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Abstract

In the thesis we study embeddings of cubic graphs of class 2. Cubic graphs of
class 2 with some additional connectivity requirements are called snarks. The
motivation for the study of these graphs comes from attempts to prove the four
color theorem. The four color theorem states that the vertices of every simple
planar graph can be colored with four colors such that any two adjacent vertices
are colored with different colors. The theorem is equivalent to the statement
that the edges of every simple planar 3-connected cubic graph can be colored
with three colors such that every two adjacent edges are colored with different
colors. The edges of every simple cubic graph can be colored with either three
or four colors. Graphs whose edges can not be colored with three colors are
said to be of class 2. The four color theorem states that 3-connected cubic
graphs of class 2 are not planar. One generalization of this statement is that
if a cubic graph has a polyhedral embedding into an orientable surface, then it
is edge 3-colorable. This generalization is known as the Grünbaum conjecture
and was proposed by Grünbaum in 1967. Although 40 years have passed not
much progress has been made toward resolving it.

We start with the study of some known families of snarks. We determine the
orientable and non-orientable genus of flower snarks and Goldberg snarks. We
prove some results about the genus of dot products of graphs and in particular
dot products of the Petersen graph.

We then study polyhedral embeddings of known families of snarks. We
prove that short cycles in graphs are facial cycles in polyhedral embeddings
of cubic graphs. Using this we prove that some known families of snarks do
not have polyhedral embeddings into orientable surfaces. We prove that flower
snarks do not have polyhedral embeddings (into orientable or non-orientable
surfaces) and that Goldberg snarks do not have polyhedral embeddings. We
construct for every non-orientable surface N a snark which has a polyhedral
embedding into N .

In the last section we study Kochol snarks and superposition. We prove
that Kochol snarks do not have polyhedral embeddings into orientable surfaces.
We define the defect of a graph as a measure for how far a cubic graph is
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from having a polyhedral embedding into an orientable surface. In case the
Grünbaum conjecture is true we give a strong connection between the defect
and the resistance of cubic graphs. (Resistance is a measure for how far a
cubic graph is from having a 3-edge-coloring). We prove that the Grünbaum
Conjecture implies that snarks which are far from having a 3-edge-coloring are
far from having a polyhedral embedding into an orientable surface.

Math. Subj. Class. (2000): 05C10 Topological graph theory, imbedding,
05C15 Coloring of graphs and hypergraphs.

Keywords: chromatic index, cubic graph, snark, polyhedral embedding,
flower snark, Goldberg snark, superposition, Kochol snark.



Povzetek

V disertaciji obravnavamo vložitve kubičnih grafov razreda 2. Kubični grafi
razreda 2 z nekaj dodatnimi pogoji na povezanost so znani kot snarki. Moti-
vacija za študij vložitev snarkov prihaja iz poskusov dokaza izreka štirih barv.
Izrek štirih barv trdi, da je mogoče točke vsakega enostavenega ravninskega
grafa pobarvati s štirimi barvami tako, da so sosednje točke pobarvane z ra-
zličnima barvama. Izrek je ekvivalenten trditvi, da je mogoče povezave vsakega
enostavnega 3-povezanega kubičnega grafa povarvati s tremi barvami tako, da
sta dve sosednji povezavi pobarvani z različnima barvama. Povezave enos-
tavnega kubičnega grafa lahko pobarvamo s tremi ali pa s štirimi barvami.
Kubični grafi, katerih povezave ne moremo pobarvati s tremi barvami, so grafi
razreda 2. Izrek štirih barv pravi, da 3-povezani kubični grafi razreda 2 niso
ravninski. Ena izmed posplošitev izreka štirih barv je trditev, da so kubični
grafi, ki imajo poliedrsko vložitev v kako orientabilno ploskev, razreda 1. Pos-
plošitev je znana kot Grünbaumova hipoteza in je bila podana leta 1969 in je
po skoraj 40 letih še vedno odprta.

Študij začnemo s študijem znanih družin snarkov. Določimo orientabilni in
neorientailni rod cvetnih snarkov in Goldbergovih snarkov. Potem študiramo
rod 4-vsote grafov, posebej se posvetimo rodu 4-vsot Petersenovega grafa.

Nato študiramo poliedrske vložitve znanih družin snarkov. Pokažemo,
da so kratki cikli v kubičnih grafih lica v poliedrskih vložitvah. Pokažemo,
da cvetni snarki nimajo poliedrskih vložitev niti v orientabilne niti v neori-
entabilne ploskve in da Goldbergovi snarki nimajo poliedrskih vložitev v ori-
entabilne ploskve. Za vsako neorientabilno ploskev N konstruiramo snark, ki
ima poliedrsko vložitev v N .

V zadnjem poglavju študiramo poliedrske vložitve grafov dobljenih s su-
perpozicijo. Za Kocholove snarke pokažemo, da nimajo poliedrskih vložitev
v orientabilne ploskve. Definiramo degeneriranost grafa kot mero kako daleč
je kubičen graf od tega, da ima poliedrsko vložitev. V primeru, da Grünbau-
mova hipoteza drži, pokažemo povezavo med degeneriranostjo in odpornostjo
grafa. Odpornost meri, kako daleč je kubičen graf od tega, da ima 3-barvanje
povezav. Pokažemo, da so v primeru, da Grünbaumova hipoteza drži, kubični
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grafi, ki so daleč od tega, da imajo 3-barvanje povezav, tudi daleč od tega, da
imajo poliedrske vložitve.

Math. Subj. Class. (2000): 05C10 Topološka teorija grafov, vložitve,
05C15 Barvanja grafov in hipergrafov.

Ključne besede: kromatični indeks, kubičen graf, snark, poliedrska vložitev,
cvetni snark, Goldbergov snark, superpozicija, Kocholov snark.
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Razširjeni povzetek 77

xiii





Chapter 1

Introduction

In the thesis we study the embeddings of snarks into closed surfaces. The study
is motivated by a conjecture of Grünbaum which states that no snark has a
polyhedral embedding into an orientable surface. This is a generalization of
the Four Color Theorem and is one of the most interesting and long standing
conjectures in graph theory. In the Introduction we define basic graph theory
and topological notions which are required in later chapters.

1.1 Graphs

A graph G is a structure defined by a pair of sets (V (G), E(G)). The set V (G)
is a non-empty set and its elements are called the vertices of G. The set E(G)
is a set of 2-element subsets of V (G) and its elements are called the edges of G.
A set {u, v}, representing an edge, will be denoted by uv. We will investigate
only finite graphs, that is graphs for which the set V (G) is finite. Also note
that graphs are simple, that is there are no parallel edges and no loops. The
number of vertices n = |V (G)| is called the order of the graph. For an edge
e = uv in E(G) we call vertices u and v the ends of the edge e. If for vertices
u, v ∈ V (G) there is an edge e = uv ∈ E(G) we say that the vertices u and v
are adjacent and that the edge e connects vertices u and v. If v is an end of an
edge e we say that v is incident with e and if vertices u and v are connected by
the edge e we say that v is a neighbor of u. The set of neighbors of a vertex v
is denoted by N(v). The degree degG(v) of a vertex v ∈ V (G) is the number
of edges incident with v. The minimum degree of a vertex in the graph G
is denoted by δ(G) and the maximum degree of a vertex in the graph G is
denoted by ∆(G). If all degrees of vertices in the graph G are equal to k, the
graph is k-regular . A cubic graph is a 3-regular graph.

A generalization of a simple graph is multigraph. A multigraphM is defined
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2 Introduction

as a triple (V (M), E(M), δ) where V (M) is the set of vertices, E(M) is the
set of edges and δ is a mapping which assigns each edge e ∈ E(M) a pair of
its ends, where we allow the ends to be the same vertex. In the latter case the
edge is called a loop. We allow that two edges have the same ends in which case
we say that the edges are parallel . The degree of a vertex v in a multigraph is
the number of edges such that v is its end where we count loops incident to v
twice.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
If V (H) = V (G) then H is a spanning subgraph of G. If H is a subgraph of
G this will be denoted by H ⊆ G. If V (H) ⊆ V (G) and if for each pair of
vertices u, v ∈ V (H) the edge uv ∈ E(H) if and only if uv ∈ E(G), then H is
an induced subgraph of G.

A bijection ψ : V (G) → V (H) is an isomorphism if it maps adjacent ver-
tices into adjacent vertices and non-adjacent vertices into non-adjacent ver-
tices. If there exists an isomorphism between graphs G and H they are said
to be isomorphic. We will not distinguish between isomorphic graphs and will
write G = H if G and H are isomorphic.

A path Pn of length n − 1 is a graph with vertices V (Pn) = {v1, . . . , vn}
and edges E(Pn) = {vivi+1 | i = 1, . . . , n − 1}. Vertices v1 and vn are
the ends of the path Pn and we say that the path Pn connects its ends. A
cycle Cn of length n is a graph with vertices V (Cn) = {v1, . . . , vn} and edges
E(Cn) = {vivi+1 | i = 1, . . . , i− 1} ∪ {v1vn}. A subgraph P ⊆ G isomorphic
to a path Pn is called a path in G and we say that P connects its ends in G.
If for each pair of vertices u, v ∈ V (G) there exists a path P in G connecting
u and v we call the graph G connected . A maximal connected subgraph in G
is called a connected component of G.

A walk W in a graph G is a sequence of vertices (v1, v2, . . . , vn) where
vertices vi and vi+1 are incident for i = 1, . . . , n − 1. Vertices v1, . . . , vn need
not be all distinct. If v1 and vn are connected then W is called a closed walk in
G. Instead of defining a walk by a sequence of vertices (v1, v2, . . . , vn) we will
sometimes define it with the sequence of edges (e1, . . . , en−1), where ei = vivi+1,
i = 1, . . . , n− 1.

For a subset S ⊆ E(G) we denote by G − S the graph H with vertices
V (H) = V (G) and with edges E(H) = E(G) \ S. If the number of connected
components of G − S is larger than the number of connected components of
G we call the set S a cut . A minimal set S which is a cut is called a minimal
cut . A connected graph G is k-edge-connected if every cut contains at least k
edges. A cut of size k will be called a k-cut .

For a subset U ⊆ V (G) we denote by G − U the graph H with vertices
V (H) = V (G) \ U and in H two vertices are connected if and only if they
are connected in G. A graph G is k-connected if every set U , for which the
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graph G − U is not connected, contains at least k vertices. A cubic graph is
k-connected if and only if it is k-edge-connected.

A k-edge-coloring of a graph G is a mapping c : E(G) → {1, 2, . . . , k}
such that each pair of adjacent edges is mapped into distinct elements of
{1, 2, . . . , k}. The minimum number k, for which there exist a k-edge-coloring
of G, is the chromatic index , χ′(G), of G. Vizing proved the following theorem

Theorem 1.1 (Vizing). Every (simple) graph G satisfies

∆(G) ≤ χ′(G) ≤ ∆(G) + 1

.

Vizing’s theorem divides graphs into two groups. Graphs for which χ′(G) =
∆(G) are called class 1 graphs and graphs for which χ′(G) = ∆(G) + 1 are
called class 2 graphs . As a special case cubic graphs of class 1 are those for
which χ′(G) = 3 and cubic graph of class 2 are those for which χ′(G) = 4.

1.2 Surfaces and graph embeddings

In this section we give basic definitions for closed surfaces and graph embed-
dings. We do not define basic topological objects. We follow the book [1].
A closed surface is a connected compact Hausdorff topological space S which
is locally homeomorphic to an open disc in the plane R

2. To simplify some
arguments we will assume that graphs in this section do not have vertices of
degree one or two. All results hold if we allow vertices of degree one or two
also.

Examples of surfaces are obtained as follows. Suppose F is a collection of
polygons with all sides of length 1 which altogether have an even number of
sides σ1, . . . , σ2k. Arbitrarily orient each side σi by choosing one of its endpoints
as the initial endpoint and choose a partition of sides into pairs. Form a
topological space S by identifying two sides in each pair so that the orientations
are respected (that is for a pair σi, σj we identify the initial endpoint of σi with
the initial endpoint of σj). We get a compact Hausdorff topological space S
and if S is connected then S is a surface.

The sides of polygons in F and their endpoints define a multigraph G′. We
say that G′ is 2-cell embedded in the surface S. The collection of polygons F
is called the collection of faces of G′.

Take a triangulated surface S and on a face T two disjoint triangles T1 and
T2. If we orient the sides of T1 and T2 so that the orientations are clockwise,
remove T1 and T2 from S and identify triangle T1 with T2 we obtain a surface
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S ′. We say S ′ is obtained from S by adding a twisted-handle. If we orient
the sides of T1 clockwise and the sides of T2 anticlockwise, remove T1 and T2

from S and identify triangles T1 and T2 we obtain a surface S ′′. We say S ′′ is
obtained from S by adding a handle. Let Q be a equilateral quadrangle in T .
If we delete Q from T and identify opposite points on the boundary of Q we
obtain a surface S ′′′. We say S ′′′ is obtained by adding a cross-cap to S. When
we add handles and cross-caps we will usually use discs instead of triangles in
T .

Now start with a sphere S0 which is a tetrahedron. If we add n handles
to S0 we obtain a surface Sn which is called the orientable surface of genus n.
If we add n > 0 cross-caps to S0 we obtain a surface Nn which is called the
non-orientable surface of genus n. The surface S1 is called the torus and the
surface S2 is called the double torus . The surface N1 is called the projective
plane and the surface N2 is called the Klein bottle. Instead of embedding
graphs into the sphere we will usually embed graphs into the plane, which is
equivalent by the stereographic projection of the sphere into the plane. The
torus will be represented as a quadrangle with corners a, b, c, d where we orient
sides as ab, bc, dc, ad and identify sides ab and dc and sides bc and ad. A
projective plane will be represented by a disc in which we identify antipodal
vertices.

It turns out that by adding handles and cross-caps to a sphere we can
construct all possible examples of surfaces. This is established by the following
theorem.

Theorem 1.2 (Classification of surfaces). Every surface S is homeomor-
phic to precisely one of the surfaces Sn, n ≥ 0 or Nn, n > 1.

For surfaces Sn we define the Euler characteristic κ(Sn) = 2 − 2n and for
surfaces Nn we define the Euler characteristic κ(Nn) = 2 − n. For arbitrary
surface S we define κ(S) as the Euler characteristic of the unique surface
Sn or Nn which is homeomorphic to S. For Sn we define the orientable genus
g(Sn) = n and for Nn we define the non-orientable genus g̃(Nn) = n. A surface
S is an orientable surface if it is homeomorphic to Sn for some n ≥ 0 and it is
a non-orientable surface if it is homeomorphic to some Nn, n > 1. The genus
g(S) of an orientable surface S is n if S is homeomorphic to Sn. The non-
orientable genus g̃(S) of a non-orientable surface S is n, if S is homeomorphic
to Nn. The Euler genus of an orientable surface S is ǫ(S) = 2g(S) and the
Euler genus of a non-orientable surface N is ǫ(N) = g̃(N).

A 2-cell embedding of a graph G into a surface S is graph G′ which is 2-cell
embedded in S and isomorphic to G. Faces of the embedding of G are faces
of G′.
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Let G be 2-cell embedded in S. Put a small disc Dv on each vertex v of
G such that Dv intersects G only in v and edges incident with v and so that
the intersection of Dv with each edge incident with v is a segment. Choose an
orientation of the boundary of Dv. Intersections of edges {e1, . . . , dk} incident
with v and the boundary of Dv define a clockwise ordering of edges incident
with v around v. This ordering defines a permutation πv of edges incident
with v for which πv(e) = e′ if e′ follows e in the ordering. For an edge e = uv
we say that orderings πv and πu are consistent if for an orientation of e the
discs Dv and Du with orientations which define πv and πu cross e one from left
to right and the other from right to left. If πv and πu are consistent than we
set λ(e) = 1 and if they are not consistent we set λ(e) = −1. The mapping
λ is called the signature of edges (see Figure 1.1). It turns out that if S is
orientable then we can choose the orderings around vertices so that for each
edge e ∈ E(G) we have λ(e) = 1.

e

e1e2

en−1 en f1
f2

fm−1fm

Figure 1.1: An edge e = uv in an embedded graph with chosen clock-
wise orderings at its ends and rotations πv = (ee1e2 · · · en−1en) and πu =
(ef1f2 · · · fm−1fm) and λ(e) = 1.

Denote by π = {πv | v ∈ V (G)} the collection of clockwise permutations
around vertices of the embedded graph G. The pair Π = (π, λ) is is called a
rotation system of the embedded graph G. Two rotation systems Π and Π′

are equivalent if Π′ can be obtained from Π by a sequence of transformations
where in each transformation we reverse the clockwise ordering around a vertex
v and change the signs of all signatures of edges incident with v. It turns out
that a 2-cell embedding of G is completely determined by its rotation system
and that each rotation system defines a 2-cell embedding. A rotation system
is called a combinatorial embedding. From now on whenever we say that Π is
an embedding of a graph G we mean that Π is a rotation system which defines
the embedding.

A sequence of vertices of and embedded graph G which appears along a
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face of G is called a facial walk . If all vertices along W are distinct then W is
called a facial cycle.

Given a rotation system Π of G the collection of facial walks is obtained as
follows. Choose a vertex v0 and an edge e = v0v1 incident with v0. Traverse
the edge e. From v1 continue on the edge πv1

(e) and repeat this until an
edge f = vi−1vi is traversed from vi−1 to vi for which λ(f) = −1 (it could
be that f = e). Now traverse the edge which follows f in the anticlockwise
order around vi, π

−1
vi

(f), and repeat this until an edge with negative signature
is traversed again. From there on traverse edges in clockwise order around
vertices and so on. Repeat this until e is traversed again in the same order
from v0 to v1. When this happens we have obtained a facial walk of the
embedding of G. To get other facial walks repeat this procedure starting with
another vertex u0 and an edge u0u1 which has not been traversed from u0 to
u1. When no such edges remain (that is all edges have been traversed in both
directions) we get all facial walks of the embedding. Two equivalent rotation
systems define the same collection of facial walks.

A rotation system is determined by the collection of facial walks. Suppose
F is a collection of facial walks. Choose a vertex v and an edge e1 incident
with v. There is a facial F1 walk which contains the edge e1. This walk also
contains another edge incident with v, say e2, so that the edges e1 and e2 are
consecutive along F1. There is a facial walk F2 which contains e2 and a third
edge e3 such that e2 and e3 are consecutive along F2. We continue this until
we come back to the edge e1. We define the clockwise order around v to be
e1, e2, . . .. Once we have clockwise orderings around each vertex we can define
the signatures of edges. Of course not every collection of walks is a collection of
facial walks of some embedding. For a cubic graph a sufficient condition that
a collection of closed walks F is a collection of facial walks of some embedding
is that each path of length 3 appears along exactly one walk in F .

Suppose we have an embedding Π of a graph G into a surface S. Denote
with F (G) the collection of facial walks of the embedding. The number of
facial walks can be determined by the following relation.

Proposition 1.3 (Euler formula). The following equation holds

|V (G)| − |F (G)| + |F (G)| = 2 − ǫ(S).

If Π is an embedding of G into an orientable surface S we define the ori-
entable genus of Π as g(Π) = g(S). If Π is an embedding of G into a non-
orientable surface S we define the non-orientable genus of Π as g̃(Π) = g̃(S).

The (orientable) genus of a graph G is the minimum

g(G) = {g(Π) | Π orientable embedding of G}
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and the non-orientable genus of a graph G is the minimum

g̃(G) = {g̃(Π) | Π non-orientable embedding of G}.

Let Π be an embedding of G into a surface S. We define the geometric
dual G∗ of G in S as follows. The vertices of G∗ correspond to facial walks
of the embedding of G. The edges of G∗ are in bijective correspondence with
the edges of G. An edge e∗ joins vertices w and v in G∗ if the edge e appears
on facial walks corresponding to vertices w and v. For a facial walk W =
e1e2 · · · en define the rotation around the vertex w in G∗ corresponding to
W as πw = (e1, e2, . . . , en). We define λ(e∗) = 1 if facial walks W and V
corresponding to vertices w and v, e = vw, traverse e in opposite directions
and λ(e∗) = −1 otherwise. It is easy to verify using the Euler formula that Π
and Π∗ are embeddings into the same surface. Note that for a graph G the
dual G∗ can be a multigraph (that is there could be parallel edges or loops in
G∗).

A graph G embedded into a surface S such that all facial walks are of
length 3 is called a triangulation of S. The geometric dual of a triangulation
is a cubic graph (see Figure 1.7).

1.3 Snarks

In this thesis we will mostly be interested in cubic graphs of class 2. Before
we start with the introduction to class 2 cubic graphs we state a very useful
Lemma about 3-edge-colorings of cubic graphs.

