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The Integration Rules (IRules) Project* provides an active, rule-based approach for supporting event-
driven activity in applications involving distributed software component integration. This paper presents 
the execution model, transaction model, and integration rule execution algorithm of the IRules 
environment. The paper begins with an overview of the IRules language framework to establish the 
context for the use of events and rules in the integration process, with Enterprise JavaBeans (EJBs) 
serving as a component model. The paper then elaborates on the integration rule processing algorithm 
and execution environment. The rule execution model supports traditional active rule coupling modes, 
and defines a new immediate asynchronous mode to support concurrent execution of triggered rules and 
transactions. The transaction model is based on the flexible transaction model, providing a means to 
coordinate global transaction execution with the transactional features of EJB containers. IRules 
component wrappers also provide support for the global transaction context as well as the 
synchronization of method execution with the nested execution of integration rules. The paper defines 
the semantics of coupling modes in terms of cycles and levels of rule execution, presenting the 
integration rule processing algorithm for coordinating the execution of events and methods on 
components with the nested execution of integration rules in the context of the transaction model. The 
details of the algorithm are presented using Unified Modeling Language (UML) activity diagrams, 
providing a generic approach that can be used as the foundation for rule processing in other distributed 
environments. An investment application is used to illustrate the concepts presented in this paper. 
Povzetek: Predstavljen je algoritem za integracijo pravil. 
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1 Introduction 
The development of advanced enterprise applications 
often requires the integration of distributed software 
components and services.  Standard component 
models and distributed computing tools, such as the 
Common Object Request Broker Architecture 
(CORBA) [1] and Enterprise JavaBeans (EJBs) [2], 
have been developed to facilitate the integration 
process in distributed environments.  However, 
component integration could be a difficult process in 
some cases, since application integrators must not only 
mediate the semantics of component interactions, but 
must also be skilled in low-level knowledge of 
middleware programming, event handling, and 
transaction management.  This difficulty motivates the 

need for a more declarative approach to the integration 
process. 

In response to this need, the Integration Rules 
(IRules) Project has developed an active rule-based 
approach to distributed component integration, using 
integration rules to provide a declarative approach to 
event-driven integration activity [3, 4, 5, and 6].  The 
IRules project is based on the concept of active 
database rules.  Active database systems extend 
traditional databases by supporting mechanisms to 
automatically monitor and react to events that are 
taking place either inside or outside of the database 
system [7 and 8].  Active database rules, known as 
Event-Condition-Action (ECA) rules, are the core of 
any active system.   
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Similar to an active rule, an integration rule 
consists of an event, a condition, and an action.  The 
event of an integration rule is generated from 
distributed sources.  The condition is expressed as a 
query over distributed components.  If the condition 
evaluates to true, the action is invoked to execute 
methods on components or to invoke application 
transactions that capture integration logic.  Integration 
rules can therefore be used to separate event 
processing from the main integration logic of an 
application.  Furthermore, event handling and rule 
processing are managed within the transactional 
environment of the IRules system, shielding the low-
level details of event handling and transaction 
management from integrators.  Integrators can 
therefore focus on integration logic rather than low-
level programming details.  

The IRules approach to component integration 
consists of a language framework described in [4] and 
an execution environment for processing rules and 
transactions [6] over distributed components.  The 
execution environment presented in this paper consists 
of a rule processing algorithm and transaction 
management system, illustrating a rule-based approach 
to the integration of components with well-defined 
interfaces based on the EJB component model [2]. The 
integration of black-box components introduces 
several challenges to the development of a rule and 
transaction processing framework for integration rules. 
First of all, components cannot be modified and they 
are typically not aware of their participation in the 
integration framework. As a result, components alone 
do not provide necessary behavior for participating in 
more global rule and transaction processing activities. 
Furthermore, the EJB component model has its own 
notion of transactional behavior, which is beyond the 
control of an external environment such as IRules.  
The execution of integration rules within a 
transactional context requires suitable control logic at 
the global IRules level to overcome the restrictions of 
the underlying EJB component model.   Furthermore, 
active rules can trigger other active rules, thus forming 
a nested structure as a result of cascaded rule 
execution. Since the nested execution of rules and 
their transaction control in a distributed environment 
may span across several distributed locations, 
distributed rule processing is more challenging than 
that of centralized active rule environments.  

The IRules execution model presented in this 
paper supports the traditional dimensions of active 
rule execution, with extensions for use in a distributed 
environment.  The Integration Rule Processing (IRP) 
algorithm controls rule processing in a distributed 
environment, fully supporting immediate, deferred, 
and decoupling modes of execution.  The immediate 
asynchronous mode is a new coupling mode defined in 
this research to support concurrent execution of 
triggering transactions and triggered rules, thus 
improving the performance of distributed rule 
processing.   The IRP algorithm also provides support 
for the nested execution of immediate rules.  Handling 

immediate rules in a distributed environment requires 
system control for synchronization between a 
triggering transaction and the triggered rules.  The 
synchronization process requires suspension of the 
method execution of the EJB component, allowing the 
generation of events before and after the method 
execution, with the immediate execution of rules in 
response to the events.  The IRP algorithm described 
in this paper contributes to the use of immediate 
coupling modes and nested rule execution within the 
IRules framework. These features for the nested 
execution of immediate rules in a distributed 
environment have not been addressed by previous 
research, especially in the context of component 
integration.   

Our research uses Unified Modeling Language 
(UML) activity diagrams [9] to present the logic of the 
rule execution algorithm. The algorithm is generic so 
that it can be used in other environments for rule 
processing, although the specific implementation of 
the IRP algorithm within the IRules environment is 
supported by the IRules transaction management [6], 
wrapper design [10], and synchronization algorithms 
[11]. 

The rest of the paper is organized as follows.  
Section 2 surveys related work. Section 3 provides an 
overview of the IRules approach with a presentation of 
the language framework and system architecture.  
Section 4 presents the integration rule coupling modes 
as well as the transaction model and the transactional 
support found in wrappers for the synchronization of 
rule and method execution.  Section 5 describes the 
rule processing algorithm and provides an example of 
rule execution using an investment application. The 
paper concludes in Section 6 with a summary and 
discussion of future research directions. 

2 Related Work 
There are several active database research projects that 
have influenced the development of the IRules 
environment, including relational active databases, 
such as POSTGRES [12] and Starburst [12], as well as 
object-oriented active databases, such as HiPAC [14], 
SAMOS [15], ADOOD RANCH [16], and REACH 
[17]. Active rules also exist in a limited form in 
commercial database systems as database triggers 
[18].   

Active rule execution algorithms have been 
addressed in centralized environments, such as the 
research outlined in the introduction to active database 
systems in Widom and Ceri [8], as well as the work of 
Fraternali and Tanca [19] and Warshaw [20].  The 
algorithm in [8] provides a high level abstract view of 
rule processing, repeatedly retrieving a triggered rule, 
evaluating the condition, and performing the action if 
the condition evaluation is true.  Similarly, the 
algorithm in [19] presents three phases of active rule 
processing.  In the triggering phase, the algorithm 
builds a set of rules that are triggered. In the 
consideration phase, the algorithm first gets rules from 
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the set of rules constructed in the triggering phase, and 
then evaluates the condition part of each rule.  In the 
action phase, if the condition evaluation of a rule 
returns non-empty bindings, the algorithm will 
perform the action of the rule.  Compared to [8] and 
[19], this paper presents an active rule processing 
algorithm that was specifically designed to assist with 
component integration in a distributed environment.  
The IRules algorithm not only covers the three basic 
phases of active rule processing for a set of triggered 
rules, but also elaborates on the nested execution of 
integration rules for distributed components, which is 
a challenging extension to past work on centralized 
rule execution algorithms.  The IRules algorithm also 
describes how to execute a rule according to four 
types of coupling modes and how to react to different 
types of events in the context of distributed component 
integration.  Whereas the algorithm in [20] uses state 
transition to characterize rule execution according to 
different coupling modes, the IRules algorithm uses a 
coordinate system to describe the semantics of rule 
execution. 

