl(I2 \ I3)− χl(I3 \ I2) = γl.

Hence
σ ∈ Gal (Q (ωn) /L) and h′ = η(σ) ∈ η (Gal (Q (ωn) /L)) .

Thus the result follows.

Since H ′ is a subgroup of Z∗
n, by Proposition 3.4, we have

L = Q (ωn)
η−1(H′)

= {x ∈ Q (ωn) | σ(x) = x for all σ ∈ η−1(H ′)}. (3.4)

Considering H ′ acting on G, assume that H ′g(1), H ′g(2), . . . ,H ′g(k) are all distinct orbits
of H ′ on G, where g(i) ∈ G. Let

C =
{
g(i) | G ∩H ′g(i) ̸= ∅

}
. (3.5)

Let M be the subgroup of L×/L×2 generated by all [γl]L for l ∈ C. Explicitly,

M = ⟨[γl]L | l ∈ C⟩ . (3.6)

Now we are ready to prove our main result.

Theorem 3.5. Let Γ = Cay (G,Tij | 1 ⩽ i, j ⩽ 2) be a 2-Cayley digraph over an abelian
group G of order n. Then the splitting field of Γ is L

(√
γl | l ∈ C

)
and the algebraic

degree of Γ satisfies

deg(Γ) =
φ(n)|M |
|H ′|

,

where γl, H
′, L, C,M are given in (3.1) and (3.3) – (3.6), respectively.

Proof. If a, b are in the same orbit H ′g(i), then there exists h ∈ H ′ such that b = ha. It
follows that

γb = χb(I2 \ I3)− χb(I3 \ I2) = χha(I2 \ I3)− χha(I3 \ I2)
= χa (h(I2 \ I3))− χa (h(I3 \ I2)) = χa(I2 \ I3)− χa(I3 \ I2)
= γa.

Therefore, there are at most |C| different elements in {γl | l ∈ G}.
Set F = L

(√
γl | l ∈ C

)
. Note that F = Q

(
βl +

√
γl, βl −

√
γl | l ∈ G

)
. So the first

assertion follows. By Lemma 2.4,

deg(Γ) = [F : Q] = [F : L][L : Q] =
[Q (ωn) : Q] [F : L]

[Q (ωn) : L]
=

φ(n)|M |
|H ′|

.

This completes the proof.
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It is not easy to calculate |M |, but apparently 1 ≤ |M | ≤ 2|C|, thus we have

Corollary 3.6. Let Γ = Cay (G,Tij | 1 ⩽ i, j ⩽ 2) be a 2-Cayley digraph over an abelian
group G of order n. Then the algebraic degree of Γ satisfies

φ(n)

|H ′|
≤ deg(Γ) ≤ φ(n)2|C|

|H ′|
,

where H ′, C are given in (3.3) and (3.5), respectively.

Remark 3.7. Theorem 3.5 and Corollary 3.6 still hold for a 2-Cayley graph. Indeed, we
just need to restrict Tij = T−1

ji for all 1 ⩽ i, j ⩽ 2, and modify the associated multi-sets
I1, I2 and I3.

The next two examples tell us that both the lower and upper bound in Corollary 3.6 are
sharp.

Example 3.8. Let Γ = Cay (Z3, Tij | 1 ⩽ i, j ⩽ 2) be a 2-Cayley graph over G = Z3. Let
T11 = T22 = {1, 2} and T12 = {1} and T21 = {2}. Then I1 = 2∗{1, 2}, I2 \I3 = 4∗{0}
and I3 \ I2 = ∅. It follows that H ′ = {1, 2} = Z∗

3, L = Q and γl = 4 for all l ∈ Z3. Thus
|M | = 1 and deg(Γ) = φ(3)

|H′| = 1. In fact, Spec(Γ) = 2 ∗ {−2, 0} ∪ {1, 3}.

Example 3.9. Let Γ = Cay (Z4, Tij | 1 ⩽ i, j ⩽ 2) be a 2-Cayley digraph over G = Z4.
Let T11 = {1, 2} and T12 = {1}. Let T21 = {2} and T22 = {3}. Then I1 = {1, 2, 3},
I2 \ I3 = 6 ∗ {3} ∪ 2 ∗ {2} and I3 \ I2 = 2 ∗ {1} ∪ {0}. It follows that H ′ = {1}
and C = Z4. By Corollary 3.6, deg(Γ) ≤ 25 = 32. In fact, L = Q (i) and F =
L
(√

5,
√
−8i− 3,

√
−3,

√
8i− 3

)
. Obviously, deg(Γ) = 32.