Lemma 1.4 (Parity lemma). Let c be a 3-edge-coloring of a cubic graph G
and S a cut in G. Denote by Si the set of edges in S colored with color i.
Then

|S1| ≡ |S2| ≡ |S3| ≡ |S| (mod 3).

Snarks are non-trivial cubic graphs of class 2. A cubic graph G of class 2
is trivial if there is a reduction of G to a smaller snark or if there is an obvious
obstruction for G which prevents it to have a 3-edge-coloring. We now explain
what are trivial class 2 cubic graphs which will be excluded in the definition
of snarks.

Suppose S = {e} is a cut of size 1 in a cubic graph G. The edge e is called
a bridge of G. If c is a 3-edge-coloring of G then we can assume that c(e) = 1
which implies that |S1| = 1 and |S2| = |S3| = 0 which is a contradiction to
the Parity lemma 1.4. Therefore if a cubic graph contains a bridge it can not
be 3-edge-colorable. We will therefore require that snarks must be bridgeless
graphs.
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Suppose S = {e, f} is a 2-cut in a bridgeless cubic graph G. Let G− S be
composed of graphs G1 and G2. Suppose e = v1v2 and f = u1u2 and suppose
that v1, u1 ∈ V (G1) and v2, u2 ∈ V (G2). Add edges u1v1 to G1 obtain a cubic
graph G′

1 and u2v2 to G2 to obtain a cubic graph G′
2. If G′

1 and G′
2 are 3-

edge-colorable then we have a coloring c′ of graphs G′
1 and G′

2 and further we
can assume that c′(v1u1) = c′(v2u2) = 1. Now we define a coloring c of G as
follows. For an edge g 6∈ {e, f} define c(g) = c′(g) and c(e) = c(f) = 1. It
is easy to check that c is a 3-edge-coloring of G. Therefore if there is a 2-cut
in a class 2 cubic graph G, we can reduce G to smaller cubic graphs G1 and
G2 such that at least one of them is of class 2. Therefore we will require that
snarks are 3-connected.

A cut S in G such that G − S has at least two components containing
a cycle is called a cyclic cut . A graph is cyclically k-edge-connected if every
cyclic cut contains at least k edges. Suppose that G is a 3-connected cubic
graph containing a cyclic cut S = {e1, e2, e3}. Then G − S consists of two
connected components G1 and G2 each containing a cycle. Graphs G1 and G2

each contain three vertices of degree 2 which are the ends of edges in S. If we
add a vertex v1 to G1 and connect it to the degree 2 vertices in G1 and add
a vertex v2 to G2 and connect it to the degree 2 vertices in G2 we get cubic
graphs G′

1 and G′
2. Suppose we have a 3-edge-coloring c′ of G1 and G2. We

can assume that c′(v1ui) = c′(v2wi) = i where ui and wi are the ends of ei.
We can define a coloring c of G by defining c(e) = c′(e) if e 6∈ {e1, e2, e3} and
c(ei) = i. This is a 3-edge-coloring of G. So if there is a cyclic 3-edge-cut
in a class 2 graph G, we can reduce G to smaller cubic graphs G′

1 and G′
2

at least one of which is of class 2. Therefore we will require that snarks are
cyclically 4-edge-connected. Note that a 3-connected cubic graph is cyclically
4-edge-connected if every 3-cut separates the graph into two components, one
of which is a vertex.

Suppose we have a cubic graph G which contains a 3-cycle C3 on vertices
0, 1, 2 (see Figure 1.2). If we replace C3 with a vertex v we obtain a cubic
graph G′. Suppose c′ is a 3-edge-coloring of G′. Define a mapping c : E(G) →
{0, 1, 2} as follows. If an edge is not incident with any of 0, 1, 2 then c(e) =
c′(e). Further define c(vii) = c(vi+1vi+2) = c′(viv), i = 0, 1, 2, where incides
are modulo 3. Then c is a 3-edge-coloring of G. We see that if G is of class
2 then G′ is also of class 2. Therefore if we have a 3-cycle in a class 2 cubic
graph we can reduce it to a smaller cubic graph of class 2. We will therefore
require that snarks have no cycles of length 3.

Suppose we have a cubic graph G which contains a 4-cycle C4 on vertices 0,
1, 2, 3 (see Figure 1.3). If we replace C4 with two edges e0 = v0v1 and e1 = v2v3

we obtain a cubic graph G′. We can assume that G′ is bridegles, otherwise
we add edges v0v3 and v1v2. Suppose c′ is a 3-edge-coloring of G′. Define a
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0 1

2

v0v0 v1v1

v2v2

v

Figure 1.2: Removing a 3-cycle from a graph.

0 1

23

v0v0 v1v1

v2v2 v3v3

Figure 1.3: Removing a 4-cycle from a graph.

mapping c : E(G) → {0, 1, 2} as follows. If an edge is not incident with any
of 0, 1, 2, 3 then c(e) = c′(e). If c′(e0) = c′(e0) = 1 then color c(vii) = 1,
c(01) = c(23) = 2 and c(12) = c(30) = 3. Otherwise c(e0) = 1 and c(e1) = 2
and we color c(v00) = c(v11) = c(23) = 1, c(v22) = c(v33) = c(01) = 2 and
c(03) = c(12) = 3. In both cases c is a 3-edge-coloring of G. Therefore if we
have a 4-cycle in a class 2 cubic graph we can reduce it to a smaller cubic
graph of class 2. We will therefore require that snarks have no cycles of length
4.

The length of the shortest cycle in G is called the girth of G. Since we will
not allow cycles of length 3 or 4 in snarks, snarks will be required to have girth
at least 5. We now ready to give the formal definition of a snark. A snark is
a 3-connected, cyclically 4-edge-connected cubic graph of class 2 with girth at
least 5.
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Figure 1.4: The Petersen graph.

The smallest snark is the Petersen graph found by Petersen at the end of
19th century [2]. The Petersen graph is one of the most important graphs in
graph theory. It is shown in Figure 1.4.

Although the Petersen graph was found very early finding other snarks
proved to be a difficult task. This is where snarks get their name. The name
comes from the song The Hunting of the Snark by Lewis Carroll in which
snarks are monsters which are very hard to find.

The Petersen graph is the only snark on 10 vertices. The are no other
snarks on less than 18 vertices. In 1940’s Croatian mathematician Blanuša
discovered two snarks on 18 vertices, now known as Blanuša snarks [3]. They
are shown in Figure 1.5 and are the only two snarks on 18 vertices.

The first infinite family of snarks was discovered in 1970’s. Isaacs published
a paper [7] in which he describes a dot product of graphs which constructs
a snark G as a product of two smaller snarks G1 and G2. Although the
dot product is attributed to Isaacs the construction was published earlier by
a Russian mathematician Titus but this paper is unknown to many people
working on snarks.

The dot product of graphs G1 and G2 is constructed as follows. Choose an
edge e = uv in G1 and two non-adjacent edges f1 = v1v2 and f2 = v3v3 in G2.
Denote the neighbors of u distinct from v with u1 and u2 and the neighbors
of u distinct from v with u3 and u4. The dot product G = G1 · G2 of graphs
G1 and G2 is constructed by removing the vertices u and v from G1 and edges
f1 and f2 from G2 and adding edges viui for i = 1, 2, 3, 4. Note that if a
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Figure 1.5: Blanuša graphs.
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graph is a dot product of two smaller graphs, then it is (at most) cyclically
4-edge-connected. The cut consisting of edges added to G1 and G2 is called
the product cut . It is easy to prove using the Parity lemma that if G1 and G2

are snarks then G is also a snark. A reverse of previous statement also holds.
If G is a snark with a cyclic 4-cut S then there are two smaller graphs G1 and
G2 so that G is obtained as a dot product of G1 and G2, at least one of G1

and G2 is a snark and that S is the product cut of the dot product.
It is clear from the definition of the dot product that the dot product of

G1 and G2 is not uniquely defined by G1 and G2 but it depends on the choice
of edges and vertices in G1 and G2. If we take two copies of the Petersen
graph for G1 and G2 there are two possible non-isomorphic dot product we
can construct. These two non-isomorphic dot products are exactly the Blanuša
snarks.

By starting with the Petersen graph and constructing bigger snarks from
smaller it is possible to construct the first infinity family of snarks. All snarks
in this family are cyclically 4-edge-connected. Isaacs also described an infinite
family of cyclically 6-edge-connected snarks which are known as flower snarks.
A flower snark J2k+1, k > 1, is a snark on vertices

V (J2k+1) = {ai, bi, ci, di | i = 0, . . . , 2k}

and with edges

E(J2k+1) = {aiai+1, aibi, bici, bidi, cidi+1, dici+1 | i = 0, . . . , 2k}

where indices are modulo 2k + 1. The subgraphs Yi induced on vertices
{ai, bi, ci, di} are called tiles of flower snarks . The flower snark J2k+1 is ob-
tained by putting tiles Yi on a circle and then appropriately adding three edges
between tiles Yi and Yi+1 for i = 0, . . . , 2k. The flower snark J5 is shown in
Figure 1.6.

We note that the graph J3 is of class 2 but is not a snark since it contains a
3-cycle. If we remove the 3-cycle in J3 and replace it with a vertex, we obtain
the Petersen graph.

Another well known infinite family of snarks was given by Goldberg. Gold-
berg snark G2k+1, k > 1, is the graph with vertices

V (G2k+1) = {ai, bi, ci, di, ei, fi, gi, hi | i = 0, . . . , 2k}

and with edges

E(G2k+1) = {aiai+1, aibi, bici, bidi, ciei, cigi,

difi, dihi, gihi, eifi, fiei+1, gihi+1 | i = 0, . . . , 2k}
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where indices are modulo 2k + 1. The subgraphs Ti induced on vertices
{ai, bi, ci, di, ei, fi, gi, hi} are called tiles of the Goldberg snarks. Similarly as
flower snark the Goldberg snarks are obtained by putting tiles Ti on a circle and
appropriately adding three edges between tiles Ti and Ti+1 for i = 0, . . . , 2k.
The Goldberg snark G5 is snown in Figure 1.6. If we do not require that there
are an odd number of tiles, we can define graphs Jk and Gk for all k ≥ 3.
Graphs J2k and G2k are of class 1.

Snarks described so far all have girth at most 6 (flower snarks J2k+1, k > 1,
have girth 6 and Goldberg snarks have girth 5). If there exist snarks with
arbitrary large girth has been an open question for some time. In 1980 Jaeger
and Swart [10] conjectured that all snarks have girth at most 6. This conjecture
was disproved by Kochol [17] in 1997 when he constructed an infinite family of
snarks which contain snarks with arbitrary large girth. Kochol’s construction
called superposition is the most general construction of snarks known. A
special class of snarks constructed by superposition for which Kochol proved
that it contains snarks with arbitrarily large girth is called Kochol snarks.

There are some other constructions of snarks known. For example Goldberg
snarks are a special case of the Loupekhine construction of snarks. Also all
snarks with at most 28 vertices are known [24].

1.4 Superposition

We give a short description of the superposition of graphs. Superposition is
the most general known construction of snarks. It generalizes many previ-
ously known constructions, for example the dot product. It was introduced by
Kochol in [17] where he disproved the girth conjecture for snarks. The girth
conjecture stated that snarks have bounded girth (in particular that for any
snark G, the girth of G is at most 6). Kochol proved that a special class of
snarks obtained as a superposition of the Petersen graph contains snarks with
arbitarilly large girth which disproves this conjecture.

Superposition is a construction of snarks in which we replace the edges and
vertices of snarks by cubic graphs (with pending edges) called supervertices
and superedges . There are almost no requirements for supervertices, all that is
required is that superedges satisfy certain properties. Because there are almost
no requirements for supervertices we can construct a very rich family of snarks
using superposition. We give a short description of the superposition, for more
details see [17].

A multipole M = (V,E, S) consists of a set of vertices V , edges E and
semiedges S. A semiedge s is incident to one vertex v and denoted by s = (v).
We assume that the degrees of vertices in a multipole are all 3 (the degree of
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Figure 1.6: The flower snark J5 (above) and the Goldberg snark G5 (below).
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a vertex v in a multipole is the number of edges and semiedges incident with
v).

A (k1, . . . , kn)-pole is a multipole (V,E, S) with a partition of semiedges
into sets S = S1 ∪ · · · ∪ Sn with |Si| = ki, i = 1, . . . , n. The sets S1, . . . , Sn are
called the connectors of the multipole. A (k1, k2)-pole is called a superedge and
a (k1, k2, k3)-pole is called a supervertex . A (1, 1, 1)-pole consisting of a single
vertex v and three semiedges incident with v is called a trivial supervertex .

Let G be a snark. We remove two non-adjacent vertices v and u from G
and replace all edges vxi incident with v with semiedges (xi), i = 1, 2, 3, and
all edges uyi with semiedges (yi), i = 1, 2, 3. We define S1 = {(x1), (x2), (x3)}
and S2 = {(y1), (y2), (y3)} and we obtain a (3, 3)-multipole with connectors
S1 and S2 called a proper superedge. We say we obtained this superedge by
removing vertices v and u from G. An empty multipole will be considered as
a special (1, 1)-multipole and a proper superedge. For a broader definition of
a proper superedge see [17].

Let G = (V,E) be a cubic graph. To each vertex v ∈ V we assign a
supervertex S(v) and additionally to each edge incident to v we assign one of
the connectors of S(v). To each edge xy ∈ E we assign a (proper) superedge
E(xy) and additionally we assign one of the connectors to x and the other to
y (unless E(xy) is an empty multipole).

Assume that for each edge e = xy ∈ E the following holds. If E(xy)
is an empty multipole, then the connectors assigned e in supervertices S(x)
and S(y) have cardinality 1. Otherwise the connector assigned to edge e in
supervertex S(x) (S(y)) has the same cardinality as the connector assigned to
x (y) in superedge E(xy).

We can then construct a new graph as follows. If the superedge assigned to
e = xy is an empty multipole, then we remove semiedge (v) in the connector
of S(x) assigned to e and the semiedge (u) in the connector of S(y) assigned
to e and add an edge uv. Otherwise we have semiedges {(u1), (u2), (u3)} in
the connector of S(x) and semiedges {(x1), (x2), (x3)} in the connector of e
assigned to x. We remove them and add edges {u1x1, u2x2, u3x3} and do the
same for vertex y. By repeating the procedure for all edges e ∈ E we get a
cubic graph G′ called a superposition of G. If to all edges we have assigned
proper superedges, the graph G′ is called a proper superposition of G.

Kochol proved the following result [17]

Theorem 1.5. For a snark G a proper superposition G′ is a snark.

Snarks are important in graph theory because they appear as possible min-
imal counter-examples for some of the most important open problems in graph
theory. One of the most interesting open problems is the Cycle Double Cover
conjecture. A collection C of cycles in a graph G is called a double cover if every
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edge of G is contained in exactly two cycles from C. The Cycle Double Cover
conjecture states that for every 2-edge-connected graph there exists a cycle
double cover. It is not too hard to show that every minimal counter-example
to this conjecture would be a cubic graph. Now suppose that c is a 3-edge-
coloring of a cubic graph G. A subgraph Hi,j induced on the edges colored
with colors i and j, 1 ≤ i < j ≤ 3 is a union of cycles. The collection of cycles
in graphs H1,2, H1,3 and H2,3 covers each edge twice since an edge colored for
example with color 1 is contained in a cycle in the graph H1,2 and a cycle in the
graph H1,3. Therefore we see that the minimal counter-example to the Cycle
Double Cover Conjecture would be a snark. Another well known conjecture
is the Tutte’s 5-flow conjecture. It states that every bridgless graph admits a
5-flow. Again, every minimal counter-example to the Tutte’s conjecture would
be a snark.

1.5 Embeddings of cubic graphs

One of the most famous solved problem in graph theory is the Four Color
Theorem. In its earliest form the Four Color Theorem states that regions of
every map in the plane can be colored with four colors such that two regions
which share a boundary are colored with two different colors. In the language
of graph theory the Four Color Theorem states that vertices of every graph
embedded into the sphere S0 can be colored with four colors such that any two
adjacent vertices are colored with different colors. The Four Color Theorem
was first proposed 1852 and various attempts were made to prove it but the first
proof was by Appel and Haken in 1977 using a computer ([8], [9]). Another
proof was published by Robertson, Sanders, Seymour and Thomas in 1996
[18], also using a computer. It is still an interesting question if a proof without
using a computer is possible.

Suppose we have a graph G embedded into a sphere and we want to color
its vertices with 4 colors. We can add to G all edges possible so that the graph
is still embedded into the sphere. We get a graph T for which all faces are
of size 3 (since otherwise we could still add some edges). If we can color the
vertices of T with 4 colors then the coloring also defines a coloring of vertices
of G with 4 colors. So to prove the four color theorem we can assume that
the graph is a triangulation of the sphere. Now take the dual T ∗ of T in the
sphere (see Figure 1.7). Since T is a triangulation, T ∗ is a cubic graph. Taitte
observed that if T ∗ has a 3-edge-coloring than the vertices of T can be colored
with 4 colors. The Four Color Theorem therefore states that snarks can not
be embedded into the plane.

Before the Four Color Theorem was proved by Apel and Haken, many at-
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Figure 1.7: A triangulation of the plane with its dual.

tempts have been made and some proofs have been published but were later
shown to be incomplete. Many of the attempts to prove the Four Color Theo-
rem opened new direction of research in graph theory. One possible approach
is to generalize the Four Color Theorem and maybe prove the generalization.
One of the interesting generalization is to generalize the statement that snarks
can not be embedded into the plane. The Petersen graph can be embedded
into the torus (see Figure 4.1). However in the embeddind there are two facial
walks that have more than one edge in common. This is true for all known
embeddings of snarks.

An embedding of a graph in called polyhedral embedding if all facial walks
are cycles and two facial walks are either disjoint, intersect in precisely one
vertex or intersect in precisely one edge. An embedding of a cubic graph is
polyhedral if all facial walks are cycles and two facial walks are either disjoint
or share precisely one edge.

Suppose G is embedded in a surface S. A cycle on the surface (a closed
simple curve on the surface) is contractible if it bounds a region isomorphic
to an open disc in the plane and non-contractible otherwise. We say that the
embedding of G has face-width k if every non-contractible cycle on S intersects
G at least k times. Using face-width we can describe polyhedral embeddings
of G using the following proposition.

Proposition 1.6. An embedding of a graph G is polyhedral if and only if G
is 3-connected and the embedding has face-width at least 3.
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If 1967 Grünbaum proposed a far-reaching generalization of the Four Color
Theorem (which had not yet been proved at that time). The lack of orientable
polyhedral embeddings of the Petersen graph and other non 3-edge-colorable
cubic graphs known at that time led Grünbaum to the following

Conjecture 1.7 (Grünbaum [4]). If a cubic graph admits a polyhedral em-
bedding in an orientable surface, then it is 3-edge-colorable.

Another way of stating the Grünbaum conjecture is that cubic graphs which
are not 3-edge-colorable do not admit polyhedral embeddings. The conjecture
is not true for non-orientable surfaces since the Petersen graph has a polyhedral
embedding into the projective plane (see Figure 3.1). Later on we will construct
for each non-orientable surface N a snark which has a polyhedral embedding
in N .

Even though almost 40 years have passed since it was proposed, not much
progress has been made toward resolving the Grünbaum conjecture. The con-
jecture has been verified for flower snarks by Szekeres in [5] where he proves
that graphs J2k+1 do not have orientable polyhedral embeddings. The proof
does not rely on the fact that graphs J2k+1 are snarks and later we show that
indeed none of the graphs Jk, k > 3, have polyhedral embeddings into any
(orientable or non-orientable) surfaces. We also show that the conjecture is
true for Goldberg snarks and Kochol snarks.

Besides the Szekeres’ paper [5], not much has been published about poly-
hedral embeddings of snarks. Tinsley and Watkins studied the genus of flower
snarks [12]. They observe that the genus of snarks they study increases with
the order of the graph. In the next chapter we extend their results. We find
the genus of flower snarks and Goldberg snarks and prove some results about
the genus of dot products of the Petersen graph. In the third chapter we
study polyhedral embeddings of flower snarks and Goldberg snarks into ori-
entable and non-orientable surfaces. We show some obstructions for existance
of polyhedral embeddings and construct polyhedral embeddings of snarks into
non-orientable surfaces. In the last chapter we prove that Kochol snarks do
not have polyhedral embeddings into orientable surfaces. We define the defect
of a graph which is a measure for how far a graph is from having a polyhedral
embedding into an orientable surface and prove some results connecting the
Grünbaum conjecture, defect and resistance of cubic graphs.