In addition to centralized active database systems, 
there are several research projects on active, rule-
based distributed systems. In the system described in 
[21], ECA rules are used to provide distributed 
communication for the components that describe 
interfaces in the Object Management Group (OMG) 
Interface Definition Language (IDL) [22]. The project 
focuses on the specification, detection and 
management of composite events.   

C2offein [23] is a CORBA-based system with a 
comprehensive design of distributed event detection. 
The underlying data sources are wrapped to enable 
read access in a CORBA environment. If a database 
does not support an active mechanism, the wrapper 
queries the database at regular intervals to detect 
changes in the data. Clients can also call event 
detection before any update operation to the database. 
Rule processing is supported using a production rule 
expert system shell.  

The FRAMBOISE (FRAMework using oBject 
OrIented technology for Supplying active 
mEchanisms) project [24] is an object-oriented 
framework formed by a toolbox to provided active 
database functionality, such as event definition, event 
detection, and rule execution.  The set of architectural 
components that separates the active functionality 
from the underlying DBMS is called an activity 
service. A database event detection connector, 
condition evaluation connector, and database action 
execution connector regulate the interaction between 
the activity service and the underlying DBMS.   

In the system described in [25], active rules are 
used to glue together existing applications in a 
distributed environment. Active rule processing is 
implemented through event, condition, and action 
services. The condition object of a rule subscribes to 
the event object of the rule, while the action object 
subscribes to the condition object of the rule. The 
system uses the publish/subscribe service 

implementation of X2TS [26] as a notification 
mechanism between event, condition, and action, 
where X2TS is based on the CORBA Notification 
Service. X2TS can also provide additional transaction 
control mechanisms such as exception handling over 
the basic CORBA Transaction Service.  In contrast, 
the IRules rule manager controls when to evaluate a 
condition and execute an action according to coupling 
modes, rather than through a publish/subscribe 
service. 

The above distributed rule projects have all been 
based on the use of the CORBA standard. In contrast, 
the IRules project requires access to distributed 
resources that advertise services using the EJB 
component model. The use of distributed rules for the 
integration of EJB component technology has not been 
addressed by the existing research. The IRules project 
is also using Jini connection technology [27] as the 
primary means for distributed object computing, rather 
than CORBA as in other projects. Furthermore, the 
rule processing algorithm of IRules can handle nested 
rule execution in a distributed environment. Existing 
distributed rule projects have not addressed cascaded 
rule execution within distributed transactions.  

Using active rules to control the flow between 
activities of a workflow system has been adopted by a 
number of projects, such as the project described in 
[28]. More recent work on workflow uses ECA rules 
both inside and outside of activities. The work in [29] 
is a centralized workflow management system, where 
ECA rules are used for constraint management inside 
tasks, as well as for the control of the execution order 
of tasks. In [30], the workflow system named 
CapBasED-AMS uses ECA rules to specify the 
security authorization requirements imposed on a task 
as well as the execution sequence. The TriGSflow 
system of [31] is introduced as a framework for 
workflow management, where ECA rules encapsulate 
and realize coordination policies. In the WIDE 
(Workflow on Intelligent Distributed Database 
Environment) project [32], active rules are used in a 
workflow management system for exception handling.   
Compared to component integration, the flow 
movements from task to task in a workflow 
environment are well-defined compared to the 
interconnection of software components.  A workflow 
system has more control over the tasks that are 
executed, while access to component services, 
especially black-box components, may be more 
restrictive.  

Active rules are also used in the composition of 
web services.  The research in [33] proposed the 
SELF-SERV (compoSing wEb accessibLe 
inFormation & buSiness sERVices) system to 
compose services within a peer-to-peer paradigm.  
SELF-SERV includes a declarative language based on 
state charts and a peer-to-peer service execution 
model.  A statechart consists of states and transitions.  
Transitions are labeled by ECA rules. Compared to 
IRules, SELF-SERV is for the composition of web 
services, while IRules is for the integration of software 
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components.  ECA rules are used as the “glue” of the 
IRules integration to specify event-driven integration 
logic, while state charts are the “glue” for the 
composition of SELF-SERV.  ECA rules are used in 
SELF-SERV for state transition, but the logic of 
execution is not controlled by ECA rules. In the IRules 
environment, integration logic is composed from the 
use of application transactions together with 
integration rules that respond to events. 

3 The IRules Approach 
There are two important aspects of the IRules 
environment: the IRules Definition Language (IRDL) 
for application specification and the IRules execution 
environment for integration rule and transaction 
execution. IRDL supports the definition of 
components, events, rules, and application transactions 
for distributed component integration. The execution 
environment consists of the execution model for 
integration rules, transaction management for rule 
execution, and the rule execution algorithm that 
coordinates the execution model with transaction 
management.  The IRules execution environment is 
described in detail in Section 4.  This section 
overviews the language framework and the 
architectural design of the IRules environment. 

3.1 The IRules Definition Language 
 The IRDL consists of four sub-languages: the 
Component Definition Language (CDL) for defining 
IRules components, the IRules Scripting Language 
(ISL) for describing application transactions, the 
Event Definition Language (EDL) for defining events, 
and the Integration Rule Language (IRL) for defining 
active rules. The IRDL was initially reported in [3, 5] 
with refinements of the language presented in [10, 11, 
34, 35].  The examples of the language presented in 
this section originally appeared in [4, 6] and are 
repeated here to make the paper self-contained. 

3.1.1 Component Definition Language (CDL) 
The CDL establishes an object model for application 
integration activity [3, 5, and 10]. The current 
implementation of IRules is based on the EJB 
component model, assuming that all of the 
components of the environment are EJB components.  
To support component interconnection with active 
rules, IRules adds a semantic layer on top of existing 
EJB components.  This layer is the IRules wrapper 
layer.  IRules wrappers are automatically generated 
after CDL is compiled. IRules wrappers provide 
additional functionality to black-box components, 
such as defining externalized relationships between 
distributed components, and specifying extents, 
derived attributes, and stored attributes for each 
component.  The IRules wrapper layer also defines the 
events generated before and after method calls on 
components as well as the events that are internal to 

black-box components.  The details of IRules 
wrappers can be found in [10]. 