Observe that L = Q if and only if |H ′| = φ(n), as an application of Theorem 3.5, the
next corollary provides a class of integral 2-Cayley digraphs over abelian groups.

Corollary 3.10. Let Γ = Cay (G,Tij | 1 ⩽ i, j ⩽ 2) be a 2-Cayley digraph over an abelian
group G of order n. If H ′ = Z∗

n and γl is a square of an integer for each l ∈ C, where
γl, H

′, C are given in (3.1), (3.3) and (3.5), respectively, then Γ is integral.

Sometimes, we need not to compute |M | in Theorem 3.5.

Corollary 3.11. Let Γ = Cay (G,Tij | 1 ⩽ i, j ⩽ 2) be a 2-Cayley digraph over an abelian
group G of order n. If T11 = T22 and T12 = T−1

12 = T21, then the splitting field of Γ satis-
fies

SF(Γ) = Q (ωn)
η−1(H′′)

= {x ∈ Q (ωn) | σ(x) = x for all σ ∈ η−1(H ′′)},

the algebraic degree of Γ satisfies

deg(Γ) =
φ(n)

|H ′′|
,

where H ′′ = {h ∈ Z∗
n | hT11 = T11, hT12 = T12}.
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Proof. Since I1 = [t | t ∈ 2 ∗ T11], I2 \ I3 =
[
t | t ∈ 4 ∗ (T12 + T−1

12 )
]

and I3 \ I2 = ∅,
we have γl = 4χl(T12 + T−1

12 ) = 4|χl(T12)|2 = 4χl(T12)
2. Note that T12 = T−1

12 . So
χl(T12) is a real number. It follows that

√
γl = 2χl(T12) or

√
γl = −2χl(T12).

The rest of the proof is similar to that of Theorem 3.5.

Corollary 3.12. Let Γ = Cay (G,Tij | 1 ⩽ i, j ⩽ 2) be a 2-Cayley digraph over an abelian
group G of order n. If T11 = T22, T12 = T−1

12 = T21, and hT11 = T11, hT12 = T12 for all
h ∈ Z∗

n, then Γ is integral.

4 Some applications
4.1 Cayley digraphs over groups admitting an abelian subgroup of index 2

A Cayley digraph over a finite group G with a subgroup of index 2 is a 2-Cayley digraph,
as the following result shows.

Lemma 4.1 ([1]). Let Γ = Cay(G,S) be a Cayley (di)graph. Suppose that there exists
a subgroup N of G with index 2. If {x1, x2} is a left transversal to N in G, then Γ ∼=
Cay (N,Sij | 1 ⩽ i, j ⩽ 2), where Sij = {a ∈ N | x−1

j axi ∈ S} = N ∩ xjSx
−1
i .

Let A be a finite abelian group of order n ≥ 3. Let f ∈ Aut(A) be of order 2. Let
y ∈ A be such that f(y) = y. Let G be a non-abelian finite group admitting an abelian
subgroup A of index 2. Then G admits a presentation

G =
〈
A, x | x2 = y, xax−1 = f(a), a ∈ A

〉
.

Observe that G = A ∪ xA and B =
{
f(a)a−1 | a ∈ A

}
is a subgroup of A. In particular,

if f(a) = a−1 for a ∈ A, then B = A2 and y2 = e, where e is the identity of A. If y = e,
then G is the generalized dihedral group Dih(A), with the presentation

Dih(A) =
〈
A, x | x2 = e, xax−1 = a−1, a ∈ A

〉
.

If y ̸= e (and so n = |A| is even), then G is the generalized dicyclic group Dic(A, y), with
the presentation

Dic(A, y) =
〈
A, x | x2 = y, xax−1 = a−1, a ∈ A

〉
.

As the group operation here is multiplication, we assume that A = ⟨a1⟩n1⊗· · ·⊗⟨ar⟩nr

and Irr(A) = {χl | (al11 , . . . , alrr ) ∈ A}, where l = (l1, . . . , lr). In this subsection, we
always assume that G is a group admitting an abelian subgroup A of order n and of index 2.
As an application of Theorem 3.5, we consider the algebraic degree of the Cayley digraph
Γ = Cay(G,S). Note that A ∼= A′ = Zn1

⊕ · · · ⊕ Znr
. It is worth pointing out that the

group operation here should correspond to the addition in Section 3.
By Lemmas 2.3 and 4.1, we get the following result.

