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ABSTRACT

Since, for reasons to be examined in alater instalment of this work, the postulates of Euclid do not seem
suited for the purpose, an attempt is made to classify regularities in the observed diffraction of X-rays by
matter in the crystalline state on a ‘ Pythagorean’, or purely numerical basis

Keywords: crystal structure, Yarmolyuk and Kripyakevich’srule.

“1 am quite satisfied if we have the machinery for making predictions,
even if we are unable to understand it clearly” (Einstein, 1953).

INTRODUCTION

It has been shown that in some cases the number
of polyhedra that go to make up the postulated unit
cdl of acrystal, and the number of the cdl’s vertices,
are proportional to the solutions of a simple
Diophantine equation (Aboav, 1997; 1998a). These
solutions do not describe the partition of the cdl into
its differently shaped polyhedra (Aboav, 1998b), though
as we shdl see in a moment a further numerical
assumption makes such a description possible.

Relations depending on arithmetical operations,
like the adding or multiplying of integers, will here
be considered separately from those that depend on
geometrical ones, such as the measurement of length
and angle.

NUMERICAL

Pythagoras's discovery that the interval of 7
octaves is roughly equal to that of 12 major fifths, i.c.
that 2'~(3/2)*, or

22~3° (1)
wherea= 19, b = 12, may be regarded as a borderline
case (x =y = 1) of amore general approximation

2%~3% 2)
where x and y in this instance are integers, one of

which is prime, and the other is either prime, or the
product of 5 (or 7) and a prime number.

A pair of composite numbers, m and n, are now
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defined thus:

m= 2%/2’ €)
and
n=3%/3° (4)

Since these numbers are co-prime, m is not a
multiple of n. Their ratio m/n, here denoted by A, is
equal to (2%/3%)(3%2"). Hence, since 2%~3%, A is
approximately equal to 3%2’, that is,

A~57 (5)

The fraction 1-3°mv2'n, or 1-3"%/2%, which is a
measure of how closdy 2% approximates 3, is here
denoted by the Greek letter « and called the comma:

« = 1-3n/2'm (6)

[Note: In the above-quoted, celebrated instance of
antiquity, where m and n are effectively put equal to
22 and 3° respectively, |«| =1-3%/2" or roughly
V73. Known to musicians as the comma of
Pythagoras, this value of « represents the small but
perceptible interval between such notes as D and C*
played on aviolin.]

50 solutions to the approximate relation (2), here
denoted by [a b]{x y}, arelisted in col. 2 of Table 1,
which shows the relevant values of the co-primes m
and n (col. 3) and of the comma (cal. 4). Solution No.
39, [6 6]{5.5.5 11}, in which x is neither prime, nor
the product of 5 (or 7) and a prime as required, is
exceptionally listed in the table to alow every value
of [f 1 0] from f=1 through f=10 (see Eqg. 10
below) to appear init.
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Table 1. Partition of numbers m n proportional to solutions of ‘ Pythagorean’ approximation 2°x ~ 3%.

Partition coefficients — (657,)  (65) (65,5  (6'.]6]5) (716'/,6]5)
No. [ab]{xV] m n K NN NN, NgN;Ng NgNpNg d e f g h npn,nzng
l