As an example of CDL, Figure 1 defines two 
externalized relationships and one event for a pending 
order component within an investment application.  
The first line of the component definition indicates 
that the StockBroker_PendingOrder is an EntityBean 
component. The second line of the definition specifies 
an extent that can be used to query all pending order 
instances, a feature that is useful in the specification of 
integration rule conditions (see Section 3.1.4 for an 
example). Assuming that StockBroker_Stock, 
StockBrocker_Portfolio, and StockBroker_PendingOrder 
are implemented as separate distributed components, 
the first relationship definition in Figure 1 illustrates 
an externalized, bi-directional relationship between 
components: a StockBroker_PendingOrder is orderedBy a 
StockBroker_Portfolio, while in the inverse direction, a 
StockBroker_Portfolio orders a StockBroker_PendingOrder. 
The second relationship defines the relationship 
between StockBroker_PendingOrder and 
StockBroker_Stock: a StockBroker_PendingOrder actsUpon 
a StockBroker_Stock while a StockBroker_Stock has 
pendingTrades on the StockBroker_PendingOrder.  The 
CDL also defines an event afterSetAction that is to be 
raised after the setAction operation on 
StockBroker_PendingOrder. Note that the CDL 
definition of  StockBroker_PendingOrder does not repeat 
any of the method definitions of the original 
component definition. CDL is used to enhance the 
component definition with IRules functionality. 

3.1.2 IRules Scripting Language (ISL) 
In the IRules environment, ISL describes well-defined 
sequences of processing logic as application 
transactions [3, 5].  ISL is based on JACL [36], which 
is the Java version of the Tool Command Language 
(TCL) [37]. An ISL example in an investment 
application is shown in Figure 2.  The 
clientWantsToSellStock application transaction consists 
of two steps: create a pending order component and 
print the information of this pending order.  The 
newInstance command is a JACL extension that 
abstracts a sequence of statements into one command, 
thus making the script concise and easy to reuse.   

 
Component StockBroker_PendingOrder implements 
EntityBean 
(extent  pendingOrders) 
{   relationship  StockBroker_Portfolio orderedBy  inverse  
StockBroker_Portfolio::orders; 
    relationship  StockBroker_Stock actUpon inverse  
StockBroker_Stock::pendingTrades; 
   event afterSetAction (pnAction) {method after 
setAction(string pnAction)};} 

 
Figure 1: CDL of PendingOrder Component 

 
application transaction clientWantsToSellStock(String pnId, 
String portfolioId, String stockId, int numOfShares,float 



AN INTEGRATION RULE PROCESSING ...  Informatica 30 (2006) 193–212 197 

desiredPrice, String action, Stock actUpon, Portfolio 
orderedBy) 
tcl newInstance 
{  
set pn [newInstance PendingOrder $pnId $portfolioId  
$stockId $numOfShares $desiredPrice $action $actUpon 
$orderedBy $irulesId]; 
 printPendingOrderInfo $pn $irulesId;  
} 

 
Figure 2:  ISL Example for the 

clientWantsToSellStock transaction 
 

3.1.3 Event Definition Language (EDL) 
There are four different types of IRules events [3, 5, 
and 11]: method events, application transaction 
events, internal events, and external events.  A method 
event is generated before or after the execution of a 
method on a component. An application transaction 
event is generated before or after the execution of an 
application transaction.  An internal event is an event 
generated by a black-box component. An external 
event is generated by sources external to the IRules 
environment.  EDL describes application transaction 
events and external events. Method events and internal 
events are defined in CDL following EDL syntax. 
Figure 1 illustrates the definition of a method event 
afterSetAction that is generated after the setAction 
operation in the Stock component.  
 

Figure 3 shows an application transaction event 
definition in EDL. The specification has the syntax 
similar to the method event specification in Figure 1. 
The key word appTrans identifies that the event is an 
application transaction event.  The event has an event 
name afterSellStockOnNewPO and five parameters.  The 
event parameters are constructed by the projection of 
the parameters of the application transaction by 
parameter name.  

 
event   afterSellStockOnNewPO(stockId, price, portfolioId, 
numOfShares, pn) 
{ 
appTrans after sellStockOnNewPO(String stockId, float 
price, String portfolioId, int numOfShares, 
stockBroker.PendingOrderComponent.PendingOrder  pn); 
} 

Figure 3: EDL for the afterSellStockOnNewPO 
event 

 

3.1.4 Integration Rule Language (IRL) 
IRL is a language for defining integration rules [3, 5, 
34, and 35]. IRL is based on the traditional ECA rule 
format in active database systems. An integration rule 
includes an event, a condition, and an action. A 
condition includes a Boolean clause and an optional 
query over the object model to define a binding 
structure for data that satisfies the condition. The 

action part consists of an optional from clause and a do 
clause. The from clause iterates through the binding 
structure passed from the condition. The do clause 
executes the action in the format of a method call or 
an application transaction.  
 
create rule  clientWantsToSellStockRule 
event  afterClientWantsToSellStock(pnId, portId, stockId, 
numOfShares, desPrice, pnaction, actUpon, orderedBy) 
condition  immediate 
                when pnaction = "sell" 
                define stockAndPendingOrder as 
                       select struct ( stk: s, newPo: pn ) 
                        from s in stocks, pn in pendingOrders 
                        where pn.id=pnId and pn.actUpon=s  
                         and desPrice<=s.price 
action      immediate            
              from sp in stockAndPendingOrder 
                do sellStockOnNewPO(stockId, sp.stk.price, 
portId, numOfShares, sp.newPo) 

 
Figure 4: IRL Example of the 

clientWantsToSellStockRule rule 
 

An example of IRL is shown in Figure 4. In this rule, 
the event is signaled after the clientWantsToSellStock 
application transaction.  The condition  checks 
whether the pendingOrder intends to sell stock.. If the 
rule condition is satisfied, a binding structure is 
defined for relevant instances of stock and 
pendingOrder. The binding structure definition uses the 
extents of the stock and pendingOrder components that 
are specified in the CDL and the parameters of the 
event to find relevant stocks and pending orders. The 
action part iterates through the stockAndPendingOrder 
structure and executes the sellStockOnNewPO 
application transaction to perform the functionality of 
selling stocks.  

3.1.5 Putting It All Together 
Figure 5 presents an example of how all of the 
sublanguages of IRDL work together. CDL defines 
wrapped components and the compilation of CDL 
generates wrappers.  After wrappers are generated 
[10], distributed components in different containers 
may have externalized relationships.  Four types of 
events are defined by EDL and CDL.  Events can 
trigger integration rules defined by IRL.  The action 
part of the rule can invoke an application transaction 
(defined by ISL) or a method on an EJB component.  
The execution of an application transaction or a 
method can raise application transaction events, 
method event, or internal events, which can trigger 
additional rules.  As a result, integration rules can be 
triggered in a nested structure.  We will present an 
execution scenario of rule nesting in Section 5.3.  

3.2 The IRules Architecture  
IRules has designed a distributed architecture to 
support the IRDL language framework.  The 
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architecture can be abstracted into three layers, as 
shown in Figure 6.  The top and middle layers are the 
interfaces.  The bottom layer is the implementation of 
the integration system.   

IRules provides interfaces for two types of 
integration users: integrators and end users.    
Integrators use IRDL to describe integration logic.   
The compilation of IRDL results in the population of 
metadata and the automatic generation of wrappers.  
The interface for end users consists of a list of 
application transactions, which have been expressed 
by integrators using ISL and compiled by the IRules 
compiler.  An end user then selects an existing 
application transaction to express their integration 
request.  For example, if a user wants to sell stock, the 
user can select the clientWantsToSellStock application 
transaction from Figure 2, providing values for each 
parameter of the application transaction.  The user 
request is sent to the application transaction processor 
component of the IRules system.   