Lemma 4.2. Let Γ = Cay(G,S) be a Cayley digraph and A = ⟨a1⟩n1 ⊗ · · · ⊗ ⟨ar⟩nr be
an abelian subgroup of G of order n and of index 2 with left transversal {x1, x2}. Then Γ
has eigenvalues

χl(T11) + χl(T22)±
√
(χl(T11)− χl(T22))

2
+ 4χl(T21)χl(T12)

2
, l = (l1, . . . , lr) ∈ A′,
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where n =
∏r

i=1 ni, Tij =
{
t = (t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ xjSx

−1
i

}
and A′ =

Zn1
⊕ · · · ⊕ Znr

.

Using the symbols in Lemma 4.2, in a similar way as in Section 3, we define

I1 = [t | t ∈ T11 or t ∈ T22] ,

I2 = [t | t ∈ (T11 + T11) or t ∈ (T22 + T22) or t ∈ 4 ∗ (T12 + T21)],

I3 = [t | t ∈ 2 ∗ (T11 + T22)].

Let

βl = χl(I1) and γl = χl(I2 \ I3)− χl(I3 \ I2). (4.1)

Let η : Gal (Q (ωn) /Q) → Z∗
n be the isomorphism such that σ (ωn) = ω

η(σ)
n , where

σ ∈ Gal (Q (ωn) /Q). Let

L = Q (βl, γl | l ∈ A′ \ {0}) (4.2)

and

H ′ = {h ∈ Z∗
n | hI1 = I1, h(I2 \ I3) = I2 \ I3, h(I3 \ I2) = I3 \ I2} . (4.3)

Since Γ ∼= Cay (A′, Tij | 1 ⩽ i, j ⩽ 2), by Proposition 3.4, we have the following
result.

Proposition 4.3. Using the symbols in (4.2) and (4.3), we have H ′ = η (Gal (Q (ωn) /L)).

Now we consider H ′ acting on A′ = Zn1
⊕· · ·⊕Znr

. Assume that H ′a(1), H ′a(2), . . . ,
H ′a(k) are all distinct orbits of H ′ on A′, where a(i) ∈ A′. Let

C =
{
a(i) | A′ ∩H ′a(i) ̸= ∅

}
(4.4)

and

M = ⟨[γl]L | l ∈ C⟩ . (4.5)

Since Γ ∼= Cay (A′, Tij | 1 ⩽ i, j ⩽ 2), using the conclusions in Section 3, we imme-
diately get the following results.

Theorem 4.4. Let Γ = Cay(G,S) be a Cayley digraph, and A = ⟨a1⟩n1 ⊗ · · · ⊗ ⟨ar⟩nr

be an abelian subgroup of G of order n and of index 2 with left transversal {x1, x2}. Then
the splitting field of Γ is L

(√
γl | l ∈ C

)
and the algebraic degree of Γ satisfies

deg(Γ) =
φ(n)|M |
|H ′|

,

where L = Q (ωn)
η−1(H′)

= {x ∈ Q (ωn) | σ(x) = x for all σ ∈ η−1(H ′)} and
γl, H

′, C,M are given in (4.1) and (4.3) – (4.5), respectively.
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Corollary 4.5. Let Γ = Cay(G,S) be a Cayley digraph, and A = ⟨a1⟩n1 ⊗ · · · ⊗ ⟨ar⟩nr

be an abelian subgroup of G of order n and of index 2 with left transversal {x1, x2}. Then
the algebraic degree of Γ satisfies

φ(n)

|H ′|
≤ deg(Γ) ≤ φ(n)2|C|

|H ′|
,

where H ′, C are given in (4.3) and (4.4), respectively.

Corollary 4.6. Let Γ = Cay(G,S) be a Cayley digraph, and A = ⟨a1⟩n1
⊗ · · · ⊗ ⟨ar⟩nr

be an abelian subgroup of G of order n and of index 2 with left transversal {x1, x2}. If
H ′ = Z∗

n and γl is a square of an integer for each l ∈ C, where γl, H
′, C are given in

(4.1), (4.3) and (4.4), respectively, then Γ is integral.

Corollary 4.7. Let Γ = Cay(G,S) be a Cayley digraph, and A = ⟨a1⟩n1
⊗ · · · ⊗ ⟨ar⟩nr

be an abelian subgroup of G of order n and of index 2 with left transversal {x1, x2}. Let
Tij =

{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ xjSx

−1
i

}
. If T11 = T22 and T12 = T−1

12 = T21,
then the splitting field of Γ satisfies

SF(Γ) = Q (ωn)
η−1(H′′)

= {x ∈ Q (ωn) | σ(x) = x for all σ ∈ η−1(H ′′)},

the algebraic degree of Γ satisfies

deg(Γ) =
φ(n)

|H ′′|
,

where H ′′ = {h ∈ Z∗
n | hT11 = T11, hT12 = T12}.

