UDK621.3:(563+54+621+66), ISSN0352-9045 Informacije MIDEM 32(2002)3, Ljubljana

EXPLOITING SYMBOLIC MODEL CHECKING FOR SENSING
STUCK-AT FAULTS IN DIGITAL CIRCUITS

Ales Casar, Zmago Brezocénik, Tatjana Kapus
University of Maribor, Faculty of Electrical Engineering and Computer Science,
Slovenia

Keywords: stuck-at faults, symbolic model checking, automatic test pattern generation, testing, CTL formulas,
finite state machine, binary decision diagrams

Abstract: This paper presents algorithms for automatic test pattern generation for discovering stuck-at faults in
sequential digital circuits or proving that there are no stuck-at faults in the given circuit. A circuit is represented
as a finite state machine. Properties for stuck-at faults expressed with CTL formulas which are valid in the circuit
with stuck-at faults and generally not valid in the good circuit are generated. Validity of the formulas is checked by
symbolic model checking, and for invalid formulas counterexamples are constructed which guide the circuit to the
states which prove the absence of stuck-at faults. Test patterns guide the circuits exactly as the counterexamples.
Experimental results for a set of benchimark circuits together with the time and space complexity analysis of the

algorithms are also given.

Uporaba simbolichega preverjanja modelov pri zaznavanju
zaticnih napak v digitalnih vezjih

Kljuéne besede: zaticne napake, simboli¢no preverjanje modelov, avtomatsko generiranje testnih vzorcey, testi-
ranje, formule CTL, konéni avtomat, binarni odlocitveni grafi

Povzetek: V Clanku predstavljamo algoritme za aviomatsko generiranje testnih vzorcev, s pomocjo katerih pri
sekvenénih digitainih vezjih odkrivamo zati¢ne napake oziroma pokaZzemo, da zatiénih napak v danem primerku
vezja ni. Vezje predstavimo kot koncni avtomat. Za zati¢ne napake generiramo lastnosti v obliki formul CTL, ki so
veljavne v vezju z zaticnimi napakami in praviloma neveljavne v dobrem vezju. S simboli¢nim preverjanjem mode-
lov preverimo veljavnost formul in za neveljavne formule skonstruiramo protiprimere, s katerimi vezje pripeljemo v
stanja, ki dokazejo odsotnost zaticnih napak. Testni vzorci so sestavljeni tako, da izvajanje vezja vodijo po poti pro-
tiprimerov. Teoreti¢ne raziskave so podkrepliene z eksperimentalnimi rezultati. Prikazana je tudi analiza ¢asovne

in prostorske zahtevnosti.

nite state machine (FSM). FSMs are represented as
Boolean functions and these with binary decision di-
agrams (BDDs). Properties of FSMs which are to be
checked by symbolic model checking are expressed
with CTL formulas.

1 Introduction

Testing of newly produced digital circuits is a neces-
sity. Since circuits are becoming larger and larger, it is
impossible to perform exhaustive testing of the circuits

nowadays. Therefore, a suitable trade-off between ex-
haustive testing and speed of testing (length of test
patterns) should be made. We tend to discover (or
prove their absence) as many circuit faults as possi-
ble but at moderate test pattern length. Many different
faults can occur in a circuit, but stuck-at faults are the
most common ones. Hence, we introduce the method
which will find all possibie single stuck-at faults in the
circuit or prove that there is no stuck-at fault present in
the circuit.

Because enumeration methods [10] do not per-
form well with large circuits, we propose to use sym-
bolic methods [5, 6]. A circuit is represented as a fi-

For every possible single stuck-at fault, a property
which is valid in the circuit with that stuck-at fault and
generally invalid in the good circuit can be generated.
When the property is invalid, a counterexample can be
found. If the test pattern guides the circuit exactly as
the counterexample, the absence of the treated stuck-
at fault is proved if testing with this test pattern ends
successfully.

We neither deal with other types of possible faults
nor with multiple stuck-at faults in this paper. Practice
suggests that also multiple stuck-at faults can be dis-
covered in most cases, but we did not prove that. A
mentionable limitation of the proposed method is also

171

Informacije MIDEM 32(2002)3, str. 171-180

A. Casar, Z. Brezoénik, T. Kapus:Exploiting Symbolic Model

Checking for Sensing Stuck-at Faults in Digital Circuts

the necessity of the insight into the circuits (logic val-
ues stored in flip-flops).

in Section 2 we briefly show how to represent FSMs
with BDDs, describe searching of reachable states,
and symbolic model checking in CTL. Section 3 de-
scribes the methods of searching counterexamples
and witnesses. The main part of the paper is Section 4
where we present algorithms for generation of proper-
ties for stuck-at faults. Experimental results for bench-
mark circuits with time and space complexity analysis
are given in Section 5. We conclude with some discus-
sion and plans for future work.

2 Preliminaries

Binary decision diagrams (BDDs) are compact
canonical representations of Boolean functions [2].
BDDs can be used for representing and manipulating
sets if we represent sets by means of their character-
istic functions [5, 6].

A deterministic finite state machine (FSM) M is a
sixtuple M = (%,8,0,4, A, s0), where ¥ is a finite set
of input symbols, S a finite set of states, O a finite set
of output symbols, §: S x & — S a state transition
function, A: & x & — O an output function, and sp € S
an initial state.