Chapter 2

Genus of snarks

In this part of the thesis we give some results about the genus of snarks.
The genus of snarks has been studied in a paper of Tinsley and Watkins [12]
in which they determine the orientable genus of flower snarks. They give an
upper bound for the orientable genus of Goldberg snarks and make a conjecture
about the genus of dot products of the Petersen graph. Based on these results
they observe that the genus of the snarks they studied increases with the order
of the snark.

The method Tinsley and Watkins used to prove their results on the genus
of J2k+1 are topological. We first prove their result on the orientable genus
of J2k+1 using a combinatorial method. This method extends to the non-
orientable case aswell. Using the same idea we determine orientable and non-
orientable genus of Goldberg snarks.

Next we study the orientable genus of dot products. We first disprove the
conjecture of Tinley and Watkins about the orientable genus of P n. We show
that there are infinitely many graphs P n which can be embedded in the torus.
Further for each g, 1 ≤ g ≤ n, we show that there is a product P n such that
the orientable genus of P n is equal to g. Finally we give tight bounds for the
orientable genus of a dot product of two cubic graphs.

2.1 Flower snarks and Goldberg snarks

Tinsley and Watkins determined the orientable genus of flower snarks. They
use topological methods to prove the lower bound and used a different approach
for the non-orientable genus. In this section we give a short combinatorial proof
of their results which works for both orientable and non-orientable genus. The
proof works by counting arguments and uses the Euler formula. A similar
approach also works for Goldberg snarks.

19
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Theorem 2.1 (Tinsley, Watkins). The orientable genus of the flower snark
is g(J2k+1) = k and the non-orientable genus is g̃(J2k+1) = 2k − 1.

Proof. An embedding of J2k+1 in an orientable surface of genus k is described
by a list of facial cycles

• a0a1 · · · a2k,

• c0d2kc2k−1d2k−2 · · · c1d0c2k · · · d1c0,

• d0b0c0d1b1c2 · · · d2kb2kc2kd0,

• Fi = aibidici+1bi+1ai+1ai for i = 0, . . . 2k,

which gives g(J2k+1) ≤ k (see also Figure 2.1 which show an embedding of J5

into an orientable surface of genus 2).

Figure 2.1: The flower snark J5 embedded into an orientable surface of genus
2.

A non-orientable embedding of J2k+1 in a surface of genus 2k−1 is described
by a list of facial cycles
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• a0a1 · · · a2k,

• c0d1b1c1d2b2c2 . . . d2k−1b2k−1c2k−1d2kc0,

• c0d1c2d2 . . . d2k−1c2kb2kd2kc0,

• d0c1d2c2 . . . d2kb2kc2kd0,

• Fi = aibidici+1bi+1ai+1ai for i = 0, . . . 2k,

which gives the upper bound g̃(J2k+1) ≤ 2k − 1. See also Figure 2.2 which
shows the embedding of the flower snark J5 into the non-orientable surface N3.
Is is easy to see from the figure how to embed snarks J2k+1 into surfaces N2k−1

for k ≥ 3.

Figure 2.2: The flower snark J5 embedded into the non-orientable surface of
genus 3.

By contracting each tile Yi of J2k+1 to a vertex i we get a cycle Q of length
2k + 1. Each facial walk W in an embedding Π of J2k+1 induces a walk W ′ in
Q. We define the winding number w(W ) of W to be the winding number of
W ′ in Q. A facial walk in Π is local if w(W ) is zero and global otherwise.

We show that in the embedding of Π we can have at most 2k + 1 local
facial walks. For each local facial walk W there exists an index i, such that
W contains a path P = x0x1 . . . xl−1xl, where vertices x0 and xl are in the tile
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Yi−1 and vertices x1, . . . , xl−1 are in the tile Yi. To the walk W we assign the
vertex i of Q.

There are three paths of the form x0x1bi where x0 is in the tile Yi−1. Since
each walk assigned to the vertex i contains two such paths and each path of
length tree can appear at most once along facial walks of Π, we see that to
each vertex of C2+1 we assigned at most one facial walk. So we can have at
most 2k + 1 local facial walks in the embedding of J2k+1.

In the embedding of J2k+1 we can either have 6 global facial walks or at
most 2k + 1 local facial walks and 4 global walks. This implies that there are
at most 2k + 5 facial walks in an embedding of J2k+1.

Suppose Π is an embedding of J2k+1 into a non-orientable surface of mini-
mum possible genus g̃(J2k+1). By Euler formula

2 − g̃(J2k+1) = |V (J2k+1)| − |E(J2k+1)| + |FΠ(J2k+1)|

≤ 4(2k + 1) − 6(2k + 1) + 2k + 5 = 3 − 2k

the non-orientable genus is g̃(J2k+1) ≥ 2k − 1.
Suppose Π is an embedding of J2k+1 into an orientable surface of minimum

possible genus g(J2k+1). Since |V (J2k+1)| = 4(2k+1) and |E(J2k+1)| = 6(2k+
1), by Euler formula |V (J2k+1)| − |E(J2k+1)| + |FΠ(J2k+1)| = 2 − 2g(J2j+1),
there are an even number of facial walks in Π. Therefore there can be at most
2k + 4 facial walks in Π. Now the Euler formula

2 − 2g(J2k+1) = |V (J2k+1| − |E(J2k+1| + |FΠ(J2k+1)|

≤ 4(2k + 1) − 6(2k + 1) + 2k + 4 = 2 − 2k

implies that g(J2k+1) ≥ k.

The same argumentats also work for graphs J2k. We can show that in every
embedding of J2k there can be at most 2k. If there are 2k local facial walks,
then there are four global facial walks. Since every embedding can have at
most 2k + 4 facial walks we get a lower bound for genera of J2k.

Theorem 2.2. The orientable genus of the flower graph J2k is g(J2k) = k− 1
and the non-orientable genus is g̃(J2k) = 2k − 2.

Proof. The lower bound is obtained in the paragraph before the theorem.
From Figure 2.4 it is easy to obtain embeddings of J2k into non-orientable
surfaces of genus 2k − 2. An embedding of J2k into an orientable surface of
genus k − 1 is given by the following list of facial cycles:

• a0a1 · · · a2k−1,
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• d0c2k−1d2k−2c2k−3 . . . d0,

• c0d2k−1d2k−2d2k−3 . . . c0,

• d0b0c0d1b1c1 . . . d2k−1b2k−1c2k−1d0,

• Fi = aibidici+1bi+1ai+1ai for i = 0, . . . 2k − 1,

Tinsley and Watkins obtained an upper bound for the orientable genus of
Goldberg snark G2k+1 by showing an embedding into the orientable surface
of genus 2k. Using ideas similar to those used in the proof of the previous
theorem we show that this bound is the correct value for the orientable genus
of G2k+1. We also determine the non-orientable genus of G2k+1.

Theorem 2.3. The orientable genus of the Goldberg graph is g(Gk) = k − 1
and the non-orientable genus is g̃(Gk) = k.

Proof. We first look at orientable genus. An embedding of the Goldberg
graph Gk in the orientable surface of genus k is described by facial cycles

• a0a1 · · · ak−1a0,

• Ci = aibidifiei+1ci+1bi+1ai+1ai for i = 0, . . . , k − 1,

• Di = bicigihidibi, for i = 0, . . . , k − 1,

• f0e0fk−1ek−1 · · · f1e1f0,

• h0g0h1g1 · · ·hk−1gk−1h0,

• f0d0h0g2kck−1ek−1fk−2dk−2hk−2 · · · g0c0e0fk−1dk−1hk−1 · · · g1c1e1f0.

See also Figure 2.3.
For the lower bound for the orientable genus we use the Euler formula. We

have |V (Gk)| = 8k, |E(Gk)| = 12k and in the embedding into the orientable
surface of genus k there are 2k + 2 facial walks. We show that if Π is an
orientable embedding of Gk, then there are at most 2k + 2 facial walks in Π,
which gives the lower bound k for the genus of the surface.

We group facial walks in the embedding Π of Gk into three groups. A
facial walk is short if it is contained in a tile Ti of Gk and long otherwise.
By contracting tiles Ti of Gk into vertices i we obtain a cycle Q of length k.
Each facial walk W in the embedding Π defines a walk W ′ in Q. The winding
number of W ′ in Q defines the winding number w(W ) of W . A long facial
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Figure 2.3: The Goldberg snark G5 embedded in the orientable surface of
genus 4.

walk is local if the winding number is zero and global otherwise. With this we
have grouped facial walks of Π into three groups: short and long local walks
and global walks.

We show that we can have at most 2k + 2 local walks. To each local walk
we assign a vertex in Q as follows. To a short walk in a tile Ti we assign
the vertex i. If W is a long walk, there exists an index i and a sub-walk
P = x0x1 . . . xl−1xl on W such that x0 and xl are in the tile Ti−1 and all
vertices x1, . . . xl−1 are in the tile Ti, since otherwise the winding number of W
could not be zero. To W we assign the vertex i in Q (if there are more than
one possibilities for i we arbitrarily choose one of them). We now prove that
to each vertex i we can assign at most two facial walks which implies that we
have at most 2k local walks.
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Suppose we have assigned three long local walks W1, W2 and W3 to i. Since
there are only three edges from tile Ti−1 to Ti, all are contained twice in walks
W1, W2 and W3, and in particular edge ai−1ai is contained twice in them. But
since we assigned all of W1, W2 and W3 to i we see that if W1 contains ai−1ai,
it must contain ai−1aibi. But in the embedding Π it is not possible that a path
of length 3 appears twice along facial walks in Π.

Suppose we have assigned three local walks W1, W2 and W3 to i, where W1

is short and W2 and W3 are long. There are two possibilities for W1. Either
it contains the cycle higicibidihi or higicieifidihi (the case when it contains
dibicieifidi is symmetric to the first case).

Suppose W1 contains higicieifidihi. We have facial walks which contain
paths hi−1gihigi+1, ei−1fieifi+1 and ai−1aiai+1. This is a contradiction with
the fact that ai−1ai, ei−1fi and hi−1gi appear twice on each of W2 and W3.
Suppose that the consistent orientation of facial walks W1 contains the path
higicibidihi. We have facial walks which contain paths (in some orientation)
hi−1gihigi+1 and ai−1aiai+1. It follows that both W2 and W3 contain the edge
ei−1fi. Now W2 must contain ei−1fidibiaiai−1. The walk W3 must contain
edges fiei−1 and gihi−1 in these orientations. But this is a contradiction.

Finally assume that we have assigned two short local facial walks W1 and
W2 to i. Since a short local walk at i contains one of three cycles higicibidihi,
dibicieifidi or higicieifidihi it follows that at least one path of length 3 is
contained twice along facial walks of the embedding, which is a contradiction.
So in an embedding of Gk there can be at most 2k local facial walks. In
particular we have shown that there can be at most k short local walks in an
embedding of Gk.

Now suppose we have an embedding Π into an orientable surface of genus
less than k − 1. By Euler formula

2 − 2g(Gk) = |V (Gk)| − |E(Gk)| + |F (Gk)|

= 8k − 12k + |F (Gk)|

= |F (Gk| − 4k

we get

|F (Gk)| = 4k + 2 − 2g(Gk) ≥ 4k + 2 − 2(k − 2) = 2k + 6.

Since at most 2k of them can be local walks, we have at least 6 global walks.
Since each global walk contains at least one edge connecting the tile Ti−1 with
the tile Ti and there are three edges connecting tile Ti−1 and Ti, we see that no
local walk can contain an edge between two tiles. So all local walks are short.
But we can have at most k short local walks, a contradiction. We have shown
that the genus of Gk is at least k − 1.
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We now prove that the non-orientable genus of the Goldberg snark is
g̃(Gk) = k. An embedding of Gk into a non-orientable surface of genus k
is described by facial cycles

• a0a1 · · · ak−1ka0,

• Ci = aibidifiei+1ci+1bi+1ai+1ai for i = 0, . . . , k − 1,

• Di = bicigihidibi for i = 0, . . . , k − 1,

• Ei = fiei+1fi+1di+1hi+1gicieifi for i = 0, . . . , k − 1,

• Fi = h0g0higi . . . hk−1gk−1h0.

An embedding of G5 into the non-orientable surface of genus 5 is shown in
Figure 2.4. Is is easy to see how to get an embedding of arbitrary Gk into a
non-orientable surface of genus k.

To prove the lower bound we show that in a non-orientable embedding
of G2k+1 there can be at most 3k local facial walks which will give an upper
bound for the number of facial walks to be 3k+2. This implies that the genus
of the surface is at least k. Again as before we can assign to each local facial
walk a vertex of Q. We show that to each tile Ti we can assign at most three
local facial walks. As in the case of the orientable embedding there can be at
most one short facial cycle in each tile. If we assigned three long local walks to
a tile Ti, then all three edges between tiles Ti−1 and Ti must appear on them,
each twice. But this implies that the path ai−1aibi is contained in two facial
walks, which is a contradiction. To each tile we can assing at most three local
facial walks (one short and two long), which implies that there can be at most
3k local facial walks. If we assigned three local facial walks to any tile, then
there can be at most two global facial walks. So the biggest possible number
of facial walks is 3k + 2 and by Euler formula

2 − g̃(Gk) = 8k − 12k + |F (Gk)|

≤ 8k − 12k + 3k + 2 = 2 − k

we have g̃(Gk) ≥ k.

In particular case, the last theorem states that for Goldberg snarks we have
g(G2k+1) = 2k and g̃(G2k+1) = 2k + 1.
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Figure 2.4: The Goldberg snark G5 embedded in the non-orientable surface of
genus 5.

2.2 Toroidal snarks

Let P n denote a dot product of n copies of the Petersen graph. In [12] authors
proposed a conjecture, that a graph P n has orientable genus precisely n − 1.
In the construction of P 2 there are two non-equivalent ways to choose edges e1
and e2 in the first copy of P , so there are two non-isomorphic dot products of
two copies of the Petersen graph (which are the only two snarks on 18 vertices).
The previous conjecture was disproved in [21], where it was shown that one of
the two possible dot products P 2 has orientable genus 2, so that the genus can
be bigger than conjectured.

In this section we show that for every positive integer n a dot product of n
copies of the Petersen graphs exists, which can be embedded in the torus and
has therefore genus 1, so there exists and infinite family of counter-examples for



28 Genus of snarks

which the value of the genus can also be (much) smaller than the conjectured
value. We also show that for each g there are infinitely many snarks with
orientable genus precisely g.

Let G1 be a cubic graph embedded into an orientable surface Sg and G2

be a cubic graph embedded in the torus T . Let e1 = x1x2 and e2 = x3x4 be
two edges of G1 such that in the embedding of G1 there are two facial walks
C1 = x1x2P1x3x4P2x1 and C2 = x2x1P4x4x3P3x2. Then we say that edges e1
and e2 satisfy property P . Let f = uv be an edge in G2 such that the neighbors
of u, distinct from v, are y1, y2, the neighbors of v, distinct from u are y3, y4

and in the embedding of G2 there are distinct facial walks D1 = y1uvy4R4y1,
D2 = y3vuy2R3y3 and D3 = y2uy1R2y4vy3R1y2.

Lemma 2.4. Let G1 and G2 be as above. Then a dot product G = G1 · G2

exists which has an embedding into the surface S1. Furthermore, the edges
e′i = xiyi and e′j = xjyj in G have property P .

x1 x2

x3x4

y1y2

y3 y4

C1

C1

C2 D1 D2

D3

D3

u

v

Figure 2.5: The configuration of faces in G1 and G2.

Proof. Let G1 and G2 be embedded as in the Lemma. Let G be the dot
product as described in the paragraph above the Lemma. We define the embed-
ding of G by specifying vertex rotations. Denote with X the set {xi, yi | i =
0, 1, 2, 3, 4}. The rotations at vertices in V (G)\X are the same as the rotations
in the embeddings of G1 and G2. The rotations at vertices in X are the same
as the rotations in the embeddings of G1 and G2 where we naturally replace
the deleted edges with the added ones. This is clearly an embedding into an
orientable surface. To prove that this surface is S, we count the facial walks of
the embedding. The facial walks which do not contain any of the vertices from
X are facial walks in the embedding of G1 or G2. The facial walks, which con-
tain vertices from X are x2P1x3y3R1y2x2, x1y1R2y4x4P2x1, x2P1x3y3R1y2x2
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and x1P4x4y4R4y1x1. So we have replaced five facial walks with four. We
have |V (G)| = |V (G1)| + |V (G2)| − 2, |E(G)| = |E(G1)| + |E(G2)| − 3 and
|F (G)| = |F (G1)| + |F (G2)| − 1. So

|V (G)| − |E(G)| + |F (G)| = |V (G1)| − |E(G1)| + |F (G1)| +

|V (G2)| − |E(G2)| + |F (G2)| − 1

= 1 + 2 − 2g − 1 = 2 − 2g

which shows that this is an embedding in Sg. It is also easy to see that edges
x1y1 and y4x4 satisfy the property P

Corollary 2.5. For every positive integer n there exists a dot product of n
copies of the Petersen graph, that can be embedded in the torus.

x1 x2

x3 x4

u

v

Figure 2.6: The Petersen graph in the torus.

Proof. An embedding of the Petersen graph in the torus is shown in Figure
2.6. It is easy to check that if we take the edges x1x2 and x3x4 in one copy and
the edge uv in the other, the conditions of Lemma 2.4 are satisfied for both
copies. The corollary follows.

As an immediate corollary of this result we show that for each g > 0 there
are infinitely many snarks with orientable genus precisely g. This result will
also follow from Corollary 2.9.

Corollary 2.6. For each g > 0 there exist infinitely many snarks with ori-
entable genus g.

Proof. We already constructed infinitely many snarks embedded in the torus.



30 Genus of snarks

Figure 2.7: A graph P 3 in the torus.

For g > 1 we start with the snark J2g+1 which has orientable genus g.
In the embedding described in the proof of theorem 2.1 edges c0d1 and c2d3

satisfy property P . By Lemma 2.4 we have infinitely many snarks G0 = J2g+1,
G1 = G0 · P , G2 = G1 · P , . . ., embedded in Sg. There are two disjoint paths
P1 connecting y1 and y2 and P2 connecting y3 and y4 in P −{u, v}. Therefore
there is a subgraph in Gi+1 which is isomorphic to a subdivision of Gi. This
implies that in Gi there is a subgraph which is a subdivision of J2g+1 and
therefore Gi can not be embedded in a surface of genus less than g.

2.3 The genus of P n

In Corollary 2.5 we have described products P n which are embeddable in the
torus. In this section we describe products P n which have genus g, 1 ≤ g ≤ n.
We need the following lemma for the construction.

Lemma 2.7. 1. If two adjacent vertices u and v are removed from the
Petersen graph P then in a drawing of P − {u, v} in the plane, the
degree 2 vertices can not be drawn on the boundary of the same face.

2. If we remove two edges e, f as indicated in Figure 2.8 from the Petersen
graph, then the graph P − {e, f} is not planar.

3. For any vertex x ∈ V (P ) the graph P − {x} is not planar.

Proof. For the first part note that if we have an embedding of P − {u, v} in
the plane such that the degree two vertices are on the boundary of one face,
then we can add a vertex in that face and connect it to the degree two vertices.
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e

f

Figure 2.8: The Petersen graph in torus with dashed edges e and f .

We get an embedding of the P/uv in the plane, which is a contradiction since
P and P/uv are not planar graphs.

For the second and third part note that in graphs P − {e, f} and P − {x}
there are subdivisions of the graph K3,3 which implies they are not planar.

Theorem 2.8. For each genus n ≥ 1, there exists a dot product P n of n
copies of the Petersen graph, whose genus is equal to n.

Proof. We construct products P n together with their embeddings Πn with
the following properties.

• The genus of P n is g(P n) = g(Πn) = n

• In the embedding Πn there are two edges e, f ∈ E(P n) on the same facial
walk F such that the genus of the graph P −{e, f} is g(P n−{e, f}) = n.
Further there are two distinct facial walks F1 and F2, both distinct from
F , such that F1 contains e and F2 contains f (or equivalently there is
exactly one facial cycles F which contains both e and f).

For n = 1 we have g(P ) = 1 and edges e, f from Lemma 2.7 (See Figure
2.8) satisfy the stated conditions.

Let u, v be adjacent vertices in P and denote the neighbors of v distinct
from u with v1 and v2 and the neighors of u distinct from v with u1 and u2.

