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Abstract. This is a discussion on degrees of freedom of massless fermion and boson fields,
if they are free or weakly interacting. We generalize the gauge fields of the spin-charge-family
to the gauge fields of all possible products of γa’s and of all possible products of γ̃a’s,
the first taking care in the spin-charge-family theory of the spins and charges (Sabωabc) of
fermions, the second (S̃ab ω̃abc) taking care of families.

Povzetek. Avtorja diskutirata v prispevku prostostne stopnje brezmasnih prostih ali šibko
sklopljenih fermionskih in ustreznih bozonskih polj, v primeru, da dovolita, da so bozonska
polja umeritvena polja vseh produktov Cliffordovih operatorjev γa in umeritvena polja vseh
operatorjev γ̃a. Produkti dveh Cliffordovih operatorjev γa določajo v teoriji spina-nabojev-
družin naboje ene družine kvarkov in leptonov, produkti dveh Cliffordovih operatorjev γ̃a

pa družine kvarkov in leptonov.

15.1 Introduction

The purpose of this contribution to the Discussion section of this Proceedings to
the Bled 2015 workshop is to hopefully better understand: : a. Why is the simple
starting action of the spin-charge-family theory doing so well in manifesting the
observed properties of the fermion and boson fields? b. Under which condition
would more general action lead to the starting action of Eq. (15.1)? c. What would
more general action, if leading to the same low energy physics, mean for the
history of our Universe? d. Could the fermionization procedure of boson fields or
the bosonization procedure of fermion fields, discussed in this Proceedings for any
dimension d (by the authors of this contribution, while one of them, H.B.F.N. [5],
has succeeded with another author to do the fermionization for d = (1+ 1)), help
to find the answers to the questions under a. b. c.?

In the spin-charge-family theory of one of us (N.S.M.B.) [1–4], which offers the
possibility to explain all the assumptions of the standard model, with the appearance
of families, the scalar higgs and the Yukawa couplings included, as well as the
matter-antimatter asymmetry in our universe and the appearance of the dark
matter, a very simple starting action for massless fermions and bosons in d =
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(1+ 13) is assumed. In this action

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) , (15.1)

where p0a = fαap0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα,

R = 1
2
{fα[afβb] (ωabα,β − ωcaαω

c
bβ)} + h.c., R̃ = 1

2
{fα[afβb] (ω̃abα,β −

ω̃caα ω̃
c
bβ)}+ h.c., the two kinds of the Clifford algebra objects, γa and γ̃a,

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ , (15.2)

which anticommute, {γa, γ̃b}+ = 0 and determine one of them spins and charges of
spinors, another determines families. Here 1 fα[afβb] = fαafβb−fαbfβa. There are
correspondingly for spinors two kinds of the infinitesimal generators of the groups
- Sab for SO(13, 1) and S̃ab for S̃O(13, 1). The generators Sab = i

4
(γa γb−γb γa) ,

S̃ab = i
4
(γ̃a γ̃b− γ̃b γ̃a), determine in the theory the spin and charges of fermions,

Sab, and the family quantum numbers, S̃ab.
The curvature R and R̃ determine dynamics of gauge fields.
The infinitesimal generators of the Lorentz transformations for bosons operate

as follows SabAd...e...g = i (ηaeAd...b...g − ηbeAd...a...g).
We discuss in what follows properties of free massless fermion fields, Sect. 15.1.1,

of free massless boson fields and suggest the interaction among fermions and
bosons, which fulfill the Aratyn-Nielsen theorem [5], but is in general not gauge
invariance.

