Advances in Production Engineering & Management
Volume 20 | Number 3 | September 2025 | pp 299-308
https://doi.org/10.14743 /apem2025.3.541

APEM
journal

ISSN 1854-6250
Journal home: apem-journal.org

Original scientific paper

Improving AGV path planning efficiency using genetic
algorithms with hamming distance-based initialization

Breznikar, 2.2, Gotlih, J.?, Arti¢, Z.°, Brezocnik, M.?

aUniversity of Maribor, Faculty of Mechanical Engineering, Maribor, Slovenia

bUniversity of Maribor, Faculty of Electrical Engineering and Computer Science, Maribor, Slovenia

ABSTRACT

ARTICLE INFO

This paper presents a Genetic Algorithm (GA) framework for warehouse
navigation as a Travelling Salesman Problem (TSP) variant for Automated
Guided Vehicles (AGVs). The warehouse layout is represented as a graph,
where pick-up locations serve as terminal nodes. A distance matrix, computed
via Breadth-First Search (BFS) enables efficient route evaluation. To promote
diversity in the initial population, a Hamming distance-based vectorized ini-
tialization strategy is employed, ensuring that the chromosomes are maximal-
ly distinct. The GA balances exploration and exploitation by dynamically ad-
justing the fitness function. Early generations emphasize diversity, while later
ones focus on solution refinement, improving convergence and avoiding
premature stagnation. Our key contribution demonstrates that the Hamming
distance-based approach achieves comparable or better results with signifi-
cantly fewer chromosomes. This reduces computational cost and runtime,
making the method well-suited for real-time AGV routing in warehouses. The
framework is adaptable to structured environments and shows strong poten-
tial for integration into real-world logistics and robotics applications. Future
work will focus on optimizing the algorithm and integrating it into the ROS 2
environment. The simplified version of the algorithm can be accessed at:
https://github.com/IntoTheVoid-61/Warehouse-Pathfinder.

Keywords:

Automated guided vehicles (AGV);
Warehouse routing;

Genetic algorithms (GA);
Combinatorial optimization,
Hamming distance initialization;
Robot operating system 2 (ROS 2)

*Corresponding author:
ziga.breznikar@student.um.si
(Breznikar, Z.)

Article history:

Received 6 July 2025
Revised 24 October 2025
Accepted 27 October 2025

Content from this work may be used under the terms of
the Creative Commons Attribution 4.0 International
Licence (CC BY 4.0). Any further distribution of this work
must maintain attribution to the author(s) and the title of
the work, journal citation and DOI.

1. Introduction

The rapid expansion of automated manufacturing has brought increasing demand for intelligent
logistics and autonomous systems in warehouses. Among these, Automated Guided Vehicles
(AGVs) play a crucial role in transporting goods efficiently within complex environments. A con-
siderable body of research has investigated the application of AGV systems across a wide range
of environments and operational contexts, supported by diverse methodological approaches. In
recent years, studies have increasingly adopted metaheuristic techniques to enhance system
performance and optimization [1-10]. As warehouse layouts become more intricate and dynam-
ic, determining optimal routes for AGVs becomes a critical challenge, essential for reducing de-
livery times and operational costs.

Genetic Algorithms (GAs), inspired by the principles of natural selection and evolution, are
well suited for solving complex optimization problems such as AGV routing. By evolving popula-
tion of candidate solutions through operations, inspired by biological evolution, GAs can effi-
ciently explore large solution spaces and efficiently convergence towards near-optimal solutions
even in the presence of multiple constraints and non-linearities. Their flexibility and robustness
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have made them a popular choice for various combinatorial problems, including the well-known
Travelling Salesman Problem (TSP) [11, 12], which closely parallels AGV routing in warehouses.

Traditional or uninformed search strategies, such as brute-force or blind random search,
quickly become impractical as the scale of the problem increases [13]. In high-dimensional
warehouse environments, the combinatorial explosion of possible routes leads to significant
computational costs and sub-optimal outcomes. This underscores the need for heuristic or me-
taheuristic approaches that can guide the search process intelligently.

In this study, we propose a GA-based approach for warehouse routing, tailored for a top-
down two-dimensional warehouse representation. Our algorithm encodes AGV routes as se-
quence of terminal locations and evolves these sequences to minimize travel distance. A central
focus of this work is the effect of initial population diversity on GA performance. Specifically, we
compare two initialization strategies: the conventional random initialization and a Hamming
distance-based approach [14] explicitly designed to maximize population diversity, thereby en-
hancing exploratory capabilities in the early stages of the GA.