Now suppose we have an embedding Πn of Pn, edges e = x1x2 and f = y1y2

and a facial walk F with required properties. We can assume that vertices
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x1, x2, y1, y2 appear in this order along the walk F . Denote the walks which
contain edges e and f by F = x1x2P1y1y1P2x1, F1 = x2x1R1x2 and F2 =
y2y1R2y2. We construct P n+1 by removing edges e, f from P n and vertices u, v
from P and adding product edges e1 = x1v1, e2 = x2v2, f1 = y1u1, f2y2v2. We
claim that g(P n+1) = g(P n+1 − {e1, e2}) = n+ 1.

Since P n − {e, f} has genus n it follows that g(P n+1) ≥ n. Suppose that
g(P n+1) = n. Since the embedding of P n − {e, f} induced by the embedding
of P n+1 has genus n it follows that the embedding of P n+1 also induced an
embedding of P − {u, v} into the plane so that the degree two vertices are on
the same face. But this is a contradiction to Lemma 2.7.

Now suppose that g(P n+1 − {e1, e2}) = n. Again, since the induced em-
bedding of P n −{e, f} has genus n, the induced embedding of P −{u, v} is in
the plane such that two vertices u1, u2 are on the same face. But this would
induce an embedding of P − {v} in the plane, a contradition to Lemma 2.7.

1

2

3 4

u1

u2v1

v2

Figure 2.9: The graph P − {u, v} embedded on the cylinder.

We have shown that g(P n+1) ≥ n + 1. Let P − {u, v} be embedded into
the cylinder Z as shown on the Figure 2.9. In the embedding Πn remove a
disc from the face F and join Sn with the cylinder Z using a sphere with three
discs removed to obtain a surface Sn+1. We can add product edges on Sn+1 to
obtain an embedding Πn+1 into Sn+1 (see Figure 2.10).

Facial cycles containing product edges are x2P1y1u112v2x2, y2P2x1v13u2y2

and x1R1x2v24u1y1R2y2u221v1x1 so the embedding Πn+1 satisfies all require-
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u1u2 v1 v2

x1 x2 y1y2

Figure 2.10: The sphere minus three discs with the product edges.

ments.

Corollary 2.9. For each g, 1 ≤ g ≤ n there exists a product P n with ori-
entable genus g(P n) = g.

Proof. Suppose 1 ≤ g ≤ n. By Theorem 2.8 we can construct a product P g

with orientable genus g(P g) = g. By construction there is an embedding of
P g into Sg such that all product edges are on the same face. This implies that
there are two edges e and f which satisfy property P of Lemma 2.4. From
P g we can then construct a product P n with orientable genus g(P n) = g by
successively applying Lemma 2.4.

2.4 Genus of the dot product

In this section we give general bounds for the genus of the dot product.

Theorem 2.10. Let G1 and G2 be two cubic graphs with orientable genera
g(G1) = g1 and g(G2) = g2. Then the genus of the dot product G1 ·G2 satisfies

g1 + g2 − 2 ≤ g(G1 ·G2) ≤ g1 + g2 + 1.

The bounds are best possible, even if G1 and G2 are required to be snarks.

Proof. First we show the upper bound. Let G1 be embedded into the surface
S1 of genus g1 and G2 into the surface S2 of genus g2. Suppose that in the
construction of the dot product we remove edges e = x1x2 from G1 and vertices
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u and v with neighbors {u1, u2, v} and {v1, v2, u} respectively fromG2. Remove
a small disc D around the edge uv in S2 which intersects G2 only in vertices
u1, u2, v1, v2. Note that the vertices appear in this order around the disc D.
Remove two discs D1 and D2 from S1 around edges e and f which intersect
G1 only in end vertices of edges e and f . Now join the surfaces S1 and S1 by
a sphere with three discs removed. It is possible to add the product edges on
the surface to get an embedding of G1 and G2 (see Figure 2.11).

u1 u2v1
v2

x1 x2 y1 y2

Figure 2.11: The sphere minus three discs with the produce edges.

For the lower bound let G = G1 · G2 be embedded into a surface Sg of
genus g. The product edges form a cut in G hence in the dual G∗ of G in
Sg the edges corresponding to product edges in G form a union of cycles (we
consider a loop to be a cycle of length 1). If we cut the surface Sg along these
cycles, the surface is split into two surfaces S ′

1 and S ′
2 without some discs so

that G1−{e, f} is embedded into S ′
1 and G2−{u, v} is embedded into S ′

2. We
can assume that the vertices of degree 2 in G1 and G2 are on the boundaries
of S ′

1 and S ′
2. We do a case analysis on the number of cycles in G∗ (discs on

the boundary of S ′
1 and S ′

2) corresponding to the cut formed by the product
edges. Denote the set of these cycles by C.

Suppose first that the boundary of S ′
1 is a cycle C and that the boundary

of S ′
2 is a cycle D. Further assume that the vertices x1, x2, y1, y2 appear in this

order along C and vertices u1, u2, v1, v2 appear in this order along D. Then we
can add discs to S ′

1 and S ′
2 to get surfaces S1 and S2 so that g(S1)+g(S2) = g(S)

and we can also add edges e, f to obtain embeddings of G1 into S1 and vertices
u, v to S2 to obtain and embedding of G2 into S2. Therefore g(G1) + g(G2) ≤
g(G) in this case.

Assume that the order around C is x1y1x2y2 and that the order around D
is v1u1v2u2. Now we can discs with handles to S ′

1 and S ′
2 to obtain embeddings

of G′
1 and G′

2 into S1 and S1. We can add edges e, g to G′
1 and vertices u, v
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to S2 to get embeddings of G1 and G2 into S1 and S2. Therefore in this case
g(G1) + g(G2)− 2 ≤ g(G). Because of symmetry these are all possible cases if
we have one cycle in C.

Suppose we have two cycles in C. Surfaces S ′
1 and S ′

2 have boundaries
consisting of cycles C1, C2 andD1, D2 respectively. There are three possibilities
for positions of vertices x1, x2, x3, x4 (x1, x2, x3, x4) around C1 and C2 (D1 and
D2).

Assume that vertices x1 and x2 are on the cycle C1 and y1 and y2 are on
the cycle C2. Then we can add two discs to S ′

1 to get a surface S1 and product
edges to get an embedding of G1 into S1. We can add a handle to S ′

2 to get a
surface S2 and vertices u, v to S2 to get an embedding of G2 into S2. In this
case we have g(S1) + g(S2) − 1 = g(S) − 1 and hence g(G1) + g(G2) ≤ g(G).

Assume that vertices x1 and y1 are on the cycle C1 and x2 and y2 are on
the cycle C2. In this case we can add a handle to S ′

1 and a handle to S ′
2

to get surfaces S1 and S2 and add product edges to S1 and vertices u, v to
S2 to get embeddings of G1 and G2 into S1 and S2. in this case we have
g(S1) + g(S2) − 2 = g(S) − 1 and hence g(G1) + g(G2) − 1 ≤ g(G).

The last possible case is that there is a vertex x1 on C1 and vertices x1, y1, y2

on C2. In this case we again get g(G1)+g(G2)−1 ≤ g(G). Because of symmetry
these are all possible cases when there are two cycles in C.

Suppose that there are three cycles in C. There are cycles C1, C2, C3 on
the boundary of S ′

1 and cycles D1, D2, D3 on the boundary of S ′
2. Up to

symmetry there are two possibilities for arrangement of vertices x1, x2, y1, y2

around C1, C2 and C3. First case is when vertices x1 and x2 are on C1 and
y1 and y2 are on C2 and C3. The second case is when vertices x1 and y1 are
on C1 and vertices x2 and y2 are on C2 and C3. In both cases we can add
a sphere minus three discs to surfaces S ′

1 and S ′
2 to get surfaces S1 and S2

in which we can embed graphs G1 and G2. Therefore in this cases we have
g(S1) + g(S2) + 4 = g(S) − 2 and hence g(G1) + g(G2) − 2 ≤ g(G).

The last possible case is that C consists of four cycles. In this case the
boundares of S ′

1 consist of four cycles each containing one of the vertices
x1, x2, y1, y4. In this case we can add two handles to S ′

1 to get a surface S1 and
a sphere with four discs removed to get a surface S2 so that graphs G1 and G2

embed into S1 and S2. In this case we have g(S1) + g(S2) − 5 = g(S) − 3 and
hence g(G1) + g(G2) − 2 ≤ g(G).

We only give a sketch of the proof that the bounds are best possible. Let
C be a cycle in a graph G. A relative C-component of G is either an edge
in E(G) \ E(C) with end points on C or a connected component of G − C
together with all edges between G − C and C with their endpoints. An edge
between a relative component of C and C is called a foot . A sequence of cycles
C1, C2, . . . , Ck is planarly nested if for each Ci there exist relative components
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Hi of Ci such that H1 ⊃ H2 ⊃ · · · ⊃ Ck and that graphs obtained from G by
contracting each edge of Hi except its feet are planar. We use the following
theorem from [15].

Theorem 2.11 (Mohar). If Π is an orientable embedding of G into a surface
S of minimum genus g and C1, C2, . . . , Ck, k > g is a sequence of planarly
nested cycles then cycles C1, C2, . . . , Ck−g bound discs in S.

By using superposition we can construct a snarks G1 and G2 with an em-
bedding of minimum genus g such that they contain planarly nested cycles
C1, . . . , Ck (with relative components H1, . . . , Hk) and D1, . . . , Dk (with rela-
tive components H ′

1, . . . , H
′
k which are contained in subgraphs corresponding

to supervertices of G1 and G2. Further we can add edges e and f a face in
the relative component H1 such that relative components H1, . . . , Hk are no
longer planar and similarly adjacent vertices u and v connected to four vertices
of a face in H ′

1 such that components H ′
1, . . . , H

′
k. Denote obtained graphs by

G′
1 and G′

2. Since we only changed parts of G1 and G2 corresponding to su-
pervertices, graphs G′

1 and G′
2 are snarks. From Theorem 2.11 it follows that

g(G′
1) = g(G′

2) = g + 1. If we construct the dot product by using edges e and
f and vertices u and v we get a snark G′

1 ·G
′
2 with genus g(G′

1 ·G
′
2) = 2g and

so g(G′
1) + g(G′

2) − 2 = g(G′
1 ·G

′
2).

Using a similar idea we show that the upper bound is tight.



Chapter 3

Polyhedral embeddings of
snarks

In this chapter we look at polyhedral embeddings of cubic graphs. We first
prove that short cycles in polyhedral embeddings must be facial cycles. Us-
ing this fact we show that Goldberg snarks and Szekeres snark do not have
polyhedral embeddings into orientable surfaces. Szekeres showed that flower
snarks do not have polyhedral embeddings into orientable surfaces. We give
a simpler proof of this result which works also for graphs Jk where k is even.
We also show that flower snarks do not have polyhedral embeddings into non-
orientable surfaces. On the other hand we construct polyhedral embeddings
of the Goldbers snarks into non-orientable surfaces. We prove that for each
non-orientable surface N there exist snarks which have polyhedral embedding
into N .

3.1 Short cycles

In this section we look at short cycles in polyhedral embeddings. Let G be a
cubic graph with a short cycle C has a polyhedral embedding, then C is very
likely to be a facial cycle. This is established by the following lemmas.

Lemma 3.1. Let G be a cubic graph and C a 3-cycle of G. Then C is a facial
cycle in every polyhedral embedding of G.

Proof. Let C = v0v1v2v0 be a 3-cycle of G. Denote the neighbor of vi not in
C with v′i, i = 0, 1, 2. A facial cycle in a polyhedral embedding of G cannot
contain any of the paths v′ivivi+1vi+2v

′
i+2, i = 0, 1, 2, indices modulo 3, since

it must be induced. This implies that we have three facial cycles at C, which
contain v′ivivi+1v

′
i+1, i = 0, 1, 2, indices modulo 3. Then C is a facial cycle.

37
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Lemma 3.2. Let G be a cubic graph other than K4 and let C be a 4-cycle of
G. Then C is a facial cycle in every polyhedral embedding of G.

Proof. If G has a polyhedral embedding and G is not K4, then every 4-cycle
of G is induced, since G is 3-connected by Proposition 1.6.

Let C = v0v1v2v3v0 be a 4-cycle of G and let v′i be the neighbor of vi not
in C, i = 0, 1, 2, 3.

Suppose that all facial cycles, which intersect C, intersect C in one edge
only. For each edge vivi+1 there is a facial cycle Ci which contains the path
v′ivivi+1v

′
i+1 where indices are modulo 4. Therefore all edges viv

′
i are contained

twice and edges vivi+1 are contained once in facial cycles ci, i = 0, 1, 2. There-
fore C must be a facial cycle since edges vivi+1 must be covered twice by facial
cycles.

Suppose there is at least one facial cycle C1 6= C which intersects C in more
than one edge. Facial cycles in polyhedral embeddings are induced. Hence we
may assume that C1 contains the path v′0v0v1v2v

′
2. The other facial cycle C2,

which contains the edge v′0v0, must contain the path v′0v0v3v
′
3 in order not to

intersect C1 at v2. The third facial cycle through v0 then contains edges v0v1,
v0v3 and v3v2, which is a contradiction.

Let a graph G be embedded in a surface S, let F be a facial cycle and let
C be a cycle of G. We say that F is k-forwarding at C, if F and C intersect
precisely in k consecutive edges on C.

Lemma 3.3. Let G be a cubic graph and C an induced 5-cycle of G. If G
has a polyhedral embedding in a surface S, then the following holds.

(a) If S is orientable, then C is a facial cycle.

(b) If S is non-orientable, then either C is a facial cycle or all facial cycles
that intersect C are 2-forwarding at C.

Proof. Let C = v0v1v2v3v4v0 be a 5-cycle of G. Suppose that no facial cycle
(other than possibly C) intersects C in more than one consecutive edge on C.
Then it is easy to see that C is a facial cycle.

Now let F be a facial cycle that intersects C in at least two consecutive
edges on C. Facial cycles in polyhedral embeddings are induced. Therefore F
is either 3-forwarding or 2-forwarding at C.

If F is 3-forwarding, we can assume that the path v′0v0v1v2v3v
′
3 is in F .

Then the facial cycle, which contains the path v0v4v3, intersects twice with F .
This contradiction implies that no facial cycle is 3-forwarding at C.
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Figure 3.1: The Petersen graph embedded in the projective plane.

We may assume that F contains the path v′0v0v1v2v
′
2. The facial cycle,

which contains the path v′1v1v2, must contain the path v′1v1v2v3 so it is 2-
forwarding. If we continue along the cycle C, we see that all facial cycles at C
are 2-forwarding at C.

To complete the proof, we will show that S is not orientable, if all facial
cycles at C are 2-forwarding. Suppose that S is orientable and let Ci be the
facial cycle, which contains the path vivi+1vi+2, i = 0, 1, 2, 3, 4, indices modulo
5. We can assume that in the orientation of C0, induced by the orientation of
S, vertices v0v1v2 are in clockwise order. Then the vertices v3v2v1 are in this
clockwise order on C1. If we continue along C, we see that in C4 vertices v4v0v1

are in clockwise order. But then C0 and C4 induce the same orientation of the
edge v0v1, which is a contradiction with the assumption that S is orientable.

Corollary 3.4. If a cubic graph G contains two induced 5-cycles, whose inter-
section is nonempty and is not just a common edge, then G has no orientable
polyhedral embeddings.

Proof. Suppose we have an orientable polyhedral embedding of G. By
Lemma 3.3 both 5-cycles are facial. This is a contradiction with the fact that
their intersection contains more than just one edge.

In the Petersen graph P every edge is contained in four induced 5-cycles.
Lemma 3.3 therefore implies that P has no orientable polyhedral embeddings.
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However, P has a polyhedral embedding in the projective plane (see Figure
3.1).

Lemma 3.3 and its Corollary 3.4 can be applied on many other snarks, for
example the Szekeres snark that is shown in Figure 3.2.

Theorem 3.5 (Szekeres). The Szekeres snark has no polyhedral embed-
dings.

Proof. Each of the five “parts” of the Szekeres snark (see Figure 3.2) contains
a path v1v2 . . . v9 on 9 vertices and a vertex v0 that is adjacent with v2, v5, v8

and further there are edges v1v6 and v4v9. There are four induced 5-cycles C1 =
v0v2v1v6v5v0, C2 = v0v2v3v4v5v0, C3 = v0v8v9v4v5v0 and C4 = v0v8v7v6v5v0.
Cycles C1 and C2 intersect at two edges adjacent to v0. Therefore they are
not both facial cycles. If none of C1, C2 is facial, then the 2-forwarding facial
cycles at C1 and C2, which contain their intersection C1 ∩C2, are distinct and
intersect in two edges. So one of them is facial and the other is not. Similarly,
one of the cycles C3, C4 is facial and the other one is not.

Suppose the cycle C2 is facial. Then it is 1-forwarding at C4, so C4 is facial
and C1 and C3 are not facial. This implies that there is a facial cycle that
contains the path v1v6v5v4v9 and another facial cycle that contains the path
v1v2v0v8v9, which is a contradiction.

Suppose now that C2 is not facial. Then C1 is facial and is 1-forwarding
at C4. So C4 is a facial cycle and C3 is not. This implies that there is a facial
cycle that contains the path v3v2v0v8v7 and another facial cycle that contains
the path v3v4v5v6v7, which is a contradiction.

Nonexistence of orientable polyhedral embeddings of the Szekeres snark
has been proved earlier by Szekeres [5].

3.2 Small edge-cuts

Let G1 and G2 be cubic graphs and v1 ∈ V (G1), v2 ∈ V (G2). Denote the
three neighbours of v1 in G1 by z0, z1, z2 and the three neighbours of v2 in G2

by u0, u1, u2. Let G = G1 ∗ G2 be the cubic graph obtained from graphs G1

and G2 by deleting vertices v1 and v2 and connecting vertices ui with zi for
i = 0, 1, 2. We call G the star product of G1 and G2. It is easy to see that the
graph G is 3-edge-colorable if and only if both G1 and G2 are 3-edge-colorable.

Theorem 3.6. The star product G = G1 ∗G2 has a polyhedral embedding in
an (orientable) surface if and only if both G1 and G2 have polyhedral embed-
dings in some (orientable) surfaces.
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Figure 3.2: The Szekeres snark.

Proof. Suppose we have polyhedral embeddings of G1 and G2. At vertex
v1 we have three facial cycles Ci = ziv1zi+1Pizi for i = 0, 1, 2, indices modulo
3. At vertex v2 we have three facial cycles Di = uiRiui+1v2ui for i = 0, 1, 2.
Since the embeddings are polyhedral, paths P0, P1, P2 and paths R0, R1, R2

are pairwise disjoint. In the embedding of the star product G = G1 ∗ G2 we
keep all facial cycles from embeddings of G1 and G2, which do not contain
vertices v1 and v2, and add three new facial cycles Fi = ziuiRiui+1zi+1Pizi,
i = 0, 1, 2, indices modulo 3. Facial cycles in G, which are facial cycles in G1

or G2, intersect pairwise at most once. A facial cycle F , which is also a facial
cycle in G1 or G2, intersects the facial cycle Fi, i = 0, 1, 2, only on the path Pi

or only on the path Ri. So it intersects Fi at most once. Facial cycles Fi and
Fi+1 intersect only in the edge ui+1zi+1, i = 0, 1, 2, indices modulo 3, since the
paths P0, P1, P2 and R0, R1, R2 are pairwise disjoint. So the embedding of G
is polyhedral. It is easy to see that the embedding of G is orientable if and
only if the embeddings of G1 and G2 are orientable.

Suppose now that G has a polyhedral embedding. The three edges ziui,
i = 0, 1, 2, form a 3-cut in G. Since the embedding is polyhedral, we have
three facial cycles Fi = uiRiui+1zi+1Piziui, such that Fi and Fi+1 intersect in
the edge zi+1ui+1, i = 0, 1, 2, indices modulo 3. We may assume that there
are no negative signatures on edges ziui, i = 0, 1, 2. In the embedding of G1

(and G2) we keep all facial cycles, which do not intersect G2 (respectively
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Figure 3.3: The star product G of graphs G1 and G2.

G1), and add vertices v1, v2 with such local rotations that we obtain new
facial cycles Ci = ziv1zi+1Pizi in G1 and Di = uiRiui+1v2ui in G2, i = 0, 1, 2,
induces modulo 3. Since we have no new intersections between facial cycles
(intersections on ziui become intersections on ziv1 and uiv2), the embeddings
of G1 and G2 are polyhedral. It is also clear that both embeddings are in
orientable surfaces if and only if the embedding of G is orientable, since we did
not change local rotation at any vertex or change the signature of any edge.