15.1.1 Properties of general fermion fields

Let us make a choice of one kind of the Clifford algebra objects, let say γa’s, and
express correspondingly the linear vector space of fermions as follows

Ψ̄(γ) = ψ+

d∑
k=1

ψa1a2...ak γ
a1γa2 . . . γak , ai ≤ ai+1 . (15.3)

We could as well make a choice of γ̃a’s instead of γa’s. We define that oper-
ation of γa and γ̃a on such a vector space is understood as the left and the right
multiplication, respectively, of any Clifford algebra object. Let f(γ) be one of the (or-
thogonal) fermion states in the Hilbert space. The left and the right multiplication

1 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indexes from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.
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can be understood as follows

γa f(γ) |ψ0 >: = (a0 γ
a + aa1 γ

a γa1 +

aa1a2 γ
a γa1γa2 + aa1···ad γ

a γa1 · · ·γad ) |ψ0 > ,
γ̃a f(γ) |ψ0 >: = ( i a0γ

a − i aa1γ
a1 γa + i aa1a2γ

a1γa2 γa + · · ·+
i (−1)d aa1···adγ

a1 · · ·γad γa ) |ψ0 > , (15.4)

where |ψ0 > is a vacuum state.
Eq. (15.3) represents 2d internal degrees of freedom, that is 2d basic states. Let

us arrange the basis to be orthogonal in a way that operators Sab transform 2
d
2
−1

members of these basic states among themselves. They represent one family. The
operators S̃ab transform each family member into the same family member of one
of 2

d
2
−1 families.

There are obviously four such groups of 2
d
2
−1 families with 2

d
2
−1 family

members (2
d
2
−1 × 2d2−1×22 = 2d). These four groups differ in the eigenvalues of

the two operator of handedness, Γ (1+(d−1)) and Γ̃ (1+(d−1)),

Γ (1+(d−1)) = (−i)
d−2
2 γa1γa2 . . . γad ,

Γ̃ (1+(d−1)) = (−i)
d−2
2 γ̃a1 γ̃a2 . . . γ̃ad ,

ak < ak+1 . (15.5)

The eigenvalues of [(Γ (1+(d−1)), Γ̃ (1+(d−1))] are = [(+,+), (−,+), (+,−), (−,−)].
Each of the groups can be extracted from the basis due to requirement

A. (1− Γ̃ (1+(d−1))) (1− Γ (1+(d−1))) Ψ̄ = 0 ,

B. (1− Γ̃ (1+(d−1))) (1+ Γ (1+(d−1))) Ψ̄ = 0 ,

C. (1+ Γ̃ (1+(d−1))) (1− Γ (1+(d−1))) Ψ̄ = 0 ,

D. (1+ Γ̃ (1+(d−1))) (1+ Γ (1+(d−1))) Ψ̄ = 0 . (15.6)

In (d = 4n)-dimensional spaces the first and the last condition share the space
of spinors determined by an even number of γa’s in each product, Eq. (15.3), while
the second and the third share the rest half of the spinor space determined by
an odd number of γa’s in each product. In (d = 2(2n + 1))-dimensional spaces
is opposite: The first and the last condition determine spinor space of and odd
number of γa’s in each product, while the second and the third require an even
number of γa’s in each product.

Let us denote these four groups of states, defined in Eqs. (15.3,15.6) with the
values of [(Γ (1+(d−1)), Γ̃ (1+(d−1))] = [(+,+), (−,+), (+,−), (−,−)], by (Ψ̄++, Ψ̄−+,
Ψ̄+−, Ψ̄−−), respectively.

States of each group can be chosen to fulfill the Weyl dynamical equation for
free massless spinors

γ0 γapaΨ̄ij = 0 ,

(i, j) ∈ {(+,+), (−,+), (+,−), (−,−)} . (15.7)

In the spin-charge-family theory one family contains, if analyzed with respect
to the spin and charges of the standard model: the left handed weak charged quarks
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and the leptons - electrons and neutrinos - and the right handed weak chargeless
quarks and leptons, with by the standard model assumed hyper charges, as well
as the right handed weak charged quarks and leptons and left handed weak
chargeless quarks and leptons. The break of the starting symmetry than leads to
two groups of four families, which gain masses at the electroweak break. All the
rest families (2

14
2

−1 −8) gain masses interacting with the scalar fields.
These 2d orthogonal basic states can be reached from any one of them by

applying on such a state the products of operators: a constant, γa1 , γ̃a1 , and
products of γai and products of γ̃b1 .

