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A B S T R A C T  A R T I C L E   I N F O 
This paper presents a Genetic Algorithm (GA) framework for warehouse 
navigation as a Travelling Salesman Problem (TSP) variant for Automated 
Guided Vehicles (AGVs). The warehouse layout is represented as a graph, 
where pick-up locations serve as terminal nodes. A distance matrix, computed 
via Breadth-First Search (BFS) enables efficient route evaluation. To promote 
diversity in the initial population, a Hamming distance-based vectorized ini-
tialization strategy is employed, ensuring that the chromosomes are maximal-
ly distinct. The GA balances exploration and exploitation by dynamically ad-
justing the fitness function. Early generations emphasize diversity, while later 
ones focus on solution refinement, improving convergence and avoiding 
premature stagnation. Our key contribution demonstrates that the Hamming 
distance-based approach achieves comparable or better results with signifi-
cantly fewer chromosomes. This reduces computational cost and runtime, 
making the method well-suited for real-time AGV routing in warehouses. The 
framework is adaptable to structured environments and shows strong poten-
tial for integration into real-world logistics and robotics applications. Future 
work will focus on optimizing the algorithm and integrating it into the ROS 2 
environment. The simplified version of the algorithm can be accessed at: 
https://github.com/IntoTheVoid-61/Warehouse-Pathfinder. 
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1. Introduction 
The rapid expansion of automated manufacturing has brought increasing demand for intelligent 
logistics and autonomous systems in warehouses. Among these, Automated Guided Vehicles 
(AGVs) play a crucial role in transporting goods efficiently within complex environments. A con-
siderable body of research has investigated the application of AGV systems across a wide range 
of environments and operational contexts, supported by diverse methodological approaches. In 
recent years, studies have increasingly adopted metaheuristic techniques to enhance system 
performance and optimization [1–10]. As warehouse layouts become more intricate and dynam-
ic, determining optimal routes for AGVs becomes a critical challenge, essential for reducing de-
livery times and operational costs. 

Genetic Algorithms (GAs), inspired by the principles of natural selection and evolution, are 
well suited for solving complex optimization problems such as AGV routing. By evolving popula-
tion of candidate solutions through operations, inspired by biological evolution, GAs can effi-
ciently explore large solution spaces and efficiently convergence towards near-optimal solutions 
even in the presence of multiple constraints and non-linearities. Their flexibility and robustness 
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have made them a popular choice for various combinatorial problems, including the well-known 
Travelling Salesman Problem (TSP) [11, 12], which closely parallels AGV routing in warehouses. 

Traditional or uninformed search strategies, such as brute-force or blind random search, 
quickly become impractical as the scale of the problem increases [13]. In high-dimensional 
warehouse environments, the combinatorial explosion of possible routes leads to significant 
computational costs and sub-optimal outcomes. This underscores the need for heuristic or me-
taheuristic approaches that can guide the search process intelligently. 

In this study, we propose a GA-based approach for warehouse routing, tailored for a top-
down two-dimensional warehouse representation. Our algorithm encodes AGV routes as se-
quence of terminal locations and evolves these sequences to minimize travel distance. A central 
focus of this work is the effect of initial population diversity on GA performance. Specifically, we 
compare two initialization strategies: the conventional random initialization and a Hamming 
distance-based approach [14] explicitly designed to maximize population diversity, thereby en-
hancing exploratory capabilities in the early stages of the GA. 

To evaluate the efficiency of the proposed method, extensive experiments were conducted 
using both initialization strategies under controlled settings. Results demonstrate that Hamming 
distance-based initialization performs comparably or better than standard approach, even when 
using significantly fewer individuals per generation. This indicates that strategic population de-
sign can reduce computational costs while maintaining solution quality-a critical insight for real-
time AGV routing applications in operational warehouse systems. 

The remainder of this paper presents the implementation of our GA-based routing algorithm, 
the design of the Hamming-based initialization, and detailed statistical analysis of the results 
obtained through multiple experimental runs. 

2. Related work 
The Travelling Salesman Problem (TSP) is a classic benchmark in combinatorial optimization and 
has been extensively addressed using GAs due to their ability to explore large, complex search 
spaces and avoid local optima through evolutionary operators. Standard GA implementations 
typically start with randomly generated populations, which help avoid early convergence but 
still frequently lead to premature stagnation in complex or highly constrained problems. 