If the embedding of G = G1 ∗ G2 in a surface S is constructed as in the
proof of Theorem 3.6 from embeddings of G1 and G2 in surfaces S1 and S2 of
Euler genus ǫ(S1) = k1 and ǫ(S2) = k2, respectively, then the Euler genus of S
is ǫ(S) = k1 + k2. This is easily proved by using Euler’s formula for G, G1 and
G2. Let G1 and G2 be cubic graphs. Choose an edge e = xy in G1 and two
nonadjacent edges f1 = u0u1 and f2 = u2u3 in G2. Denote the neighbors of x
in G1 by v0, v1, and the neighbors of y by v2, v3. Let G be the dot product of
G1 and G2 obtained by deleting vertices x, y in G1 and edges f1, f2 in G2 and
joining pairs viui, i = 0, 1, 2, 3.

Theorem 3.7. Let G1 and G2 be cubic graphs. If G1 and G2 have polyhedral
embeddings in (orientable) surfaces S1 and S2, such that the geometric dual
of G2 is not a complete graph, then a dot product G = G1 · G2 exists, which
has a polyhedral embedding in an (orientable) surface S. If the Euler genera
of surfaces S1 and S2 are ǫ(S1) = k1 and ǫ(S2) = k2, then the Euler genus of
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Figure 3.4: The dot product G of graphs G1 and G2.

S is ǫ(S) = k1 + k2.

Proof. Suppose that we have polyhedral embeddings as described. We claim
that G2 contains facial cycles D0, D1, D2, such that D1 intersects D0 and D2

but D0 and D2 do not intersect. To see this, consider the dual graph R. Since
it is not a complete graph, it has two vertices c0 and c2 that are at distance
two in R. If c1 is their common neighbor, then we can take D0, D1, D2 to be
the facial cycles corresponding to c0, c1 and c2, respectively.

Let f1 = u0u1 and f2 = u2u3 be the intersections between D0, D1 and
D1, D2, respectively, and choose an arbitrary edge e = xy in G1. Denote the
neighbors of x and y in G1 so that the facial cycles, which contain x or y,
are C0 = v0xv1P0v0, C1 = v1xyv2P1v1, C2 = v2yv3P2v2, and C3 = v3yxv0P3v3.
Since the embedding of G1 is polyhedral, paths P0, P1, P2, P3 are pairwise
disjoint, except that P0 and P2 may intersect. In G2 we will use the following
notation for facial cycles: D0 = u0R0u1u0, D1 = u0u1R1u2u3R3u0 and D2 =
u2R2u3u2. The paths R0, R1, R2, R3 are pairwise disjoint. In the embedding
of G we keep all local rotations at vertices of G1 and G2, which are not deleted
(with added edges naturally replacing deleted edges), and all edge signatures.
Instead of facial cycles Ci, Di we get a facial cycle Fi = viuiRiui+1vi+1Pivi,
i = 0, 1, 2, 3, indices modulo 4. Since the paths Pi, Ri are pairwise disjoint,
except for the possible intersection between P0 and P2, all intersections between
facial cycles Fi, i = 0, 1, 2, 3, are the intersections of Fi and Fi+1 in edges
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vi+1ui+1, i = 0, 1, 2, 3, indices modulo 4, and possibly one more intersection
between F0 and F2. It is clear that any facial cycle F that does not contain
any of the vertices vi, ui intersects at most once with any Fi and that two such
facial cycles intersect at most once. So the embedding of G is polyhedral. It is
also clear that if the embeddings of G1 and G2 are in orientable surfaces, the
embedding of G is also in an orientable surface.

The Euler genus of S is obtained from Euler’s formula and equalities

|V (G)| = |V (G1)| + |V (G2)| − 2

|E(G)| = |E(G1)| + |E(G2)| − 3

|F (G)| = |F (G1)| + |F (G2)| − 3

from which we conclude that ǫ(S) = k1 + k2.

Theorem 3.8. Let G be a cubic graph and S a minimal cyclic 4-cut in G.
If G admits a polyhedral embedding (in an orientable surface), then there
exist graphs G1 and G2, such that G = G1 · G2 and G1 admits a polyhedral
embedding (in an orientable surface).

Proof. Suppose that the edges uivi, i = 0, 1, 2, 3, form a 4-cut S in G. If a
facial cycle contains more than two edges of S, the embedding of G can not be
polyhedral. So we have four distinct facial cycles F0, F1, F2, F3 that contain
edges of S. Since S is a cut, every cycle Fi, i = 0, 1, 2, 3, contains two edges of
S.

Since the embedding is polyhedral, each of the Fi intersects two other
Fj, Fk. In the dual a subgraph induced by the vertices corresponding to Fi,
i = 0, 1, 2, 3, is a simple graph on four vertices in which all vertices are of
degree 2. It must be a 4-cycle. Therefore we can assume that faces Fi and
Fi+1 intersect in the edge vi+1ui+1, i = 0, 1, 2, 3, indices modulo 4. Each facial
cycle Fi is then of the form Fi = viuiRiui+1vi+1Pivi. Since F0 and F2 intersect
at most once, we can assume they do not intersect at the paths P0 and P2. Let
G1 be the component of G − S, which contains paths Pi. If we set rotations
of all vertices in G2 as they are in G (and replace deleted edges naturally with
added edges), we can set rotations around vertices x and y so that the facial
cycles in G1, which do not contain x or y, remain unchanged and we have
four new facial cycles C0 = v0xv1P0v0, C1 = v1xyv2P1v1, C2 = v2yv3P2v2, and
C3 = v3yxv0P3v3. Since we added no new intersections between facial cycles,
which were already in G, and facial cycles Ci, i = 0, 1, 2, 3 intersect pairwise
only once, the embedding of G1 is polyhedral. If the embedding of G is in
an orientable surface, it is clear that the embedding of G1 is in an orientable
surface.
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Suppose we have polyhedral embeddings of cubic graphsG1 andG2, at least
one of which is in a non-orientable surface. Let us construct the embedding of
the dot product G = G1 ·G2 as in the proof of Theorem 3.7. If the embedding
of G is in orientable surface, then we may assume that all signatures of edges
are positive. Now we can construct embeddings of G1 and G2 similarly as the
embedding of G1 in the proof of Theorem 3.8, which are both in orientable
surfaces and have the same set of facial cycles as the embeddings of G1 and
G2 with which we started. Since at least one of these two is an embedding in
a non-orientable surface, we have a contradiction. This shows

Corollary 3.9. If we have polyhedral embeddings ofG1 andG2, at least one of
which is non-orientable, and construct a polyhedral embedding of G = G1 ·G2

as in the proof of Theorem 3.7, then the embedding of G is non-orientable.

Let G1 and G2 be cubic graphs. Choose a vertex v in G1, an edge v3v4

in G1 and a vertex z0 in G2. Let the three neighbors of v be v0, v1, v2 and
let z1, z2, u4 be the neighbors of z0. Let the neighbors of z1, z2 other than u
be u0, u1 and u2, u3, respectively. If all these vertices are distinct, remove the
vertex v from G1, vertices z0, z1, z2 from G2 and the edge v3v4 from G1. If
we join pairs viui, i = 0, 1, 2, 3, 4, we get a cubic graph G = G1♦G2, which is
called a square product of graphs G1 and G2 (see also Figure 3.5). The cut
Q = {viui | i = 0, . . . , 4} in G is said to be the product cut . It is claimed in
[19] that if G1 and G2 are snarks, then G is also a snark, however this is not
true in general. For results concerning 5-cuts in snarks, see [13].

Theorem 3.10. Let G be a cubic graph with a matching Q, which is a 5-
cut of G. If G admits a polyhedral embedding (in an orientable surface), then
there exist graphs G1 and G2 such that G = G1♦G2 and Q is the corresponding
product cut and such that G2 admits a polyhedral embedding (in an orientable
surface).

Proof. Suppose that G has a polyhedral embedding. Since Q is a cut, every
facial cycle contains an even number of edges in Q. It is easy to see that
none of them contains four edges of Q (since the embedding is polyhedral).
This implies that there are precisely 5 facial cycles F0, . . . , F4 that intersect
Q and that the edges viui of Q, i = 0, . . . , 4, can be enumerated so that
Fi contains edges viui and vi+1ui+1, indices modulo 5, and v0, . . . , v4 are in
the same component of G − Q. The facial cycles Fi are of the form Fi =
viuiRiui+1vi+1Pivi, i = 0, . . . , 4, indices modulo 5. Since the embedding is
polyhedral, every one of the pairs of paths Pi, Pi+1 and Ri, Ri+1 is disjoint.

Suppose that the facial cycles Fi and Fi+2 are disjoint for some i. Then
both pairs Pi, Pi+2 and Ri, Ri+2 are disjoint. One of the pairs Pi+2, Pi+4 and
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Figure 3.5: The square product of G1 and G2.

Ri+2, Ri+4, i = 0, . . . , 4, is disjoint. Because of the symmetry, we can assume
that the pair Ri+2, Ri+4 is disjoint.

Suppose now that all pairs of cycles Fi, Fi+2, i = 0, . . . , 4, intersect. In at
least three out of five pairs, Fi and Fi+2 intersect on the same “side” (Pi and
Pi+2 or Ri and Ri+2). By symmetry, we may assume that intersections are
between Pi and Pi+2. Since facial cycles Fi and Fi+2 intersect at most once,
it follows that there exists an index j such that Rj, Rj+2, Rj+4 are pairwise
disjoint.

By above, we can assume that R4, R1, R3 are pairwise disjoint. Now we
can add to G − Q new vertices v, z0, z1, z2 and edges v0v, v1v, v2v, v3v4

and u0z1, u1z1, u2z2 ,u3z2, z1z0, z2z0, u4z0 so that the graph G is a square
product of G1 and G2. In the embedding of G2 we keep all rotations and
signatures of vertices and edges that were already inG and we naturally replace
deleted edges with the added ones. Around vertices z0, z1, z2 we can set
rotations so that facial cycles in G2, which were not already in G, are D0 =
u0R0u1z1, D1 = z0z1u1R1u2z2z0, D2 = z2u2R2u3z2, D3 = z0z2u3R3u4z0 and
D4 = z0u4R4u0z1z0. The only new intersections of facial cycles of G2 are
between D4 and D1 and between D1 and D3. Hence the embedding of G2

is polyhedral and if the embedding of G is in an orientable surface, so is the
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Figure 3.6: The Flower snark J5.

embedding of G2.

3.3 Flower snarks

In this section we prove that Flower snarks J2k+1 do not have polyhedral em-
beddings. This was first proved by Szekeres using polyhedral decompositions.
His proof only worked for graphs J2k+1 but not for graphs J2k and only for ori-
entable embeddings. We give a simpler proof which also works for all graphs
Jk and also for non-orientable embedding.

The goal for this section is to prove the following theorem.

Theorem 3.11. For k ≥ 4 the flower graph Jk has no polyhedral embeddings.

We first prove the theorem for larger k and then prove the theorem for
smaller values of k. Note that the graph J3 is obtained from the Petersen
graph P by replacing one vertex in P by a triangle. Since Petersen graph
has a polyhedral embedding into the projective plane so does J3. Since there
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are no polyhedral embeddings of P into orientable surfaces it follows from the
Lemma 3.1 that J3 has no polyhedral embeddings.

Suppose that we have a polyhedral embedding of Jk. Let us look at how
facial cycles can traverse Yj. If we walk along a facial cycle C, come to Yj from
Yj−1 and then leave Yj going back to the tile Yj−1, we say that C is a backward
face at Yj. Similarly we define a forward face at j, which is a facial cycle that
enters Yj from Yj+1 and leaves it towards Yj+1.

If a cubic graph G has a polyhedral embedding, then at every vertex v ∈
V (G) with neighbours v1, v2, v3, each path P = vivvj, j 6= i, defines a unique
facial cycle, which we will denote by F (P ).

Lemma 3.12. If C is a facial cycle that contains at least two vertices of Yj,
then the intersection of C with Yj is one of the three possible paths: ajbjcj,
ajbjdj or cjbjdj.

Proof. A cycle C can enter and exit Yj only through vertices aj, cj or dj.
Suppose now that aj, cj ∈ V (C). The facial cycle C ′ = F (ajbjcj) intersects
C in two nonadjacent vertices aj and cj, so C = C ′ and C ′ contains the path
ajbjcj. Similar conclusion holds if aj and dj are on C or if cj and dj are on C.
Since all facial cycles are induced, the intersection C ∩ Yj can consists only of
one of the three paths.

A facial cycle, which is neither forward nor backward at Yj, is called a cross
face. It follows from Lemma 3.12 that each facial cycle, which intersects Yj, is
either a backward, forward or a cross face.

Lemma 3.13. At Yj there can be at most one backward (forward) face. If
there is one backward face, then there is also one forward face and four distinct
cross faces. The backward face at Yj is forward at Yj−1 and the forward face
at Yj is backward at Yj+1.

Proof. Suppose we have two backward (forward) faces. By Lemma 3.12
they intersect at an edge adjacent to bj. If they intersect at bjaj, they also
intersect at aj−1aj, which is a contradiction. Similarly we get a contradiction,
if they intersect at bjcj or bjdj. This shows that there is at most one backward
(forward) face.

Suppose now that C is a backward face. The edges between Yj and Yj+1 are
traversed twice by C and four times by cross faces. The cross faces therefore
traverse the edges between Yj and Yj+1 at most four times, hence there must
be a forward face at Yj.

If C contains the path ajbjcj, then {aj−1, dj−1} ⊆ C∩Yj−1. By Lemma 3.12,
C ∩ Yj−1 = aj−1bj−1dj−1, so C is a forward face at Yj−1. A similar conclusion
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holds if C ∩Yj is either ajbjdj or cjbjdj. Similarly we also show that a forward
face at Yj is backward at Yj+1.

Out of facial cycles F (ajbjcj), F (ajbjdj) and F (cibjdj) one is a backward
face, one is a forward face and one is a cross face. Since the one that is a cross
face is the only cross face, which contains more than one vertex of Yj, all cross
faces are distinct.

A backward face at j is called a bottom face if it contains the edge aj−1aj

and is called a top face if it does not contain aj−1aj. A top face at Yj is of the
form cj−1bj−1dj−1cjbjdjcj−1. So it is clear that we cannot have backward top
faces at Yj and Yj+1 at the same time.

The tile Yj is of type 0 , if all facial cycles, which intersect it, are cross faces.
It is of type 1 , if there is one forward and one backward face at Yj.

Lemma 3.12 implies that if the graph Jk has a polyhedral embedding, then
all tiles are of type 0 or all tiles are of type 1.

Lemma 3.14. If Jk has a polyhedral embedding, then k ≤ 6 and all tiles are
of type 1.

Proof. By Lemma 3.12 every polyhedral embedding of Jk has at least four
cross faces. For each j = 0, . . . , k−1 we have at least one intersection between
four selected cross faces on edges from Yj to Yj+1. Since we can have at most
6 such intersections, we have k ≤ 6.

If all tiles are of type 0, then Jk has precisely 6 facial cycles. The geometric
dual of G on S has 6 vertices and 4k·3

2
= 6k edges. Since the dual is a simple

graph, it has at most 15 edges, so 6k ≤ 15. This implies that k ≤ 2.

Lemma 3.15. The graph J4 has no polyhedral embeddings.

Proof. Suppose we have a polyhedral embedding of J4. All tiles are of type
1, so there are precisely 4 cross faces. We have three 4-cycles C1 = a0a1a2a3a0,
C2 = d0c1d2c3d0, C3 = c0d1c2c3c0 in J4, which are facial cycles by Lemma 3.2.
These cycles are all cross faces. As in the proof of Lemma 3.14, we see that
there are at least four intersections of cross faces. But since C1, C2, C3 are
pairwise disjoint, this is not possible.

Lemma 3.16. The flower snark J5 has no polyhedral embeddings.

Proof. Suppose we have a polyhedral embedding of J5. Each tile must be
of type 1. If all backward faces are bottom faces, then the inner cross face
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a0a1a2a3a4a0 does not intersect any other cross faces. So we have 5 intersec-
tions between three cross faces, which is not possible.

Since we cannot have two consecutive top faces, we must have two consec-
utive bottom faces at tiles j and j + 1 and a top face at tile j + 2. We can
assume j = 1. The facial cycle F (a0a1a2) contains the path a0a1a2a3a4. If
not, it would intersect twice with one of the bottom faces at tiles 1 or 2. So it
must be a0 . . . a4a0. The facial cycle, which contains b2a2 and is different from
the backward face at tile 2, must contain the path b2a2a3b3. This facial cycle
intersects twice with the facial cycle d2b2c2d3b3c3d2, which is a contradiction.

Lemma 3.17. The graph J6 has no polyhedral embeddings.

Proof. All tiles in J6 are of type 1. We have three 6-cycles C1 = a0a1 . . . a5a0,
C2 = c0d1c2 . . . d5c0 and C3 = c0d1c2 . . . d5c0. From previous proofs it follows
that at each tile Yj one of the four cross faces goes from one of C1, C2, C3

to another. We say that this cross face has made a transition at Yj. It is
obvious that if a cross face makes at least one transition, it makes more than
one transition. So one cross face makes no transitions, since we can have at
most 6 transitions. Let the four cross faces be F1, F2, F3, F4 and let F1 be the
one, which does not make any transition. Because of the symmetry, we can
assume that F1 = C1.

There are four cross faces and six intersections between them. This implies
that they must all pairwise intersect and in particular, all cycles F2, F3, F4

intersect F1. All transitions of cross faces are transitions of Fi to C1 and from
C1, i = 2, 3, 4. In particular, the cycle F2 makes a transition to the cycle C1

at some tile Yj and a transitions from C1 at the tile Yi+1. But then F2 is not
induced, which is a contradiction.

This completes the proof of Theorem 3.11.

3.4 Goldberg snarks

We now look at polyhedral embeddings of Goldberg snarks. We show that
Goldberg snarks do not have polyhedral embeddings into orientable surfaces
but they do have polyhedral embeddings into non-orientable surfaces.

Theorem 3.18. No Goldberg graph has a polyhedral embedding in an ori-
entable surface. On the other hand, every Goldberg graph Gk, k ≥ 3, has a
polyhedral embedding in the non-orientable surface of Euler genus k.
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Figure 3.7: The Goldberg snark G5.
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Proof. Suppose that the graph Gk has a polyhedral embedding in an ori-
entable surface. For every i = 0, . . . , k − 1 we have have two 5-cycles Bi =
bidihigicibi and Ci = bidifieicibi. By Lemma 3.3 both are facial cycles. This is
a contradiction, since Bi and Ci intersect in two edges cibi and bidi.

An embedding in a non-orientable surface has the following facial cycles:

(a) A = a0a1 . . . ak−1a0 and B = f0e0f1e1 . . . fk−1ek−1f0,

(b) Ci = bidifieicibi, i = 0, . . . , k − 1,

(c) Di = gihigi+1hi+1di+1fi+1eicigi, i = 0, . . . , k − 1,

(d) Ei = aiai+1bi+1ci+1gi+1hidibiai, i = 0, . . . , k − 1.

It is easy to see that this determines a non-orientable polyhedral embedding.
The Euler genus of the underlying surface of the embedding is calculated from
Euler’s formula 2−ǫ(Gk) = |V (Gk)|−|E(Gk)|+ |F (Gk)| = 8k− 3

2
8k+3k+2 =

2 − k.

Goldberg graphs have more than one polyhedral embedding, not all of the
same genus. They can be described as follows.

Consider the subgraph Ti induced on vertices ai, bi, ci, di, ei, fi, gi and
hi. Let us look at how facial cycles can traverse it. There are (at least) two
possibilities.

There is a facial 5-cycle Ci = bidihigicibi and there are facial cycles that
contain paths P i

1 = ai−1aiai+1, P
i
2 = gi−1higihi+1, P

i
3 = gi−1hidifieifi−1, P

i
4 =

hi+1gicidieifiei+1, P
i
5 = ei+1fidibiaiai+1 and P i

6 = fi−1eicibiaiai−1, where P i
1

and P i
2 can possibly be part of the same facial cycle. In such case, we say that

Ti is of type 1 .

The second possibility is the following. There is a facial 5-cycle Di =
bicieifidibi and there are facial cycles that contain paths Ri

1 = ai−1aiai+1, R
i
2 =

fi−1eifiei+1, R
i
3 = ai−1aibidihigi−1, R

i
4 = ai+1aibicigihi+1, R

i
5 = fi−1eicigihigi−1

and Ri
6 = ei+1fidibihigihi+1, where Ri

1 and Ri
2 can possibly be part of the same

facial cycle. We say that Ti is of type 2 .

We now choose arbitrary the types of all subgraphs Ti and join facial seg-
ments described above into facial cycles as follows. There is an automorphism
of the graph Gk, which sends all cycles Ci into cycles Di, so we can assume
that the subgraph Ti is of type 1. If not, we join facial segments symmetrically
according to this automorphism.