Let us see on the case of d = 2, how do these four groups of families and
family members distinguish among themselves.

We shall check also conditions under which these fermion states fulfill the
Weyl equation, (Eq. (15.7)), for free (massless) fermions.

Properties of four groups of fermion states defined in Eq. (15.6) To better under-
stand the meaning of the four groups (Eq. (15.6)) of families and family members
let start with the simplest case: d = (1+ 1) - dimensional spaces.

o d=(1+1) case.

The requirement A. of Eq. (15.6) ((1 − Γ̃ (1+1)) (1 − Γ (1+1)) Ψ̄Ψ̄ = 0, Ψ̄++ =

ψ + γ0ψ0 + γ
1ψ1 + γ

0γ1ψ01) leads to ψ0 + ψ1 = 0, or consequently Ψ̄++ =

ψ++ (γ0−γ1). This state fulfills the Weyl equation provided that (p0−p1)ψ++ = 0.
The requirement B. of Eq. (15.6) ((1 − Γ̃ (1+1)) (1 + Γ (1+1)) Ψ̄ = 0) leads to

ψ+ψ01 = 0, or consequently Ψ̄+− = ψ+− (1− γ0γ1). This state fulfills the Weyl
equation provided that (p0 + p1)ψ+− = 0.

The requirement C. of Eq. (15.6) ((1 + Γ̃ (1+1)) (1 − Γ (1+1)) Ψ̄ = 0) leads to
ψ−ψ01 = 0, or consequently Ψ̄−+ = ψ−+ (1+ γ0γ1). This state fulfills the Weyl
equation provided that (p0 − p1)ψ−+ = 0.

The requirement D. of Eq. (15.6) ((1 − Γ̃ (1+1)) (1 − Γ (1+1)) Ψ̄ = 0) leads to
ψ0 − ψ1 = 0, or consequently Ψ̄−− = ψ−− (γ0 + γ1). This state fulfills the Weyl
equation provided that (p0 + p1)ψ−− = 0.

Making a choice of p1 showing in the positive direction, the first and the third
choice correspond to the positive energy solution, while the second and the fourth
choice correspond to the negative energy solution of the Weyl equation (15.7).

Each of the four groups of states contains 2
d
2
−1 = 1 state and 2

d
2
−1 = 1

familiy. The operators (1, γ0γ1, γ̃0γ̃1) are diagonal, the operators (γ0, γ1, γ̃0, γ̃1)
are off diagonal. Let us present the matrices for, let say, γ0, γ̃0 and γ0γ̃0 for the

basic states, arranged as follows
01

(+i)= 1
2
(γ0 − γ1) (the case A.),

01

(−i)= 1
2
(γ0 + γ1)

(the case D.),
01

[+i]= 1
2
(1 + γ0γ1) (the case C.),

01

[−i]= 1
2
(1 − γ0γ1) (the case B.).

Let us notice that Γ (1+1) (
01

(+i),
01

(−i),
01

[+i],
01

[−i]) = (
01

(+i),−
01

(−i),
01

[+i],−
01

[−i]), while

Γ̃ (1+1) (
01

(+i),
01

(−i),
01

[+i],
01

[−i]) = (
01

(+i),−
01

(−i),−
01

[+i],
01

[−i]). One finds the matrix
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representation for γ0 and γ̃0 and γ0γ̃0

γ0 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 , γ̃0 =




0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0


 , γ0γ̃0 =




0 −i 0 0

−i 0 0 0

0 0 0 i

0 0 i 0


 . (15.8)

While γ0 causes the transformations among states, which have the oppo-
site handedness Γ (1+1), while they have the same handedness Γ̃ (1+1), transforms
γ̃0 among states of opposite handedness Γ̃ (1+1), leaving handedness Γ (1+1) un-
changed. The operator γ0γ̃0 causes transformations among the states, which differ
in both handedness. Interaction of the type Sabωabc and S̃abω̃abc, appearing in
the action Eq.(15.1) do not cause in this d = (1+ 1) case transformations among

the basic states (
01

(+i),
01

(−i),
01

[+i],
01

[−i]).

o d=(13+1) case.