In the context of warehouse logistics, the TSP is frequently adapted to model route optimiza-
tion for AGVs, where efficient sequencing of pick-up and delivery tasks is critical. Several works 
have proposed heuristic and metaheuristic-based solutions, including Ant Colony Optimization 
(ACO) and GA-based frameworks [11]. However, many approaches assume idealized conditions 
or rely on brute-force exploration, which becomes computationally expensive as the number of 
tasks and constraints grow. As a general approach, the authors in [15] proposed an enhanced GA 
for the TSP, in which the population is initialized using the Iterative Approximate Method, signif-
icantly improving solution efficiency and convergence speed. 

Recent advancements have focused on enhancing diversity within GA population to improve 
exploration and convergence stability. For example, some authors have introduced adaptive 
mutations rates or hybridized GAs with local search techniques to maintain population diversity. 
Hamming distance, a measure of dissimilarity between binary strings, has been proposed for 
initializing populations that are maximally distinct [16]. While it has been applied in other do-
mains, its use in structured, graph-based environments like warehouse routing remains relative-
ly underexplored.  
 To our knowledge, few studies have empirically compared Hamming distance-based initiali-
zation with traditional random initialization in the context of AGV routing on warehouse graphs, 
employing statistically rigorous analysis to evaluate performance and convergence behaviour. 
This paper contributes to the existing literature by integrating a Hamming distance-based popu-
lation initialization within a GA specifically designed for AGV navigation. By fostering high initial 
diversity, the algorithm reduces reliance on large population sizes, thus enhancing computation-
al efficiency without sacrificing solution quality.  
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3. Environmental modelling and preprocessing 
3.1 Matrix-based environment encoding 

The warehouse environment is defined by three structural parameters: 
• number of aisles,  
• number of storage locations per aisle,  
• number of storage blocks.  

These parameters provide a compact and flexible description of the warehouse layout, which is 
essential for scalable simulations and graph-based modelling. 
 To facilitate algorithmic processing, the physical warehouse is first abstracted into a two-
dimensional matrix. Each cell in the matrix corresponds to a discrete warehouse location and is 
assigned an integer label representing its functional role. Fig. 1 illustrates the top-down view of 
the warehouse layout and its matrix representation. 
 

 
Fig. 1 Top-down view of the warehouse layout and its matrix representation 

 
Table 1 Classification of colours and numerical values from Fig. 1 

Value Colour code Description 
0 White Free space: Traversable 
1 Black Empty storage location: Untraversable 
2 Red Storage location: Untraversable 
3 White Pickup location: Traversable 
9 Green Start and end point: Traversable 

 
Table 1 summarises the classification scheme used to assign numerical values to different ele-

ments of the warehouse. 
Only the cells labelled 0, 3 and 9 are traversable. Among these, all nodes labelled as 3 represent 

mandatory pickup locations that the AGV must visit at least once. This matrix formulation allows 
a direct transformation into a graph, where each traversable cell becomes a node and edges rep-
resent valid moves between adjacent cells. 

3.2 Graph-based preprocessing 

To enable efficient path planning and distance evaluation, the matrix representation of the 
warehouse is transformed into a weighted graph [17]. In this graph, each traversable matrix cell 
(labelled as 0, 3 or 9) becomes a node. An undirected edge is created between every pair of adja-
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cent traversable nodes. By default, edges are assigned a weight of 1, representing uniform 
movement cost. However, in real-world applications, factors such as bottlenecks, blocked or 
narrow passages, and other environmental constraints may increase the traversal difficulty. 
Such conditions are modelled by assigning higher weights to the affected edges. 
 Once the graph is constructed, all terminal nodes, marked with the label 3 in the matrix, are 
identified. These represent the pickup locations that the AGV must visit at least once. The set of 
terminals serves as the basis for solving a TSP-like optimization task. 
 To quantify distances between terminals, a distance matrix is computed using a BFS algo-
rithm [18]. For each terminal node, BFS calculates the shortest path (in terms of total edge 
weight) to every other terminal. The resulting distance matrix is a symmetric square matrix 
where each element 𝐷𝐷𝑖𝑖,𝑗𝑗 represents the shortest traversable distance between terminals 𝑖𝑖 and 𝑗𝑗. 
 The distance matrix serves as a critical input to the optimization algorithm. It allows for rapid 
evaluation of the total route length of any candidate solution, without requiring real-time path-
finding through the graph [19]. This preprocessing step thus transforms the original navigation 
problem into a purely combinatorial optimization task, significantly reducing computational 
overhead during the evolutionary search. 