The implementation layer consists of architectural 
components for the IRules system.   Figure 6 presents 
the fundamental components of the architecture.  The 
Jini distributed computing environment is used as the 
backbone of the system, with IRules architectural 
components implemented as Jini Services.  Upon user 

request, the application transaction processor 
processes the ISL script. The processing may invoke 
wrapped EJB components. The processing of an 
application transaction or a method call on an EJB 
component can raise events. The event handler pushes 
the event to the rule manager, where the rule manager 
queries the metadata to retrieve rules triggered by this 
event.  During rule processing, the rule manager 
interfaces with the transaction manager to establish the 
transaction context for rule execution. The rule 
manager also interfaces with the object manager for 
accessing components. The rule manager submits 
requests to the query processor for rule condition 
evaluation during rule processing. 

Through the IRDL language framework and the 
architectural design, the IRules integration system 
allows application integrators to specify the 
integration logic in a declarative fashion, while the 
end users can use the defined integration logic to 
specify their request.  In contrast to the traditional 
integration approach, the IRules approach does not 
require an integrator’s low-level knowledge of 
distributed programming issues.  Integrators can focus 
on integration logic, rather than the technical details of 
rule and transaction processing.    
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Figure 5 Interaction Between the IRDL Sublanguages 
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4 The IRules Execution and 
Transaction Model  

This section presents the details of the IRules 
execution and transaction model. A preliminary 
discussion of the IRules transaction model appears in 
[6]. The full details of the transaction management 
system are presented in this section to establish the 
context for presentation of the rule processing 
algorithm in Section 5. Section 4.1 defines the 
coupling modes of the environment, with specific 
emphasis on the synchronous and asynchronous 
options of the immediate coupling mode. Section 4.2 
elaborates on the transaction model and the manner in 
which it interacts with the transactional features of 
EJB containers. Section 4.3 discusses the support that 
IRules component wrappers provide for the global 
transaction context as well as the synchronization of 
rule and method execution. 

4.1 Integration Rule Coupling Modes 
The execution model of an active rule system specifies 
how to coordinate a set of rules at runtime. The 
execution model is characterized by several features, 
such as coupling modes, transition granularity, net-
effect policy, cycle policy, priority, and scheduling 
[7].  IRules follows the definition of the execution 
model features that are defined in [7].  In this paper, 
we address the coupling mode feature, since the use of 
coupling modes in a distributed environment is the 
primary focus of the IRules execution model.   

The coupling modes of an active rule allow rule 
definers to specify how to execute the rule at run time.  
A coupling mode can be specified between the event 
and condition (E-C), between the condition and action 
(C-A), or between the event and action (E-A).  
Integration rules support four types of coupling 
modes: immediate synchronous, immediate 
asynchronous, deferred, and decoupled.  

 
Using the E-C coupling mode as an example, the 
immediate synchronous E-C coupling mode indicates 
that the condition of a rule must be evaluated 
immediately after the event is raised.   The immediate 
asynchronous mode is a new coupling mode that has 
been defined as part of this research.  In an immediate 
asynchronous E-C coupling mode, the condition is 
evaluated immediately after the occurrence of an 
event, but the triggering transaction that raised the 
event will not be suspended.  The execution of the 
integration rule and the triggering transaction are 
therefore concurrent.  

Figure 7 illustrates the difference between the 
immediate synchronous and immediate asynchronous 
modes using a UML activity diagram [9].  In each box 
of Figure 7, the pair of synchronization bars (heavy 
black bars) represents the logic to fork and join 
processes, where the first bar is a fork and the second 
bar is a join.  In Figure 7a, Op1 is an event that triggers 
an immediate synchronous rule, so a subtransaction is 
started to process the rule.  The triggering transaction 
suspends until the rule completes.  After the rule joins 
the triggering transaction, Op2 and Op3 can be 
executed.  In contrast, as shown in Figure 7b, Op1 is an 
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Figure 6: IRules Architecture 
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event that triggers an immediate asynchronous rule.  A 
new subtransaction is started to execute the 
asynchronous rule, but the triggering transaction does 
not suspend.  As a result, Op2 and Op3 are concurrently 
executed with the asynchronous rules.  At the end of 
the triggering transaction, the asynchronous rule joins 
the triggering transaction.  The use of the immediate 
asynchronous mode can only be used when the rest the 
operations of the triggering transaction do not depend 
on the results of the immediate rule.     

The deferred E-C coupling mode postpones rule 
condition evaluation to the end of the top-level 
transaction of execution (i.e., the outermost 
transaction within which the event was raised), based 
on the use of the deferred coupling mode as defined in 
[378].  The decoupled mode is only available for E-A 
and C-A coupling. Using the decoupled C-A coupling 
mode as an example, the decoupled action of a rule is 
executed immediately in a new top-level transaction, 
concurrent with the transaction that triggered the rule.  

In addition to coupling modes, an integration rule 
can be triggered before an event happens or after an 
event happens.  This feature is specified as before and 
after modifiers in the definition of a rule.  Rule 
execution before an event is reasonable only when an 
event generator can trap the occurrence of the 
operation associated with the event.  

4.2 Transaction Model of the IRules 
Environment 

In an active system, the execution model relies heavily 
on the notion of transactions. For example, coupling 
modes are used to specify the transactional 
relationships between different parts of an active rule. 
Rules are also required to execute within appropriate 
transaction contexts for correct processing logic.  

A fundamental issue with respect to transaction 
processing within IRules is the selection of a 
transaction model that is appropriate for the nested 
execution of rules over EJB components. In the nested 
transaction model [39], a subtransaction cannot release 
its results until its parent transaction commits. In 
contrast, the flexible transaction model [40] has a 
compensating mechanism that allows early commit of 
subtransactions.  The flexible model avoids 
unnecessary blocking of subtransactions. The 
compensating mechanism ensures atomicity of a 
transaction when allowing unilateral commit of 
subtransactions. Although the flexible transaction 
model avoids unnecessary waiting time, the flexible 
transaction model can be more time-consuming than 
the nested transaction model when compensating work 
is required in the case of transaction failure.  

The underlying component model also constrains 
the selection of a suitable transaction model. In 
transaction control for traditional databases, the 
release of locks and the update of permanent storage 
can be fully controlled by the transaction manager of 
the database.  It is not possible to control black-box 
EJB components in such a manner. Each entity bean 
has an underlying relation in a relational database, and 
each instance of the bean corresponds to a tuple in that 
relation. Entity beans must be accessed with a 
container-managed transaction. That is, the 
transaction for method invocation of an entity bean is 
totally controlled by the EJB container.  

As a more detailed explanation, each container 
uses ejbload() to refresh an entity bean's state from the 
database and ejbstore() to save the entity bean's state in 
the database. Before a method defined in the EJB 
remote interface is invoked from outside of the EJB 
component, the container will call ejbload(). After the 
method finishes execution, the container will call 
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Figure 7: Synchronous vs. Asynchronous Rule Processing 
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ejbstore(). If the IRules transaction manager attempts to 
use the Two Phase Commit (2PC) protocol [41], the 
permanent storage can only be updated when all 
subtransactions are ready to commit. However, with 
no notion of the parent-child hierarchy of the outer 
transaction semantics for 2PC, the container is 
independently determining when to retrieve and 
update the database. In contrast, the flexible 
transaction model is more suitable for integration rules 
since it allows unilateral commit of subtransactions. 
This research has developed techniques for the use of 
the flexible transaction model to support the nested 
execution of integration rules. In the scope of this 
research, we assume a failure semantics where 
individual rules might abort without affecting the 
triggering transaction.  The design of the 
compensating mechanism of the IRules system is a 
research issue that is currently under investigation. 