To evaluate the efficiency of the proposed method, extensive experiments were conducted
using both initialization strategies under controlled settings. Results demonstrate that Hamming
distance-based initialization performs comparably or better than standard approach, even when
using significantly fewer individuals per generation. This indicates that strategic population de-
sign can reduce computational costs while maintaining solution quality-a critical insight for real-
time AGV routing applications in operational warehouse systems.

The remainder of this paper presents the implementation of our GA-based routing algorithm,
the design of the Hamming-based initialization, and detailed statistical analysis of the results
obtained through multiple experimental runs.

2. Related work

The Travelling Salesman Problem (TSP)is a classic benchmark in combinatorial optimization and
has been extensively addressed using GAs due to their ability to explore large, complex search
spaces and avoid local optima through evolutionary operators. Standard GA implementations
typically start with randomly generated populations, which help avoid early convergence but
still frequently lead to premature stagnation in complex or highly constrained problems.

In the context of warehouse logistics, the TSP is frequently adapted to model route optimiza-
tion for AGVs, where efficient sequencing of pick-up and delivery tasks is critical. Several works
have proposed heuristic and metaheuristic-based solutions, including Ant Colony Optimization
(ACO) and GA-based frameworks [11]. However, many approaches assume idealized conditions
or rely on brute-force exploration, which becomes computationally expensive as the number of
tasks and constraints grow. As a general approach, the authors in [15] proposed an enhanced GA
for the TSP, in which the population is initialized using the Iterative Approximate Method, signif-
icantly improving solution efficiency and convergence speed.

Recent advancements have focused on enhancing diversity within GA population to improve
exploration and convergence stability. For example, some authors have introduced adaptive
mutations rates or hybridized GAs with local search techniques to maintain population diversity.
Hamming distance, a measure of dissimilarity between binary strings, has been proposed for
initializing populations that are maximally distinct [16]. While it has been applied in other do-
mains, its use in structured, graph-based environments like warehouse routing remains relative-
ly underexplored.

To our knowledge, few studies have empirically compared Hamming distance-based initiali-
zation with traditional random initialization in the context of AGV routing on warehouse graphs,
employing statistically rigorous analysis to evaluate performance and convergence behaviour.
This paper contributes to the existing literature by integrating a Hamming distance-based popu-
lation initialization within a GA specifically designed for AGV navigation. By fostering high initial
diversity, the algorithm reduces reliance on large population sizes, thus enhancing computation-
al efficiency without sacrificing solution quality.
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3. Environmental modelling and preprocessing
3.1 Matrix-based environment encoding

The warehouse environment is defined by three structural parameters:

e number of aisles,
e number of storage locations per aisle,
e number of storage blocks.

These parameters provide a compact and flexible description of the warehouse layout, which is
essential for scalable simulations and graph-based modelling.

To facilitate algorithmic processing, the physical warehouse is first abstracted into a two-
dimensional matrix. Each cell in the matrix corresponds to a discrete warehouse location and is
assigned an integer label representing its functional role. Fig. 1 illustrates the top-down view of
the warehouse layout and its matrix representation.
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Fig. 1 Top-down view of the warehouse layout and its matrix representation

Table 1 Classification of colours and numerical values from Fig. 1

Value Colour code Description
0 White Free space: Traversable
1 Black Empty storage location: Untraversable
2 Red Storage location: Untraversable
3 White Pickup location: Traversable
9 Green Start and end point: Traversable

Table 1 summarises the classification scheme used to assign numerical values to different ele-
ments of the warehouse.

Only the cells labelled 0, 3 and 9 are traversable. Among these, all nodes labelled as 3 represent
mandatory pickup locations that the AGV must visit at least once. This matrix formulation allows
a direct transformation into a graph, where each traversable cell becomes a node and edges rep-
resent valid moves between adjacent cells.