If we want to realize a FSM by a digital circuit, we
have to encode the sets S, &, and O by binary symbols
(e.g. 0 and 1). States are encoded by state variables.
At least n = [log, |S|] state variables, m = [log, |%]]
input variables, and [= [log, |O[] output variables are
needed. Let Y, X, and Z represent the set of state
variables, the set of input variables, and the set of out-
put variables, respectively.

Once the states and the input symbols of the cir-
cuit are encoded, next state variables are functions of
present state variables and input variables. We denote
next state variables by an added prime (') and write a
transition function of a state variable y; as

?Jg:51’(1}0,2,/1,---,yn—lal‘o-,ﬂcl,-~-7$m—1) (1)

fori = 0,1,...,n — 1. We rather introduce transition
relations

T = yi > 51’(2/07'!/1, v Yn—1,20, Ty - ~ammv~1)~ (2)

Namely, relations have much greater expressive power
than functions {3]. Transition relations T; can be com-
bined by taking their conjunction to form the monolithic
transition relation T = Ty - Ty - ... Tp1. After the en-
coding, output variables are functions of present state
variables and input variables. We write
Zp = A'L‘(Z/O’ylv ey Yn—1, 20, L1y - e amm—-l) (8)
fori=0,1,...,0— 1.
Let us very briefly show how we search reachable
states of a FSM [1, 5, 6]. Let S; denote a set of states

172

reachable in at most i steps. Sy represents a set of ini-
tial states. In our case we have Sy = {so}. In general,
a set of states reachable in at most ¢ steps is repre-
sented by

S; = Si_lu{s' | Ja3sla € TAs € S;_1N6(s,a) = s']} :
(4)
We continue with this procedure until in a step & no
new state is reached. In any case, this happens sooner
or later, because we deal with FSMs, where the set
of states S is finite. Then, S, = Sy_1 is a set of all
reachable states.

The logic which we use to specify properties of
FSMs is a propositional temporal logic of branching
time, called Computation Tree Logic — CTL [9]. In
this logic, each of the usual future time operators of
linear-time temporal logic (G — globally or invariantly,
F — sometimes in the future, X — next time, U —
until) must be immediately preceded by path quantifier
A (for all computation paths) or E (for some computa-
tional path). We thus obtain eight different CTL opera-
tors: AG, EG, AF, EF, AX, EX, AU, EU [1,5, 6].

CTL formulas are constructed from atomic proposi-
tions using Boolean connectives and CTL operators.
In the case of circuit verification, the set of atomic
propositions is equal to the set) of state variables of
the circuit.

3 Searching for Counterexamples and
Withesses

One of the most important extensions of symbolic
model checking is the ability to search counterexam-
ples for some invalid and witnesses for some valid CTL
formulas [8]. Counterexamples explain why a given
CTL formula is invalid in a FSM, and witnesses show
why a given CTL formula is valid.

3.1 Counterexamples

Counterexample is a path in the computation tree
which shows why a given CTL formula is invalid. Ac-
tually, this is evident from the last state on the path,
but FSM must be guided to this state to demonstrate
invalidity of the formula.

It is impossible to find counterexamples for all invalid
formulas. According to the definition of CTL formu-
las [5], they are constructed from atomic propositions,
Boolean operators, and CTL operators. Let us look
how these three constructs affect searching of coun-
terexamples.

Searching of a counterexample for an atomic propo-
sition is a ftrivial task. Such a formula represents
the characteristic function of the set of states where
the formula is valid. Because counterexamples are
searched only for invalid formulas, it suffices to check
if the current state of the FSM is not in that set.

A. Casar, Z. Brezocnik, T. Kapus:Exploiting Symbolic Model

Checking for Sensing Stuck-at Faults in Digital Circuts

Informacije MIDEM 32(2002)3, str. 171-180

Although there are 16 binary Boolean operators, all
of them can be expressed by negation, conjunction,
and disjunction. Searching for a counterexample for
negation of a function means the same as searching
for a witness for that (non-negated) function. There-
fore, searching of a counterexample for f is equivalent
to searching of witness for f. Searching of witnesses
will be described in Section 3.2.

When dealing with conjunction, a counterexample
for a formula of the form f-g should be found. Because
the formula is invalid (counterexamples are searched
only for invalid formulas), at least one of the functions
f or g is invalid. To find a counterexample for the whole
function f - g, it is enough to find either a counterexam-
ple for f or a counterexample for g. Of course, in the
case one of the formulas f or g is valid, we should find
a counterexample for the other one, which is invalid.

It is not possible to find a counterexample for dis-
junction in all cases. If a formula of the form f + g is
invalid, then both formula f and formula g are invalid.
To prove that, one should prove both simultaneously.
Generally this is impossible to do with just one coun-
terexample, but there are exceptions. If one of the
formulas f or g is of such a kind that the counterex-
ample for it is not a path but just a single state (this
happens when a formula does not contain any CTL
operators), then also a counterexample for disjunction
can be found. We search a counterexample for the
other formula and at the end also check that the cur-
rent state is not in the set of states which our formula
without CTL operators is the characteristic function for.

Let us now look at another interesting exception.
Triple Boolean operator ite(f, g, h) can be written also
as f-g+ /- h. If f represents a Boolean formula (with-
out temporal operators) in such a construction, then
exactly one of the disjunctives is invalid because of f
in every state. There are two cases:

1. Formula f is valid in the given state. Operand f-h
is invalid then and we have to show that operand
f-gis alsoinvalid. It is known that factor f is valid,
therefore we have to show that factor g is invalid.
Actually we have to search for a counterexample
for g.