In the IRules environment, transaction entities are 
execution objects that encapsulate the transactional 
control for rules and application transactions. All 
transaction classes inherit from an abstract class 
IRulesTransaction. The superclass IRulesTransaction 
encapsulates the generic logic of transaction 
execution. There are four sub-classes of 
IRulesTransaction: ISLTransaction, 
TopLevelTransactionForEvent, 
TopLevelTransactionForMethod, and NestedTransaction.  
These four sub-classes are responsible for capturing 
the execution-time behavior of transaction processing 
under different circumstances within the IRules 
system. ISLTransaction implements the transactional 
behavior of an application transaction. The 
TopLevelTransactionForEvent is used to offer 
transactional context to handle responses to internal 
and external events.  The TopLevelTransactionForMethod 
applies to the specific case of a decoupled coupling 
mode when the action of the rule invokes a method of 
an EJB component.  The NestedTransaction class 
encapsulates the execution of a subtransaction created 
as the context of a nested rule.  Since the processing of 
rules is wrapped by transactions, rule nesting behavior 
can be controlled by the execution of parent and child 
transactions. For example, suppose rule Rx triggers 
immediate synchronous rule Ry, and the transaction 
contexts of Rx and Ry are Tx and Ty, respectively.  
Since we want to let Rx suspend until Ry finishes 
(according to the immediate synchronous E-C 
coupling mode), we control this behavior by 
suspending Tx until Ty commits.   

4.3 Transactional Support for Wrappers 
and Rule/Method Synchronization 

In the immediate synchronous coupling mode, the 
triggering transaction suspends while the triggered 
rule executes as a subtransaction, so this coupling 
mode results in rule nesting of rules.  In this research, 
the suspension of transactions in a distributed 
environment is supported by the design of  the IRules 
wrapper.   

Figure 8 shows the structure of an IRules wrapper. 
A black-box bean may have a specific method, such as 
m1(param1,param2).  IRules builds a property bean for 
each black-box bean to store external relationships 
between distributed components, as well as extents, 
derived attributes, and stored attributes for each 
component. A property bean has methods to provide 
the above functionality.  A detail description of the 
property wrapper can be found in [10].   

There is a proxy bean in the IRules wrapper 
structure that interfaces with clients.  A proxy bean is 
responsible for generating method events, passing 
transaction contexts, and handling the suspension of 
current execution.  A proxy bean has the same 
methods as the black-box bean, as well as a 
corresponding method for every method provided by 
the property bean and the black-box bean.  For 
example, as shown in Figure 8, the proxy bean has a 
method m1(param1,param2) that is the same as the black-
box bean. So any client that is unaware of the IRules 
system can still use the black-box API to access the 
purchased component.  The proxy bean also has the 
m1(param1,param2,transactionId) method, which has the 
same name as the corresponding method in the black-
box bean.  In addition to the method parameters of the 
black-box bean, every method in the proxy bean has a 
parameter named transactionId.  The transactionId 
parameter is used to pass transaction contexts during 
execution time in the IRules system.  Similarly, the 
proxy bean has the m2(para1,transactionId) method 
responding to m2(para1) of the property bean to pass 
transaction contexts.  When there is method invocation 
from clients to a proxy bean, the proxy bean will 
delegate the invocation to the corresponding method 
of the property bean or the black-box bean. 

 

Property Bean
m2(para1)

Black-Box Bean
m1(param1,param2)

Proxy Bean
m1(param1,param2)
m1(param1,param2,transactionId)
m2(para1,transactionId)

 
 

Figure 8: IRrules Wrapper Structure for EJB 
Components 
 
A proxy bean has a three-step logic for event 
generation. The first step is to generate before method 
events, if any such events exist.  When there is a 
method call to the proxy bean, the proxy bean will 
contact the metadata manager to determine whether 
this method call can generate a before method event.  
If it can, the proxy bean generates a method event 
through the Java Message Service (JMS) [42].  Then 
the proxy bean will try to read a semaphore object 
from the synchronization space in JavaSpaces [43]. 
JavaSpaces is a Jini Service that supports the storage 
and retrieval of objects in a distributed environment. 
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The blocking call mechanism of JavaSpaces is used to 
synchronize the execution of a transaction and its 
triggered immediate rules, releasing the suspension of 
the transaction upon the completion of the rule 
processing.  Initially, the semaphore object does not 
exist.  Since the read operation to JavaSpaces is 
blocking, the current transaction suspends at the proxy 
bean.  During this suspension period, the event is 
propagated to the rule manager and the rule manager 
begins to process any rules triggered by the event.  
After processing rules triggered by a before method 
event, the rule manager will put the semaphore object 
into the synchronization space.  Once the semaphore 
object is in the synchronization space, the proxy bean 
can successfully read the object to release the 
suspension of the wrapper.   

The second step of the logic of the proxy bean is 
to call the property layer or the black-box bean to 
execute the method call.  The third step is to generate 
after method events so that rules triggered after the 
execution of the method can be executed.  The logic of 
generating an after event and the suspension for 
immediate synchronous rules is the same as in the first 
step. A more detailed description of the 
synchronization algorithm appears in [10]. 

5 Integration Rule Processing 
Algorithm 

The rule processing algorithm is the logical circuit 
through which integration rules are processed.  The 
algorithm instructs the rule manager in the processing 
of rules at execution time, depending on the 
transactional framework described in Section 4 for 
interaction with EJB components and coordination of 
rule execution with method execution.  In Section 5.1, 
we specify the behavior of integration rule coupling 
modes in the context of cycles and levels of rule 
execution. In Section 5.2, we present the logic of the 
rule processing algorithm.  A specific example of rule 
execution in the IRules environment is presented in 
Section 5.3. A brief summary of a performance 
analysis of the IRules environment appears in Section 
5.4. 

5.1 Specification of Coupling Mode 
Behavior 

The Integration Rule Processing (IRP) algorithm is 
based on the algorithm of the ADOOD RANCH 
project [38], using cycles to control the nested 
execution of active rules. This research has re-
designed the rule execution algorithm for a distributed 
environment, fully supporting the IRules coupling 
modes and transaction processing model. 

Within the IRules environment, integration rules 
are processed according to coupling modes. A rule 
with an immediate E-C mode (either immediate 
synchronous mode or immediate asynchronous mode) 
is scheduled to execute as soon as it is triggered, while 
a rule with a deferred E-C mode is added to the 

deferred rule list that will be scheduled to execute at 
the commit time of the top-level transaction. A 
decoupled rule is executed immediately in a new top-
level transaction, while the transaction of the 
triggering event execution resumes.  

As shown in Figure 9, rule execution occurs in a 
coordinate system in two dimensions: the Cycle 
dimension and Level dimension. Cycle represents the 
logic of deferred rule processing, while Level 
represents the logic of nested rule execution. In Figure 
9, dashed arrows represent immediate rule triggering 
in Levels, while solid arrows represent deferred rule 
scheduling in Cycles.   
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Figure 9: Cycles and Levels of Rule Execution 
 

Each top-level transaction and its subtransactions are 
represented as a coordinate system, formed as a 
Cartesian product of Cycle and Level. A top-level 
transaction tk, as the root of a transaction, is executed 
at Cyclek

0 and Levelk
0 in coordinate system Gk. If an 

event in (Cyclek
0, Levelk

j) triggers an immediate rule, 
the rule will be executed in the same cycle but in 
Levelj+1 as a new subtransaction. As an example, if an 
event e1 in (Cyclek

0, Levelk
0) triggers immediate rules 

r1, r2, and r3, then r1, r2, and r3 execute at (Cyclek
0, 

Levelk
1). Within the same level, rules r1, r2, r3 can 

execute sequentially or concurrently.  The algorithm 
for determining sequential or concurrent rule 
execution is presented in [44].   

