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Abstract. Taking into account the available data on the mass sector, and without any
preconceptions about a specific matrix texture, we obtain quark mass matrices with a
kind of democratic underpinning. Our starting point is a factorization of the “standard”
parametrization of the Cabibbo-Kobayashi-Maskawa mixing matrix, from which we derive
this specific type of quark mass matrices.

Povzetek. Avtorica uporabi razpoložljive podatke o masah delcev in običajno parametriza-
cijo mešalne matrike Cabibba, Kobayashija in Maskawe ter poišče, ne da bi vnaprej privzela
kakršnokoli zahtevo za simetrijo, masne matrike za kvarke. Izkaže se, da so zelo zblizu
demokratičnim matrikam.

Keywords: Mass matrices, flavour symmetry, democratic texture

8.1 Mass states and flavour states

In this project, we take a rather phenomenological approach to the quark mass
sector, by assuming that the quark mass matrices can be derived from a simple
factorization of the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix [1],

V =

Vud Vus VubVud Vus Vub
Vud Vus Vub


which appears in the charged current Lagrangian

Lcc = −
g

2
√
2
ψ̄Lγ

µVψ ′LWµ + h.c. (8.1)

where ψ and ψ ′ are fermion fields with charges Q and Q− 1, correspondingly.
Lcc is usually interpreted as an interaction between left-handed physical

particles with charge Q and superpositions of left-handed physical particles of
charge Q − 1, e.g. between a (left-handed) up-sector quark and a superposition
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8 Phenomenological Mass Matrices With a Democratic Origin 165

of (left-handed) down-sector quarks. But it can just as well be interpreted as
interactions between flavour states f, f ′,

Lcc = −
g

2
√
2
f̄Lγ

µf ′LWµ + h.c. (8.2)

where
f = U†ψ, f ′ = U ′†ψ ′, and UU ′† = V

The reason we emphasize this is that f, f ′ appear in the mass Lagrangian

Lmass = f̄Mf+ f̄ ′M ′f ′ = ψ̄Dψ+ ψ̄ ′D ′ψ ′, (8.3)

where f, f ′ are quark flavour states with charge 2/3 and -1/3, respectively, and
ψ,ψ ′ are the corresponding mass states. The mass matrices in the weak basis are
denoted by M = M(2/3) and M ′ = M ′(−1/3), which in the mass bases corre-
spond to the diagonal matricesD = diag(mu,mc,mt) andD ′ = diag(md,ms,mb).
It is the form of the mass matricesM andM ′ in the weak basis that we are looking
for, in the hope that they can shed light on the mechanism behind the hierarchical
fermion mass spectra.

In the context of weak interactions it is thus crucial to distinguish between
mass states and flavour states, the flavour states being the eigenstates of the weak
interactions, and the mass eigenstates correspond to the “physical particles” that
take part in strong and electromagnetic interactions.

The picture is that the flavour states all live in the same weak basis in flavour
space, while the mass states of different charge sectors live in their separate mass
bases. We go from the weak basis to the mass bases of the charge 2/3- and charge
-1/3-sector, respectively, by rotating the mass matricesM(2/3) andM ′(−1/3) by
the unitary matrices U and U ′, which are factors of the CKM-matrix, V = UU ′†.

M→ UMU† = D = diag(mu,mc,mt) (8.4)

M ′ → U ′M ′U ′† = D ′ = diag(md,ms,mb)

We can always assume that the mass matrices are Hermitian [3], and diagonalized
by hermitian unitary matrices. Since V = UU ′† 6= 1, the up-sector mass basis is
different from the down-sector mass basis, and the CKM matrix bridges the two
mass bases.

It can be argued that flavour states merely exist in our fantasy, since they are
not directly measurable. This line of thought is however defied by the neutrinos.
Whereas in the quark sector there is a distinction between flavour states, where
mass states are perceived as “physical” and the weakly interacting flavour states
are defined as mixings of these physical particles, in the lepton sector the situation
is quite different. This is due to the fact that as far as we know, neutrino mass states
never appear on the scene - in the sense that they never take part in interactions,
but merely propagate in free space. The neutrinos νe, νµ, ντ are flavour states, but
we nontheless perceive them as “physical”, because they are the only neutrinos
that ever appear in interactions, i.e. they are the only neutrinos that we “see”.