In the case of d = (13 + 1)-dimensional space the operators Sab transform
all the members of one family among themselves. Table IV of Ref. [4] represents
one family representation analyzed with respect to the standard model gauge and
spinor groups. The 2d/2−1 = 64members represent quarks and leptons, left and
right handed, with spin up and down and with the hyper charges as required by
the standard model. There are also the anti-members, reachable from members not
only by Sab but also by CNPN [7].

The operators S̃ab transform each family member of a particular family into
another family, keeping the family member quantum numbers unchanged.

There are four groups of such families, having

(Γ (13+1), Γ̃ (13+1)) = ((+,+), (−,−), (+,−), (−,+)),

respectively. As seen in the simple case of d = (1 + 1) all four groups could be
reachable from the starting one only by the operators γa, γ̃a and γaγ̃b.

We have some experience with the toy model in d = (5+ 1), Refs. [8–10], that
when breaking symmetries not only that only spinors of one handedness remain
masless, but also most of families can get heavy masses.

After the break of SO(13, 1) to SO(7, 1) ×SO(6) (and correspondingly also
of S̃O(13, 1)) Sst, s ∈ (0, . . . , 8), t ∈ (9, . . . , 14) (and correspondingly also of S̃st,
s ∈ (0, . . . , 8), t ∈ (9, . . . , 14)) are no longer applicable. Anti spinors (spinors with
quantum numbers of the second part, numerated by 33 up to 64, of Table IV in
Ref. [4]) are after the break reachable only by CN PN [7].

The break of SO(6) to SU(3)×U(1) disables transformations from quarks to
leptons.

When breaking symmetries, like from SO(13, 1) to SO(7, 1)×SO(6), the break
must be done in a way that only spinors of one handedness remain massless in
order that the break leads to observed (almost massless) fermions and that most of
families get masses of the energy of the break [8–10]. Our studies so far support the
assumption that only the families with Γ̃ (7+1) = 1 and Γ̃ (6) = −1 remain massless.
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Correspondingly only eight families (2(7+1)/2−1) remain massless.
At the further break of SO(7, 1)×SU(3)×U(1) to SO(3, 1)×SU(2) ×SU(3)×

U(1) all the eight families of quarks and leptons remain massless due to the fact
that left handed and right handed quarks and leptons have different charges and
are correspondingly mass protected.

15.1.2 Properties of general boson fields

We have discussed so far only fermion fields. The spin-charge-family theory action,
Eq (15.1), introduces the vielbeins and the two kinds of the spin-connection fields,
with which the fermions interact. These are the gauge fields of the two kinds of
charges, which take care of the family members quantum numbers (Sab) and of
the family quantum numbers (S̃ab).

The Lagrange density (15.1) of each kind of the spin connection fields is linear
in the curvature. This action seems to be the simplest action of the Kaluza-Klein
kinds of theories, in which fermions carry the family and the family members
quantum numbers, while the gravitational field - the vielbeins and the two kinds
of the spin connection fields take care of the interaction among fermions. Vielbeins
and spin connections are the only boson fields in the theory. They manifest at the
low energy regime all the phenomenologically needed vector and scalar bosons.

Let us define boson fields, which in the case of d = (1 + 1), d = (13 + 1), or
any d, transform the 2d fermion states among themselves? The fields Sabωabc
and S̃abω̃abc can, namely, cause transitions only among fermions with the same
Clifford character: The Clifford even (odd) fermion states are transformed into the
Clifford even (odd) fermion states, as we have seen in subsection 15.1.1.