If an operation of a top-level transaction (Cyclek
0, 

Levelk
0) triggers a deferred rule, the rule will be 

scheduled to execute at the end of the top-level 
transaction in (Cyclek

1, Levelk
0). In general, if an event 

in Cyclek
i triggers a deferred rule, the rule will be 

executed in Cyclek
i+1.  If there is more than one 

deferred rule at the end of the transaction, the rules are 
executed in sequence.  If an event in Levelk

j  triggers a 
deferred rule, the rule will always be executed in 
Levelk

0 of the next cycle. 
When an event in any (Cyclek

i, Levelk
j) of a 

coordinate system Gk triggers a rule that contains a 
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decoupled action, the decoupled action is executed as 
a new top-level transaction at (Cyclen

0, Leveln
0) of a 

new coordinate system Gn, where Gn and Gk are two 
distinct coordinate systems for rule execution.   

Additional execution procedures apply for the 
execution of immediate asynchronous rules. If an 
event in (Cyclek

i, Levelk
j) triggers a rule with an 

immediate asynchronous E-C mode, the rule will be 
executed in Levelk

j+1 without suspending the execution 
of the operations in Levelk

j. A synchronization point 
that requires the commit of asynchronous rule 
execution exists at this point.  The synchronization 
point is after the last operation of Levelk

j and before 
the commitment of a transaction in Levelk

j, which is 
called the end-Proc stage.  This point allows the 
maximum time interval for the execution of the 
asynchronous rules without delaying the processing of 
the triggering transaction. In the end-Proc state of 
Levelk

j within Cyclek
i, all of the immediate 

asynchronous rules that executed at (Cyclek
i, Levelk

j+1) 
are required to commit for the triggering transaction to 
continue.  At the end of a top-level transaction, after 
all of the asynchronous rules commit, deferred rules 
can be processed.  

 
The above presentation of IRP describes rule 
execution in a two dimensional coordinate system, 
focusing on the logic of rule execution.  At run time, 
rules are executed in a distributed environment, which 
is related to a third dimension – Location of the 
objects accessed by a rule.  An event is generated from 
one location, while the data accessed by a triggered 
rule can exist in multiple locations.  The value of the 
Location depends on which software components are 
involved in the condition and action part of the rule.  
The IRP algorithm instructs the rule manager to 
invoke the IRules object manager to locate the 
position of a component. In a more complicated case, 
the objects accessed by a rule can require the use of 
multiple locations for evaluating the condition and 
performing the action of the rule.   

5.2 Execution Logic of the IRP 
Algorithm 

The IRP algorithm is the core of the rule manager. IRP 
instructs and regulates the execution behavior of the 
rule manager for the processing of application 
transactions and integration rules. In this section, the 
logic of the IRP algorithm is presented using Unified 
Modelling Language (UML) activity diagrams [9]. 

When a user makes a request to the rule manager 
to process an application transaction, the rule manager 
will start an application transaction processor to 
process the request. The processing logic is illustrated 
in Figure 10 for the PROCESS TOP-LEVEL 
TRANSACTION module. There are two sub-component 
modules of the processing: EXECUTE AN APPLICATION 
TRANSACTION and PROCESS DEFERRED RULES, 
which are detailed in Figures 11 and 13, respectively.  
As shown in Figure 10, after EXECUTE AN 

APPLICATION TRANSACTION, the execution arrives at 
the pre-commit state, which is the time for deferred 
rule processing. Then PROCESS DEFERRED RULES is 
executed and the transaction commits. 

The EXECUTE AN APPLICATION TRANSACTION 
module is presented in Figure 11. Before execution of 
the application transaction, the algorithm checks for 
the existence of a before application transaction event.   
If a before event is raised, rules triggered by the before 
event are processed.  Next, the algorithm will execute 
the application transaction.  Since an application 
transaction consists of a set of operations, the 
algorithm calls the EXECUTE OPERATIONS module to 
execute all the operations of the application 
transaction.  After all operations of the application 
transaction have been executed, the algorithm checks 
for an after application transaction event.  If an after 
event exists, rules triggered by the event are executed 
according to different coupling modes.  The EXECUTE 
AN APPLICATION TRANSACTION module uses the same 
algorithm as the EXECUTE OPERATIONS module 
(Figure 12) with respect to rule processing according 
to different coupling modes.  The following paragraph 
provides an explanation of rule processing for 
different coupling modes in the context of the 
EXECUTE OPERATIONS module. 

 
MODULE: PROCESS TOP-LEVEL TRANSACTION

Arrive
pre-commit

state

Commit
transaction

Transaction
begin

EXECUTE AN APPLICATION
TRANSACTION

PROCESS DEFERRED RULES

 
Figure 10: Process Top-Level Transaction 

 
In Figure 12, the EXECUTE OPERATIONS module 
presents the logic of executing a sequence of 
operations for a transaction by iterating through all 
operations. Before execution of any operation, the 
algorithm will check for the existence of a before 
method event. If a before event has been raised, all 
rules triggered by this event will be obtained. The 
current transaction is suspended until the completion 
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of all triggered rules.  The “*[For each rule]” notation 
indicates that the PROCESS A RULE module will be 
started for each rule.  The PROCESS A RULE module is 
illustrated in Figure 14.  These rules can be executed 
sequentially or concurrently.   
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[No rule]
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TRANSACTION PROCESS A RULE

PROCESS A RULE

EXECUTE
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Figure 11: Execute An Application Transaction 
 

Recall that only immediate synchronous rules are 
allowed for before events, so those rules will be 
processed immediately. After the rules with a before 
modifier are processed, the operation is executed as 
shown in Figure 12. The algorithm in Figure 12 
checks for method events raised after the execution of 
the operation. Rules triggered by the after method 
event are obtained. If a rule is decoupled, a new top-
level transaction is started that follows the logic of the 
EXECUTE TOP-LEVEL TRANSACTION module.  If a rule 
is deferred, the rule is added to the deferred list of its 
top-level transaction. If the rule is immediate, the rule 
will be started immediately as a subtransaction by 
invoking the PROCESS A RULE module. In the case of 
an immediate synchronous rule, the current transaction 
cannot continue until the subtransaction joins the 
current transaction. In contrast, the current transaction 
can continue execution in parallel with the execution 
of its immediate asynchronous rules.  At the end-proc 
state, the current transaction will suspend until all 
immediate asynchronous rules finish execution and 
join the current transaction. 



AN INTEGRATION RULE PROCESSING ...  Informatica 30 (2006) 193–212 205 

The PROCESS DEFERRED RULES module is 
presented in Figure 13. Recall from Section 5.1 that 
deferred rules are executed in cycles. For each cycle, 
deferred rules are executed in sequence as described in 
the PROCESS A RULE module of Figure 14.  A 
subtransaction will be created as the child of the 
triggering transaction. For an EA rule, the action is 
executed immediately. The execution of an action 
occurs in the EXECUTE ACTION module. For an ECA 
rule, the condition is evaluated first. If the C-A 
coupling mode is immediate synchronous, the action 
will be executed immediately. In the case of a 
decoupled C-A mode, a new top-level transaction is 
started immediately.  
 