4. Genetic algorithm optimization 
4.1 Chromosome representation and problem complexity 

To apply a GA to the problem of AGV routing within a warehouse, we first define how a potential 
solution (chromosome) is represented. Each chromosome encodes a specific sequence in which 
the autonomous vehicle should visit all required terminal nodes, that is, the pickup locations 
identified during preprocessing. 
 A chromosome consists of a permutation of all terminal nodes, where each gene represents a 
single terminal node, and the order of genes determines the traversal path of the AGV. This is 
represented in Fig. 2, which illustrates 5 different potential solutions to the routing problem, 
given 8 pickup locations. 
 

 
Fig. 2 Example of 5 different solutions to the routing problem with 8 terminal nodes. 

 
This problem closely resembles the mentioned TSP, a well-known combinatorial optimization 

problem. For 𝑛𝑛 terminal nodes, there are 𝑛𝑛! possible permutations, making exhaustive search 
methods computationally infeasible, even for relatively small values of 𝑛𝑛. As the problem scales, 
brute-force methods become impractical due to factorial growth in complexity. 
 Given a set of terminals 𝑇𝑇 =  {𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛}, the objective is to find a permutation π, as shown 
in Eq. 1, that minimizes the total travel distance. 
 

𝜋𝜋 = �𝐷𝐷𝜋𝜋(𝑖𝑖),𝜋𝜋(𝑖𝑖+1)

𝑛𝑛

𝑖𝑖=1

 (1) 

 

Since brute-force methods become computationally infeasible for large 𝑛𝑛, a GA is employed to 
address this challenge. GA are well-suited for permutation-based combinatorial problems and 
enable efficient exploration of large solution spaces by evolving a population of chromosomes 
through genetic operations. 
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4.2 Hamming distance-based population initialization 
A critical step in ensuring the effectiveness of a GA is the initialization of a diverse population. 
Diversity promotes broad exploration of the solution space in early generations and helps avoid 
premature convergence to local optima. To systematically promote diversity, we employed a 
strategy based on the Hamming distance. 
 For two sequences of equal length, the Hamming distance is defined as the number of posi-
tions at which the corresponding elements differ [20]. In our context, each chromosome is a 
permutation of terminal nodes, and the Hamming distance between two chromosomes indicates 
the number of differing terminal positions in the visitation sequence. 
 The population is initialized by iteratively generating random permutations and comparing 
them against the already selected chromosomes. A candidate chromosome is accepted into the 
population only if a minimum Hamming distance from the set of existing chromosomes exceeds 
a decreasing threshold, starting from the maximum value 𝑛𝑛 (the number of terminals). This en-
sures that the initial population is highly diverse, therefore promoting broad exploration of the 
solution space. If, after a predefined number of attempts, no chromosome meets the current 
Hamming threshold, the threshold is reduced by one and the process repeats. This adaptive 
mechanism balances diversity with feasibility. A high-level implementation of the described 
method is shown in Fig. 3.  

 
Fig. 3 Flowchart of a high-level hamming distance-based algorithm to ensure initial population diversity. 
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This Hamming distance-based algorithm ensures diversity in the starting population, ena-
bling a broader and more efficient exploration of the solution space. The computational com-
plexity of the initialization process increases approximately as 𝑂𝑂(𝑃𝑃2𝐴𝐴 𝑛𝑛), where 𝑃𝑃 denotes the 
population size, 𝑛𝑛 the number of pickup locations, and 𝐴𝐴 the number of random Hamming dis-
tance attempts per chromosome. 