If subgraphs Ti and Ti+1 are both of type 1, we join facial segments P i
1 and

P i+1
1 , P i

2 and P i+1
2 , P i

4 and P i+1
3 and facial segments P i

5 and P i+1
6 .
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If the subgraph Ti is of type 1 and Ti+1 of type 2, we join facial segments
P i

1,R
i+1
3 and P i

2, facial segments Ri+1
1 , P i

5 and Ri+1
2 and facial segments P i

4 and
Ri+1

5 .
If all subgraphs Ti are of type 1 (or all are of type 2), then the embedding

is the one described in the proof of Theorem 3.18. If there are two consecutive
subgraphs Ti and Ti+1 of different types, we say that there is a transition at i. It
is easy to see that the embedding is polyhedral if we have at least 6 transitions.
It is also easy to see that the number of facial cycles of the embedding is 3k.
In this manner we have obtained a large number of (combinatorially) different
polyhedral embeddings of the graph Gk in a surface of Euler genus k + 2.

This shows that Goldberg snarks admit polyhedral embeddings in distinct
non-orientable surfaces (of Euler genera k and k + 2) and that they admit
combinatorially different polyhedral embeddings in the same non-orientable
surface (of Euler genus k + 2).

Corollary 3.19. For every positive integer k there exists a snark which has
a polyhedral embedding into Nk.

Proof. The Petersen graph P has a polyhedral embedding inN1. By Theorem
3.18 the Goldberg snark G2k+1 has a polyhedral embedding in N2k+1 for every
k ≥ 1. The graph G3 is not a snark since it contains a 3-cycle C = a0a1a2a0.
If we contract C to a vertex, we obtain a snark G′

3, which polyhedrally embeds
in N3 (cf. Theorem 3.6). For k > 1 we have a snark H2k+2 = G2k+1 · P , which
polyhedrally embeds in N2k+2, and H4 = G′

3 · P , which polyhedrally embeds
in N4 (cf. Theorem 3.7). The dot product H2 = P · J3 polyhedrally embeds in
N2. The graph H2 is not 3-edge-colorable, but is not a snark, since the girth
of H2 is 4.

There are two non-isomorphic dot products of two copies of the Petersen
graph P , but since the dual of P in the projective plane is K6, we cannot
use Theorem 3.7 to obtain a snark with polyhedral embedding into the Klein
bottle. Indeed, it can be shown that they do not have such embeddings.

We construct a superposition G28 of the Petersen graph in the projective
plane to get a snark embedded in the Klein bottle. Take an edge e = uv in
the Petersen graph. Replace vertices u and v with (1,1,3)-supervertices in the
Figure 4.6 and the edge e with the superedge obtained from the Petersen graph
by removing vertices x and y (see Figure 3.8). We claim that we get a snark
with polyhedral embedding into the Klein bottle (see Figure 3.9).

G28 is clearly a snark since it was constructed as a superposition of the
Petersen graph. In the embedding in Figure 3.9, facial cycles which cross
cross-caps do not contain bad edges since these cycles come from embeddings
of the Petersen graph into the projective plane. It is also clear from the figure
that other cycles do not contain bad edges.
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x

y

Figure 3.8: The Petersen graph in the projective plane.

Figure 3.9: Polyhedral embedding of a snark into the Klein bottle.



Chapter 4

The defect of a graph

In this part of the thesis we define the defect of a graph which is a measure
for how far a graph is from having a polyhedral embedding. The defect is
defined so that for a given graph it is easy to compute. Using a computer
and a database of snarks with up to 28 vertices we show that the Grünbaum
conjecture is true for all snarks with up to 28 vertices.

Using the defect we show that the Grünbaum conjecture is true for Kochol
snarks. The family of Kochol snarks is a rich family of snarks which includes
for instance snarks with arbitrarily large girth.

We then prove some theoretical results about the defect. In particular we
show that if Grünbaum conjecture is true than the defect for any snark is at
least two, and for any k ≥ 2 we construct an infinite family of snarks with
defect precisely k.

We show that the Grünbaum conjecture implies a strong inequality between
the defect and resistance of snarks. Resistance is a measure for how far a snark
is from having 3-edge-coloring. We prove that if the Grünbaum conjectrure is
true, graphs with high resistance have high defect.

4.1 Definition of defect and computer search

We define the defect of a graph as a measure for how far a (cubic) graph is
from having a polyhedral embedding. Let Π be an embedding of a cubic graph
G and let F = {W1, . . . ,Wk} be the collection of facial walks of Π. For a walk
Wi ∈ F we define the defect d(Wi) of Wi to be the number of edges which
appear twice along Wi. For two facial walks Wi,Wj ∈ F , i 6= j, we define the
defect d(Wi,Wj) as

d(Wi,Wj) =

{

0 ; |E(Wi) ∩ E(Wj)| = 0
|E(Wi) ∩ E(Wj)| − 1 ; |E(Wi) ∩ E(Wj)| > 0.

55
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The defect of the embedding Π is defined as

d(Π) =
k

∑

i=1

d(Wi) +
∑

1≤i<j≤k

d(Wi,Wj).

and the defect of the graph G is defined as

d(G) = min{d(Π) | Π an orientable embedding of G}.

In an embedding Π of G a pair of facial walks is a bad pair if they have more
than one edge in common. An edge e is a bad edge if it appears twice along a
facial walk of Π or if there is another edge f such that e and f both appear
along two facial walks Wi and Wj.

It is clear from the definition of the defect that a graph G admits a poly-
hedral embedding into an orientable surface if and only if d(G) = 0. The
Grünbaum conjecture is therefore equivalent to the statement that for any
snark G the defect d(G) is at least 1. We give a stronger implication in the
last section of this chapter.

Using a computer program which examines all possible orientable embed-
dings of a graph we have determined the defects for snarks with up to 28
vertices. We found that the smallest defect among these snarks is two. The
smallest snark with defect two has 26 vertices. It has two embeddings into
the torus with defect two and it is the only snark on 26 vertices with defect
2. There are two snarks on 28 vertices with defect two. One of them has two
embeddings of defect two and the other has one embedding of defect two. All
these embeddings are into the double torus. There is one snark on 18 vertices
with three distinct embeddings of defect three into the torus. There are two
snarks on 24 vertices with defect three, one has a unique embedding and the
other has two embeddings of defect three, all embeddings are into the double
torus. There is one snark on 26 vertices with three embeddings of defect three
into the double torus. There are 8 snarks on 28 vertices with defect three, 5
of them have unique embeddings of defect three and all embeddings are into
the double torus.

We describe a snark G26 on 26 vertices with defect 2. The vertex set of G26

are integers between 1 and 26 and the adjacency lists are

1: 2 3 4

2: 1 5 6

3: 1 7 8

4: 1 9 10

5: 2 7 9

6: 2 11 12
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Figure 4.1: Embedding of the Petersen graph in the torus.

7: 3 5 10

8: 3 13 14

9: 4 5 15

10: 4 7 16

11: 6 13 17

12: 6 18 19

13: 8 11 20

14: 8 18 21

15: 9 22 23

16: 10 24 25

17: 11 19 24

18: 12 14 26

19: 12 17 25

20: 13 21 22

21: 14 20 23

22: 15 20 24

23: 15 21 26

24: 16 17 22

25: 16 19 26

26: 18 23 25

The orientable embedding into the torus is described by the collection of facial
walks

Face 1: 1 2 5 9 4

Face 2: 2 1 3 8 14 18 12 6
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Face 3: 3 1 4 10 7

Face 4: 5 2 6 11 13 8 3 7

Face 5: 5 7 10 16 25 26 23 15 9

Face 6: 4 9 15 22 24 16 10

Face 7: 11 6 12 19 17

Face 8: 8 13 20 21 14

Face 9: 13 11 17 24 22 20

Face 10: 12 18 26 25 19

Face 11: 18 14 21 23 26

Face 12: 17 19 25 16 24

Face 13: 21 20 22 15 23

Another embedding of the same graph into the torus with defect two is de-
scribed by the collection of facial walks

Face 1: 1 2 5 9 4

Face 2: 2 1 3 8 13 11 6

Face 3: 3 1 4 10 7

Face 4: 5 2 6 12 18 14 8 3 7

Face 5: 5 7 10 16 24 22 15 9

Face 6: 4 9 15 23 26 25 16 10

Face 7: 6 11 17 19 12

Face 8: 13 8 14 21 20

Face 9: 11 13 20 22 24 17

Face 10: 18 12 19 25 26

Face 11: 14 18 26 23 21

Face 12: 19 17 24 16 25

Face 13: 20 21 23 15 22

We note that G26 is cyclically 4-edge-connected. It can be constructed as a
dot product of three copies of the Petersen graph.

We now describe embeddings of other snarks with low defect. We list facial
cycles of all embeddings of snarks on less than 28 vertices of defect at most
three.

Two embeddings of the first graph on 28 vertices with defect two.

Face 1: 1 2 5 9 4

Face 2: 2 1 3 8 13 17 12 6

Face 3: 3 1 4 10 7

Face 4: 5 2 6 11 8 3 7

Face 5: 5 7 10 15 22 25 18 14 9

Face 6: 4 9 14 20 23 16 21 15 10
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Face 7: 11 6 12 18 25 26 28 21 16

Face 8: 8 11 16 23 19 13

Face 9: 12 17 24 27 20 14 18

Face 10: 17 13 19 26 25 22 24

Face 11: 15 21 28 27 24 22

Face 12: 19 23 20 27 28 26

Face 1: 1 2 5 9 4

Face 2: 2 1 3 8 11 6

Face 3: 3 1 4 10 7

Face 4: 5 2 6 12 17 13 8 3 7

Face 5: 5 7 10 15 21 16 23 20 14 9

Face 6: 4 9 14 18 25 22 15 10

Face 7: 6 11 16 21 28 26 25 18 12

Face 8: 11 8 13 19 23 16

Face 9: 17 12 18 14 20 27 24

Face 10: 13 17 24 22 25 26 19

Face 11: 21 15 22 24 27 28

Face 12: 23 19 26 28 27 20

The embedding of the second snark on 28 vertices with defect two.

Face 1: 1 2 5 9 4

Face 2: 2 1 3 8 13 20 27 25 18 12 6

Face 3: 3 1 4 10 7

Face 4: 5 2 6 11 8 3 7

Face 5: 5 7 10 15 19 24 28 21 14 9

Face 6: 4 9 14 17 12 18 22 15 10

Face 7: 11 6 12 17 23 16

Face 8: 8 11 16 24 19 13

Face 9: 17 14 21 25 27 23

Face 10: 13 19 15 22 26 20

Face 11: 22 18 25 21 28 26

Face 12: 16 23 27 20 26 28 24

The three embeddings of the Blanuša graph with defect three.

Face 1: 1 2 5 9 4

Face 2: 2 1 3 8 12 17 16 11 6

Face 3: 3 1 4 10 7

Face 4: 5 2 6 8 3 7

Face 5: 5 7 10 14 18 13 9
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Face 6: 8 6 11 15 12

Face 7: 4 9 13 16 17 14 10

Face 8: 15 11 16 13 18

Face 9: 12 15 18 14 17

Face 1: 1 2 5 9 4

Face 2: 2 1 3 8 12 15 11 6

Face 3: 3 1 4 10 7

Face 4: 5 2 6 8 3 7

Face 5: 5 7 10 14 17 16 13 9

Face 6: 8 6 11 16 17 12

Face 7: 4 9 13 18 14 10

Face 8: 11 15 18 13 16

Face 9: 15 12 17 14 18

Face 1: 1 2 5 9 4

Face 2: 2 1 3 8 6

Face 3: 3 1 4 10 7

Face 4: 5 2 6 11 15 12 8 3 7

Face 5: 5 7 10 14 18 13 9

Face 6: 6 8 12 17 16 11

Face 7: 4 9 13 16 17 14 10

Face 8: 15 11 16 13 18

Face 9: 12 15 18 14 17

Two embeddings of the first snark on 24 vertices with defect 3.

Face 1: 1 2 6 12 18 23 21 15 9 4

Face 2: 2 1 3 7 5

Face 3: 3 1 4 10 16 11 13 8

Face 4: 2 5 9 15 14 20 24 19 13 11 6

Face 5: 7 3 8 14 15 21 22 17 16 10

Face 6: 5 7 10 4 9

Face 7: 6 11 16 17 12

Face 8: 8 13 19 23 18 20 14

Face 9: 12 17 22 24 20 18

Face 10: 22 21 23 19 24

Face 1: 1 2 6 12 18 20 14 15 9 4

Face 2: 2 1 3 7 5

Face 3: 3 1 4 10 16 11 13 8

Face 4: 2 5 9 15 21 22 24 19 13 11 6



4.1 Definition of defect and computer search 61

Face 5: 7 3 8 14 20 24 22 17 16 10

Face 6: 5 7 10 4 9

Face 7: 6 11 16 17 12

Face 8: 8 13 19 23 21 15 14

Face 9: 12 17 22 21 23 18

Face 10: 20 18 23 19 24

The embedding of the second snark on 24 vertices with defect three.

Face 1: 1 2 6 11 17 23 24 19 15 9 4

Face 2: 2 1 3 7 5

Face 3: 3 1 4 10 16 21 20 14 8

Face 4: 2 5 9 15 14 20 22 18 12 6

Face 5: 7 3 8 13 11 6 12 16 10

Face 6: 5 7 10 4 9

Face 7: 13 8 14 15 19

Face 8: 11 13 19 24 18 22 17

Face 9: 16 12 18 24 23 21

Face 10: 20 21 23 17 22

Three embeddings of a snark on 26 vertices with defect three.

Face 1: 1 2 5 9 4

Face 2: 2 1 3 8 13 18 12 6

Face 3: 3 1 4 10 7

Face 4: 5 2 6 11 17 21 14 8 3 7

Face 5: 5 7 10 16 19 24 26 23 18 13 15 9

Face 6: 4 9 15 20 25 22 17 11 16 10

Face 7: 11 6 12 19 16

Face 8: 13 8 14 20 15

Face 9: 12 18 23 22 25 24 19

Face 10: 20 14 21 26 24 25

Face 11: 21 17 22 23 26

Face 1: 1 2 5 9 4

Face 2: 2 1 3 8 14 21 17 11 6

Face 3: 3 1 4 10 7

Face 4: 5 2 6 12 18 13 8 3 7

Face 5: 5 7 10 16 11 17 22 25 20 15 9

Face 6: 4 9 15 13 18 23 26 24 19 16 10

Face 7: 6 11 16 19 12

Face 8: 8 13 15 20 14
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Face 9: 18 12 19 24 25 22 23

Face 10: 14 20 25 24 26 21

Face 11: 17 21 26 23 22

Face 1: 1 2 6 12 18 13 15 9 4

Face 2: 2 1 3 7 5

Face 3: 3 1 4 10 16 11 17 21 14 8

Face 4: 2 5 9 15 20 25 22 17 11 6

Face 5: 7 3 8 13 18 23 22 25 24 19 16 10

Face 6: 5 7 10 4 9

Face 7: 6 11 16 19 12

Face 8: 13 8 14 20 15

Face 9: 18 12 19 24 26 23

Face 10: 20 14 21 26 24 25

Face 11: 21 17 22 23 26

The defects of some particular snarks are summarized in the following
Lemma.

Lemma 4.1. • d(P ) = 5.

• d(B1) = 3 where B1 is the Blanuša snark of genus 1.

• d(G26) = 2.

Figure 4.1 shows an embedding of the Petersen graph in the torus with defect
5 and Figure 4.5 show the graph B1 embedded in the torus with defect 3.

4.2 Kochol snarks

We now prove the Grünbaum conjecture for Kochol snarks. Kochol snarks are
a special class of snarks obtained as a superposition of the Petersen graph. To
describe this superposition we will use the Petersen graph with the notation
given in Figure 4.2.

Let G be a superposition of the Petersen graph P . If we assigned the trivial
supervertex S(v) to a vertex v ∈ V (P ), we denote the only vertex in S(v)
with v and call it original vertex . We call edges incident with original vertices
original edges . A connected subgraph of G which is induced by nontrivial
supervertices and superedges between them is called a block .

We will be describing cycles in G. If a cycle C contains a path x1 . . . xk this
will be denoted by C = ∗x1 . . . xk∗. If a cycle enters a block in a supervertex
S(x2) from an original vertex x1 and leaves this block from a supervertex S(y1)
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Figure 4.2: The Petersen graph.

to an original vertex y2, this will be denoted by C = ∗x1x2.y1y2∗. It is possible
that x2 = y1 in which case we will sometimes write C = ∗x1x2y2∗. There are
no original vertices on C between x1 and y2.

A Kochol snark of type 1 is a proper superposition of the Petersen graph
where we assign trivial supervertices to vertices 0, 3, 6, 7, 8, 9 of P (see also
Figure 4.3).

Theorem 4.2. Kochol snarks of type 1 have no orientable polyhedral embed-
dings.

Proof. Let G be a Kochol snark of type 1 which is polyhedrally embedded
into an orientable surface. Assume the notation from Figure 4.3.

Look at the facial cycles on edges 01 and 81. There are at least 3 dis-
tinct facial cycles on these two edges, otherwise the embedding would not be
polyhedral.

We now show that there are exactly 3. Suppose we have four facial cycles
A = ∗01.23∗, B = ∗01.27∗, C = ∗81.27∗ and D = ∗81.23∗. Since the embed-
ding is polyhedral, the cycle C must be C = 81.2768 and the cycle A must be
A = 01.2390. Since B already intersects cycles A and C it can not use the edge
43 or 48, therefore it must be B = 01.2750 and similarly D = 81.2348. There
is another facial cycle which contains the vertex 3. It must be F = 439675.4
since the embedding is polyhedral. Since the embedding is orientable, we can
consistently orient the facial cycles. Suppose that F is oriented so that the
edges 43 and 67 are in the direction of orientation. Then the cycle D is oriented
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Figure 4.3: A Kochol graph of type 1.

so that the edges 34 and 81 are in the direction of the orientation. Finally the
cycle C is directed so that edges 18 and 67 are in the direction of the orien-
tation. This is a contradiction since facial cycles C and F are oriented in the
same direction on the edge 67.

By symmetry we have exactly 3 facial cycles at edges from other super-
vertices. The facial cycles which contain original edges therefore induce an
embedding of the underlying Petersen graph. Since the embedding of G is
orientable we have a consistent orientation of cycles. We use this orientation
in the induced embedding of P . Since facial walks are oriented consistently on
original edges of G, this orientation is consistent on all edges of P and so the
embedding is orientable.

Suppose that in the induced embedding of the Petersen graph we have two
facial cycles A and B which have k + 1 edges in common. This implies that
at least k of these edges correspond to superedges in G. It follows that the
induced embedding of the Petersen graph has defect at most 2, since in G we
have two superedges. This is a contradiction with Lemma 4.1.

A Kochol snark of type 2 is a proper superposition of the Petersen graph
where we assign trivial supervertices to vertices 6, 7, 8, 9 and additionally
trivial superedges to edges (5, 0) and (1, 2) (see also Figure 4.4). Note that
Kochol snarks of type 1 have cyclic 4-cuts, but Kochol snarks of type 2 are
cyclically 5-edge-connected.
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Figure 4.4: A Kochol snark of type 2.

If a cycle C enters a block on a supervertex x2 from an original vertex
x1, then uses some vertices from a supervertex x3 and then leaves the block
from a supervertex x3 to an original supervertex x4, this will be denoted by
C = ∗x1.x2.x3∗.

Theorem 4.3. Kochol snarks of type 2 have no orientable polyhedral embed-
dings.

Proof. Assume that a Kochol snark of type 2 has a polyhedral embedding
into an orientable surface. Similarly as in the proof of the previous theorem
we first show that this embedding induced an embedding of the underlying
Petersen graph. Call supervertices 0, 1, 2 with superedges between them the
lower block and supervertices 3, 4, 5 with superedges between them the upper
block .

Assume that on edges 75 and 45 we have four distinct facial cycles, A =
∗75.0∗, B = ∗75.0∗, C = ∗45.0∗ and D = ∗45.0∗. Since the embedding
is polyhedral, there must be two distinct facial cycles which enter the lower
block on the edge 90. This implies that not all four of A,B,C,D can leave the
lower block on edges 12 and 18.