01 [55{233} 23 4 1104 2 2 31 * * % * ok ox 10 001 0031
02 [75]{675.7} 201 35 1/221 1718 26 9 25 2 8 22310 81 017 0 22310
03 [86]{89 31} 178 31 1123 1516 23 8 22 2 7 2209 71 016 0220 9
04 [78]{5.313} 155 27 1126 1314 20 7 19 2 6 217 8 61 015 0 217 8
05 [95]{11 23} 132 23 1131 1112 17 6 16 25 214 7 51 014 0214 7
06 [76]{10919} 109 19 1/238 910 145 13 2 4 211 6 41 013 0211 6
07 [87]{435} 86 15 1151 7 8 11 4 1023 285 31 012 0285
08 [76]{b4741} 235 41 1157 1922 3011 29 210 22712 8 3 035 0 62114
09 [66]{14913} 149 26 1162 1214 19 7 18 2 6 216 8 5 2 023 0413 9
10 [74{711} 63 11 1179 56 83 722 254 21 011 02514
11 [95|{31513} 372 65 1206 2936 4718 46 217 24419 11 7 0 7 4 0142625
12 [67]{103 3} 103 18 1213 810 13 5 12 2 4 2106 32 021 0477
13 [85]{41 43} 246 43 1/232 1924 3112 30 211 22813 75 05 2 0101617
14 [97]{7.1931} 532 93 1/228 4152 6726 66 225 26427 1511 011 4 0223437
15 [75]{10153} 303 53 1264 2330 3815 37 214 23516 8 7 0 7 1 0141722
16 [106){57} 40 7 1301 34 52 421 223 11 010 0223
17 [66]{7.3119} 217 38 L1375 1622 2711 26 210 22412 5 6 1 5 0 1101017
18 [75]{59 31} 177 31 1397 1318 22 9 21 2 8 21910 45 140 18 814
19 [86]{1575.11} 314 55 1414 2332 3916 38 215 23617 7 9 2 7 0 2141425
20 [46]{137 3} 137 24 1438 1014 17 7 16 2 6 214 8 3 4 1 30 16 611
21 [84]{1341} 234 41 1476 1724 2912 28 211 22613 5 7 2 5 0 2101019
22 [97){10755} 428 75 1503 3144 5322 52 221 25023 913 4 9 0 4181835
23 [76]{97 17} 97 17 1540 710 12 5 11 24 296 23 120 14438
24 [88]{7.113} 154 27 1680 1116 19 8 18 2 7 216 9 35 230 2 6 613
25 [96]{67 47} 268 47 1/837 1928 3314 32 213 23015 59 450 4101023
26 [65]{195} 57 10 11216 4 6 7 3 6 2 2 244 12 110 12265
27 [86]{15153} 302 53 /2035 2132 3716 36 215 23417 511 6 5 0 6101027
28 [97]{47 11} 188 33 1/3468 1320 2310 22 2 9 22011 3 7 4 3 0 4 6 617
29 [76]{13123} 131 231/16768 914 16 7 15 2 6 213 8 25 3 20 3 4 412
30 [57]{5413} 205 36 -1/6562 1422 2511 24 210 22212 3 8 530 5 6 619
31 [74]{317.7} 279 49 -1/3968 1930 3415 33 214 23116 411 7 4 0 7 8 826
32 [86]{37 13} 74 13-1/1894 58 94 823 265 13 210 2227
33 [54]{4317} 387 68 -1/1376 2642 4721 46 220 24422 516 11 5 0 11101037
34 [75]{51129} 165 29 -1/1006 1118 20 9 19 2 8 21710 2 7 5 2 0 5 4 416
35 [85|{737.11} 438 77 -1/813 2948 5324 52 223 25025 519 14 5 0 14101043
36 [35]{7.133} 91 16 -1/728 610 11 5 10 24 286 14 310 3229
37 [87]{52917} 290 51 -1/629 1932 3H16 34 215 23217 313 10 3 0 10 6 629
38 [94]{319} 108 19 -1512 712 13 6 122 25 2107 15 410 4221
39 [66]{b5511} 125 22 -1/421 814 15 7 14 2 6 212 8 16 510 5 2 213
40 [107{7.723} 392 69 -1/401 2544 4722 46 221 24423 319 16 3 0 16 6 641
41 [75]{89 47} 267 47 -1/393 1730 3215 31 214 22916 213 11 2 0 11 4 428
42 [86]{715.5} 142 25 -1/371 916 17 8 16 2 7 214 9 17 6 1 0 6 2 215
43 [99]{5.23 3} 460 81 -1/348 2952 5526 54 225 25227 323 20 3 0 20 6 649
44 [55]{537} 159 28 -1/339 1018 19 9 18 2 8 21610 18 710 7 2 217
45 [116]{1131} 176 31 -1/317 1120 2110 20 2 9 218117 1 9 8 1 0 8 2 219
46 [66]{19317} 193 34 -1/301 1222 2311 22 210 22012 110 9 1 0 9 2 221
47 [85]{5.7 37} 210 37 -1/289 1324 2512 24 211 22213 111 10 1 0 10 2 223
48 [64]{29 23} 261 46 -1/265 1630 3115 30 214 22816 114 13 1 0 13 2 229
49 [105]{135.11} 312 55 -1/251 1936 3718 36 217 23419 117 16 1 0 16 2 235
50 [76]{17 3} 17 3 -1y198 1 2 2 1 * * * ¥k 01 1 00 100 2

Since by definition the comma cannot equal zero, numerical reations can, however, be found to depend
relation (2) is necessarily approximate only. Exact  on it by partitioning m and n into a finite number, s,
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of positive integers ms and ng
m=Xgms (7
and
n=ZXgg 8

such that 2mg is a multiple of ng for any value of s,
that is,

mMs = AgNg 9)

where Ag=p or (p+',), p being a positive integer.
The partitions depend on the chosen values of s and
As, but the corresponding values of ng are in general
indeterminate.

