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Ab stract
The solvation free energies of ions are often computed using continuum theories, like the Born model. The Born model
has the disadvantages that to fit experimental data, ionic radii are taken as adjustable parameters and you need to know
the dielectric constant. We present here a more microscopic treatment for computing the free energies of ion solvation
in water. Like the Born model, it gives an expression that is simple and can be computed quickly, but unlike the Born
model, it uses true ionic radii and does not require inputting a dielectric constant. We show that the present model gives
predictions for the free energies of transfer of alkali and halide ions into water that are in excellent agreement with re-
cent experimentally derived estimates.
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1. In tro duc tion

The free energies of ion solvation in water have been
widely studied theoretically and experimentally.1–9 A sim-
ple classical way to compute ion-solvation free energies is
using the Born model which gives the excess solvation free
energy of a spherical ion of radius R and charge q as

(1)

By treating the solvent as a dielectric continuum
with dielectric constant ε0, the Born model has the advan-
tage that it provides a closed-form expression, giving both
physical insight and rapid computations. The drawbacks
of the Born model are that: (1) to agree with experimental
data, the ion radii are taken as adjustable parameters,5,10–12

and (2) in microscopically heterogeneous environments,
the dielectric constant is rarely known, and is another free
parameter. Related to these problems are the need, when
developing atomically detailed forcefields, to adjust ion
parameters, because refining the Lennard-Jones diameters
is often a key step in getting computed ion-solvation pro-

perties to match experiments.13–17 To avoid optimizing ra-
dii parameters, modeling efforts have introduced micros-
copic response functions in terms of fields of dipoles, but
these often require several free parameters in order to re-
produce experimental aqueous solvation properties.18–21

We develop here a model for computing the free
energies of ion solvation in water. Our treatment involves
simple assumptions and has the advantage that it does not
require adjusting ion radii or inputting a dielectric con-
stant. Rather than assuming the solvent is a dielectric con-
tinuum, here we treat the solvent by summing over the in-
teractions of discrete water dipoles (see Fig. 1).
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Figure 1. An illustration of averaged water dipoles in different sol-
vation shells for (a) a cation and (b) an anion.
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2. Theory

In our approach we sum up the Coulombic interac-
tions: (i) of the ionic charge interacting with dipole repre-
sentations (cd) of water molecules in the surrounding sol-
vent, and (ii) of all pairs of dipole-dipole interactions (dd)
among these representations of water molecules. For each
water site, the charge-dipole electrostatic energy Ucd is

(2)

where μ is the dipole moment of a water molecule at a gi-
ven position in space, averaged over orientations, and E is
the electric field acting on the water dipole at that position
from the ionic charge. Fig. 1 shows our assumption that
water molecules are arranged in spherically symmetric
shells around the ion. Because we are assuming each wa-
ter is already properly configurationally averaged, the per
water charge-dipole component of the electrostatic Gibbs
free energy of charging is

(3)

Here we assumed that the averaged induced solvent
dipole is linearly dependent upon the charge of the ion,
which is good assumption for all ions larger than lithium.
We also approximated that we can split contributions to
total free energy to contributions between pairs of partic-
les and we neglected all three and more body interactions.
To evaluate these free energy contributions, we need the
configurationally averaged water dipole as a function of
the field, μ(E). For this purpose, we use a universal curve
that we previously obtained by computer simulations of
charged spherical solutes placed in the TIP3P model of
water.22 Fig. 2 shows the configurationally averaged dipo-
le moment for a TIP3P water molecule at the surface of
negatively and positively charged spheres. Note that the
curve is not symmetric with respect to the sign of the elec-

tric field. This is because water’s dipole is asymmetrical
with respect to water’s center of mass (see Fig. 3). Water’s
dipolar asymmetry has long been known,10 and is usually
handled in implicit-solvent models by treating the ionic
radii as adjustable parameters and scaling the anion radii
differently than the cation radii.