Corollary 4.8. Let Γ = Cay(G,S) be a Cayley digraph, and A = ⟨a1⟩n1
⊗ · · · ⊗ ⟨ar⟩nr

be an abelian subgroup of G of order n and of index 2 with left transversal {x1, x2}. Let
Tij =

{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ xjSx

−1
i

}
. If T11 = T22, T12 = T−1

12 = T21, and
hT11 = T11, hT12 = T12 for all h ∈ Z∗

n, then Γ is integral.

4.2 Cayley graphs over generalized dihedral groups

In the following two subsections, we consider Cayley graphs but not digraphs. The gener-
alized dihedral group Dih(A) is given by the following presentation

Dih(A) =
〈
A, x | x2 = e, xax−1 = a−1, a ∈ A

〉
.

Let Γ = Cay(Dih(A), S) be a Cayley digraph. Using the symbols in Subsection 4.1,
note that A = ⟨a1⟩n1

⊗ · · · ⊗ ⟨ar⟩nr
, and |A| = n, so |Dih(A)| = 2n. Without loss of

generality, let x1 = e and x2 = x. Then

T11 =
{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ S

}
,

T12 =
{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ xS

}
,

T21 =
{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ Sx

}
,

T22 =
{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ xSx

}
.

(4.6)

For the algebraic degree of the digraph Γ, we just need to replace Tij given in Subsec-
tion 4.1 with Tij given in (4.6), so we omit the details here.
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We are now interested in the algebraic degree of the undirected Cayley graph Γ =
Cay(Dih(A), S). Using the symbols in (4.6), as S = S−1, we have T−1

22 = T22 = T11 =
T−1
11 and T−1

12 = T21. Let t = (t1, . . . , tr). In a similar way as in Subsection 4.1, we define

I1 = [t | t ∈ T11 or t ∈ T22] ,

I2 = [t | t ∈ (T11 + T11) or t ∈ (T22 + T22) or t ∈ 4 ∗ (T12 + T21)],

I3 = [t | t ∈ 2 ∗ (T11 + T22)].

It follows that I1 = [t | t ∈ 2 ∗ T11], I2 \ I3 =
[
t | t ∈ 4 ∗ (T12 + T−1

12 )
]

and I3 \ I2 = ∅.
In fact, by Lemma 4.2, the eigenvalues of the Cayley graph Γ = Cay(Dih(A), S) are

χl(T11)± |χl(T12)| , l ∈ A′,

where A′ = Zn1
⊕ · · · ⊕ Znr

. Note that |χl(T12)| =
√
χl(T12)χl(T

−1
12 ) =√

χl(T12 + T−1
12 ), the multi-sets I1 and I2 \I3 can be reduced to I ′1 = T11 and (I2 \I3)′ =[

t | t ∈ T12 + T−1
12

]
.

Let

βl = χl(I
′
1) and γl = χl((I2 \ I3)′). (4.7)

Let η : Gal (Q (ωn) /Q) → Z∗
n be the isomorphism such that σ (ωn) = ω

η(σ)
n , where

σ ∈ Gal (Q (ωn) /Q). Let

L = Q (βl, γl | l ∈ A′ \ {0}) (4.8)

and

H ′ = {h ∈ Z∗
n | hI ′1 = I ′1, h(I2 \ I3)′ = (I2 \ I3)′} . (4.9)

Note that I1 = 2 ∗ I ′1 and I2 \ I3 = 4 ∗ (I2 \ I3)
′. So we have the following result by

Proposition 4.3.

Proposition 4.9. Using the symbols in (4.8) and (4.9), we have H ′ = η (Gal (Q (ωn) /L)).

Similarly, we consider H ′ acting on A′. Assume that H ′a(1), H ′a(2), . . . H ′a(k) are
all distinct orbits of H ′ on A′, where a(i) ∈ A′. Let B = {x ∈ A′ | 2x = 0} and
A′ = B ∪ E ∪ E−1, where B,E,E−1 are disjoint. Let

C ′ =
{
a(i) | (B ∪ E) ∩H ′a(i) ̸= ∅

}
(4.10)

and

M = ⟨[γl]L | l ∈ C ′⟩ . (4.11)

Then the following results hold.