CASE 1: Assume that only a facial cycle, which contains the edge 75, say
A, leaves the lower block on the edge 09. Since the embedding is polyhedral,
the face *967* can not be distinct from A, so we have A = 75.0967 and
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B = ∗275.0.1∗. We can assume C = ∗45.0.12∗ and D = ∗45.0.1.8∗. The cycle
B can not leave the lower block on the edge 18 since then there would be a facial
cycle at vertex 6 which would intersect it twice. So we have B = 275.0.12. The
cycle C can not leave the upper block on edge 48 since it already intersects cycle
D and also not on edge 39 since it would have to continue on the path 3968.
Similarly it can’t leave on the edge 27, so it must be C = 45.0.12.3.4. We have
another cycle F which enters the lower block on the edge 81, F = ∗81.093∗.
This cycle will intersect with the cycle which contains the path 869 twice, a
contradiction with the assumption that the embedding is polyhedral.

CASE 2: Assume that only a facial cycle, which contains the edge 45,
say C leaves the lower block on the edge 09. So C = ∗45.09∗, D = ∗45.0.1∗,
A = ∗75.0.18∗ and B = ∗75.0.12∗. Since the embedding is polyhedral we have
A = 75.0.1867 and B = 75.0.127. If we have D = ∗45.0.12∗ then we must have
another facial cycle F = ∗90.184∗ which will intersect the facial cycle which
contains the path 869 twice, a contradiction. So we have D = 45.0.184 and
C = 45.093. There is a facial cycle F = ∗21.096∗. If we have F = ∗21.0967∗,
then F and B intersect twice, and if we have F = ∗21.0968∗ then cycles A, B
and F can not be consistently oriented.

CASE 3: Assume there that two cycles, say A and C, leave the lower block
on the edge 09. Again we have A = 75.0967, B = ∗275.0.1∗, C = ∗45.0.93∗
and D = ∗45.0.1∗. If B leaves the lower block on the edge 18, then it is
B = ∗275.0.184∗ and it intersects the facial cycle, which contains the path
867, twice. So we have B = ∗275.0.12∗ and D = 45.0.184. Now we have a
facial cycle F = ∗218693∗ and we get a contradiction since cycles C, D and F
can not be consistently oriented.

So we have that there are exactly 3 facial cycles on edges 45 and 75. By
symmetry the same holds for edges at supervertices 1, 2 and 4. Since the
embedding of G is polyhedral and orientable we get that facial cycles which
contain the original edges of G induce an orientable embedding of P , which
has defect at most 4. This is again a contradiction to Lemma 4.1.

4.3 Defect and Grünbaum conjecture

Let M = (V,E, S) be a multipole. A combinatorial embedding of M is an
assignment of rotations to vertices V . As with combinatorial embeddings of
graphs, we can define the collection of facial walks F , which consists of closed
walks and walks which start and end at a connector. Again we can describe
the embedding of M by specifying F . If in the definition of the defect we
replace graphs with multipoles, we get the definition of a defect of a multipole.
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Figure 4.5: The Blanuša graph embedded in the torus with defect 3.
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Figure 4.6: Supervertices used for replacing edges.

Suppose we have an orientable embedding of a superedge M = (V,E, S1 ∪
S2). Let the connectors be S1 = {(u1), (u2), (u3)} and S2 = {(v1), (v2), (v3)}.
Suppose that in the consistent orientation of facial walks we have walks W1 =
u1P1v1, U1 = u2R1u1, U2 = u3R2u2, W2 = v3P2u3, V1 = v1Q1v2 and V2 =
v2Q2v3. Suppose further that walks P1 and P2 are disjoint. An embedding as
described is called a nice embedding of a superedge.

Take the Blanuša snark B1 embedded in the torus and remove vertices
x and y (see Figure 4.5) to obtain a proper superedge B′

1. Note that the
embedding of B1 in the torus induces a nice embedding of B′

1 with defect 1.
Using a computer we find that

Lemma 4.4. Blanuša superedge B′
1 obtained by removing vertices x and v

from B1 has defect 1.

We now describe what we mean by replacing an edge in an embedded
graph with a nicely embedded superedge. Suppose Π is an embedding of G
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and e = (x, y) ∈ E(G) is an edge. Denote the neighbors of x with {y, x1, x2}
and the neighbors of y with {x, y1, y2} so that in the embedding Π there are
facial walks C1 = ∗x1xyy1∗, C2 = ∗y1yy2∗, C3 = ∗y2yxx2∗ and C4 = ∗x2xx1∗.

We will use the (1,1,3)-supervertex V from the left of Figure 4.6 where the
connectors are {(1)}, {(5)} and {(2), (3), (4)}. To vertices x and y we assign
V(x) and V(y), both copies of V , to e we assign the nicely embedded superedge
(with the notation defined at the beginning of this section) and to all other
vertices and edges we assign trivial supervertices and superedges. We denote
the vertices in V(y) with 1′, 2′, . . . to distinguish them from the vertices in V(x).
In V(x) we assign connectors {(1)}, {(5)}, {(2), (3), (4)} to xx1, xx2, e and in
V(x) we assign connectors {(1′)}, {(5′)}, {(2′), (3′), (4′)} to yy1, yy2, e. In the
superposition we add edges (2, u1), (3, u2), (4, u3) and (v1, 2

′), (v2, 3
′), (v3, 4

′).
This superposition has an induced embedding defined by facial walks F

defined as follows. Take all facial walks of Π which do not contain vertices x
and y and modify facial walks Ci, i = 1, 2, 3, 4, to get walks C ′

i, i = 1, 2, 3, 4, as
follows: C ′

1 = ∗x121u1P1v12
′1′y1∗, C

′
2 = ∗y11

′5′y2∗, C
′
3 = ∗y25

′4′v3P2u345x2∗
and C ′

4 = ∗x251x1∗. Add walks 543215 and 1′2′3′4′5′1′. Add all closed walks
in the embedding of the superedge M . Add walks 23u2R1u12, 34u3R2u23,
3′2′v1Q1v23

′ and 4′3′v2Q2v34
′. We have described an orientable embedding of

G′. If in the embedding Π the cycles C1 and C2 are distinct then the bad edges
in the induced embedding of G′ are bad edges of Π minus possibly e and bad
edges in the embedding of the superedge M .

Using the (3, 1, 3)-supervertex from Figure 4.6 we can similarly replace all
edges on a facial cycle C in G. Again the bad edges in the induced embedding
of the superposition are bad edges in the original graph minus possibly the
edges of C and the bad edges in superedges.

Lemma 4.5. The following statements are equivalent:

1. Grünbaum conjecture is true,

2. all snarks have defect at least 2,

3. all nicely embedded proper superedges have defect at least 1.

Proof. First we prove that 1 is equivalent to 3.
If the Grünbaum conjecture is false, then there exists an embedding of a

snark with defect 0. If we remove two vertices from one facial cycle in the
embedding we get a nicely embedded superedge with an induced embedding
of defect 0.

Suppose we have a nicely embedded superedge with defect 0. Take the
embedding of P in the torus and replace each edge along the unique 9-cycle
with the nicely embedded proper superedge to get a snark with defect 0.
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It is clear that 2 implies 1. The Grünbaum conjecture implies that snarks
have defect at least 1. We show that 3 implies that there is no snark with
defect precisely 1, which completes the proof.

Suppose Π is an embedding of a snark G with defect 1. First we show
that all facial walks are cycles and that there are two facial cycles C and D
which have two edges e = xy and f = uv in common and that e and f are on
distance at least 2 along C and D.

If there is a vertex v in G which appears twice along a facial walk W , then
there is an edge incident with v which appears twice along W and contributes
1 to the defect of Π. There is another facial walk which contains v and it
intersects W in at least two edges incident with v. So the defect of Π is at
least 2, which shows that all facial walks are cycles.

There are two facial cycles C and D which intersect at two edges e and
f . Suppose that e and f are at distance at most 2 on C. Edges e and f can
not be adjacent since in this case C and D could not be facial cycles in an
embedding of G. If they are at distance 1 on C, assume y and u are adjacent
and there are vertices x1 6= x, u and v4 6= y, v such that x1 is adjacent to y
and v1 is adjacent to u. Cycle C contains the path xyuv and cycle D contains
paths x1yx and vuv1. There is another facial cycle which contains the path
v1uyx1 and we get that the defect of the embedding is more than 1.

Now we can choose two vertices u and v on C which are not incident with
e or f and u and v separate e and f on C. Since the defect is 1, vertices u
and v are not on the cycle D. Remove vertices u and v from G to obtain a
superedge. This is a nicely embedded superedge with defect 0.

If the Grünbaum conjecture is true then we get lower bounds for the defect
of snarks or superedges. We now prove that these bounds are best possible
since we can construct infinitely many snarks (superedes) with defect k for any
k ≥ 2 (k ≥ 1).

Theorem 4.6. For each k ≥ 2 there exist infinitely many snarks with de-
fect precisely k. For each k ≥ 1 there exist infinitely many nicely embedded
superedges with defect precisely k.

Proof. Suppose we have an embedding Π of a snark G with defect k in which
all facial walks are cycles and there are k bad edges which form an independent
set. Let B′

1 be the nicely embedded superedge obtained from the Blanuša snark
by removing vertices x and y. Replace each bad edge in G by B′

1 to obtain an
embedded snark G′. By construction we see that the defect of G′ is at most
k. By lemma 4.4 each superedge contributed at least 1 to the defect of G′, so
we get that the defect of G′ is precisely k.
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Suppose that in G we can choose k + 1 edges such that k of them are bad
and one of them is good and they form an independent set of edges. If we
replace each edge with B′

1 we get a snark with the defect precisely k + 1.
Note that if we take the snark G26 embedded into the torus we can perform

both operations. Also it is easy to see that after we have performed one
operation, the embedding of the superposition is such that allows us to perform
both operations again. Thus for any k ≥ 2 we can generate infinitely many
snarks with defect precisely k.

Let M be a nicely embedded superedge such that all semiedges are good.
Then we can perform above operations on M to obtain a nicely embedded
superedge M ′ such that all semiedges of M ′ are good. Thus starting with the
nice embedding of B′

1 we can for each k ≥ 1 construct infinitely many nicely
embedded proper superedges with defect precisely k.

Since the defect is a measure for how far a cubic graph is from having
a polyhedral embedding, the last theorem shows that there are arbitrarily
large snarks with nice embeddings (that is with embeddings with low defect).
Similar measures have been introduced in the literature (for instance [20]) to
measure how far a snark is from having a 3-edge-coloring. In the following we
introduce resistance which is a measure for how far a graph is from having a
3-edge-coloring and prove an implication of the Grünbaum conjecture to the
relation of defect and resistance. We show that if resistance is high then the
defect is high. This implies that graphs which are far from having a 3-edge-
coloring are do not have nice embeddings.

Suppose G is a cubic graph and let c be a 4-edge-coloring of G where we
allow two edges of color 4 to be adjacent. The coloring c is minimum coloring
if the number of edges colored with the color 4 is minimum possible among
all such 4-edge-colorings of G. The number of edges colored with the color 4
in a minimum coloring is called the resistance, r(G), of G, [20]. Note that in
the minimum coloring the edges of color 4 can not be adjacent (since in this
case the coloring is not minimum) and so the minimum coloring is a proper
4-edge-coloring of G. A cubic graph is not 3-edge-colorable if and only if its
resistance is at least 1.

Suppose Π is an embedding of a cubic graph G. A vertex is called a
bad vertex if in the embedding Π it appears three times along a facial walk.
Denote the number of bad vertices in the embedding Π with dv(Π). We define
the modified defect d′(Π) of the embedding Π with

d′(Π) = d(Π) + 2dv(Π).

and the modified defect of the graph G with

d′(G) = min{d′(Π) | Π an orientable embedding of G}.
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Figure 4.7: Thickening an edge.

Obviously for each graph G we have d′(G) ≥ d(G) and the Grünbaum conjec-
ture is equivalent to the statement that d′(G) > 0 for every snark G. Stated
with resistance, the Grünbaum conjecture is equivalent to the statement that
for every graph G, d′(G) > 0 if r(G) > 0. The following theorem gives a
stronger implication.

Theorem 4.7. The following statements are equivalent:

1. the Grünbaum conjecture is true,

2. for all snarks G we have d′(G) ≥ r(G)
2

.

Proof. It is clear that 2 implies 1. We show that 1 implies 2.
Suppose 2 is false. We have a we have a snark G which has a polyhedral

embedding into an orientable surface with defect 2d′(G) < r(G).
We will construct a sequence of graphs G0 = G,G1, G2, . . . , Gk such that

d′(Gi) > 0 for i < k, d′(Gk) = 0, d′(Gi) ≤ d′(Gi−1) − 1 for i = 1, . . . , k and
r(Gi) ≥ r(Gi−1)−2 for i = 1, . . . , k. The inequality d′(Gi) ≤ e′(Gi−1−1 implies
that d′(G) ≥ k. By 2d′(G) < r(G) we have r(G) > 2k. Now the inequality
r(Gi) ≥ r(Gi−1)−2 implies r(Gk) > 0. So Gk is a snark which has a polyhedral
embedding and is therefore a counter-example for the Gruünbaum conjecture.

Suppose we have an embedding of Gi. We replace a bad edge e = (xy)
in the embedding of Gi with a graph on 10 vertices to get a graph Gi+1 with
an induced embedding of smaller modified defect (see Figure 4.7). In the
embedding of Gi we can assume we have facial walks W1, W2, W3, W4 which
contain paths x1xyy1, y1yy2, y2yxx2 and x2xx1 respectively, where some of
W1, W2, W3, W4 may be equal. To define an embedding of Gi+1 we take facial
walks of the embedding of Gi, replace paths x1xyy1, y1yy2, y2yxx2 and x2xx1

on walks W1, W2, W3, W4 with paths x1654y1, y1432y2, y2210x2 and x2076x1
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and add facial cycles 01870, 123981, 34593 and 567895. By appropriately
choosing the bad edge e we can guarantee that the modified defect decreases
by at least one.

We distinguish 4 choices for the bad edge e. At each step we can make
choice 3 only if we can not make choices 1 or 2 and can make choice 4 if we can
not make choices 1, 2, or 3. As long as the defect of the embedding is more
than 0 we can make one of the choices.

Choice 1: bad edge e = (x, y) where x and y are bad vertices. In this case
W1 = W2 = W3 = W4.

To calculate the modified defect of the embedding of Gi+1 observe that bad
edges in the embedding of Gi+1 are bad edges of the embedding of Gi minus
e plus bad pairs {(70), (01)}, {(12), (23)}, {(34), (45)} and {(56), (67)}. So
d(Π(Gi+1)) = d(Π(Gi))−1+4 = d(Gi)+3. Since we removed two bad vertices
x and y and created no new bad vertices we have dv(Π(Gi+1)) = dv(Π(Gi))−2
and therefore the modified defect is d′(Π(Gi+1)) ≤ d′(Π(Gi))−1. We conclude
that d′(Gi+1) ≤ d′(Gi) − 1.

Choice 2: bad edge with e = (x, y) where x is a bad vertex and y is not.
In this case W1 = W3 = W4 and W2 6= W1.

The defect of the induced embedding of Gi+1 is d(Π(Gi+1) = d(Π(Gi)) −
1 + 2 = d(Gi) + 1 and dv(Π(Gi+1) = dv(Π(Gi)) − 1. Therefore the modified
defect is d′(Π(Gi+1)) = d′(Π(Gi))−1. We conclude that d′(Gi+1) ≤ d′(Gi)−1.

Choice 3: bad edge e = (x, y) which appears twice along one facial walk.
Since we can not make choices 1 or 2 we can assume that W1 = W3 and
W2 6= W1 and W4 6= W1 (but it is possible that W2 = W4).

In the embeddings of Gi and Gi+1 there are no bad vertices. The defect of
the embedding of Gi+1 is d(Π(Gi+1) = d(Π(Gi)) − 1 and therefore d′(Gi+1) ≤
d′(Gi) − 1.

Choice 4: e = (x, y) which does not appear twice along one facial walk.
Since we can not make choices 1, 2, or 3 it is only possible that maybeW2 = W4.

In the embeddings of Gi and Gi+1 there are no bad vertices. The defect of
the embedding of Gi+1 is d(Π(Gi+1) = d(Π(Gi)) − 1 and therefore d′(Gi+1) ≤
d′(Gi) − 1.

It remains to show that r(Gi+1) ≥ r(Gi)− 2. Suppose we have a minimum
coloring c of the graph Gi+1. We define a coloring c′ of Gi as follows: c′(e) =
c(e) if e is not incident with x or y, and we let c′(x1x) = c(x16), c′(yy2) =
c(2y2). We can color the edge e with one of the colors 1, 2, 3 and color edges
x20 and y14 with color 4. So r(Gi) ≤ r(Gi+1) + 2.

The last theorem implies that if Grünbaum conjecture is true, we can bound
d′(G) from below with r(G), which would be a very strong connection between
the defect, which is a topological property, and resistance, which is a coloring



4.3 Defect and Grünbaum conjecture 73

property. We conclude with the following problems, which could be considered
as a weakening of the Grünbaum conjecture:

Problem 4.8. Is there a nondecreasing function f with limx→∞ f(x) = ∞,
such that d′(G) ≥ f(r(G)) for all cubic graphs.

Problem 4.9. Find a constant c > 0 such that d′(G) ≥ c r(G) for all cubic
graphs.
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Razširjeni povzetek

Definicije

Graf G je podan s parom množic V (G) in E(G). Množica V (G) je končna
množica vozlǐsč ali točk grafa G, E(G) pa množica povezav. Povezava grafa
G je množica {u, v}, kraǰse uv, kjer sta u, v ∈ V (G) vozlǐsči grafa G. Vozlǐsči
u in v sta povezani , če je e = uv ∈ E(G). Vozlǐsču v rečemo soseda točke u.
Vozlǐsči u in v sta krajǐsči povezave e. Številu sosed vozlǐsča v rečemo stopnja
vozlǐsča. Največjo stopnjo vozlǐsča grafa G označimo z ∆(G). Za povezavi,
ki vsebujeta kako skupno vozlǐsče, rečemo da sta sosednji vozlǐsči . Vsi grafi
so enostavni , torej ne vsebujejo večkratnih povezav niti zank. Če v grafu
dovolimo večkratne povezave ali zanke, govorimo o multigrafu.

k-barvanje povezav grafa G je preslikava c : E(G) → {1, 2, . . . , k}, ki so-
sednjima povezavama priredi različni števili. Številom {1, 2, . . . , k} rečemo
barve. Najmanǰsemu številu k, za katerega obstaja k-barvanje povezav grafa
G, rečemo kromatični indeks grafa G in ga označimo s χ′(G). Za enostavne
grafe velja:

Izrek 1 (Vizing). Za enostaven graf G je χ′(G) ∈ {∆(G),∆(G) + 1}.

Grafom, za katere velja χ′(G) = ∆, rečemo grafi razreda 1 , grafom, za katere
velja χ′(G) = ∆(G) + 1, pa rečemo grafi razreda 2 .

Če je stopnja vsakega vozlǐsča grafa G enaka k, je graf G k-regularen.
3-regularnim grafom rečemo kubični grafi .

Če za vsaki vozlǐsči u, v ∈ V (G) obstaja pot P = v0v1 · · · vn, kjer sta točki
vi in vi+1, i = 0, . . . , n − 1 povezani, in je v0 = u ter vn = v, je graf G
povezan. Maksimalni povezani podmnožici grafa G rečemo komponenta grafa
G. Za podmnožico S ⊂ E(G) označimo z G− S graf z množico vozlǐsč V (G)
in množico povezav E(G) \ S. Podmnožica S ⊂ E(G) je prerez , če ima graf
G − S več komponent kot graf G. Če je velikost vsakega prereza povezanega
grafa G vsaj k, je G povezavno k-povezan. Podmnožica S ⊂ E(G) je ciklični
prerez , če ima graf G − S vsaj dve komponenti, ki vsebujeta cikel. Povezan
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graf G je ciklično k-povezan, če ima vsak ciklični prerez grafa G velikost vsaj
k.

Slika 4.8: Petersenov graf.

Kubični graf razreda 2, ki je 3-povezan, ciklično 4-povezan z dolžino naj-
kraǰsega cikla vsaj 5, se imenuje snark . Ime so snarki dobili po pesmi The
Hunting of the Snark avtorja Lewisa Carrolla, v kateri so snarki pošasti, ki jih
je zelo težko najti. Najmanǰsi snark je Petersenov graf (glej sliko 4.8), ki ima
10 vozlǐsč. Odkrili so ga konec 18. stoletja [2]. Naslednja odkrita snarka sta
Blanuševa snarka, ki ju je leta 1946 odkril hrvaški matematik Blanuša [3] (glej
sliko 4.9). To so edini trije snarki z manj kot 20 točkami.