3.2 Graph-based preprocessing

To enable efficient path planning and distance evaluation, the matrix representation of the
warehouse is transformed into a weighted graph [17]. In this graph, each traversable matrix cell
(labelled as 0, 3 or 9) becomes a node. An undirected edge is created between every pair of adja-
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cent traversable nodes. By default, edges are assigned a weight of 1, representing uniform
movement cost. However, in real-world applications, factors such as bottlenecks, blocked or
narrow passages, and other environmental constraints may increase the traversal difficulty.
Such conditions are modelled by assigning higher weights to the affected edges.

Once the graph is constructed, all terminal nodes, marked with the label 3 in the matrix, are
identified. These represent the pickup locations that the AGV must visit at least once. The set of
terminals serves as the basis for solving a TSP-like optimization task.

To quantify distances between terminals, a distance matrix is computed using a BFS algo-
rithm [18]. For each terminal node, BFS calculates the shortest path (in terms of total edge
weight) to every other terminal. The resulting distance matrix is a symmetric square matrix
where each element D; ; represents the shortest traversable distance between terminals i and j.

The distance matrix serves as a critical input to the optimization algorithm. It allows for rapid
evaluation of the total route length of any candidate solution, without requiring real-time path-
finding through the graph [19]. This preprocessing step thus transforms the original navigation
problem into a purely combinatorial optimization task, significantly reducing computational
overhead during the evolutionary search.

4. Genetic algorithm optimization
4.1 Chromosome representation and problem complexity

To apply a GA to the problem of AGV routing within a warehouse, we first define how a potential
solution (chromosome) is represented. Each chromosome encodes a specific sequence in which
the autonomous vehicle should visit all required terminal nodes, that is, the pickup locations
identified during preprocessing.

A chromosome consists of a permutation of all terminal nodes, where each gene represents a
single terminal node, and the order of genes determines the traversal path of the AGV. This is
represented in Fig. 2, which illustrates 5 different potential solutions to the routing problem,
given 8 pickup locations.
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Fig. 2 Example of 5 different solutions to the routing problem with 8 terminal nodes.
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This problem closely resembles the mentioned TSP, a well-known combinatorial optimization
problem. For n terminal nodes, there are n! possible permutations, making exhaustive search
methods computationally infeasible, even for relatively small values of n. As the problem scales,
brute-force methods become impractical due to factorial growth in complexity.

Given a set of terminals T = {p,,p,, ..., P}, the objective is to find a permutation 7, as shown
in Eqg. 1, that minimizes the total travel distance.

n
T = 2 Dy m(i+1) (1)
i=1

Since brute-force methods become computationally infeasible for large n, a GA is employed to
address this challenge. GA are well-suited for permutation-based combinatorial problems and
enable efficient exploration of large solution spaces by evolving a population of chromosomes
through genetic operations.

302 Advances in Production Engineering & Management 20(3) 2025



Improving AGV path planning efficiency using genetic algorithms with hamming distance-based initialization

4.2 Hamming distance-based population initialization

A critical step in ensuring the effectiveness of a GA is the initialization of a diverse population.
Diversity promotes broad exploration of the solution space in early generations and helps avoid
premature convergence to local optima. To systematically promote diversity, we employed a
strategy based on the Hamming distance.

For two sequences of equal length, the Hamming distance is defined as the number of posi-
tions at which the corresponding elements differ [20]. In our context, each chromosome is a
permutation of terminal nodes, and the Hamming distance between two chromosomes indicates
the number of differing terminal positions in the visitation sequence.

The population is initialized by iteratively generating random permutations and comparing
them against the already selected chromosomes. A candidate chromosome is accepted into the
population only if a minimum Hamming distance from the set of existing chromosomes exceeds
a decreasing threshold, starting from the maximum value n (the number of terminals). This en-
sures that the initial population is highly diverse, therefore promoting broad exploration of the
solution space. If, after a predefined number of attempts, no chromosome meets the current
Hamming threshold, the threshold is reduced by one and the process repeats. This adaptive
mechanism balances diversity with feasibility. A high-level implementation of the described

method is shown in Fig. 3.

pop_size =x
ham_attempis = y
curr_pop_size = 1

i

add random chromosome to population

¥

»<CUIT_pop_size < pop_size No

Yes

|
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attempis =0

attempts <

ham_attempts No | ham_threshold - -

fes

create random
chromosome

calculate hamming
distances to existing
population

min_ham_distance ==
ham_threshold

‘fes

[

add chromosome to
population
CUrm_pop_size++

Fig. 3 Flowchart of a high-level hamming distance-based algorithm to ensure initial population diversity.
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This Hamming distance-based algorithm ensures diversity in the starting population, ena-
bling a broader and more efficient exploration of the solution space. The computational com-
plexity of the initialization process increases approximately as O(P24 n), where P denotes the
population size, n the number of pickup locations, and A the number of random Hamming dis-
tance attempts per chromosome.