A neutrino is defined by the charged lepton with which it interacts: what we
call the electron-neutrino νe is the superposition of neutrino mass states which



i
i

“proc18” — 2018/12/10 — 11:44 — page 166 — #182 i
i

i
i

i
i

166 A. Kleppe

appears together with the electron, and likewise for µ and τ; in that sense the
conservation of the lepton number is a tautology. The only mixing matrix that
occurs in the lepton sector is the Pontecorvo-Maki-Nakagawa-Sakata mixing
matrix Uwhich exclusively operates on neutrino states,νeνµ

ντ

 = U(PMNS)

ν1ν2
ν3


where (ν1, ν2, ν3) are mass eigenstates, and (νe, νµ, ντ) are the weakly interacting
flavour states. In the lepton sector, the charged currents are thus interpreted as
(e, µ, τ) interacting with the neutrino flavour states (νe, νµ, ντ) - and the charged
leptons are consequently defined as being both flavour states and mass states.

8.2 Factorizing the weak mixing matrix

The usual procedure in establishing an ansatz for the quark mass matrices is to
hypothesize a mass matrix of a specific form. Here we instead look for a “natural”
factorization of the Cabbibo-Kobayashi-Maskawa mixing matrix, hoping to find
the “correct” rotation matrices U and U ′ that diagonalize the mass matrices M
andM ′.

The CKM matrix can of course be parametrized and factorized in many dif-
ferent ways, and different factorizations correspond to different rotation matrices
U and U ′, and correspondingly to different mass matricesM andM ′. We choose
what we perceive as the most obvious and “symmetric” factorization of the CKM
mixing matrix, following the well-known standard parametrization [2] with three
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8 Phenomenological Mass Matrices With a Democratic Origin 167

Euler angles α, β, 2θ,

V =

 cβc2θ sβc2θ s2θe
−iδ

−cβsαs2θe
iδ − sβcα −sβsαs2θe

iδ + cβcα sαc2θ
−cβcαs2θe

iδ + sβsα −sβcαs2θe
iδ − cβsα cαc2θ

 = UU
′† (8.5)

This corresponds to the diagonalizing rotation matrices for the up- and down-
sectors

U =W

1 0 0

0 cosα sinα
0 − sinα cosα

e−iγ 1
eiγ

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

W†
=W

 cθe
−iγ 0 sθe

−iγ

−sαsθe
iγ cα sαcθe

iγ

−cαsθe
iγ −sα cαcθe

iγ

W†
(8.6)

and

U ′ =W

cosβ − sinβ 0
sinβ cosβ 0

0 0 1

e−iγ 1
eiγ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

W†
=W

cβcθe−iγ −sβ −cβsθe
−iγ

sβcθe
−iγ cβ −sβsθe

−iγ

sθe
iγ 0 cθe

iγ

W†
(8.7)

respectively, whereW =W(ρ) is a unitary matrix which is chosen is such a way
that the same phase γ appears in the mass matrices of both charge sectors, i.e. a
matrix of the form

W(ρ) ∼

0 cos ρ ± sin ρ
1 0 0

0 ∓ sin ρ cos ρ

 ,
 cos ρ 0 ± sin ρ

0 1 0

∓ sin ρ 0 cos ρ

 ,
 cos ρ ± sin ρ 0

0 0 1

∓ sin ρ cos ρ 0


Here the value of the parameter ρ is unknown, whereas α, β, θ and γ correspond
to the parameters in the standard parametrization, with γ = δ/2, δ = 1.2± 0.08
rad, and 2θ = 0.201 ± 0.011◦, while α = 2.38 ± 0.06◦ and β = 13.04 ± 0.05◦. In
our factorization scheme, α and β are the rotation angles operating in the up-
sector and the down-sector, respectively. With the rotation matrices U(α, θ, γ, ρ)
and U ′(β, θ, γ, ρ), we obtain the mass matrices for the up- and down-sectors,
respectively,

M = U†diag(mu,mc,mt)U and M ′ = U ′†diag(md,ms,mb)U
′

For the up-sector this gives

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 =W†(ρ)

 Xc2θ + Ys
2
θ Zsθ e

−iγ (X− Y)cθsθ
Zsθ e

iγ Y − 2Z cot 2α −Zcθ e
iγ

(X− Y)cθsθ −Zcθ e
−iγ Xs2θ + Yc

2
θ

W(ρ)