Theorem 4.10. Let Γ = Cay(Dih(A), S) be a Cayley graph over the generalized dihe-
dral group Dih(A) of order 2n. Then the splitting field of Γ is L

(√
γl | l ∈ C ′) and the

algebraic degree of Γ satisfies

deg(Γ) =
φ(n)|M |
|H ′|

,
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where L = Q (ωn)
η−1(H′)

= {x ∈ Q (ωn) | σ(x) = x for all σ ∈ η−1(H ′)} and
γl, H

′, C ′,M are given in (4.7) and (4.9) – (4.11), respectively.

Proof. Since ((I2 \ I3)′)−1 = (I2 \ I3)′, it follows that

γl = χl((I2 \ I3)′) = χl(((I2 \ I3)′)−1) = χ−l((I2 \ I3)′) = γ−l.

Then the result follows from Theorem 4.4.

Corollary 4.11. Let Γ = Cay(Dih(A), S) be a Cayley graph over the generalized dihedral
group Dih(A) of order 2n. Then the algebraic degree of Γ satisfies

φ(n)

|H ′|
≤ deg(Γ) ≤ φ(n)2|C

′|

|H ′|
,

where H ′, C ′ are given in (4.9) and (4.10), respectively.

Corollary 4.12. Let Γ = Cay(Dih(A), S) be a Cayley graph over the generalized dihedral
group Dih(A) of order 2n. If H ′ = Z∗

n and γl is a square of an integer for each l ∈ C ′,
where γl, H

′, C ′ are given in (4.7), (4.9) and (4.10), respectively, then Γ is integral.

Corollary 4.13. Let Γ = Cay(Dih(A), S) be a Cayley graph over the generalized dihedral
group Dih(A) of order 2n. Let

T11 =
{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ S

}
and T12 =

{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ xS

}
.

If T12 = T−1
12 , then the splitting field of Γ satisfies

SF(Γ) = Q (ωn)
η−1(H′′)

= {x ∈ Q (ωn) | σ(x) = x for all σ ∈ η−1(H ′′)},

the algebraic degree of Γ satisfies

deg(Γ) =
φ(n)

|H ′′|
,

where H ′′ = {h ∈ Z∗
n | hT11 = T11, hT12 = T12}.

Corollary 4.14. Let Γ = Cay(Dih(A), S) be a Cayley graph over the generalized dihedral
group Dih(A) of order 2n. Let

T11 =
{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ S

}
and T12 =

{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ xS

}
.

If T12 = T−1
12 and for all h ∈ Z∗

n, hT11 = T11 and hT12 = T12, then Γ is integral.

In particular, let Dih(A) = D2n = ⟨a, b | an = b2 = e, bab = a−1⟩ be the dihedral
group of order 2n. Then A′ = Zn, I ′1 = T11 = {t | at ∈ S}, T12 = {t | bat ∈ S} and
(I2 \ I3)′ =

[
t | t ∈ T12 + T−1

12

]
. Note that

βl = χl(I
′
1) and γl = χl((I2 \ I3)′), (4.12)

where χl(t) = ωlt
n and 0 ≤ l ≤ n− 1. Furthermore,

L = Q (βl, γl | 1 ≤ l ≤ n− 1) .

We first try to simplify the expression of L.
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Lemma 4.15. Let K be a field such that Q ⊆ K ⊆ Q (ωn). If β1, γ1 ∈ K, then βl, γl ∈ K
for 1 ≤ l ≤ n− 1.

Proof. For 1 ≤ l ≤ n − 1, let σl : Q (ωn) → Q (ωn) be defined by σl (ωn) = ωl
n.

It is clear that σl is a homomorphism and βl = σl (β1) , γl = σl (γ1). Thus, for any
σ ∈ Gal (Q (ωn) /K), we have

σ (βl) = σ (σl (β1)) = σ

σl

∑
t∈I′

1

ωt
n

 =
∑
t∈I′

1

ωη(σ)tl
n = σl (σ (β1)) = σl (β1) = βl.

Similarly, σ (γl) = γl. Therefore, βl, γl ∈ K.

By Lemma 4.15, we have
L = Q (β1, γ1) .

Let

H ′ = {h ∈ Z∗
n | hI ′1 = I ′1, h(I2 \ I3)′ = (I2 \ I3)′} . (4.13)

Then H ′ = η (Gal (Q (ωn) /L)). Note that

C ′ =
{
a(i) | {0, 1, . . . , ⌊n/2⌋} ∩H ′a(i) ̸= ∅

}
(4.14)

and

M = ⟨[γl]L | l ∈ C ′⟩ , (4.15)

where H ′a(1), H ′a(2), . . . H ′a(k) are all distinct orbits of H ′ on Zn. Consequently, we
have the following corollaries.