4.3 Evolutionary dynamics and evaluation

This section describes the key components of the G4, including selection mechanisms, elitism
strategy, mutation operators, and the dynamic fitness evaluation. These mechanisms were de-
signed to balance exploration and exploitation throughout the optimization process.

A dynamic tournament selection method is used to select chromosomes for reproduction or
crossover. In each tournament, a subset of k chromosomes from the current population is ran-
domly selected, and the best-performing individual is chosen. To balance exploration and exploi-
tation over time, the tournament size is dynamically adjusted, as shown in Eq. 2.

k = round((kymax — kmin) - Progress + kpyin) (2)
where progress is defined in Eq. 3.
current_generation
progress = (3)

max_generation

This allows smaller tournament sizes early on (encouraging diversity) and larger tourna-
ments later (favouring selection pressure). Following the selection, each chromosome is either
reproduced directly into the next generation with probability p, or undergoes crossover with a
different chromosome with probability 1 — p.

To preserve high quality solutions, elitism is applied by copying the top i chromosomes unal-
tered into the next generation. The number of elite chromosomes increases quadratically with
the progress of generations as shown in Eq. 4.

i = round((imgx — imin) - PTOGTress? + imin) 4

This strategy ensures that more optimal solutions are retained as the algorithm converges.
Two types of mutation operators are employed to maintain genetic diversity:

o Single-gene swap: Two genes (positions) in the chromosome are randomly swapped [21].
e 2-opt-swap: A sub-sequence of genes is reversed, a common local optimization technique
in TSP-like problems [22].

The mutation probability is dynamic and is sampled from a uniform distribution U(a,b),
where bounds a and b evolve as generations progress, as shown in Eq. 5 and Eq. 6.

a= (aend - astart) sprogress + Astart, where Astart > Aend (5)

b= (bend - bstart) sprogress + bstart: where bstart > bend (6)

This allows higher variability early on (favouring exploration), which gradually decreases as
the algorithm approaches convergence.

The fitness function transitions from the exploration phase to the exploitation phase to bal-
ance global search and solution refinement. During the exploration phase, the fitness incorpo-
rates both solution quality and population diversity, as shown in Eq. 7.

f = a - normalized_path_length — (1 — a) - normalized_hamming_distance (7

Normalization is necessary to account for differing numerical scales. Path lengths are normal-
ized relative to population statistics, while Hamming distances are normalized relative to the
maximum possible value, corresponding to the chromosome length. The coefficient a balances

the two terms and is defined by a sigmoid function [23] as shown in Eq. 8.
1
- 8
¢ 1+e™* ®)
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where x is defined as shown in Eq. 9.

generation_counter
x=20- - -10 9
exploration_end

In Eq. 9, generation_counter is an integer value representing the current generation number,
while exploration_end is the predefined generation at which exploitation begins. During the ex-
ploitation phase, fitness is based solely on the provided path length of a chromosome. This phase
focuses entirely on improving the solution quality.

A high-level schematic of the proposed GA framework is illustrated in Fig. 4.

Define:
- GA parameters
- Evolutionary parameters
- Exploration-Explotation threshold (EET)
- Convergence criteria (CC)

¥

create graph from warehouse
identify terminal locations
compute distance matrix

i

initialize population using hamming-distance based algerithm
gen_count =0
conv_count =0

gen_count / num_gen < EET

A 4

exploration evaluation

Yes found better solution? found better solution?

Yes No

b

save new best solution

conv_count =0 conv_count++
save new best solution

v Ve conv_count = CC

create new [
gen_counts+

gen_count <
num_of_gen

No > Stop
Fig. 4 Algorithmic structure of the GA-based navigation framework

5. Results and discussion

This section presents a comprehensive evaluation of the impact of Hamming distance-based
population initialization (H) compared to random initialization (NH) in a GA designed for opti-
mizing warehouse routing. The analysis spans four key performance metrics:

runtime duration,

initial population diversity,
convergence speed,

final solution quality (best tour length).
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The experiments were performed over 20 independent runs per setting, using identical seeds
and warehouse environments to ensure consistency.