(8.8)
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168 A. Kleppe

where

X = mu, Y = mc sin2 α+mt cos2 α,

Z = (mt −mc) sinα cosα =
√
(mt − Y)(Y −mc),

and mu,mc, mt are the masses of the up-, charm- and top-quark; and W(ρ) is a
unitary one-parameter matrix. Analogously for the down-sector mass matrix,

M ′ =

M ′11 M ′12 M ′13M ′21 M
′
22 M

′
23

M ′31 M
′
32 M

′
33


=W†(ρ)

 X ′s2θ + Y
′c2θ Z ′cθ e

iγ (X ′ − Y ′)cθsθ
Z ′cθ e

−iγ Y ′ + 2Z ′ cot 2β −Z ′sθ e
−iγ

(X ′ − Y ′)cθsθ −Z ′sθ e
iγ X ′c2θ + Y

′s2θ

W(ρ) (8.9)

where X ′ = mb, Y ′ = md cos2 β + ms sin2 β, Z ′ = (ms − md) sinβ cosβ =√
(ms − Y ′)(Y ′ −md), andmd,ms,mb are the masses of the down-, strange- and

bottom-quark, respectively. The two mass matrices thus display similar textures.
With Y = mc sin2 α+mt cos2 α, Z = (mt−mc) sinα cosα, Y ′ = md cos2 β+

ms sin2 β, and Z ′ = (ms −md) sinβ cosβ, we can moreover write

mu = X, mc = Y − Z cotα, mt = Y + Z tanα,
md = Y ′ − Z ′ tanβ, ms = Y

′ + Z ′ cotβ, mb = X ′,
(8.10)

8.3 The matrix W

There are of course many ways to chose a one-parameter unitary matrix, but we
choose a matrix W(ρ) which conveniently gives mass matrices with the same
phase γ for both charge sectors,

W(ρ) =

cos ρ − sin ρ 0
0 0 1

sin ρ cos ρ 0

 (8.11)

This gives the up-sector mass matrix

M =W†

 Xc2θ + Ys
2
θ Zsθ e

−iγ (X− Y)cθsθ
Zsθ e

iγ Y − 2Z cot 2α −Zcθ e
iγ

(X− Y)cθsθ −Zcθ e
−iγ Xs2θ + Yc

2
θ

W = (8.12)

=

X cos2 µ+ Y sin2 µ (Y − X) sinµ cosµ −Z sinµ e−iγ

(Y − X) sinµ cosµ X sin2 µ+ Y cos2 µ −Z cosµ e−iγ

−Z sinµ eiγ −Z cosµ eiγ F


where µ = ρ − θ, X = mu, Y = mc sin2 α +mt cos2 α, Z =

√
(mt − Y)(Y −mc)

and F = Y − 2Z cot 2α = mcc
2
α +mts

2
α.
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8 Phenomenological Mass Matrices With a Democratic Origin 169

Now, depending on the value of µ = ρ− θ, we get different matrix textures,
e.g. for ρ− θ = 0 or π, we get the simple form

M(0, π) =

X 0 0

0 Y −Ze−iγ

0 −Zeiγ F

 , (8.13)

and for ρ− θ = π/2, equally simple

M(π/2) =

 Y 0 −Ze−iγ

0 X 0

−Zeiγ 0 F

 (8.14)

Applying the same procedure to the down-sector, we get the down-sector mass
matrix

M ′ =W(ρ)†

 X ′s2θ + Y
′c2θ Z ′cθ e

iγ (X ′ − Y ′)cθsθ
Z ′cθ e

−iγ Y ′ + 2Z ′ cot 2β −Z ′sθ e
−iγ

(X ′ − Y ′)cθsθ −Z ′sθ e
iγ X ′c2θ + Y

′s2θ

W(ρ) =

=

X ′ sin2 µ ′ + Y ′ cos2 µ ′ (X ′ − Y ′) sinµ ′ cosµ ′ Z ′ cosµ ′ eiγ

(X ′ − Y ′) sinµ ′ cosµ ′ X ′ cos2 µ ′ + Y ′ sin2 µ ′ −Z ′ sinµ ′ eiγ

Z ′ cosµ ′ e−iγ −Z ′ sinµ ′ e−iγ F ′

 (8.15)