2. Formula f is invalid in the given state. In that
case operand f - g is invalid because of f, and
the only thing we have to prove is that operand
7 his also invalid. Because f is valid here, h is
invalid accordingly. Therefore, a counterexample
for h should be searched for.

After explaining Boolean operators, let us devote
now to CTL operators. Counterexamples can be
searched only for CTL operators with universal path
quantifier A. Namely, only these operators state that
on every computation path a formula is valid, and a
counterexample is one computation path where this
formula is invalid.

AX f states that formula f is valid in all successors
of the present state. Problem of searching a coun-
terexample for an invalid formula of such a kind is to
find a successor of the present state where formula f
is invalid. When an adequate successor is found, a
counterexample for formula f should be found.

According to formula AF f, every computation path
from the present state should lead to a state where
formula f is valid. If this is not true, we have to find a
path where we will never reach a state where formula
f is valid. Since computation paths are infinite, how at
all can we show that something never happens along
a given path? Paths are infinite indeed, but they lead
over finite set of states. Therefore, at least one state
on the path must occur repeatedly. When an already
visited state is reached, the path from this state back
to itself can safely be repeated infinitely often. Actu-
ally, the path ends with a cycle. It is not necessary that
the initial part of the path is part of the cycle. In that
case, the path is composed of the prefix and the cy-
cle as shown in Fig. 1. It is enough to find a prefix

Figure 1: A path with prefix and cycle

and a cycle to find such a path. When we return to an
already visited state at traversing the states, we have
found a counterexample as a proof that formula AF' f
is invalid indeed. Formula f must be invalid in every
state along that path, therefore, counterexamples for
itself should be found in every state on that path. How-
ever, those “nested” counterexamples must not go off
the path, since our computation path would transform
to a computation tree otherwise. To avoid such situa-
tions, formula f should not contain any CTL operators.

Formula AG f says that on all the paths, formula f
is valid all the time. In order to prove its invalidity, a
path leading to a state where formula f is invalid has
to be found. As with operator AX, from there on a
counterexample for formula f has to be found in order
to confirm its invalidity in the last state of the path for
AG f.

The last CTL operator containing the universal path
quantifier is A [f U g], which says that on all the paths,
formula f is valid until a state where formula g is valid.
In order to refute validity of formula A [f U ¢], either an
infinite path on which formula g is never valid or a path
which leads to a state where formula f is invalid and
on which formula g is never valid has to be found. The
case of the infinite path is similar to the counterexam-
ple construction with operator AF — only a prefix and
a cycle terminating the infinite path have to be found.
As in the case of AF, formula g must not contain any
CTL operators. If one decides to search for a path
leading to a state where formula f is invalid, one must,

173

Informacije MIDEM 32(2002)3, str. 171-180

A. Casar, Z. Brezoénik, T. Kapus:Exploiting Symbolic Model
Checking for Sensing Stuck-at Faults in Digital Circuts

of course, continue with a counterexample for f.
3.2 Witnesses

Witness is a path in the computation tree which in-
dicates why a CTL. formula considered is valid. In fact,
the validity is evident from the last state of the path, but
the FSM has to be led to that state in order for the path
to demonstrate the validity.

As with counterexamples, witnesses cannot be
found for every valid CTL formula. Since witnesses
are in a sense dual to counterexamples, problems oc-
cur exactly with the CTL formulas dual to those CTL
formulas, validity of which cannot be demonstrated by
counterexamples. We now make an overview of the
structural elements of CTL formulas and their influence
on searching of witnesses.

Searching of a witness for an atomic proposition is
in fact the same as searching of a counterexample.
The difference is that witnesses are searched for valid
formulas. Therefore, it must be checked if the current
state of the FSM is in the set determined by the charac-
teristic function in the form of the given atomic propo-
sition.

Searching of a witness for negation of a function
means the same as searching of a counterexample for
the {(non-negated) function. It follows that searching of
a witness for f is equivalent to searching of a coun-
terexample for f. Searching of the counterexamples is
described in detalil in Section 3.1,

Another example is searching of a witness for a dis-
junction f 4+ ¢g. Since the formula is valid (as witnesses
are searched only for valid formulas), at least one of
the functions f and g is valid. In order to find a witness
for function f + g, it therefore suffices to find either a
witness for f or a witness for g. If one of the formulas
is invalid, a witness for the valid one has to be found,
of course.

With counterexamples, there were some problems
with disjunction, whereas due to duality of witnesses,
similar problems now occur with conjunction, which is
dual to disjunction. It is not always possible to find a
witness for conjunction. If a formula of the form f - g
is valid, then formula f and formula g must be valid.
In order to demonstrate that, validity of both should be
demonstrated simultaneously. As a witness must be
a path, which must not have branches, this is gener-
ally not possible. Exceptions, however, exist also in
this case. If one of the formulas f and g is such that
its witness is a path containing just one state (this is
the case when the formula does not contain any CTL
operators), then a witness for the conjunction can be
found as well. A witness for the other formuia has to
be found, and at the end, it has to be checked if the
current state is also in the set of states whose charac-
teristic function is the formula without CTL operators.

Finally, let us look at the CTL operators and their
influence on searching of witnesses. Witnesses can
only be found for the CTL operators containing exis-

174

tential path quantifier E. They say that there exists a
computation path where a formula is valid, and a wit-
ness is simply one path which confirms the existence
and validity of the formula.

Formula EX f says that there exists a successor of
the current state where formula f is valid. In order to
find a witness for a valid formula of this form, a succes-
sor of the current state where formula f is valid has to
be found. A witness for f must then be found from the
successor state on.