Corollary 4.16. Let Γ = Cay(D2n, S) be a Cayley graph over the dihedral group D2n.
Then the splitting field of Γ is L

(√
γl | l ∈ C ′) and the algebraic degree of Γ satisfies

deg(Γ) =
φ(n)|M |
|H ′|

,

where L = Q (ωn)
η−1(H′)

= {x ∈ Q (ωn) | σ(x) = x for all σ ∈ η−1(H ′)} and
γl, H

′, C ′,M are given in (4.12) – (4.15), respectively.

Corollary 4.17. Let Γ = Cay(D2n, S) be a Cayley graph over the dihedral group D2n.
Then the algebraic degree of Γ satisfies

φ(n)

|H ′|
≤ deg(Γ) ≤ φ(n)2|C

′|

|H ′|
,

where H ′, C ′ are given in (4.13) and (4.14), respectively.

Corollary 4.18. Let Γ = Cay(D2n, S) be a Cayley graph over the dihedral group D2n.
Let T11 = {t | at ∈ S} and T12 = {t | bat ∈ S}. If T12 = T−1

12 , then the splitting field of
Γ satisfies

SF(Γ) = Q (ωn)
η−1(H′′)

= {x ∈ Q (ωn) | σ(x) = x for all σ ∈ η−1(H ′′)},



Y. Wu et al.: Algebraic degrees of 2-Cayley digraphs over abelian groups 15

the algebraic degree of Γ satisfies

deg(Γ) =
φ(n)

|H ′′|
,

where H ′′ = {h ∈ Z∗
n | hT11 = T11, hT12 = T12}.

There are results similar to Corollaries 4.12 and 4.14 as well, we omit them here. We
end this subsection with the following example.

Example 4.19. Let D16 = ⟨a, b | a8 = b2 = e, bab = a−1⟩ be the dihedral group of
order 16 and S =

{
a, a7, b

}
. We consider the algebraic degree of Γ = Cay(D16, S).

Then T11 = {1,−1} and T12 = {0} = T−1
12 . It follows that H ′′ = {1,−1} ≤ Z∗

8. By
Corollary 4.18, SF(Γ) = Q (ω8)

η−1(H′′)
= Q(

√
2) and deg(Γ) = φ(8)

|H′′|=2. In fact,

Spec(Γ) = 2 ∗ {
√
2 + 1,

√
2− 1,−

√
2 + 1,−

√
2− 1} ∪ 3 ∗ {1,−1} ∪ {−3, 3}.

4.3 Cayley graphs over generalized dicyclic groups

For the generalized dicyclic group Dic(A, y), it has the following presentation

Dic(A, y) =
〈
A, x | x2 = y, xax−1 = a−1, a ∈ A

〉
.

We put our focus on the algebraic degree of the Cayley graph Γ = Cay(Dic(A, y), S).
Using the symbols in Subsection 4.1, since A = ⟨a1⟩n1

⊗ · · · ⊗ ⟨ar⟩nr
, and |A| = n is

even, say n = 2m, then |Dic(A, y)| = 4m. Let x1 = e and x2 = x. Then

T11 =
{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ S

}
,

T12 =
{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ xS

}
,

T21 =
{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ Sx−1

}
,

T22 =
{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ xSx−1

}
.

Since S = S−1, we have T−1
22 = T22 = T11 = T−1

11 and T−1
12 = T21. Let t =

(t1, . . . , tr). By similar arguments as those in Subsection 4.2, we just need to consider
I ′1 = T11 and (I2 \ I3)′ =

[
t | t ∈ T12 + T−1

12

]
. Let

βl = χl(I
′
1) and γl = χl((I2 \ I3)′). (4.16)

Let η : Gal (Q (ω2m) /Q) → Z∗
2m be the isomorphism such that σ (ω2m) = ω

η(σ)
2m , where

σ ∈ Gal (Q (ω2m) /Q).
Let L = Q (βl, γl | l ∈ A′ \ {0}) and

H ′ = {h ∈ Z∗
2m | hI ′1 = I ′1, h(I2 \ I3)′ = (I2 \ I3)′} . (4.17)

By Proposition 4.3, we have H ′ = η (Gal (Q (ω2m) /L)).
Also, we consider H ′ acting on A′ = Zn1

⊕· · ·⊕Znr
. Assume that H ′a(1), H ′a(2), . . .