where µ ′ = ρ+θ,X ′ = mb, Y ′ = md cos2 β+ms sin2 β,Z ′ =
√

(ms − Y ′)(Y ′ −md)

and F ′ = Y ′ + 2Z ′ cot 2β = mds
2
β +msc

2
β. Again, different µ ′-values correspond

to different matrices, e.g. for µ ′ = ρ+ θ = 0 or π, we get

M ′(0, π) =

 Y ′ 0 Z ′eiγ

0 X ′ 0

Z ′e−iγ 0 F ′

 (8.16)

and for µ ′ = ρ+ θ = π/2, we get

M ′(π/2) =

X ′ 0 0

0 Y ′ −Z ′eiγ

0 −Z ′e−iγ F ′

 (8.17)

8.4 Texture Zero Mass Matrices

The matrices (8.13) and (8.14), as well as (8.16) and (8.17), make us wonder if our
scheme is compatible with quark mass matrices of texture zero.

The study of texture zero matrices is driven by the need to reduce the number
of free parameters, since the fermion mass matrices are 3x3 complex matrices,
which without any constraints contain 36 real free parameters. It is however
always possible to perform a unitary transformation that renders an arbitrary
mass matrix Hermitian [3], so there is no loss of generality in assuming that the
mass matrices are Hermitian, reducing the number of free parameters to 18. This
is still a very large number, which in the end of the 1970-ies prompted Fritzsch [6],
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170 A. Kleppe

[7] to introduce “texture zero matrices”, i.e. mass matrices where a certain number
of the entries are zero.

Since then, a huge amount of articles have appeared, with analyses of the very
large number of (different types of) texture zero matrices and their phenomenology.
In the course of this work, a number of of texture zero matrices have been ruled
out. A handful of matrices have however been singled out as viable [8], which
among the texture 4 zero matrices are:A B 0

B∗ D C

0 C∗ 0

 ,
A B C

B∗ D 0

C∗ 0 0

 ,
A 0 B

0 0 C

B∗ C∗ D

 ,
 0 C 0

C∗ A B

0 B∗ D

 ,
 0 0 C

0 A B

C∗ B∗ D

 ,
D C B

C∗ 0 0

B∗ 0 A


while A 0 0

0 C B

0 B∗ D

 and

A 0 B

0 C 0

B∗ 0 D


are among the matrices that are ruled out. In our scheme this precisely corresponds
to the matrices (8.13), (8.14), (8.16) and (8.17), which gives a constraint on the angle
ρ,

ρ 6= 1

2
Nπ± θ (8.18)

whereN ∈ Z , ruling out the matricesM(1
2
Nπ−θ) andM ′(1

2
Nπ+θ). This implies

that our mass matrices M and M ′ are not of texture zero. Instead, they display
a kind of democratic texture [4], a feature that has merely been outlined in our
earlier project [5].

8.5 Democratic mass matrices

In the Standard Model, fermions get their masses from the Yukawa couplings
by the Higgs mechanism. We know that the fermion masses within one charge
sector are very different, but there is no apparent reason why there should be a
different Yukawa coupling for each fermion of a given charge. Taking the differ-
ence between the weak basis and the mass bases into account, the democratic
philosophy proclaims that in the weak basis, the fermions of a given charge should
have identical Yukawa couplings, just like they have identical couplings to the
gauge bosons of the strong, weak and electromagnetic interactions.

The democratic hypothesis thus implies that in the weak basis the quark mass
matrices for both charge sectors have an initial, “democratic” form

M0 = k

1 1 11 1 1

1 1 1

 ≡ kN (8.19)

where k has dimension mass; and the mass spectrum (0, 0, 3k) reflects the phe-
nomenology of the fermion mass spectra with one very big and two much smaller
mass values - in the mass basis. In the weak basis the matrixM0 = kN is however
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8 Phenomenological Mass Matrices With a Democratic Origin 171

totally flavour symmetric, in the sense that the flavour states fi of a given charge
are indistinguishible and the initial mass Lagrangian reads

Lmass = kf̄Nf =
3∑

i=1,j=1

k f̄ifj

which is a totally flavour symmetric situation, with a discrete flavour symmetry
under the cyclic permutation group Z3 operating on the mass matrix. That the
Yukawa couplings are identical for all the flavours, while the mass eigenvalues
are so completely different is a reminder of the difference between flavour states
and mass states.