5.1 Equal population size comparison

In the first series of experiments, both methods were executed under identical setting with 30
individuals per generation. Each configuration was repeated 20 times using the same seeds and
warehouse environment. To validate the use of parametric tests, Shapiro-Wilk and D’Agostino-
Pearson normality tests were conducted for all metrics [24]. Results indicated normal distribu-
tion across all groups. Table 2 summarizes the results.

Table 2 Statistical analysis of GA metrics: Hamming vs. Non-Hamming

Metric Hamming (Mean + SD) Non-Hamming (Mean + SD)  p-value Significance

Runtime (s) 45.0283 + 5.3 40.2011 4+ 5.79 0.0057 significant

Initial population 80.3567 + 0.03 78.2347 £ 0.05 <0.0001 significant

Hamming distance

Generations 6122.05 £+ 692.09 5907.45 + 739.28 0.2904 not significant

Best tour length 400.8000 +£11.19 403.6000 + 9.46 0.3915 not significant
Key takeaways:

e Population diversity: The Hamming-initialized population achieved significantly higher
diversity, confirming the effectiveness.

e Runtime: Hamming initialization introduced a slight computational overhead due to pair-
wise distance calculations.

e Final Quality & Convergence: No statistically significant improvement was observed.

5.2 Exploring population size effects

Additional experiments were conducted to investigate whether Hamming distance-based initial-
ization can effectively compensate for a reduced population size in GA applications. This evalua-
tion was carried out on a structurally distinct warehouse layout to ensure generalizability of the
findings. In this setting, we compared the performance of a GA configured with only 30 individu-
als initialized using the Hamming distance strategy (H30) against a GA employing 150 individu-
als initialized randomly (NH150). Despite the fivefold disparity in population size, the H30 con-
figuration consistently demonstrated comparable solution quality to the NH150 setup in both
final tour length and convergence behaviour.

Statistical analysis of the tour length distributions supported this finding, yielding a signifi-
cant p-value [25] (p < 0.05) indicating that the performance difference favoured the H30 config-
uration. These results underscore the effectiveness of diversity-promoting strategies in evolu-
tionary algorithms. Instead of compensating for insufficient diversity by brute-force scaling of
the population size, initializing the population with maximally dissimilar chromosomes enables
more efficient exploration of the solution space. This provides a strong argument for adopting
informed initialization techniques, especially in resource-constrained environments where com-
putational efficiency is critical, such as real-time AGV routing in dynamic warehouse settings.

6. Conclusion

This work explored the application of a GA to solve warehouse routing problem, a task critical to
the efficiency of AGV system in logistics and manufacturing environments. Our results confirm
that a GA-based approach is not only viable but effective for generating high quality routing so-
lutions within reasonable computational budget. The simplified version of the algorithm can be
accessed at: https://github.com/IntoTheVoid-61/Warehouse-Pathfinder. Future work of the algo-
rithm will extend to its optimization and integration into the ROS2 environment.

In a targeted comparison, a GA with just 30 chromosomes initialized using Hamming-based
method achieve statistically comparable results in tour quality relative to that of a GA with 150
randomly initialized individuals. This outcome highlights the central contribution of our study:
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intelligent population seeding can significantly reduce the required population size without
compromising performance.

This finding has tangible implications for real-world deployment. Reducing population size
lowers computational time and memory usage, making approach more suited for embedded or
real-time systems commonly used in AGV applications. Accordingly, this study provides a practi-
cal and scalable GA-based framework for warehouse routing, with added benefit of an initializa-
tion method that enhances performance under constrained resources.

Future work should focus on deploying the proposed system on real-world AGV platforms
and evaluating its performance through experiments and field-testing. While the algorithm
demonstrates strong results in two-dimensional navigation (based on top-down view of the
warehouse), it does not yet account for three-dimensional considerations. Furthermore, as this
study was conducted on an abstracted AGV model, specific characteristics of actual vehicle were
not incorporated. Notably, the model assumed that AGV could transport an unlimited mass of
cargo and did not require a return to the starting point for unloading. Future implementations
on embedded system should therefore account for such practical constraints, including limited
payload capacity and the need for cargo drop-off behaviour.
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