H ′a(k) are all distinct orbits of H ′ on A′, where a(i) ∈ A′. Let B = {x ∈ A′ | 2x = 0}
and A′ = B ∪ E ∪ E−1, where B,E,E−1 are disjoint. Let

C ′ =
{
a(i) | (B ∪ E) ∩H ′a(i) ̸= ∅

}
(4.18)
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and

M = ⟨[γl]L | l ∈ C ′⟩ . (4.19)

In a similar way as in Theorem 4.10, we get the following result.

Theorem 4.20. Let Γ = Cay(Dic(A, y), S) be a Cayley graph over Dic(A, y) of order
4m. Then the splitting field of Γ is L

(√
γl | l ∈ C ′), and the algebraic degree ofΓ satisfies

deg(Γ) =
φ(2m)|M |

|H ′|
,

where L = Q (ω2m)
η−1(H′)

= {x ∈ Q (ω2m) | σ(x) = x for all σ ∈ η−1(H ′)} and
γl, H

′, C ′,M are given in (4.16) – (4.19), respectively.

Corollary 4.21. Let Γ = Cay(Dic(A, y), S) be a Cayley graph over Dic(A, y) of order
4m. Then the algebraic degree of Γ satisfies

φ(2m)

|H ′|
≤ deg(Γ) ≤ φ(2m)2|C

′|

|H ′|
,

where H ′, C ′ are given in (4.17) and (4.18), respectively.

Corollary 4.22. Let Γ = Cay(Dic(A, y), S) be a Cayley graph over Dic(A, y) of order
4m. If H ′ = Z∗

2m and γl is a square of an integer for each l ∈ C ′, where γl, H
′, C ′ are

given in (4.16) – (4.18), respectively, then Γ is integral.

Corollary 4.23. Let Γ = Cay(Dic(A, y), S) be a Cayley graph over Dic(A, y) of order
4m. Let

T11 =
{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈S
}

and T12 =
{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ xS

}
.

If T12 = T−1
12 , then the splitting field of Γ satisfies

SF(Γ) = Q (ω2m)
η−1(H′′)

= {x ∈ Q (ω2m) | σ(x) = x for all σ ∈ η−1(H ′′)},

the algebraic degree of Γ satisfies

deg(Γ) =
φ(2m)

|H ′′|
,

where H ′′ = {h ∈ Z∗
2m | hT11 = T11, hT12 = T12}.

Corollary 4.24. Let Γ = Cay(Dic(A, y), S) be a Cayley graph over Dic(A, y) of order
4m. Let

T11 =
{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ S

}
and T12 =

{
(t1, . . . , tr) |

(
at11 , . . . , atrr

)
∈ xS

}
.

If T12 = T−1
12 and for all h ∈ Z∗

2m, hT11 = T11 and hT12 = T12, then Γ is integral.

Furthermore, for the dicyclic group Dic4m =
〈
a, b | a2m = e, am = b2, b−1ab = a−1

〉
,

as direct consequences of Theorem 4.20 and Corollaries 4.21 – 4.24, we have similar re-
sults, so we omit the details here.

Example 4.25. Let Dic12 = ⟨a, b | a6 = e, a3 = b2, b−1ab = a−1⟩ be the dicyclic
group of order 12 and S =

{
a, a5, ab, a2b, a4b, a5b

}
. We consider the algebraic degree of

Γ = Cay(Dic12, S). Then T11 = {1, 5} and T12 = {1, 2, 4, 5} = T−1
12 . It follows that

H ′′ = {1, 5} = Z∗
6. By Corollary 4.24, deg(Γ) = 1. In fact, Spec(Γ) = 4 ∗ {−1, 1} ∪ 3 ∗

{−2} ∪ {6}.
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4.4 Cayley digraphs over semi-dihedral groups

For the semi-dihedral group SD8m, it has the following presentation

SD8m = ⟨a, b | a4m = b2 = e, bab = a2m−1⟩.

We now consider the algebraic degree of the Cayley digraph Γ = Cay(SD8m, S).
Using the symbols in Subsection 4.1, it follows that A = ⟨a⟩4m and A′ = Z4m. Let
x1 = e and x2 = b. Then

T11 =
{
t | at ∈ S

}
,

T12 =
{
t | bat ∈ S

}
,

T21 =
{
t | atb ∈ S

}
,

T22 =
{
t | a(2m−1)t ∈ S

}
.

In a similar way as in Subsection 4.1, we define

I1 = [t | t ∈ T11 or t ∈ T22] ,

I2 = [t | t ∈ (T11 + T11) or t ∈ (T22 + T22) or t ∈ 4 ∗ (T12 + T21)],

I3 = [t | t ∈ 2 ∗ (T11 + T22)].