4.3 Evolutionary dynamics and evaluation 

This section describes the key components of the GA, including selection mechanisms, elitism 
strategy, mutation operators, and the dynamic fitness evaluation. These mechanisms were de-
signed to balance exploration and exploitation throughout the optimization process. 
 A dynamic tournament selection method is used to select chromosomes for reproduction or 
crossover. In each tournament, a subset of 𝑘𝑘 chromosomes from the current population is ran-
domly selected, and the best-performing individual is chosen. To balance exploration and exploi-
tation over time, the tournament size is dynamically adjusted, as shown in Eq. 2. 
 

𝑘𝑘 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟((𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) · 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚) (2) 
where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is defined in Eq. 3. 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑚𝑚𝑚𝑚𝑚𝑚_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

 (3) 
 

This allows smaller tournament sizes early on (encouraging diversity) and larger tourna-
ments later (favouring selection pressure). Following the selection, each chromosome is either 
reproduced directly into the next generation with probability 𝑝𝑝, or undergoes crossover with a 
different chromosome with probability 1 − 𝑝𝑝. 
 To preserve high quality solutions, elitism is applied by copying the top 𝑖𝑖 chromosomes unal-
tered into the next generation. The number of elite chromosomes increases quadratically with 
the progress of generations as shown in Eq. 4. 

𝑖𝑖 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟((𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) · 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 + 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) (4) 

This strategy ensures that more optimal solutions are retained as the algorithm converges. 
 Two types of mutation operators are employed to maintain genetic diversity: 

• Single-gene swap: Two genes (positions) in the chromosome are randomly swapped [21]. 
• 2-opt-swap: A sub-sequence of genes is reversed, a common local optimization technique 

in TSP-like problems [22]. 

The mutation probability is dynamic and is sampled from a uniform distribution U(a,b), 
where bounds a and b evolve as generations progress, as shown in Eq. 5 and Eq. 6. 

𝑎𝑎 = (𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) · 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,   where  𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒 (5) 

𝑏𝑏 = (𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) · 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,   where  𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 > 𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒 (6) 
This allows higher variability early on (favouring exploration), which gradually decreases as 

the algorithm approaches convergence. 
 The fitness function transitions from the exploration phase to the exploitation phase to bal-
ance global search and solution refinement. During the exploration phase, the fitness incorpo-
rates both solution quality and population diversity, as shown in Eq. 7. 

𝑓𝑓 = 𝛼𝛼 · 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝ℎ_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ −  (1 − 𝛼𝛼) · 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (7) 

Normalization is necessary to account for differing numerical scales. Path lengths are normal-
ized relative to population statistics, while Hamming distances are normalized relative to the 
maximum possible value, corresponding to the chromosome length. The coefficient 𝛼𝛼 balances 
the two terms and is defined by a sigmoid function [23] as shown in Eq. 8. 

𝛼𝛼 =
1

1 + 𝑒𝑒−𝑥𝑥
 (8) 
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where 𝑥𝑥 is defined as shown in Eq. 9. 

𝑥𝑥 = 20 ·  
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑒𝑒𝑒𝑒𝑒𝑒

 − 10 (9) 

In Eq. 9, generation_counter is an integer value representing the current generation number, 
while exploration_end is the predefined generation at which exploitation begins. During the ex-
ploitation phase, fitness is based solely on the provided path length of a chromosome. This phase 
focuses entirely on improving the solution quality. 
 A high-level schematic of the proposed GA framework is illustrated in Fig. 4. 
 

 
Fig. 4 Algorithmic structure of the GA-based navigation framework 

5. Results and discussion 
This section presents a comprehensive evaluation of the impact of Hamming distance-based 
population initialization (H) compared to random initialization (NH) in a GA designed for opti-
mizing warehouse routing. The analysis spans four key performance metrics: 

• runtime duration, 
• initial population diversity, 
• convergence speed, 
• final solution quality (best tour length). 
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The experiments were performed over 20 independent runs per setting, using identical seeds 
and warehouse environments to ensure consistency. 

5.1 Equal population size comparison 

In the first series of experiments, both methods were executed under identical setting with 30 
individuals per generation. Each configuration was repeated 20 times using the same seeds and 
warehouse environment. To validate the use of parametric tests, Shapiro-Wilk and D’Agostino-
Pearson normality tests were conducted for all metrics [24]. Results indicated normal distribu-
tion across all groups. Table 2 summarizes the results. 
 