Formula EF f says that there exists at least one
path leading to a state where formula f is valid. In or-
der to prove its validity, a path leading to such a state
has to be found and from there on, a withess for for-
mula f has to be found.

Formula EG f says that there exists an infinite path
on which formula f is valid all the time. We already
know how to deal with infinite paths. A prefix and a cy-
cle at the end of an infinite path have to be found, such
that formula f is valid in every state of the path. When
during passing from state to state, an already visited
state is reached for the first time, the searching is fin-
ished. Since validity of formula f must be confirmed
by the withess along the whole path, which must not
be abandoned, the confirmation is possible only if for-
mula f does not contain any CTL operators.

We already know that E [f U g] says there exists a
path where formula f is valid until a state is reached
where formula g is valid. In order to find a witness, one
of such paths must, therefore, be found. Formula f
must again not contain any CTL operators, and starting
from the last state, a witness for the validity of formula
g in that state must be found.

3.3 Realization

In order to implement symbolic model checking, we
implemented only resolution of three CTL operators,
EXf, E[fUyg|, and EG f, whereas the other five
were expressed with them [5]. The same approach can
be followed to realize searching of counterexamples
and witnesses. For unrealized operators the searching
can be realized as follows:

searching of a counterexample for AX f is re-
placed by searching of a witness for EX f,

searching of a witness for EF f is replaced by
searching of a witness for E{1 U f],

searching of a counterexample for AFf is re-
placed by searching of a withess for EG f,

searching of a counterexample for AG f is re-
placed by searching of a witness for E [1U f],

searching of a counterexample for A[f U g] is
replaced either by searching of a witness for
E[gU f-3] or by searching of a witness for
EG3.

A. Casar, Z. Brezo&nik, T. Kapus:Exploiting Symbolic Model

Checking for Sensing Stuck-at Faults in Digital Circuts

Informacije MIDEM 32(2002)3, str. 171-180

To find out if formula EX f is valid in a given state s
using symbolic model checking, we start by the set Sy
of states in which formula f is valid. This set will also
be used to find a witness for validity of formula EX f
in state s, which can be done if it is found that formula
EX f is valid in state s. In order to find this witness,
we have to find a successor of state s in which formula
f is valid. In accordance with formula (4), the set of all
successors of state s is calculated as follows:

§' = {5' | Jala € £ A (s, a) = s']} . 5)

In the set &', we have to choose a successor of s in
which formula f is valid. It follows that state s’ must
not only be in set &', but also in S¢, ie. s € &' NSy
must hold. This is illustrated in Fig. 2. The witness for

Figure 2: Witness for EX f

formula EX f in state s is, therefore, composed of two
states, (s, '), and is found in one step.

When checking validity of formula E[f U gl, we
start with the set S, of all states where formula g
is valid. By gradually adding all such predecessors
where formula f is valid, we obtain the set of all states
where formula E [f U g] is valid. Let Sy be the set of
all states where formula f is valid, and let S* denote
the set of all states obtained until the i-th step of the
procedure, the step included. Note that S = Sy. The
situation is shown in Fig. 3. The sets have the follow-

O Iy N g
SY Sw S S

Figure 3: Set of states at checking formula E [f U g]

ing characteristics:
1. 8t SpuS,fori=0,1,...,v.
2. Sl Sifori=1,2,...,v.

8. S\ S £ Pfori = 1,2,...,v. For all states in
this set difference there exists a path to a state in
SO of length i and no shorter path exists to any of
the states in S°.

4, 8 is the first set on the construction path (and
also the smallest set) which contains state s.

5. For 8%, there does not exist any successor in
which formula f would be valid but would not al-
ready be in §*.

In order to find a witness for formula E [f U g] in a state
s, we must find a path from the state sinthe set S¥ to a
state in the set S°. A path of the form (s, 5w _1,..., 50)
will contain exactly w steps?, where for all states, s; €
St and s, = s. It is clear that states from the sets
cannot be chosen arbitrarily. For any pair of states s;
and s;_1, a transition from s; to s;_; must exist. We,
therefore, choose in each step a state s;_; which will
also be in the set of all successors of state s;. If the set
is denoted by S¥', then we can write s;_; € Si=' N SY.
An example for w = 3 is shown in Fig. 4.

Figure 4: Witness for E[f U ¢]

When checking a formula EG f in a state s, we cal-
culate the set of all states where the formula is valid.
Let the set be denoted by S. From every state in this
set there leads an infinite path where f is valid all the
time. Since any state on such a path is also a starting
state of an infinite path where formula f is valid all the
time, all the states on the path are in the set S and the
complete path runs within §. The construction of a wit-
ness begins in the state s. in the i-th step we choose a
state from the intersection of the set S;_’, which con-
tains all successors of the current state s;_;, with the
setS. The general construction step is shown in Fig. 5.
If the intersection contains some already visited state,

Figure 5. General construction step of the witness for
EGf

we choose such a state and the construction of a wit-
ness is ended; otherwise, we choose an arbitrary suc-
cessor and continue the procedure. The algorithm will
end anyway, as the set S contains a finite number of
states. We will reach an already visited state in the |S]-
th step at the latest. For a path (s¢,s1,..., S0, -, Sw)
which is a witness, the following is true:

® S0 =8,

10f course, a longer path could also serve as a witness. It is,
however, useful to have as short witnesses and counterexamples as
possible.