 

Recall that before calling the PROCESS A RULE 
module, the rule was already scheduled according to 
the E-C coupling mode for an ECA rule and the E-A 
coupling mode for an EA rule. So in the PROCESS A 
RULE module, the condition of an ECA rule and the 
action of an EA rule are always executed immediately. 
 
Figure 15 illustrates the logic of the EXECUTE ACTION 
module. The execution of an action invokes the 
EXECUTE OPERATIONS module when the action is in 
the format of a method call.  If the action is in the 
format of an application transaction, the algorithm will 
call the EXECUTE AN APPLICATION TRANSACTION 
module. 
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Figure 12: Execute Operations 
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[No more
Cycle]

[Next Cycle]

Get deferred rule list
from current Cycle

Get a rule from this
cycle

[List not empty]

[List empty]

MODULE: PROCESS DEFERRED RULES

PROCESS A RULE

 
 
Figure 13: Process Deferred Rules    
 

The algorithm has so far illustrated the rule processing 
logic for user requests as a top-level transaction. 
Recall that the other architectural component that can 
cause the rule manager to start top-level transaction 
processing is the event handler. For any internal or 
external event pushed by the event handler, the rule 
manager will handle the event according to the logic 
in Figure 16.  The rule manager gets rules triggered by 
the event, and then processes each rule according to 
different coupling modes. Recall that no rule with a 
before modifier can be raised by an internal or an 
external event, because it is impossible for an active 
system to control when an internal or an external event 
occurs. Similar to the processing of a top-level 
application transaction, once the processing arrives at 
the end-proc stage, asynchronous rules must join the 
triggering transaction. After the pre-commit state, all 
deferred rules are processed. 

Transaction begin

[EA rule]

[ECA rule]

Evaluate condition

MODULE: PROCESS A RULE

[C-A decoupled]

[C-A immediate
synchronous]

Commit transaction

EXECUTE ACTION

EXECUTE ACTION

PROCESS TOP-LEVEL
TRANSACTION

[true]

[false]

 
 
Figure 14: Process A Rule 
 

MODULE: EXECUTE ACTION

EXECUTE OPERATIONS EXECUTE AN APPLICATION
TRANSACTION

[Method] [Application transaction]

 
Figure 15: Execute Action 

5.3 Execution Scenario of an Investment 
Application 

To illustrate the rule processing algorithm, this section 
presents an execution scenario for selling stocks using 
the investment example presented in Section 3.  A 
preliminary version of the scenario from Figures 17-
19 appears in [6] without the notion of cycles and 
levels.  
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MODULE: HANDLE INTERNAL/EXTERNAL EVENT

Transaction begin
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Figure 16: Handle internal/external event 
 

As shown in Figure 17, the application transaction 
clientWantsToSellStock is the request from a user to 
perform the function of placing an order to sell a 
stock. The transaction creates an order to sell a stock 
at a desired price, and then prints a report.  An event is 
generated after this application transaction, triggering 
the integration rule clientWantsToSellStockRule in 
Figure 18.   The integration rule examines the desired 
prices for the stock to be sold and compares it with the 
current price, selling the stock if the condition is 
satisfied.  The action part of the rule executes the 
sellStockOnNewPO application transaction in Figure 17, 
which raises two events.  The first event 
(afterSellStock) is generated after the stock is sold but 
before the end of the transaction, allowing rules to be 
triggered in reaction to each sell operation.  In 
particular, the scenario has an active rule 
stockBuyOnUpdateCash that allows a portfolio to 
exercise pending purchases when sufficient funds are 
available in the user’s account.  The 
afterSellStockOnNewPO event is signaled after the 
action of sellStockOnNewPO is complete to trigger a 

rule billingToAccountOnSell. This rule sends billing 
information to the user. Both of the 
stockBuyOnUpdateCash and billingToAccountOnSell rules 
are shown in Figure 18. 

 
application transaction clientWantsToSellStock(String pnId, 
String portfolioId, String stockId, int numOfShares,float 
desiredPrice, String action, Stock actUpon, Portfolio 
orderedBy) 
tcl newInstance 
{        
set pn [newInstance PendingOrder $pnId $portfolioId 
$stockId $numOfShares $desiredPrice $action $actUpon 
$orderedBy $irulesId]; 
printPendingOrderInfo $pn $irulesId;  
} 
 
application transaction sellStockOnNewPO(String stockId, 
float price, String portfolioId, int numOfShares, 
StockBroker.PendingOrderComponent.PendingOrder pn) 
tcl printSellInfo 
{ 
set session [newInstance PortfolioSessionBean $irulesId]; 
$session sellStock $stockId $price $portfolioId 
$numOfShares $irulesId; 
$pn setStatus "executed" $irulesId; 
printSellInfo $pn $irulesId; 
} 

 
Figure 17: Examples of Application Transactions 

for the Investment Scenario 
 

Figure 19 illustrates the execution scenario that occurs 
as a result of the IRP algorithm. Figure 19 uses a 
notation that is based on UML activity diagrams. 
There are four transactions represented by four 
different swimlanes [45], one for each transaction 
context of the application transactions and rules. We 
use notation such as T1, e1, R11, as the abbreviated 
names of transactions, events, and rules, respectively.  

When a user invokes the clientWantsToSellStock 
application transaction, the transaction manager 
creates a top-level transaction (T1) to process the 
application transaction.  The top-level transaction T1 
executes at (Cycle1

0, Level1
0) in coordinate system G1. 

The clientWantsToSellStock application transaction 
generates an event named afterClientWantsToSellStock 
(e1). The event e1 triggers the rule 
clientWantsToSellStockRule (R11) presented in the 
second column of Figure 19. Because the E-C 
coupling mode of R11 is immediate synchronous, the 
condition of R11 is evaluated immediately. T1 
suspends until R11 completes. The execution of 
immediate rule R11 is within the context of 
subtransaction T11. Because R11 is an immediate rule 
triggered by an event at (Cycle1

0, Level1
0) , the rule is 

executed at (Cycle1
0, Level1

1).  
 

create rule clientWantsToSellStockRule 
event    afterClientWantsToSellStock(pnId,  

     portId, stockId, numOfShares,  
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              desPrice, pnaction, actUpon,  
orderedBy) 

condition immediate 
     when pnaction = "sell" 
     define stockAndPendingOrder as 
     select struct ( stk: s, newPo: pn ) 
      from s in stocks, pn in pendingOrders 
      where pn.id=pnId and pn.actUpon=s  

and desPrice<=s.price 
action  immediate            
              from sp in stockAndPendingOrder 
              do sellStockOnNewPO(stockId,  
              sp.stk.price, portId, numOfShares,  
              sp.newPo) 
  
create rule stockBuyOnUpdateCash 
event      afterSellStock(stockId, price, portfolioId,  

numOfShares) 
condition asynchronous 
               define portfolioOnUpdate as 
               select p 
               from p in portfolios 
               where p.portfolioId=portfolioId and p.cash >  

p.buyThreshold 
action      decoupled 
                from p in portfolioOnUpdate  
                do buyStockOnUpdateCash(p) 
                 
create rule billingToAccountOnSell 
event       afterSellStockOnNewPO(stockId, price,  

portfolioId, numOfShares, pn) 
action      deferred 
                from p in portfolios 
                where p.portfolioId= portfolioId 

do setAccountBillingOnSell(stockId, price, 
portfolioId, numOfShares, p.accountId) 