Our attention is here confined to partitions for
which s=4, with the aim of determining whether,
from among the solutions of Table 1, there exist
partitions of that kind for which no value of ng is
greater than 3; and, if so, to express the partition of
the remaining solutions in the table in terms of them,
the underlying object being to base the sought-after
partitions on the simplest possible assumptions. To
that end the requisite partition coefficients are
determined as follows.

n is first expressed as the sum of a par of
integers, n; and n, (cal. 5), the chosen values of Ag
needed to express mg being those nearest to A (EqQ. 5),
namdy A, =6, and A, = 5, [(6[5%-)]; while in col.
6 the next nearest pair of values, A; =6, and A, =5:
[(6]B)] is used for the same purpose. The immediate
aim is to identify solutions of rdation (2) for which
no value of ns exceeds 3. As the data show, there are
in this case only two such solutions, hamely [5 5]{ 23
3} and [7 6]{17 3}, listed in the table at Nos. 01 and
50, respectivey, with their values of nsshowninitalics.

Again with the aim of identifying solutions for
which no value of ng exceeds 3, n is next expressed as
the sum of three integers ny, n,, Nz (cols. 7 and 8), the
values of As for col. 7 being the closest to those
already chosen, namely A, =6, A, =5, and A;=5:
[(65",5)]; while for col.8 the values A;=6Y,,
A,=6, and A;=5: [(6Y,)6[5)] are chosen. With the
partition of n into three numbers in this way the
values of ng are in general indeterminate. In the table
therefore, where lack of space does not allow more
than one of the possible partitions to be shown, n, in
col. 7, and n; in col. 8, are given the same, arbitrarily
chosen value 2. It will be seen that for the partition
(6/5",]5) (col. 7) there are no solutions, and that for
the partition (6%,/6/5) (col. 8) there is only one
solution --- [10 6]{5 7}, listed at N0.16 --- for which
no value of nyis greater than 3.
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Finally, by introducing the further, proximate
coefficient, A, =7, into the partition (6Y,/6/5) of
cal. 8, which as we have seen already possesses one
of the required solutions, we obtain the partition
(7/6Y,16/5), in which n is expressed as the sum of four
numbers ng, Ny, ng, and ng. This partition has two
further solutions for which no value of ng is greater
than 3. The components (ny, n,, s, Ny of the three
solutions, namely (003 1), (022 3)and (100 2),
arelisted initalics (Nos. 1, 16, 50) in the last column
of Table1.

These solutions enable the components of n for
the remainder of the column to be expressed as sums
of ther products with positive integers f,g,h, which
are functions of m and n only, thus:

(N +ngtng) = f(1 0 0 2)+g(0 2 2 3)+h(00 3 1) (10)

so that the components of n on the left-hand side of
this identity may be eguated to the sum of the
corresponding products on the right-hand side as
follows:

(11)
n;z = 2g+3h
n, = 2f+3g+h.

Hence
m = 7f
my = 13g
mg = 12g+18h
m, = 10f+15g+5h;
o that
n = 3f+7g+4h
= 3utdy, (12
and
m = 17f+40g+23h
= 17u+23v, (13

where u=(f+g) and v=(g+h). Hence g<u and
g<V. Moreover

m/n = (17u+23v)/(3u+4v)

i.e
u(Bm-17n) = v(23n-4m)
or
ud =ve (14)

where

d=(3m-17n),
and

e=(23n-4m);
so that

d+2e=29n-5m

= 29(3f+7g+4h)-5(17f+4g+23h)



= 2f+3g+h,
from which it follows that
n, = 29n-5m. (15)

The choice of coefficients (7]6",/6]5) thus makes
one of the four numbers n,, namely n,, independent of
the partition, the other three numbers, n, n,, ns, being
in general indeterminate; though, as Egs. (11) show,
they are subject to therestrictions n; < ng, and n, < na.

The following illustration, with Nos. 14, 19, and
27 taken as examples (Table2), shows how the
numbers d, e of Eq. (14), which are listed for each of
the solutions of Table 1 (col.9) facilitate the
evaluation of f, g, h (col. 10).