Let

βl = χl(I1) and γl = χl(I2 \ I3)− χl(I3 \ I2), (4.20)

where χl(t) = ωlt
4m and 0 ≤ l ≤ 4m − 1. Let K be a field such that Q ⊆ K ⊆ Q (ω4m).

Then Gal (Q (ω4m) /K)) ≤ Gal (Q (ω4m) /Q) ∼= Z∗
4m. Let η : Gal (Q (ω4m) /Q) →

Z∗
4m be the isomorphism such that σ (ω4m) = ω

η(σ)
4m , where σ ∈ Gal (Q (ω4m) /Q). Let

L = Q (βl, γl | 1 ≤ l ≤ 4m− 1) .

The following lemma helps to simplify the expression of L.

Lemma 4.26. If β1, γ1 ∈ K, then βl, γl ∈ K for 1 ≤ l ≤ 4m− 1.

Proof. The proof is similar to that of Lemma 4.15.

By Lemma 4.26, we have
L = Q (β1, γ1) .

Let

H ′ = {h ∈ Z∗
4m | hI1 = I1, h(I2 \ I3) = I2 \ I3, h(I3 \ I2) = I3 \ I2} . (4.21)

By Proposition 4.3, we have H ′ = η (Gal (Q (ω4m) /L)).
Assume that H ′a(1), H ′a(2), . . . H ′a(k) are all distinct orbits of H ′ on Z4m. Let

C = {a(i) | Z4m ∩H ′a(i) ̸= ∅} (4.22)

and

M = ⟨[γl]L | l ∈ C⟩ . (4.23)

By Theorem 4.4 and Corollaries 4.5 – 4.8, we have
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Theorem 4.27. Let Γ = Cay(SD8m, S) be a Cayley digraph over the semi-dihedral group
SD8m. Then the splitting field of Γ is L

(√
γl | l ∈ C

)
and the algebraic degree of Γ

satisfies

deg(Γ) =
φ(4m)|M |

|H ′|
,

where L = Q (ω4m)
η−1(H′)

= {x ∈ Q (ω4m) | σ(x) = x for all σ ∈ η−1(H ′)} and
γl, H

′, C,M are given in (4.20) – (4.23), respectively.

Corollary 4.28. Let Γ = Cay(SD8m, S) be a Cayley digraph over the semi-dihedral group
SD8m. Then the algebraic degree of Γ satisfies

φ(4m)

|H ′|
≤ deg(Γ) ≤ φ(4m)2|C|

|H ′|
,

where H ′, C are given in (4.21) and (4.22), respectively.

Corollary 4.29. Let Γ = Cay(SD8m, S) be a Cayley digraph over the semi-dihedral group
SD8m. If H ′ = Z∗

4m and γl is a square of an integer for each l ∈ C, where γl, H
′, C are

given in (4.20) – (4.22), respectively, then Γ is integral.

Corollary 4.30. Let Γ = Cay(SD8m, S) be a Cayley digraph over the semi-dihedral group
SD8m. If T11 = T22 and T12 = T−1

12 = T21, then the splitting field of Γ satisfies

SF(Γ) = Q (ω4m)
η−1(H′′)

= {x ∈ Q (ω4m) | σ(x) = x for all σ ∈ η−1(H ′′)},

the algebraic degree of Γ satisfies

deg(Γ) =
φ(4m)

|H ′′|
,

where H ′′ = {h ∈ Z∗
4m | hT11 = T11, hT12 = T12}.

Corollary 4.31. Let Γ = Cay(SD8m, S) be a Cayley digraph over the semi-dihedral group
SD8m. If T11 = T22, T12 = T−1

12 = T21 and for all h ∈ Z∗
4m, hT11 = T11 and hT12 = T12,

then Γ is integral.

We end this paper with the following example.

Example 4.32. Let SD16 = ⟨a, b | a8 = b2 = e, b−1ab = a3⟩ be the semi-dihedral
group of order 16 and S =

{
a2, a6, ba, ba5

}
. We consider the algebraic degree of Γ =

Cay(SD16, S). Then T11 = T22 = {2, 6} and T12 = {1, 5}, T−1
12 = T21 = {3, 7}. Thus,

I1 = 2 ∗ {2, 6}, I2 \ I3 = 8 ∗ {0, 4} and I3 \ I2 = ∅. It follows that H ′ = {1, 3, 5, 7} =
Z∗
8. Since γ1 = 8[1 + (−1)l] is a square of integer for each l ∈ Z8, by Corollary 4.29,

deg(Γ) = 1. In fact, Spec(Γ) = 10 ∗ {0} ∪ 2 ∗ {−2, 1, 4}.
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