175

Informacije MIDEM 32(2002)3, str. 171-180

A. Casar, Z. Brezodénik, T. Kapus:Exploiting Symbolic Model

Checking for Sensing Stuck-at Faults in Digital Circuts

there exists a transition from state s;..; to state s;
fori=1,2,...,w;

o 54 =8y, Wherev e {0,1,...,w—1};

si#sjford,j=0,1,...,w—1and¢# j

w < |8

The complete witness and the last construction step
are shown in Fig. 6.

Figure 6: Witness for EG f with last construction step

4 Generation of Properties for Stuck-at
Faults

4.1 Stuck-at Faults

Digital sequential circuits consist of flip-flops, logic
gates, and lines between them. Generally, some lines
lead to the circult, i.e. they are inputs, whereas some
are outputs, which lead out of the circuit. Such a cir-
cuit can be locked upon as a realization of a binary en-
coded FSM. Every flip-flop has its state variable, circuit
inputs are the inputs of the FSM, and outputs are also
its outputs. The state transition function is determined
by logic gates and lines which connect them with the
flip-flops, and similarly for the output function.

For example, let us look at an arbiter which chooses
the request with the highest priority from among the
three requests on its inputs. The arbiter is shown in
Fig. 7. The smaller the number of a requesting device,
the higher its priority. State variables of the FSM real-
ized by the arbiter in Fig. 7 are I Ny, IN;, INy, OUTy,
OUT,, and OUT,. lts inputs are REQq, REQ:, and
REQ,, and its outputs are GRy, GRy, and GRy. Here

176

REQO REQ1 REQ2

! |
INO IN1 IN2 {
9 ﬁ_ U

ol T -

} ouUTo) QUTH1 ouT?2
O O [8]

GRO GR1 GR2

Figure 7: Digital circuit schematics of a 3-input arbiter

are its state transition functions:

IN, = REQ

IN| = REQ,

IN, = REQ;

OUT(S = OUTQ'OUTl'OUT2~IJV0+IIVO'OUT0

oUT] = OUTy -OUTy-OUTy - INy - INy+
IN, - OUTy

oUTy, = OUTy-OUT,-OUTy-INy - INy - INy+
IN, - OUT,

(6)

[ts output functions are as follows:

GRy, = OUI
GR, = 0OUTy (7)
GRy = OUT,

In general, a circuit gives a FSM with a set
of state variables ¥ = {yn-1,¥n-2,.-.,%}, In-
puts X = {zpm-1,Zm-2,.-..,Tp}, and outputs Z =
{#1-1,21-2,...,20}. The FSN has the transition func-
tions (1) and the output functions (3).

A stuck-at fault is caused by a short circuit between
a line connecting two elements and the logical 1 or 0.
If the short circuit is with the logical 0, there is an SAQ
fault (“stuck-at 0”). If the short circuit is with the logical
1, there is an SA1 fault (“stuck-at 17).

The question is how a stuck-at fault in a circuit is
manifested in the FSM whose realization it is. In the
circuit, all the flip-flops as well as external inputs and
outputs remain the same. It follows that the FSM
whaose realization is the circuit with a stuck-at fault will
have the same state variables, inputs, and outputs as
the FSM whose realization is the good circuit without
stuck-at faults. However, some transition and output
function can change due to changed connections.

Each line connects exactly one output of a logic gate
or flip-flop or an input of the circuit with, in general,

A. Casar, Z. Brezoénik, T. Kapus:Exploiting Symbolic Model

Checking for Sensing Stuck-at Faults in Digital Circuts

Informacije MIDEM 32(2002)3, str. 171-180

many inputs of logic gates, flip-flops, or outputs of the
circuit. Since the source of the line is uniguely deter-
mined, a stuck-at fault can cannonically be denoted by
G = 0, respectively G = 1, which means that an out-
put of a logic gate or a flip-flop, or a circuit input G has
stuck at 0, respectively to 1. With the transition func-
tions (1) and the output functions (3), we obtain for the
FSM corresponding to the circuit with a stuck-at fault
G = b (G can be equal to any of the possible fault loca-
tions and b € {0, 1}) the following transition functions:

y: = fi|G:b(y07y1; oy Yn—1,20, T2y 7$m—1) (8)
fori=0,1,...,n — 1 and output functions:

2 = Gile=o(Yos Y15+) Yn—1,T0, T1, oy T—1) (9)

fori =0,1,...,l—1. It can happen that not all transition
and output functions are changed as a consequence of
a stuck-at fault. It is perfectly possible that f; = filg=s,
respectively g; = gj|g=s, for some values of i and j.
This is in fact quite usual with real circuits. If a stuck-
at fault occurs in a redundant part of the circuit, it can
even happen that all the transition and output functions
remain the same.

Suppose that in the circuit in Fig. 7 the output of
the logic gate NOR would stick at logical 1. The cir-
cuit would become a realization of a FSM similar to
the original one. Only the state transition functions for
QUT,, OUTYy, and QUT, would change:

ouT] = @'IA71+IN1'OUT1 (10)
OUTy = INg-INy INy+1IN,-OUT,

The rest of transition and output functions would re-
main the same.

4,2 Extension of FSM

Any circuit property expressed in the form of a CTL
formula is valid in some states of the FSM correspond-
ing to the circuit. The states are determined by state
variable values. Input and output values do not deter-
mine the current state of the FSM.