Next, we compute the water dipole-dipole interac-
tions using

(4)

where

(5)

where μ1 and μ2 are the averaged dipole vectors of the wa-
ter molecules of interest, r is the separation between the
two dipoles and u is the unit vector between the two inte-
racting dipoles. Two water dipoles in a shell around an ion
will repel each other, so this energy is positive.

Having now obtained expressions for how each wa-
ter molecule interacts with the ion and witho ther waters,
we now sum over all the solvent-water molecules. We di-
vide the space around the ion into shells as shown in Fig.
2. As indicated in the figure, the averaged water dipole
moment will diminish with distance from the ion. It can
be shown that dipoles do not interact across from one shell
to another because each shell is closed, so the total elec-
trostatic free energy of solvation is simply a sum over all
M solvation shells,

(6)

Every shell contribution has two parts: (1) the free
energy of the ion interacting with all the dipoles in the
shell and (2) the free energy of each averaged water-water
dipole interaction, summed over all pairs of dipoles in the
shell,

(7)
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Figure 2. Water’s average dipole charge separation vs. applied field
E, determined from previous computer simulations of charged
spheres in TIP3P water.22 Water’s dipolar asymmetry is reflected in
the different shapes of this curve for positive and negative fields.
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Figure 3. Location of averaged water dipoles near cations and
anions.
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where Ni is average number of water molecules in i-th sol-
vation shell. Note that the dd contribution is represented
as an average because interactions between dipole pairs in
a shell will come from a double sum over dipoles with dif-
ferent separations and relative orientations, while the cd
term is identical for each water in the shell. Ni can be ap-
proximately calculated as the ratio between shell surface
area and water molecule cross-section,

(8)

where ri is the distance from the center of the ion to the
center of the i-th solvation shell and rw is the radius of a
water molecule. Water is a soft core molecule and in order
to approximate the hard core radius we use the Barker-
Henderson thermodynamic perturbation theory23

(9)

Here, σw = 3:15061 Å for TIP3P water (the water
model used to derive the relation in Fig. 2) and uLJ is the
Lennard-Jones component of the TIP3P water-water po-
tential.24 The radius of the first solvation shell is calcula-
ted as the Pauling radius25 of an ion (rp) plus the radius of
a water molecule

(10)

To obtain the radii ri of more distant shells, we assu-
me that waters in close proximity to the ions form highly
packed structures, so the distance between two solvation
shells is equal to the height of a tetrahedron formed by
water molecules

(11)

consistent with computer simulations of the TIP3P mo-
del.24,26 We calculate the dipole-dipole free energy contri-
bution as an average of the free energy contribution over
the relative positions of a second water molecule in the sa-
me shell without overlapping with the first water molecu-
le positioned on the z-axis

(12)

This integral can be calculated analytically. Given
that all water molecules in a given shell have the same
average dipole moment, μ1 = μ2 = μ, we get

(13)

where θ1 is the closest angle the two water molecules can
have without overlapping,

(14)

In this calculation we neglect the water-water corre-
lation in the same solvation shell.

Fig. 3 shows how we account for water’s dipolar
asymmetry. First, we calculate the distance between po-
sitive and negative charges in the averaged dipole from
the curves in Fig. 2.22 For cations, we locate the negative
charge on the oxygen atom at the center of the water mo-
lecule with the positive charge placed this distance furt-
her from the ion. The point dipole is located at the mid-
point between these charges. For anions, we place the
positive dipolar charge on the hydrogen atom with the
negative charge at the calculated distance further from
the ion. The point dipole was again placed at the mid-
point of these charges. The explanation for this is that
water is always pointing one hydrogen atom toward
anion while second is freely rotatable around OH axis as
shown on Fig. 4. All contributions pointing away from
OH axis are being canceled when doing the average with
respect to orientation.