The democratic symmetry is unchanged if we add a diagonal matrix

diag(X,X, X)

to kN, since the new democratic mass matrix M0 = kN + diag(X,X, X) still
corresponds to a completely flavour symmetric mass Lagrangian,

Lmass = f̄M0f = k

3∑
i,j=1

f̄ifj + X

3∑
i=1

f̄ifi = (k+ X)

3∑
i=1

f̄ifj (8.20)

Moreover, since the up-sector mass matrix and the down sector mass matrix
in this assumed democratic initial stage are structurally identical, the mixing
matrix is equal to unity, so there is no CP-violation. In order to obtain the final
mass spectra with the three hierarchical non-zero values, the initial democratic
symmetry must be broken in such a way that we get a mixing matrix and masses
that all agree with data. In the democratic scenario an ansatz thus consists of a
specific choice for the flavour symmetry breaking scheme. In our approach, it
however comes out of the formalism, without any presupposition of a democratic
texture or a specific breaking scheme.

8.5.1 Reparametrizing the mass matrices

By reformulating the matrix elementsM11,M22,M
′
11, andM ′22 in the quark mass

matrices (8.12) and (8.15), using the relations

Xc2µ + Ys2µ = (Y − X)s2µ + X, Xs2µ + Yc2µ = (Y − X)c2µ + X, and
X ′s2µ ′ + Y

′c2µ ′ = (Y ′ − X ′)c2µ ′ + X
′, and X ′c2µ + Y ′s2µ = (Y ′ − X ′)s2µ ′ + X

′,

the mass matrices can be rewritten in a way that reveals a kind of “democratic
substructure”,

M =

 Xc2µ + Ys2µ (Y − X)sµcµ −Zsµ e
−iγ

(Y − X)sµcµ Xs2µ + Yc2µ −Zcµ e
−iγ

−Zsµ e
iγ −Zcµ e

iγ F

 = (8.21)

= B

sinµ
cosµ

Geiγ

1 1 11 1 1

1 1 1

sinµ
cosµ

Ge−iγ

+

X X
X+A
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172 A. Kleppe

and

M ′ =

 X ′s2µ ′ + Y
′c2µ ′ (X ′ − Y ′)sµ ′cµ ′ Z

′cµ ′ e
iγ

(X ′ − Y ′)sµ ′cµ ′ X
′c2µ ′ + Y

′s2µ ′ −Z ′sµ ′ e
iγ

Z ′cµ ′ e
−iγ −Z ′sµ ′ e

−iγ F ′

 = (8.22)

= B ′
(

cosµ ′

− sinµ ′

G ′e−iγ

)(
1 1 1
1 1 1
1 1 1

)( cosµ ′

− sinµ ′

G ′eiγ

)
+

(
X ′

X ′

X ′+A ′

)
where

X = mu, µ = ρ− θ, B = Y − X = mcs
2
α +mtc

2
α −mu,

G = −
(mt −mc)sαcα

(mcs2α +mtc2α −mu)
, A =

(mc −mu)(mt −mu)

(mcs2α +mtc2α −mu)
,

and X ′ = mb, µ ′ = ρ+ θ, B ′ = Y ′ −X ′ = mss
2
β +mdc

2
β −mb,

G ′ =
(ms −md)sβcβ

(mdc2β +mss2β −mb)
, A ′ =

(md −mb)(ms −mb)

(mdc2β +mss2β −mb)
,

α = arctan
(√

mt−Y
Y−mc

)
= 2.38± 0.06◦, β = arctan

(√
Y ′−md
ms−Y ′

)
= 13.04± 0.05◦.

The matrices of the two charge sectors thus display great similarities. That
A 6= 0 and A ′ 6= 0 moreover means that mc 6= mu, mt 6= mu, md 6= mb and
ms 6= mb, and with the additional conditionmc 6= mt andmd 6= mb, we almost
have the prerequisite for CP-violation - which basically says that CP-violation
occurs once there is a third family (and a complex phase).