Table 2. Some solutions for nos. 14, 19, 27 of Table 1.

no. 14 no. 19 no. 27
d 15 7 5
e 11 9 11
Eq(14) 15u=11v 7u=9v 5u=11v
Sol" u=11,v=15 u=9v=7 u=11,v=5
fgh 0114 270 650
Table 3. Complete solutions for nos. 14, 19, 27 of
Table 1.
no. 14 no. 19 no. 27
f g h f g h f g h
0 11 4 2 7 0 6 5 0
1 10 5 3 6 1 7 4 1
2 9 6 4 5 2 8 3 2
3 8 7 5 4 3 9 2 3
4 7 8 6 3 4 10 1 4
5 6 9 7 2 5 11 0 5
6 5 10 8 1 6
7 4 11 9 0 7
8 3 12
9 2 13
10 1 14
11 0 15

Whereas a single trio of numbers f, g, h as shown
in the bottom line of Table 2 represents for these three
examples a possible solution of the indeterminate
equation (14), to obtain the complete solutions the
trios with all possible values of g, in this case those
for which 0<g<1l, 0<g<7, and 0<g<5
respectively (Table 3), have to be taken into account.
These solutions are set out in full in Table 3, beginning
in each case with the trio for which g has its largest
value, i.e. for which g=11, 7, or 5, respectively, and
f or h=0. Since for lack of space not all values of f,
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g, h like those shown in Table 3 can be included in
Table 1, only those for which f and/or h= 0 are listed.
From these numbers and Eq. (10) a required partition
of n (col. 11) can be obtained for each entry in the
table, thus realizing thefirst aim of this investigation.

There remains to be seen, however, whether such
a purdy numerical system can contribute to the
setting up of an axiomatic framework on which to
base an adequate description of Nature.

PHYSICAL

The aspect of Nature to be considered here is the
behaviour of light (or, more generally, of radiation) in
the presence of matter in the crystalline state, the
example chosen being the scattering of X-rays by
some terahedrally close-packed alloys of the
transition metals. Shoemaker and Shoemaker (1986)
listed experimental data for 20 such alloys, some
metrical properties of whose crystal structure have
already been considered (Aboav, 1998h). Our attention
is now briefly directed to the topology of the structure.

In Table 4, cols 2 and 3 are the same as cols 10
and 11 of Table 1. In col. 4 are listed the alloys
investigated by Shoemaker and Shoemaker, while p,
g, r, X, the numbers of 16-, 15-, 14-, and 12-hedra
(called P, Q, R, X, respectively) per unit cdl of the
alloysaregivenin cal. 6.

For each of these unit cdls Yarmolyuk and
Kripyakevich (1974) found an empirical formula for
P.Qq RiXx expressible as

Pp Qq RrXx — (PX2)i(Q:R2X3)j(RsX)k

where i, j, k, whose values for the alloys of
Shoemaker and Shoemaker are listed in col. 5 of
Table 4, are integers. This apparent restriction on the
relative values of p qr x is herereferred to as therule
of Yarmolyuk and Kripyakevich. As the following
fact suggests, the rule being a numerical one may not
require a geometrical explanation.

(16)

From the above table it will be seen that to each
value of [i j k] there corresponds an identical value of
[fgh], and to each value of [p g r x] an identical
value of [ n, ng ng]. When these identical numbers
are placed in alignment, there appear gaps in the
entries of cols. 4-6, which once again suggest that the
experimental data may be incomplete (Aboav,
1998b). (Not all the values of [i j k] are equal to those
of [f g h] shown in Table 1, those of Nos. 14, 19, and
27 equalling instead the values shown in italics in
Table 3, which for lack of space could not, as we
have already seen, beincluded in Table 1.).
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Table 4. Relation of numerical solutions of Table 1 to the crystal structure of some tetrahedrally close-packed
alloys (Shoemaker and Shoemaker, 1986).