Let us assume for this purpose that there exist to each of products

γa1γa2 . . . γak ,

the number of products of γa’s running from zero to d, the corresponding gauge
fields: ωa1a2...ak . There are obviously 2d such gauge fields. These gauge fields,
carrying k vector indexes a1 . . . ak, transform a fermion state

Ψij, (i, j) = [(+,+), (−,+), (+,−), (−,−)]

belonging to one of the four groups (with the eigenvalues of (Γ (d),Γ̃ (d)= (i, j),
respectively), discussed in subsection 15.1.1, into another state, belonging to the
same or to one of the rest free groups: If starting with the state of either the A. or B.
groups, these bosons transform such a state to one of the states belonging to either
the group A. (if the number of aj is even) or to the group B. (if the number of aj
is odd). If we start from the group C. or D., then the transformed state remains
within these two groups.

Correspondingly we define to each of products γ̃a1 γ̃a2 . . . γ̃ak , again the
number of products of γ̃a’s running from zero to d, the corresponding gauge
fields ω̃a1a2...ak , which again transform the state Ψij, belonging to one of the four
groups, discussed in subsection 15.1.1, into another state, belonging to the same
(if the number of ak is even), or to one of the rest free groups (if the number of ak
is odd). In this case the transformations go from A. to C., or from B. to D..
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All the states of one group of fermions are reachable from the starting state
under the application of ωabc and ω̃abc. The operators Sab and S̃ab keep the
handedness Γ (d) and Γ̃ (d), respectively, unchanged. (Let us remind the reader
that all the 2(13+1)/2−1 states of one family (Table IV of Ref. [4]) are reachable
by Sabωabc and all the 2(7+1)/2−1 families (Table V of Ref. [4]) are reachable by
S̃abω̃abc).

The by the products of γ̃a’s transformed state Ψ̄ differs in general from the
one transformed by the product of γa’s according to the definition in Eq. (15.2).

Let us assume that all the boson fields obey the equations of motion

∂a∂aωa1a2...ak = 0 ,

∂a∂aω̃a1a2...ak = 0 . (15.9)

For the boson fields, which are the gauge fields of the products of γ̃a1 γ̃a2 . . . γ̃ak
or of γa1γa2 . . . γak Eq. (15.9), this can only be true in the weak fields limit.

Let us see the action of this boson fields on fermion basic states in the case of
d = (1+ 1). The boson fields bring to fermions the quantum numbers, which they
carry. We can calculate these quantum numbers by taking into account Eq. (16) in
Ref. [4]

SabAd...e...g = i (ηaeAd...b...g − ηbeAd...a...g) , (15.10)

or we can simply calculate the action of the operators, the gauge fields of which
are boson fields.

1 (1, γ0, γ1, γ0 γ1) = (1, γ0, γ1, γ0 γ1) ,

1̃ (1, γ0, γ1, γ0 γ1) = (1, γ0, γ1, γ0 γ1) ,

γ0 (1, γ0, γ1, γ0 γ1) = (γ0, 1, γ0 γ1, γ1) ,

γ̃0 (1, γ0, γ1, γ0 γ1) = i (γ0,−1, γ0 γ1,−γ1) ,

γ1 (1, γ0, γ1, γ0 γ1) = (γ1,−γ0 γ1,−1, γ0) ,

γ̃1 (1, γ0, γ1, γ0 γ1) = i (γ1,−γ0 γ1, 1,−γ0) ,

γ0γ1 (1, γ0, γ1, γ0 γ1) = (γ0 γ1,−γ1,−γ0, 1)

γ̃0 γ̃1 (1, γ0, γ1, γ0 γ1) = (i)2 (γ0γ1, γ1, γ0, 1) , (15.11)

It is obvious that the two kinds of fields influence states in a different way, except the
two constants, which leave states untouched.

One can conclude that there are correspondingly 2× 2d − 1 independent real
boson fields (only one of the two constants has the meaning), and there are also,
as we have learned in Subsec. 15.1.1 2d complex fermion fields, which means
2 × 2d real fermion fields in any dimension. This supports the Aratyn-Nielsen
theorem [5].

o Comments on d=(1+1) case.