 
Figure 18: Examples of Integration Rules for the 

Investment Scenario 
 

The condition of R11 is evaluated in the second 
column. If the condition evaluation returns a non-null 
structure containing stocks and pending orders, then 
the action of R11 is performed using the structure as 
input bindings. Because of the immediate synchronous 
C-A coupling mode, the action is executed 
immediately. The action part of R11 is wrapped in a 
subtransaction named sellStockOnNewPO (T11a), which 
has four operations. The second operation sellStock is a 
method that generates a method event afterSellStock 
(e2). The event e2 triggers the rule 
stockBuyOnUpdateCash (R111) in the third column. 
Since the E-C coupling mode of R111 is immediate 
asynchronous, the condition of R111 is evaluated 
immediately. Moreover, the condition evaluation of 
R111 is concurrent with the execution of the triggering 
transaction T11a. Because R111 is an immediate rule 
triggered by an event at (Cycle1

0, Level1
1), R111 is 

executed at (Cycle1
0, Level1

2).  
 

If the condition evaluation of R111 returns a non-null 
set of portfolios, the action of R111 will be performed 
upon the set.  Due to the decoupled C-A coupling 
mode, the action of R111 becomes a new top-level 
transaction named buyStockOnUpdateCash (T2) since 
the action is an application transaction. Since the C-A 
coupling mode is decoupled, the action part of R111 
will be executed in a different coordinate execution 
system G2 at (Cycle2

0, Level2
0). 

 
Once T2 is started in the fourth column, T111 resumes 
and commits. As shown in the second column, when 
the set status and printInfo operations of T11a finish 
executing, T11a is at the end of execution. At this time 
T11a waits until all the triggered asynchronous rules 
join. In this example, T111 joins T11. 

 
As shown in the second column, the completion of 
sellStockOnNewPO generates an event (e3) that triggers 
an EA Rule named billingToAccountOnSell (R112). 
Because the E-A coupling mode of R112 is deferred, 
R112 is scheduled to the end of the top-level 
transaction (T1). Subtransaction T11 finishes execution 
and commits. Because R112 is a deferred rule 
triggered by an event at Cycle1

0, R112 will be executed 
at (Cycle1

1, Level1
0).  

 
In the first column, the commit of T11 releases the 
suspension of T1. Just before T1 commits, deferred 
rule R112 is processed. After R112 finishes executing, 
T1 commits. 

5.4 Performance Analysis of the IRules 
Environment  

The IRules system is a Java implementation that uses 
the BEA Weblogic Server [46] to provide EJB 
components.  The Jini distributed computing 
environment is used as the backbone of the system, 
with IRules architectural components implemented as 
Jini Services. Java Message Service (JMS) [42] 
provides asynchronous event notification for 
communication between the event-signaling 
components and the event-handling components.  
JavaSpaces [43] is used for the storage of metadata.  
The blocking call mechanism of JavaSpaces is also 
used in the synchronization space to synchronize the 
execution of a transaction and its triggered immediate 
rules, releasing the suspension of the transaction upon 
the completion of the rule processing [11]. 

We have evaluated the performance of the IRules 
environment using the OBJECTIVE benchmark [47] 
as the basis for the evaluation.  The OBJECTIVE 
Benchmark was originally designed to identify 
bottlenecks and to evaluate the functionality of an 
active object-oriented database. The OBJECTIVE 
benchmark was adjusted and extended as part of this 
research to apply the benchmark to a distributed 
component integration environment. The full details of 
the performance analysis and how the benchmark was 
adapted to the IRules environment is beyond the scope 
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of this paper and can be found in [44, 48].   The 
evaluation was conducted within the IRules 
environment and has not been applied to any industrial 
environment.  

As a brief summary of the performance evaluation 
process, the system was implemented and evaluated 
using four Windows NT 4.0 computers.  The metadata 
and object manager illustrated in Figure 6 were co-
located on one physical machine, while in two 
different Java virtual machines. The rule manager, 
event handler, and the Weblogic EJB server, also 
illustrated in Figure 6, were each physically located on 

one machines.  The evaluation was conducted using 
four parameters of configuration: 1) the number of 
events, 2) the number of rules, 3) the number of 
application transactions, and 4) the number of 
component instances. The primary focus of the 
evaluation was on four different aspects of the 
execution environment: 1) three phases of active 
behavior (event detection, rule retrieval, and rule 
execution), 2) performance of different coupling 
modes, 3) performance of the rule processor under a 
heavy event load, and 4) the time for event detection 

New
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Evaluate Condition
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sellStock

set Status

printInfo

R111:: Action
T11a: sellStockOnNewPO

R111::
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Figure 19: Execution Scenario of the Investment Application 
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for the different types of IRules events. The primary 
results of the evaluation indicate that: 
1) The decoupled and immediate asynchronous 

modes provide the best performance since they 
allow concurrent execution. The deferred mode is 
the slowest due to the need to schedule rules for 
execution at the end of the top-level transaction. 

2) Execution time is somewhat affected by a large 
number of rules and transactions due to the larger 
amount of metadata that must be searched during 
rule and transaction retrieval. 

3) A heavy event load can cause the rule processor 
to be interrupted to queue events, thus slowing 
down the performance of the rule processor, but 
the performance eventually levels off to a 
consistent execution speed regardless of the event 
arrival load.  

4) Access to EJB components is the primary point of 
slow performance, affecting the time for method 
execution as well as the time for method event 
generation.  A future improvement of the IRules 
system should involve re-design of the wrapper 
structure to reduce the EJB component layers, 
thus reducing the time associated with method 
invocation. 

6 Summary and Future Directions 
This paper has presented the integration rule 
processing algorithm of the IRules environment, with 
supporting descriptions of the rule execution model 
and transaction model. The IRP algorithm illustrates 
an approach for active rule processing in the context 
of distributed component integration, where events are 
used to trigger rules that invoke application 
transactions and methods on components.  The IRP 
algorithm is presented in a form that can be reused in 
other environments for a rule-based approach to 
integration logic, defining the manner in which 
immediate coupling modes can be used together with 
nested rule execution in a distributed environment.  
The IRules integration system allows application 
integrators to specify the integration logic in a 
declarative fashion, which does not require an 
integrator’s low-level knowledge of programming and 
transaction management.  Integrators can focus on 
mediating the interaction between components, rather 
than the technical details of event handling and 
transaction processing.    

It has been a challenging effort to develop a 
distributed rule and transaction processing 
environment such as IRules, since it involves the 
combination of issues such as component autonomy, 
rule distribution, cascaded rule triggering, and 
distributed synchronization.  The implementation of 
the execution environment presented in the paper has 
been completed.  One future direction is to expand the 
environment to support multiple component models. 
The transaction model also needs further investigation 
to address failure in the execution process, especially 
when global transactions execute over different 

component models with heterogeneous transaction 
processing semantics.  These future research 
directions will be explored in the context of Grid 
services for virtual organizations, where a Grid service 
provides a service-oriented view of a component [49, 
50] and the Grid environment forms the foundation of 
the underlying architecture.  
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