Since stuck-at faults generally also affect the output
values, they must be covered by properties as well. As
outputs cannot be included in CTL formulas, a possi-
ble solution is to extend the FSM with additional state
variables. For every output z;, a state variable g, is
added. The variable's transition function is defined as
Ynss = Jn+i = zifori=0,1,...,1—1. The new outputs
of the extended FSM are defined as z.; = g..: = Yn+i
fori=0,1,...,l — L

Stuck-at faults do not affect the circuit input values.
However, the input values affect the circuit (FSM) state
transitions in the future. For this reason, the inputs
must also be covered by properties. The solution is
similar to the one for outputs, only that here, addi-
tional state variables are added at the inputs of the

original circuit. For every input z;, a state variable
Ynsi+s 1S added. Transition functions for the added
state variables are defined as y;, ;. ; = foyi4i = o
fori = 0,1,...,m — 1, where z,; is a new input of
the extended circuit and m the number of inputs. In
all formulas f; and g; where the original circuit inputs
2 occur, we take into account that zy = yu4i4x for
E=0,1,...,m—1.

Graphically, a FSM extension can easily be shown
in the corresponding circuit schematics. If we extend
the arbiter from Fig. 7 with additional state variables
(i.e. flip-flops in the circuit) in the way just described,
we obtain the circuit shown in Fig. 8. The added ele-

REQ0% REQ1% REQ2%
....... Vo I S A
REQO REQ1 REQ2
S O S ot o
V i |
INO IN1 IN2

L() E (9]
ol o
A - -
ouTo ouTHt ouT2
[®] O O
....... Voo ISR AT S S
GR0% GR1% GR2%
T o bl o
y y y
GRO%% GR1%% GR2%%

Figure 8: Extended arbiter with additional state vari-
ables

ments are drawn with dotted lines.

The newly added state variables y; (for i = n,n +
1,...,n+1+m~ 1) can be used in CTL formulas like
any other state variable. The new variables can be
used to express properties about the original FSM in-
puts and outputs. It should be noticed that stuck-at
faults can only occur on the lines in the original circuit
and, consequently, in the corresponding places in the
original and extended FSM.

4.3 Properties

In every FSM, many properties are valid. One of the
most basic types of properties, which are valid in every

177

Informacije MIDEM 32(2002)3, str. 171-180

A. Casar, Z. Brezodnik, T. Kapus:Exploiting Symbolic Model

Checking for Sensing Stuck-at Faults in Digital Circuts

FSM, are properties of the form:
AG(f;- AX yi + fi - AX T5) (11)

The formula says that on all possible computation
paths and all the time it holds that if in some state the
state transition function f; of the state variable y; has
the value 1, then in every successor of the state, the
value of y; will also be 1; respectively, if the value of
the transition function f; of the state variable y; in the
state is 0, then the variable y; will also be 0 in every
successor state. This holds for all the state variables,
including the added ones.

The properties cannot help us to find stuck-at faults.
Since they are valid, counterexamples do not exist, of
course. Also, for this type of formulas, even a witness
cannot be constructed according to the explanation in
Section 3.2.

However, following the above pattern we can write a
CTL formula which will be valid in the FSM that corre-
sponds to the circuit with a stuck-at fault. If an output
of a logic gate or a flip-flop, or a circuilt input G sticks
at a logical value b, then the property has the form:

AG(filo=b AX yi + filg=o - AX 7)) (12)

By rule, such a formula cannot be valid in a circuit
(FSM) without a stuck-at fault. It follows that a coun-
terexample can be constructed for such a CTL formula.
The formula namely does not contain CTL operators
with existential path quantifier. It contains a disjunc-
tion, but in such a way that a counterexample can be
found anyway.

When a stuck-at fault G = b is inserted into a FSM,
the properties (12) are valid for all the state variables,
ie. fori =0,1,...,n+1l+m~—1. The single properties
can be applied to form the common one:

n+l+m—1
N\ AG(file=s- AX yi + filo=s - AX) (13)
=0

Due to distributivity of operator AG and conjunction,
formula (13) can be rewritten as

n4l+m—1
AG N\ (filo=b- AX yi + filo=s - AX W) (14)
i==0

Some of the conjunctives in the CTL formula (14) can
be valid always and everywhere. Finding all such fac-
tors is generally a complex problem, but certainly, all
the factors for which the stuck-at fault G = b does not
affect the corresponding transition function and conse-
quently, fi|c=» = fi, are among them. If a CTL for-
mula is valid always and everywhere, then it is equiv-
alent to formula 1 ("true”). It follows that such factors
can be left out in the conjunction. Only those have to
be included, for which filc=y # fi;- The factors corre-
sponding to the variables added at the original inputs
v G=n+ln+l+1,...,n+{+m—1)are also true.
This is because all the lines which affect the variables

178

are added only in the abstract FSM, whereas they do
not exist in the real circuit, in which stuck-at faults can
occur. If we take into account both facts, we get the
following CTL formula (property):

AG N\

0<i<n4!
filg=p#f;

(filo=b - AX y; + filc=s - AX 7;) (15)

The generation of properties continues by generat-
ing properties (15) for all possible stuck-at faults G = b
in the circuit, for G equal to all possible flip-flop and
logic gate outputs? and for b equal to logical values 0
int,

Generally, properties (15) are not valid in a FSM
without stuck-at faults. If some of them is valid anyway,
it means that the stuck-at fault G = b considered has
no effect on the circuit behaviour and consequently, the
fault need not be refuted during testing. Only the in-
valid properties (15) are, therefore, interesting, and we
continue the work with them alone.