Let us make a choice of 2
d
2
−1 fermion states, which is for d = 2 only one state,

say
01

(+i). It is the complex field and accordingly with two degrees of freedom.
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One can make then (any) one choice of the boson field, let sayω01, which is the
gauge field of the ”charge” Γ (1+1). This is in agreement with the Aratyn-Nielsen
theorem.

All the (complex) Clifford odd fermion states, (
01

(+i),
01

(−i), need three of the
independent boson fields, let say (γ1ω1, γ0γ1ω01, γ̃1ω̃1), to be in agreement with
the Aratyn-Nielsen theorem.

Bosons in interaction with fermions If we expect gauge boson fileds to appear in
the covariant derivative of fermions, as we are used to require, then all the gauge
fields must curry the space index, like it is the case of the covariant derivative for
fermions, presented in Eq. (15.1): p0a = pa − 1

2
Sbcωbca − 1

2
S̃bcω̃bca.

Let us generalize this covariant momentum by replacing 1
2
Sa1a2ωa1a2a +

1
2
S̃a1a2ω̃a1a2a by

p0a = pa −{
ωa + γa1ωa1a + γa1γa2ωa1a2a + · · ·+ γa1γa2 . . . γadωa1a2...ad a
+ γ̃a1ω̃a1a + γ̃a1 γ̃a2ω̃a1a2a + · · ·+ γ̃a1 γ̃a2 . . . γ̃adω̃a1a2...ad a

}
.

(15.12)

We assumed that all the γa’s in products appear in the ascending order. Corre-
spondingly is 1

2
Sa1a2ωa1a2a replaced by i

2
γa1γa2ωa1a2a, the factor i

2
appears

due to Sa1a2 = i
2
γa1γa2 , a2 > a1.

This theory would neither be gauge invariant nor do the corresponding gauge
fields fulfill the equations of motion, Eq. (15.9), except in the weak limit if the gauge
fields appear as the background fields. The degrees of freedom of bosons and
fermions no longer fulfill the Aratyn-Nielsen theorem, unless we again allow either
only Clifford even or Clifford odd fermion states and only one of the two fields
with the space index zero, let sayω0 among the boson fields is allowed. And yet
we have in addition nonphysical degrees of freedom due to gauge invariance for
almost free massless fields in the weak limit, which should be possibly removed.

If nature has ever started with the boson fields as presented above, most of
these fields do not manifest in d = (3+ 1).

15.2 Conclusions

We have started the fermionization of boson fields (or bosonization of fermion
fields) in any d (the reader can find the corresponding contribution in this proceed-
ings )to understand better why, if at all, the nature has started in higher dimensions
with the simple action as assumed in the spin-charge-family theory, offering in the
low energy regime explanation for all observed degrees of freedom of fermion and
boson fields, with the families of fermions included. This theory is a kind of the
Kaluza-Klein theories with two kinds of the spin connection fields. We also hope
that the fermionizasion can help to see which role can the same number of degrees
of freedom of fermions and bosons play in the explanation, why the cosmological
constant is so small.
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This contribution is a small step towards understanding better the open
problems of the elementary particle physics and cosmology. We discussed for any
d-dimensional space the degrees of freedom for free massless fermions and the
degrees of freedom for free massless bosons, which are the gauge fields of all
possible products of both kinds of the Clifford algebra objects, either of γa or of
γ̃a.

Although we have not yet learned enough to be able to answer any of the four
questions, presented in the introduction (a. Why is the simple starting action of the
spin-charge-family theory doing so well in manifesting the observed properties of
the fermion and boson fields? b. Under which condition can more general action
lead to the starting action of Eq. (15.1)? c. What would more general action, if
leading to the same low energy physics, mean for the history of our Universe? d.
Could the fermionization procedure of boson fields or the bosonization procedure
of fermion fields, discussed in this Proceedings for any dimension d (by the authors
of this contribution, while one of them, H.B.F.N. [5], has succeeded with another
author to do the fermionization for d = (1 + 1)), help to find the answers to the
questions under a. b. c.?), yet we have started to understand better the topic.

References
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