Prva znana neskončna družina snarkov so bili snarki, ki jih dobimo kot
4-vsote manǰsih snarkov, odkrita pa je bila v sedemdesetih letih preǰsnjega
stoletja [7]. Denimo da sta G1 in G2 kubična grafa. Naj bosta e, f nesose-
dnji povezavi grafa G1 in u, v sosednji vozlǐsči grafa G2. Označimo z v1, v2

krajǐsči povezave e in z v3, v4 krajǐsči povezave f . Sosedi točke u, različni od v,
označimo z u1, u2 in sosedi točke v, različni od u, označimo z u3 in u4. Grafu
G1 odstranimo povezavi e, f , grafu G2 ostranimo vozlǐsči u, v in dodamo po-
vezave viui, i = 1, 2, 3, 4. Dobimo kubičen graf G = G1 ·G2, ki ga imenujemo
4-vsota grafov G1 in G2. Prerezu {viui | i = 1, 2, 3, 4} rečemo prerez 4-vsote.
Če sta G1 in G2 snarka, potem je njuna 4-vsota tudi snark. Velja tudi obrat:
če ima snark G ciklični prerez S velikosti 4, potem obstajata taka grafa G1 in
G2, da je G = G1 · G2, vsaj eden od G1 in G2 je snark in S prerez 4-vsote
G. Očitno 4-vsota grafov ni enolično določena. Če za G1 in G2 vzamemo dve
kopiji Petersenovega grafa, lahko konstruiramo dve neizomorfni 4-vsoti. Izkaže
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Slika 4.9: Blanuševa grafa.
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se, da sta to ravno Blanuševa grafa. 4-vsoto pripisujejo Isaacsu, jo je pa pred
njim opisal že ruski matematik Titus, a njegov članek na zahodu ni poznan.

Isaacs je opisal še družino ciklično 6-povezanih snarkov, ki jih imenujemo
cvetni snarki (glej sliko 4.10). Cvetni snark J2k+1 je graf z množico vozlǐsč

V (J2k+1) = {ai, bi, ci, di | i = 0, . . . , 2k}

in množico povezav

E(J2k+1) = {aiai+1, aibi, bici, bidi, cidi+1, dici+1 | i = 0, . . . , 2k},

kjer so indeksi vzeti po modulu 2k + 1.
Naslednjo neskončno družino je odkril Goldberg [11]. Goldergov graf G2k+1

(glej sliko 4.10) je graf z množico vozlǐsč

V (G2k+1) = {ai, bi, ci, di, ei, fi, gi, hi | i = 0, . . . , 2k}

in množico povezav

E(G2k+1) = {aiai+1, aibi, bici, bidi, ciei, cigi,

difi, dihi, gihi, eifi, fiei+1, gihi+1 | i = 0, . . . , 2k},

kjer so indeksi vzeti po modulu 2k + 1.
Cvetni in Goldbergovi snarki so konstruirani tako, da liho število podgrafov

Yi oziroma Ti, induciranih na vozlǐsčih {ai, bi, ci, di} oziroma {ai, bi, ci, di, ei, fi,
gi, hi} ciklično povežemo med seboj. Če pri definiciji cvetnih oziroma Gold-
bergovih snarkov ne zahtevamo, da imamo liho število teh podgrafov, dobimo
splošneǰse grafe Jk in Gk. Grafi J2k in G2k so razreda 1.

Vzemimo družino poligonov s stranicami dolžine 1, ki imajo skupaj sodo
število stranic σ1, . . . , σ2n. Vsaki stranici izberemo orientacijo tako, da si izbe-
remo začetno oglǐsče stranice. Izberemo si particijo stranic na pare. Konstru-
irajmo ploskev tako, da identificiramo stranice skladno z izbrano orientacijo
(začetne točke identificiramo z začetnimi točkami). Dobimo ploskev S. Grafu,
ki ga definirajo oglǐsča ploskve S in stranice kot povezave, rečemo vložen graf .
Celična vložitev grafa G je je vložen graf G′, izomorfen grafu G. Začetne
poligone imenujemo lica vložitve. Lica identificiramo s sprehodi, definirani z
obhodi lic.

Po klasifikaciji sklenjenih ploskev je vsaka ploskev izomorfna natanko eni
od ploskev Sg (orientabilni ploskvi roda g) oziroma Ng (neorientabilni ploskvi
roda g). Orientabilni rod g(G) grafa G je najmanǰsi g, za katerega obstaja
vložitev grafa G v ploskev izomorfno Sg. Neorientabilni rod g̃(G) grafa G je
najmanǰsi g, za katerega obstaja vložitev grafaG vNg. Eulerjeva karakteristika
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Slika 4.10: Cvetni snark J5 (zgoraj) in Goldbergov snark G5 (spodaj).
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orientabilne ploskve Sg je ǫ(Sg) = 2g, Eulerjeva karakteristika neorientabilne
ploskve Ng pa je ǫ(Ng) = g.

Vložitev grafa G je poliedrska, če je vsako lice cikel in če sta vsaki dve
različni lici bodisi disjunktni, se sekata v natanko enem vozlǐsču ali pa se
sekata v natanko eni povezavi. Vložitev kubičnega grafa je poliedrska, če je
vsako lice cikel in če sta vsaki dve različni lici disjunktni ali pa se sekata v
natanko eni povezavi.

Motivacija za študij vložitev snarkov prihaja iz poskusov dokaza izreka
štirih barv. Izrek štirih barv pravi, da lahko vozlǐsča vsakega ravninskega
grafa brez zank pobarvamo s štirimi točkami tako, da sta vsaki sosednji vo-
zlǐsči pobarvani z različnima barvama. Tutte je pokazal, da je izrek štirih
barv ekvivalenten trditvi, da ima vsak 3-povezan kubičen graf G v ravnini
kromatični indeks χ′(G) = 3.

Izrek štirih barv trdi, da snarki niso ravninski grafi. Snarke lahko vložimo
v ploskve vǐsjega roda, vendar imajo vse znane vložitve lice, ki vsebuje kako
povezavo dvakrat, ali pa dve lici, ki se sekata v več kot eni povezavi. Torej
vložitve niso poliedrske. Grünbaum je leta 1969 podal hipotezo

Hipoteza 2 (Grünbaum). Če ima kubičen graf poliedrsko vložitev v orien-
tabilno ploskev, potem je razreda 1.

Grünbaumova hipoteza je posplošitev izreka štirih barv.

Rod snarkov

Rod snarkov sta študirala Tinsley in Watkins [12]. Pokazala sta, da je ori-
entabilni rod cvetnih snarkov enak g(J2k+1) = k. V prvem poglavju podamo
kraǰsi dokaz njunega rezultata in hkrati izračunamo neorientabilni rod cvetnih
snarkov.

Izrek 3. Orientabilni rod cvetnega snarka J2k+1 je g(J2k+1) = k. Neorienta-
bilni rod cvetnega snarka J2k+1 je g̃(J2k+1) = 2k − 1. Orientabilni rod grafa
J2k je g(J2k) = k − 1, neorientabilni rod pa g̃(J2k) = 2k − 2.

Tinsley in Watkins sta podala zgornjo mejo za orientabilni rod Goldbergo-
vih snarkov. Pokažemo, da je njuna meja v resnici orientabilni rod Goldber-
govih snarkov. Določimo še neorientabilni rod Goldbergovih grafov.

Izrek 4. Orientabilni rod Goldbergovega grafa Gk je g(Gk) = k − 1. Neori-
entabilni rod Goldbergovega grafa Gk je g̃(Gk) = k.
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Težji del dokaza zadnjih dveh izrekov je dokaz spodnje meje za rod. V
obeh primerih pri dokazu omejimo število lic, ki jih lahko imamo v vložitvah,
in tako dobimo mejo za rod s pomočjo Eulerjeve formule. Lica razdelimo na
lokalna in globalna lica in pokažemo, da v vložitvah ne moremo imeti veliko
lokalnih lic.

V istem članku sta Tinsley in Watkins postavila hipotezo o orientabilnem
rodu 4-vsot Petersenovih snarkov. S P n označimo 4-vsoto n kopij Peterseno-
vega grafa. Tinsley in Watkins sta domnevala, da je g(P n) = n− 1. Hipoteza
je bila ovržena v [21], kjer so avtorji pokazali, da ima eden od Blanuševih snar-
kov rod 1, drugi pa 2. Rod je torej lahko vǐsji od domnevanega. Pokažemo,
da je lahko tudi veliko manǰsi od domnevanega.

Izrek 5. Za vsak n > 0 obstaja 4-vsota n kopij Petersenovega grafa, ki ima
rod 1.

Pri konstrukciji P n = P ·P n−1 je lahko rod grafa P n enak rodu grafa P n−1,
ali pa se rod poveča za 1. Razǐsčemo pogoje, pri katerih se rod 4-vsote poveča
in pogoje, pri katerih se rod ne spremeni. Tako lahko konstruiramo 4-vsoto n
kopij Petersenovega grafa, za katero lahko natančno povemo njen orientabilni
rod.

Izrek 6. Za vsako celo število k, 1 ≤ k ≤ n obstaja 4-vsota n kopij Peterse-
novega grafa P n, ki ima rod g(P n) = k.

Na koncu pokažemo še meje za orientabilni rod 4-vsote poljubnih kubičnih
grafov.

Izrek 7. Za kubična grafa G1 in G2 je rod 4-vsote G1 ·G2 omejen z

g(G1) + g(G2) − 2 ≤ g(G1 ·G2) ≤ g(G1) + g(G2) + 1.

Meje so najbolǰse možne, tudi če zahtevamo, da sta G1 in G2 snarka.

Poliedrske vložitve

Najprej pokažemo, da so kratki cikli v poliedrskih vložitvah lica.

Lema 8. • Če je C 3-cikel v kubičnem grafu G, potem je C obhod lica v
vsaki poliedrski vložitvi grafa G.

• Če je C 4-cikel v kubičnem grafu G, potem je C obhod lica v vsaki
poliedrski vložitvi grafa G.
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Če je C cikel v grafu in F obhod lica, potem rečemo da je F pri C k-
napredujoč obhod , če se C in F sekata na k zaporednih povezavah na obhodu
F .

Lema 9. Če je C 5-cikel v kubičnem grafu G, potem je

• v vsaki poliedrski vložitvi grafa G v orientabilno ploskev cikel C obhod
lica,

• v vsaki poliedrski vložitvi G v neorientabilno ploskev cikel C ali obhod
lica ali pa je vsako lice 2-napredujoče pri C.

Naj bosta G1 in G2 kubična grafa in v ∈ V (G1) ter u ∈ V (G2). Označimo
sosede vozlǐsča v v G1 z v1, v2, v3 in sosede vozlǐsča u v G2 z u1, u2, u3. Grafu
G1 odstranimo vozlǐsče v skupaj z njenimi povezavami, grafu G2 odstranimo
vozlǐsče u skupaj z njenimi povezavami ter dodamo povezave uivi, i = 1, 2, 3.
Dobimo kubičen graf G = G1 ∗G2, ki ga imenujemo 3-vsota grafov G1 in G2.

Izrek 10. Naj bo G 3-vsota grafov G1 ter G2. Graf G ima poliedrsko vložitev
(v orientabilno ploskev) natanko tedaj ko imata grafa G1 ter G2 poliedrski
vložitvi (v orientabilni ploskvi).

Posledica zadnjega izreka je, da je Grünbaumovo hipotezo dovolj pokazati
za ciklično 4-povezane grafe. Po Lemi 8 je Grünbaumovo hipotezo dovolj
pokazati za grafe z najkraǰsim ciklom dolžine vsaj 4.

S pomočjo Leme 9 lahko za Goldbergove snarke pokažemo, da nimajo poli-
edrskih vložitev v orientabilne ploskve. To sledi iz dejstva, da imamo v Gold-
bergovih grafih 5 cikla na točkah bidifieicibi in bicigihidibi. V poliedrski vložitvi
v orientabilno ploskev sta oba 5-cikla obhoda lic, to pa ni mogoče, saj je v tem
primeru pot cubidi dolžine 3 vsebovana v dveh različnih obhodih lic.

Da cvetni snarki nimajo poliedrskih vložitev v orientabilne ploskve je po-
kazal že Szekeres. Podamo enostavneǰsi dokaz te trditve. Hkrati pokažemo, da
cvetni snarki J2k+1, k > 1, nimajo poliedrskih vložitev v neorientabilne plo-
skve. Graf J3 ima poliedrsko vložitev v projektivno ravnino, vendar ni snark,
saj vsebuje cikel dolžine 3. Sledi izrek:

Izrek 11. • Cvetni snarki nimajo poliedrskih vložitev niti v orientabilne
niti v neorientabilne ploskve.

• Goldbergovi snarki nimajo poliedrskih vložitev v orientabilne ploskve.

Pri dokazu Izreka 11 ne uporabimo dejstva, da so grafi razreda 2. Isti dokaz
pove, da tudi grafi J2k nimajo poliedrskih vložitev.

Za Goldbergove snarke konstruiramo poliedrske vložitve v neorientabilne
ploskve. Poliedrska vložitev grafa Gk v neorientabilno ploskev je podana z
naslednjimi obhodi lic (indeksi so po modulu k)
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• A = a0a1 . . . ak−1a0 in B = f0e0f1e1 . . . fk−1ek−1f0,

• Ci = bidifieicibi, i = 0, . . . , k − 1,

• Di = gihigi+1hi+1di+1fi+1eicigi, i = 0, . . . , k − 1,

• Ei = aiai+1bi+1ci+1gi+1hidibiai, i = 0, . . . , k − 1.

Zgoraj opisana vložitev ima rod k. Za Goldbergove snarke konstruiramo tudi
poliedrske vložitve v neorientabilne ploskve roda k + 2.

Iz znanih poliedrskih vložitev lahko konstruiramo nove poliedrske vložitve
snarkov s pomočjo 4-vsote.

Izrek 12. Naj bostaG1 inG2 kubična grafa. Če imataG1 inG2 taki poliedrski
vložitvi v (orientabilni) ploskvi S1 in S2, da dual grafa G2 v S2 ni poln graf,
potem obstaja 4-vsota G1 · G2, ki ima poliedrsko vložitev v (orientabilno)
ploskev S. Če je Eulerjev rod ploskev ǫ(S1) = k1 in ǫ(S2) = k2, potem je
Eulerjev rod ploskve S enak ǫ(S) = k1 + k2.

Velja tudi obrat:

Izrek 13. Naj bo G kubičen graf s cikličnim 4-prerezom S ki ima poliedrsko
vložitev. Potem obstajata taka kubična grafa G1 in G2, da je G 4-vsota grafov
G1 in G2 ter da je S prerez 4-vsote. Vsaj eden od G1 in G2 ima poliedrsko
vložitev.

Goldbergovi snarki imajo poliedrske vložitve v neorientabilne ploskve roda
2k + 1, Petersenov graf pa ima poliedrsko vložitev v projektivno ravnino. S
pomočjo Izreka 12 dobimo posledico:

Posledica 14. Za vsako nenegativno celo število k obstaja snark s poliedrsko
vložitvijo v neorientabilno ploskev Nk roda k.

Pri dokazu posledice posebej obravnavamo Kleinovo steklenico, saj Izreka
12 ne moremo uporabiti za dve kopiji Petersenovega grafa, vloženi v projek-
tivno ravnino. Snark s poliedrsko vložitvijo v Kleinovo steklenico dobimo kot
superpozicijo Petersenovega grafa.

Degeneriranost

Naj bo G kubičen graf in Π vložitev grafa G v orientabilno ploskev. Za obhod
lica F v vložitvi Π definiramo degeneriranost d(F ) kot število povezav grafa
G, ki nastopajo dvakrat na obhodu F . Za dva različna disjunktna obhoda lic
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Fi in Fj definiramo degeneriranost d(Fi, Fj) = 0. Če imata obhoda lic Fi in Fj

kako skupno povezavo, definiramo degeneriranost d(Fi, Fj) kot število povezav,
ki nastopajo hkrati na obhodu Fi in Fj, minus 1. Naj ima vložitev Π množico
obhodov lic F = {F1, F2, . . . , Fk}. Potem definiramo degeneriranost vložitve Π
kot

d(Π) =
k

∑

i=1

d(Fk) +
∑

1≤i<j≤k

d(Fi, Fj)

in degeneriranost grafa G kot

d(G) = min{d(Π) | Π vložitev grafa G}.

Povezavam, ki nastopajo več kot enkrat na kakem obhodu lica, rečemo slabe
povezave. Paru povezav e, f , ki nastopata hkrati na dveh različnih obhodih
lic, rečemo slab par . Točki, ki nastopa trikrat na obhodu kakega lica, rečemo
slaba točka. Za vložitev Π označimo z dv(Π) število slabih točk v vložitvi Π.
Popravljena degeneriranost vložitve Π je definirana kot

d′(Π) = d(Π) + 2dv(Π).

Popravljena degeneriranost grafa je definirana kot

d′(G) = min{d′(Π) | Π vložitev grafa G}.

Degeneriranost meri, kako daleč je kubičen graf od tega, da ima poli-
edrsko vložitev. Očitno je Grünbaumova hipoteza ekvivalentna trditvi, da
imajo kubični grafi razreda 2 degeneriranost vsaj 1. S pomočjo računalnika
izračunamo degeneriranost snarkov z manj kot 30 točkami.

Izrek 15. Snarki z manj kot 28 točkami nimajo poliedrskih vložitev.

Najmanǰsa degeneriranost, ki jo imajo snarki na manj kot 30 točkah, je
2. Najmanǰsi snark z orientabilno vložitvijo degeneriranosti 2 ima 26 vozlǐsč.
Dobimo ga kot 4-vsoto Blanuševega grafa in Petersenovega grafa in ima dve
različni vložitvi z degeneriranostjo 2. Na 28 vozlǐsčih obstajata dva snarka
degeneriranosti 2. Prvi ima dve različni vložitvi, drugi pa eno vložitev dege-
neriranosti 2. Vse vložitve so vložitve v dvojni torus. Blanušev graf (roda 1)
ima tri različne vložitve z degeneriranostjo 3 v torus. Na 24 vozlǐsčih obtajata
dva snarka degeneriranosti 3, eden z dvema, drugi pa z eno vložitvijo degene-
riranosti 3 v dvojni torus. Na 26 vozlǐsčih obstaja en snark degeneriranosti
3, ima tri vložive degeneriranosti 3 v dvojni torus. Na 28 vozlǐsčih obstaja 8
snarkov degeneriranosti 3.
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Izrek 16. • Če Grünbaumova hipoteza drži, potem imajo snarki razreda
2 degeneriranost vsaj 2.

• Za vsak k ≥ 2 obstaja neskončna družina snarkov, ki imajo degenerira-
nost natanko k.

Najsplošneǰsa znana konstrukcija snarkov je Kocholova superpozicija. Ja-
eger in Swart sta leta 1980 postavila hipotezo, da ima vsak snark cikel dolžine
kvečjemu 6 [10]. Prvi je snarke brez kratkih ciklov s pomočjo superpozicije
konstruiral Kochol leta 1996 [17]. Družini snarkov, ki jo je konstruiral Kochol
in ki vsebuje snarke brez kratkih ciklov, rečemo Kocholovi snarki .

Kocholove snarke dobimo kot superpozicijo Petersenovega grafa. Obstajata
dva tipa Kocholovih snarkov, prvi imajo ciklične 4-prereze, drugi so pa ciklično
5-povezani. Petersenov graf ima degeneriranost 5 in posledica tega je, da
Kocholovi snarki nimajo poliedrskih vložitev.

Izrek 17. Kocholovi snarki nimajo poliedrskih vložitev v orientabilne ploskve.

Naj bo c 4-barvanje povezav kubičnega grafa G, kjer dovolimo, da so pove-
zave pobarvane z barvo 4, sosednje. Barvanju c rečemo minimalno barvanje,
če je število povezav, pobarvanih z barvo 4, minimalno možno med vsemi 4-
barvanji grafa G. Vsako minimalno barvanje je pravo barvanje povezav (torej
tudi povezave barve 4 niso sosednje). Odpornost grafa G, r(G), je število po-
vezav barve 4 v minimalnem barvanju. Očitno je kubični graf G graf razreda
1 natanko tedaj, ko je r(G) = 0. Pokažemo, da v primeru, da Grünbaumova
hipoteza drži, obstaja povezava med odpornostjo in popravljeno degenerirano-
stjo.

Izrek 18. Če Grünbaumova hipoteza drži, potem za vsak kubičen graf G velja

d′(G) ≥
r(G)

2
.

Zadnji izrek pravi, da so grafi, ki so daleč od tega, da imajo 3-barvanje
povezav, tudi daleč od tega, da imajo poliedrsko vložitev.



88 Razširjeni povzetek



Izjava

Izjavljam, da je doktorska disertacija rezultat mojega raziskovalnega dela.

Ljubljana, junij 2007 Andrej Vodopivec