Table 2 Statistical analysis of GA metrics: Hamming vs. Non-Hamming 
Metric Hamming (Mean ± SD) Non-Hamming (Mean ± SD) 𝑝𝑝-value Significance 
Runtime (s) 45.0283 ± 5.3 40.2011 ± 5.79 0.0057 significant 
Initial population 
Hamming distance 

80.3567 ± 0.03 78.2347 ± 0.05 < 0.0001 significant 

Generations 6122.05 ± 692.09 5907.45 ± 739.28 0.2904 not significant 
Best tour length 400.8000 ±11.19 403.6000 ± 9.46 0.3915 not significant 

 
Key takeaways: 

• Population diversity: The Hamming-initialized population achieved significantly higher 
diversity, confirming the effectiveness. 

• Runtime: Hamming initialization introduced a slight computational overhead due to pair-
wise distance calculations. 

• Final Quality & Convergence: No statistically significant improvement was observed. 

5.2 Exploring population size effects 

Additional experiments were conducted to investigate whether Hamming distance-based initial-
ization can effectively compensate for a reduced population size in GA applications. This evalua-
tion was carried out on a structurally distinct warehouse layout to ensure generalizability of the 
findings. In this setting, we compared the performance of a GA configured with only 30 individu-
als initialized using the Hamming distance strategy (H30) against a GA employing 150 individu-
als initialized randomly (NH150). Despite the fivefold disparity in population size, the H30 con-
figuration consistently demonstrated comparable solution quality to the NH150 setup in both 
final tour length and convergence behaviour. 
 Statistical analysis of the tour length distributions supported this finding, yielding a signifi-
cant 𝑝𝑝-value [25] (p < 0.05) indicating that the performance difference favoured the H30 config-
uration. These results underscore the effectiveness of diversity-promoting strategies in evolu-
tionary algorithms. Instead of compensating for insufficient diversity by brute-force scaling of 
the population size, initializing the population with maximally dissimilar chromosomes enables 
more efficient exploration of the solution space. This provides a strong argument for adopting 
informed initialization techniques, especially in resource-constrained environments where com-
putational efficiency is critical, such as real-time AGV routing in dynamic warehouse settings.  

6. Conclusion  
This work explored the application of a GA to solve warehouse routing problem, a task critical to 
the efficiency of AGV system in logistics and manufacturing environments. Our results confirm 
that a GA-based approach is not only viable but effective for generating high quality routing so-
lutions within reasonable computational budget. The simplified version of the algorithm can be 
accessed at: https://github.com/IntoTheVoid-61/Warehouse-Pathfinder. Future work of the algo-
rithm will extend to its optimization and integration into the ROS2 environment. 
 In a targeted comparison, a GA with just 30 chromosomes initialized using Hamming-based 
method achieve statistically comparable results in tour quality relative to that of a GA with 150 
randomly initialized individuals. This outcome highlights the central contribution of our study: 

https://github.com/IntoTheVoid-61/Warehouse-Pathfinder
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intelligent population seeding can significantly reduce the required population size without 
compromising performance. 
 This finding has tangible implications for real-world deployment. Reducing population size 
lowers computational time and memory usage, making approach more suited for embedded or 
real-time systems commonly used in AGV applications. Accordingly, this study provides a practi-
cal and scalable GA-based framework for warehouse routing, with added benefit of an initializa-
tion method that enhances performance under constrained resources.  
 Future work should focus on deploying the proposed system on real-world AGV platforms 
and evaluating its performance through experiments and field-testing. While the algorithm 
demonstrates strong results in two-dimensional navigation (based on top-down view of the 
warehouse), it does not yet account for three-dimensional considerations. Furthermore, as this 
study was conducted on an abstracted AGV model, specific characteristics of actual vehicle were 
not incorporated. Notably, the model assumed that AGV could transport an unlimited mass of 
cargo and did not require a return to the starting point for unloading. Future implementations 
on embedded system should therefore account for such practical constraints, including limited 
payload capacity and the need for cargo drop-off behaviour. 
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