Finally, we note that the solvation of an ion is not
purely electrostatic. To get the total free energy of solva-
tion can be approximately calculated as sum of the free
energy of transfer of anon-polar solute and the total elec-
trostatic term, to get

(15)

where we take ΔGnp in kcal/mol from:27

(16)

SA is the surface area in Å2 of a sphere of radius r1.
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Figure 4. Orientational averaging with respect to OH axis gives us
averaged dipole used in our calculations for anion.
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3. Re sults and Dis cus sion

We tested our model by calculating the solvation
free energies of the alkali and halide ions. For these calcu-
lations, our cutoff is M = 3 solvation shells, because be-
yond that point the electrostatic energies become smaller
than kBT, where kB is Boltzmann’s constant and T is tem-
perature. Table 1 shows our computed electrostatic and
non-polar contributions to free energy of solvation, as
well as their resulting total. We compare our computed
ion-solvation free energies to recent experimentally deri-
ved values.9 The agreement is remarkably good given the
simplicity of the model. Fig. 5 shows that the model cap-
tures the trends of the solvation free energies with ion si-
ze, and captures the asymmetry between cations and
anions. The anions are slightly over-favored relative to
these experimentally derived quantities, though they are
nearly identical to those derived by Marcus.2

Table 1. The Pauling radii in Å and the calculated electrostatic,
non-polar, and total solvation free energies in kcal/mol for the alka-
li and halide ion series alongside values derived from experimental
thermodynamic data9

Ion rp –ΔGe –ΔGnp –ΔG –ΔGexpt

Li+ 0.60 124.4 –1.2 123.2 128.4
Na+ 0.95 107.8 –1.3 106.5 103.2
K+ 1.33 90.8 –1.5 89.3 86.0
Rb+ 1.48 84.5 –1.5 83.0 80.6
Cs+ 1.65 77.9 –1.6 76.3 75.1
F– 1.36 113.4 –1.5 111.9 104.4
Cl– 1.81 85.5 –1.7 83.8 74.5
Br– 1.98 76.6 –1.7 74.9 68.3
I– 2.16 68.0 –1.8 66.2 59.9

One type of insight that we can get from the model,
which is not obtainable from Born-like models, is the rela-
tive contribution to the solvation free energy from each
water shell. Table 2 shows that for cations about 70% of
the electrostatic contribution comes from first-shell wa-
ters, while for anions, about 85% is due to first-shell wa-
ters. This is consistent with explicit-simulation results of
the hydration of solutes with strong electric fields.28  It al-
so shows that while the second- and third- shell contribu-
tions are much smaller, they should not be neglected if
one hopes to obtain accurate predictions of ion solvation
free energies.

Table 2. Percent contributions of first, second, and third shells of
waters to the total electrostatic free energy of solvation

Ion 1st shell % 2nd shell % 3rd shell %
Li+ 70 22 8
Na+ 70 21 9
K+ 69 22 9
Rb+ 69 22 9
Cs+ 68 22 10
F– 83 15 2
Cl– 85 14 1
Br– 86 13 1
I– 86 13 1

4. Conc lu sions

We presented here a more microscopic treatment for
computing the free energies of ion solvation in water. The
theory gives an expression that is simple and can be com-
puted quickly, but unlike the Born model, it uses true ionic
radii and does not require inputting a dielectric constant.
We show that the present model gives predictions for the
free energies of transfer of alkali and halide ions into wa-
ter that are in excellent agreement with recent experimen-
tally derived estimates.
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Povzetek
Solvatacijsko Gibbsovo prosto energijo velikokrat ocenimo s teorijami, kot je Bornov model. Ti modeli imajo pomanj-
kljivost, da moramo uporabiti prilagodljive parametre za ujemanje rezultatov z eksperimentom. Kot vhodni podatek pa
potrebujemo tudi dielektri~no konstanto topila. V prispevku bomo predstavili izra~un Gibbsove proste energije na mi-
kroskopskem nivoju. Izra~un je preprost in ra~unsko nezahteven. Uporabimo pa prave ionske radije in ne potrebujemo
dielektri~ne konstante. Model zelo dobro napove proste energije transferja alkilnih in halidnih ionov v vodo.