No. f g h N N, N3 Ny Alloy i i k p ¢ ro x
01 0 0 1 O 0 3 1 CcAl O 0 1 0 0 3 1
02 o 1 7 0 2 23 10
03 0 1 &6 0O 2 20 9
04 0 1 5 0O 2 17 8
05 0 1 4 O 2 14 7
06 o 1 3 0 2 11 6
07 o 1 2 0O 2 8 5 CcfFe 0 1 2 0 2 8 5
08 0 3 5 0O 6 21 14
09 o 2 3 0 4 13 9
10 O 1 1 0 2 5 4
11 o 7 4 0 14 26 25
12 O 2 1 o 4 7 7
13 0 5 2 0 10 16 17
14 0 11 4 0 22 34 37 MRS 6 5 10 6 10 40 37
15 o 7 1 0 14 17 22
16 0O 1 O o 2 2 3 ZTA 0 1 0 0 2 2 3
17 1 5 O 1 10 10 17
18 1 4 O 1 8 8 14
19 2 7 0 2 14 14 25 MnFeS 7 2 5 7 4 19 25
20 1 3 0 1 6 6 11
21 2 5 0 2 10 10 19
22 4 9 0 4 18 18 35
23 1 2 0 1 4 4 8
24 2 3 O 2 6 6 13
25 4 5 0 4 10 10 28
26 1 1 0O 1 2 2 5
27 6 5 O 6 10 10 27 MrCtCo 8 3 2 8 6 12 27
28 4 3 O 4 6 6 17
29 3 2 O 3 4 4 12
30 5 3 O 5 6 6 19
31 7 4 O 7 8 8 26
32 2 1 o0 2 2 2 7 MoCo 2 1 0 2 2 2 7
33 11 5 0O 11 10 10 37
34 5 2 0 5 4 4 16
35 14 5 O 14 10 10 43
36 3 1 © 3 2 2 9
37 10 3 O 10 6 6 29
38 4 1 O 4 2 2 11 VNIS 4 1 0 4 2 2 11
39 5 1 O 5 2 2 13
40 6 3 O 6 6 6 4
41 11 2 O 11 4 4 28
42 6 1 O 6 2 2 15 VCoS 6 1 0 6 2 2 15
43 20 3 O 20 6 6 49 MgZznAl 20 3 0 20 6 6 49
44 7 1 O 7 2 2 17
45 8 1 O 8 2 2 19
46 9 1 O 9 2 2 2
47 10 1 O 10 2 2 23 MnCoS 10 1 O 10 2 2 23
48 13 1 O 13 2 2 29
49 6 1 O 6 2 2 35 Mgzn 16 1 0 16 2 2 35
50 1 0 O 1 0 0 2 Mgzn 1 0 O 1 O O 2

It is remarkable that, despite their different origin,  the same topological property of a crystal’s structure.
relations (2) and (16) should furnish identical groups  This identity is not to be expected, since ration (2)
of numbers, ether of which can be used to describe  has nothing to do with the notions of geometry that
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play a seemingly essential part in our customary
interpretation of the X-ray photograph of a crystal. A
doubt therefore arises as to whether this phenomenon
requires such notions for its description.

Such doubts are not new: indeed, a century-and-a-
half has dapsed since Riemann (1854), recognizing
that the rules of everyday geometry do not necessarily
apply in cases where, as for example in Hally's
(1784) ‘molecular’ picture of a crystal, the scale is so
reduced that the notions of the solid body and the ray
of light are no longer valid, expressed the opinion:

“.6 ist aso sehr wohl denkbar, dass die
Massverhdltnisse des Raumes im Unendlichkleinen
den Voraussetzungen der Geometrie nicht geméss sind,
und dies wirde man in der That annehmen muissen,
sobald sich dadurch die Erschenungen auf einfacherer
Weise erkléren liessen.” (Riemann, 1854).

(“....it is thus quite conceivable that relations of
size on an infinitesimally small scale are not in
accord with the postulates of geometry, and this one
would indeed have to assume, as soon as it allowed
the phenomena to be more simply accounted for.”)

This doubt, which haunts us still, is not easy to
alay; for, in seeking to be rid of it, not only are we
faced with the task of finding suitable assumptions to
take the place of those laid down in the Elements, but
history has l€ft little or no trace of the discoveries and
decisions known to have been made by Pythagoras
and his successors in the 2 centuries before the

174

ABoAV DA: Algebraic theory of crystal structure

publication of that great work, discoveries and
decisions which must have played no small part in
determining the path Euclid was eventually to follow
and which would help us immeasurably in our
present task, could we but know what they were. All
we can do, alas, is to guess what they may have been
and try to reconstruct the route by which Euclid
arrived at his assumptions, an undertaking we venture
to hazard in the next instalment of this work.

(to be continued)
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