4.4 Searching of Counterexamples

When searching counterexamples for invalid CTL
formulas of the type (15), we in fact search for a wit-
ness of the following CTL formula because of the cho-
sen way of searching and the use of DeMorgan’s law:

E1U \/ filg=o EXTi + filo=y EXy;
0<i<n+d
filg=p7#Fi
(16)
It means that we search for a path leading from the
initial state to a state in a state set with the following
characteristic. For each state, it is not the case that
a transition function f; is equal to 1 (respectively, 0)
in the state and that at the same time, there does not
exist a successor state where the corresponding state
variable y; is equal to 0 (respectively, 1).
When a witness for the operator EU in formula (16)
is found, we still must find a witness from that state on

for the formula

\/ filo=s EXY; + filo=s - EXy;

o<i<ntl
filg=p7f1

We can choose one factor in the big disjuction and find
a witness for it. Of course, we must choose a factor
which is valid in the state reached when searching for
a witness of the operator EU. It follows that a witness
of

filg=b - BEXU; + filg=b - EXy;

is searched for, where 7 is such that the formula is valid
there. This can be done by finding a counterexample
for the CTL formula

file=o EXY; + [ilg=b - EXy;

2The extended circuit inputs need not be considered since the
inputs are added artificially and stuck-at faults cannot occur on them.

A. Casar, Z. Brezodénik, T. Kapus:Exploiting Symbolic Model

Checking for Sensing Stuck-at Faults in Digital Circuts

Informacije MIDEM 32(2002)3, str. 171-180

There are two possibilities. The transition function
file=p can either be valid or invalid in the current
state. We, therefore, continue along cone of the follow-
ing paths:

1. If file=s is valid, we search for a counterexample
of the formula E X7, which consequently means
searching for a witness of the CTL formula EX;.
A successor of the current state in which the value
of state variable y; is 0 has to be found.

2. If file=s is invalid, we search for a counterxample
of the formula E Xy;, which consequently means
searching for a witness of the CTL formula EXy;.
A successor of the current state in which the value
of state variable y; is 1 has to be found.

A counterexample found is given in the form of a se-
guence of state variable values of the extended FSM
in the states starting with the initial one and continuing
along the counterexample path. Every state variable
which is equal to the one in the original FSM has the
same meaning in the latter and in the extended FSM.
The state variables added at the inputs of the original
FSM indicate the values we have to assign to the cir-
cuit inputs in order for the circuit execution to follow the
counterexample path. The state variables added at the
outputs of the original FSM indicate the values the real
outputs of the good circuit will have in the states on the
path.

It should be noted that the circuit outputs in the form
of the added variables of the extended FSM are de-
layed for one step. The cutrent circuit output values
occur in the added variables in the next step. This is
because a state variable gets a value determined by
its state function in the next state, whereas the outputs
get their value in a moment.

The test pattern which belongs to the counterexam-
ple found is a sequence of values of the state variables
added at the inputs. The values in the last state on the
counterexample path can be left out because the cir-
cuit input values in the last step do not matter. The
circuit is tested as follows. The input values from the
test pattern are set on the circuit inputs one after an-
other. When its end is reached, we check if values of
the state variables (flip-flops) and circuit outputs are
equal to those in the last state of the counterexample.

If all the values are equal, the absence of the stuck-
at fault considered is confirmed. Afterwards, we reset
the circuit and repeat the whole procedure with the test
pattern for the next stuck-at fault, and so on until the
last possible stuck-at fault has been considered.

5 Experimental results

Experiments were done on a server with AMD
Athlon/800 processor, 512 MB of physical memory,
and 1.4 GB of virtual memory under Linux operating
system. We have used our own BDD package ([7]),

which is an efficient jte-based implementation of re-
duced ordered binary decision diagrams with comple-
mented edges.

We generated test patterns for some ISCAS bench-
mark circuits. Results are shown in Table 1. From left

Table 1; Test pattern generation for ISCAS benchmark
circuits

stuck-at joint max # BDD CPU
circuit faults | length | length nodes | time [s]
s27 38 58 3 604 0.00
$208.1 248 5474 257 50606 8.17
$298 296 1158 11 41582 1.92
s344 412 932 8 48208 7.67
5349 414 932 8 48087 6.69
5382 388 5387 102 99775 31.01
s386 372 1034 10 45819 2.29
s444 434 5990 102 182597 39.05
s526 458 7749 102 286215 79.22
s526n 460 7771 102 286183 80.24
641 962 1787 5 1698296 | 362.29
s713 986 1807 5 || 1698421 | 363.47
s820 700 3090 12 257285 185.28
s832 696 3056 12 256203 | 179.73
s953 972 4667 11 224760 336.28
s1196 1178 2359 4 139827 69.34
s1238 1136 2254 4 134801 60.12
51488 1410 6847 22 107989 | 154.61
51494 1398 6743 22 108057 170.19

to right the columns in Table 1 refer to the circuit name,
number of potential stuck-at faults, joint length of all
test patterns, maximal tength of test patterns, and the
maximal number of BDD nodes whenever generated
with the CPU time in seconds.

The number of potential stuck-at faults is approx-
imately proportional to the number of flip-flops and
gates in the circuits. The maximal length of test pat-
terns depends on the number of steps necessary to set
such values in flip-flops that stuck-at fault will demon-
strate at computation of the next state. Joint length
of all test patterns is a plain sum of lengths of single
test patterns. It is very difficult to say anything general
about the joint length.

We examined time and space complexity of the test
pattern generation on a series of parametric up/down
counters. Results we obtained are shown in Table
2, where the number of potential stuck-at faults, joint
length of all test patterns, and maximal number of BDD
nodes whenever generated with the CPU time in sec-
onds for every counter size n are shown. Both time
and space complexities are less than exponential.