8.6 Discussion

We interpret the structure displayed by (8.21) and (8.22) as the result of an in initial
democratic matrix, where the flavour symmetry undergoes a stepwise breaking,
each step corresponding to one term. If we consider the up-sector, the first term
comes from

M0 = k

1 1 11 1 1

1 1 1

⇒M1 = B

sinµ
cosµ

Geiγ

1 1 11 1 1

1 1 1

sinµ
cosµ

Ge−iγ

 ,
(8.23)

where k and B both have the dimension mass. This first symmetry breaking step
really corresponds to shifting the flavours in such a way that f1 → sµf1, f2 → cµf2,
f3 → Ge−iγf3. The mass spectrum still consists of two massless and one massive
state, but the flavour symmetry is partially broken, with the mass Lagrangian

Lmass = f̄M1f = χ̄1χ1 + χ̄1χ2 + χ̄2χ1 + χ̄2χ2 = (χ̄1 + χ̄2)(χ1 + χ2),

where χ1 = B(sµf1 + cµf2), χ2 = BGe−iγf3. The original total flavour symmetry
is thus broken down to the partial flavour symmetry f1 ⇔ f2, but there is still only
one non-vanishing eigenvalue.
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8 Phenomenological Mass Matrices With a Democratic Origin 173

In the next step, by shifting the origin from diag(0, 0, 0) to diag(X,X, X), we
obtain a mass spectrum with one very heavy, massive state, and two lighter states
with mass X, i.e.

M1 ⇒M2 = B

sinµ
cosµ

Geiγ

1 1 11 1 1

1 1 1

sinµ
cosµ

Ge−iγ

+

X X
X


(8.24)

where X has dimension mass.
In the last step, the remaining degeneracy in the mass spectrum (X,X, X +

B(G2 + 1)) is subsequently broken, by adding the term diag(0, 0,A), where A has
dimension mass. We argue that this last breaking is necessitated by the principle
of minimal energy, in analogy with the Jahn-Teller effect.

M2 ⇒M3 = B

(
sinµ

cosµ
Geiγ

)(
1 1 1
1 1 1
1 1 1

)( sinµ
cosµ

Ge−iγ

)
+
(
X
X
X

)
+
(
0
0
A

)
(8.25)

We identify our scheme as a democratic scenario, where the flavour symmetry is
broken in the specific way described above.

8.7 Numerical values

In order to get a notion of the sizes of the parameters B,G,X,A, we calculate their
values for quark masses at different µ. Using quark masses atMZ, [9], [10], [11]

mu(MZ) = 1.24MeV, mc(MZ) = 624MeV, mt(MZ) = 171550MeV

md(MZ) = 2.69MeV, ms(MZ) = 53.8MeV, mb(MZ) = 2850MeV
(8.26)

we get the numerical values for the parameters:

up-sector d-sector
B = 171254MeV ≈ mt cos2 α B ′ = −2844.71MeV ≈ 2md −mb
G = 0.0414 G ′ = −0.0039

X = 1.24MeV X ′ = 2850MeV

A = 623.83MeV ≈ mc cosα A ′ = −2798.76MeV ≈ ms −md −mb

and as before, we use the angles α = 2.38◦ and β = 13.04◦.
We would also like to establish some numerical value, or at least a range, for

the parameter ρ. Our initial assumption was that the matrices (8.6), (8.7) which
diagonalize the up-sector and down-sector mass matrices, are given by the factor-
ization of the Cabibbi-Kobayashi-Maskawa matrix (8.5). The parameters of the
CKM matrix are well-known, so the only remaining “steering-parameter” is ρ. The
angles µ and µ ′ in the mass matrices of the up- and d-sector depend on ρ, whose
value is unknown. We have the constraint

ρ 6= 1

2
Nπ± θ (8.27)

which excludes some values of ρ, but it remains unknown what value(s) ρ actually
takes.
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8.8 Conclusion

By factorizing the “standard parametrization” of the CKM weak mixing matrix in
a very natural and straightforward way, we obtain mass matrices with a type of
democratic texture that can be derived from a democratic matrix, followed by a
well-defined scheme for breaking the primary flavour symmetry. This democratic
texture unexpectedly emerges from our factorization of the weak mixing matrix,
there is no presupposition about what form our resulting mass matrices would
have, and no assumptions other than our factorization scheme and the choice of
the unitary matrixW(ρ).
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