We did not compare our results obtained with test
pattern generation with results of other authors since
we did not manage to find any contribution where au-
thors would have generated test patterns for search-
ing stuck-at faults with symbolic model checking. In
the most similar example [4] they used symbolic state
space traversal but not symbolic model checking.

179

Informacije MIDEM 32(2002)3, str. 171-180

A. Casar, Z. Brezoénik, T. Kapus:Exploiting Symbolic Model

Checking for Sensing Stuck-at Faults in Digital Circuts

Table 2: Test pattern generation for parametric counter

stuck-at joint # BDD CPU

n faults | length nodes time [s]
10 102 156 5232 0.06
20 202 316 39312 0.42
30 302 476 78499 1.58
40 402 636 129859 4.31
50 502 796 213819 10.32
60 602 956 338379 60.19
70 702 1116 511539 250.02
80 802 1276 741299 488.44
90 902 1436 || 1045840 823.04
100 1002 1596 || 1424382 1287.52
110 1102 1756 1884720 1890.39
120 1202 1916 || 2434862 2709.84
130 1302 2076 || 3082801 3781.46
140 1402 2236 || 3836544 5160.15
150 1502 2396 || 4704084 6926.01
160 1602 2556 || 5683423 9169.76
170 1702 2716 || 6812565 | 11867.43
180 1802 2876 || 8069514 | 15189.49

6 Conclusions

We developed methods for fully automatic test pat-
tern generation (ATPG) for discovering single stuck-at
faults in synchronous sequential digital circuits. Test
patterns are based on counterexamples obtained by
symbolic model checking. For every possible stuck-at
fault, a suitable property is generated. When the prop-
erty is invalid a counterexample is found.

The described algorithms are realized in the form of
a computer program for ATPG for discovering of single
stuck-at faults or proving their absence. The program
is based on a home-made package for manipulating
FSMs which is also based on a fully home-made very
efficient package for manipulating Boolean functions
represented by BDDs [7].

We illustrated the usage of presented algorithms by
generating test patterns for some ISCAS benchmark
circuits and a parametric up/down counter. Results
from the latter one also indicate time and space com-
plexity of the algorithms.

There are a lot of possibilities for future work. The
most interesting would be development of methods
where stuck-at faults would manifest only at circuit out-
puts. Since also other types of faults can occur in a
circuit, it would be interesting to discover also them. It
might be useful to find out also which stuck-at fault is
present in the circuit if presence of one is detected.

References

[1] Zmago Brezoénik, Aled Casar, and Tatjana Kapus. Ef-
ficient Symbolic Traversal Algorithms using Partitioned
Transition Relations. In Zmago Brezoc¢nik and Tatjana

180

Kapus, editors, Proceedings of the COST 247 Interna-
tional Workshop on Applied Formal Methods in System
Design, pages 146-155, Maribor, Slovenia, June 1996.

[2] Randal E. Bryant. Graph-Based Algorithms for Boolean
Function Manipulation. /EEE Transactions on Comput-
ers, C-35(8):677-691, August 1986.

[3] Jerry R. Burch, Edmund M. Clarke, David E. Long,
Kenneth L. McMillan, and David L. Dill. Symbolic
Model Checking for Sequential Circuit Verification. /EEE
Transactions on Computer-aided Design of Integrated
Circuits and Systems, 13(4):401-424, April 1994.

[4] Gianpiero Cabodi, Paolo Camurati, and Stefano Quer.
Symbolic forward/backward traversals of large finite
state machines. Journal of Systems Architecture,
46:1137-1158, 2000.

(5] Ales Casar, Verification of finite state machines with
symbolic model checking. Master's thesis, Univer-
sity of Maribor, Faculty of Electrical Engineering and
Computer Science, Maribor, Slovenia, June 1998. In
Slovene.

[6] Ales Casar, Zmago Brezoénik, and Tatjana Kapus.
Formal Verification of Digital Circuits using Symbolic
Model Checking. /Informacije MIDEM, 30(3(95)):153~
160, September 2000.

[7] Ale Casar, Robert Meolic, Zmago Brezoénik, and Bo-
gomir Horvat. Representation of Boolean Functions
with ROBDDs. Electrotechnical Review, 59(5):299-
307, December 1992. In Slovene.

[8] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Ef-
ficient generation of counterexamples and witnesses in
symbolic model checking. Technical report, School of
Computer Science, Carnegie Melion University, Pitts-
burgh, USA, October 1994.

[9] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems, 8(2):244-263,
April 1986.

[10] Bogdan Dugonik. Metode za iskanje optimalnih vektor-
jev za diagnosti¢no testiranje digitalnih vezij s pomo¢jo
modela napak. Master's thesis, University of Maribor,
Faculty of Electrical Engineering and Computer Sci-
ence, Maribor, Slovenia, 1995. In Slovene.

mag. Ales Casar, univ. dipl. inZ. raé. in inf.

izr. prof. dr. Zmago Brezocnik, univ. dipl. inZ. el.
izr. prof. dr. Tatiana Kapus, univ. dipl. inZ. el.
Univerza v Mariboru

Fakulteta za elektrotehniko, racunalnistvo in
informatiko

Smetanova 17

2000 Maribor

tel.: +386-2-22-07-211

fax: +386-2-25—-11-178

emaill: {(casar,brezocnik, kapus}@uni-mb.si

Prispelo (Arrived): 23.04.2002 Sprejeto (Accepted): 28.06.2002

