





UNIVERSITY OF LJUBLJANA
FACULTY OF MATHEMATICS AND PHYSICS
DEPARTMENT OF MATHEMATICS

Andrej Vodopivec

Embeddings of snarks into
closed surfaces

Doctoral Thesis

ADVISER: Prof. Dr. Bojan Mohar

Ljubljana, 2007






UNIVERZA V LJUBLJANI
FAKULTETA ZA MATEMATIKO IN FIZIKO
ODDELEK ZA MATEMATIKO

Andrej Vodopivec

Vlozitve snarkov v sklenjene
ploskve

doktorska disertacija

MENTOR: prof. dr. Bojan Mohar

Ljubljana, 2007






Abstract

In the thesis we study embeddings of cubic graphs of class 2. Cubic graphs of
class 2 with some additional connectivity requirements are called snarks. The
motivation for the study of these graphs comes from attempts to prove the four
color theorem. The four color theorem states that the vertices of every simple
planar graph can be colored with four colors such that any two adjacent vertices
are colored with different colors. The theorem is equivalent to the statement
that the edges of every simple planar 3-connected cubic graph can be colored
with three colors such that every two adjacent edges are colored with different
colors. The edges of every simple cubic graph can be colored with either three
or four colors. Graphs whose edges can not be colored with three colors are
said to be of class 2. The four color theorem states that 3-connected cubic
graphs of class 2 are not planar. One generalization of this statement is that
if a cubic graph has a polyhedral embedding into an orientable surface, then it
is edge 3-colorable. This generalization is known as the Griinbaum conjecture
and was proposed by Griinbaum in 1967. Although 40 years have passed not
much progress has been made toward resolving it.

We start with the study of some known families of snarks. We determine the
orientable and non-orientable genus of flower snarks and Goldberg snarks. We
prove some results about the genus of dot products of graphs and in particular
dot products of the Petersen graph.

We then study polyhedral embeddings of known families of snarks. We
prove that short cycles in graphs are facial cycles in polyhedral embeddings
of cubic graphs. Using this we prove that some known families of snarks do
not have polyhedral embeddings into orientable surfaces. We prove that flower
snarks do not have polyhedral embeddings (into orientable or non-orientable
surfaces) and that Goldberg snarks do not have polyhedral embeddings. We
construct for every non-orientable surface N a snark which has a polyhedral
embedding into V.

In the last section we study Kochol snarks and superposition. We prove
that Kochol snarks do not have polyhedral embeddings into orientable surfaces.
We define the defect of a graph as a measure for how far a cubic graph is
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from having a polyhedral embedding into an orientable surface. In case the
Griinbaum conjecture is true we give a strong connection between the defect
and the resistance of cubic graphs. (Resistance is a measure for how far a
cubic graph is from having a 3-edge-coloring). We prove that the Griinbaum
Conjecture implies that snarks which are far from having a 3-edge-coloring are
far from having a polyhedral embedding into an orientable surface.

Math. Subj. Class. (2000): 05C10 Topological graph theory, imbedding,
05C15 Coloring of graphs and hypergraphs.

Keywords: chromatic index, cubic graph, snark, polyhedral embedding,
flower snark, Goldberg snark, superposition, Kochol snark.



Povzetek

V disertaciji obravnavamo vlozitve kubic¢nih grafov razreda 2. Kubic¢ni grafi
razreda 2 z nekaj dodatnimi pogoji na povezanost so znani kot snarki. Moti-
vacija za Studij vlozitev snarkov prihaja iz poskusov dokaza izreka stirih barv.
Izrek stirih barv trdi, da je mogoce tocke vsakega enostavenega ravninskega
grafa pobarvati s stirimi barvami tako, da so sosednje tocke pobarvane z ra-
zlicnima barvama. Izrek je ekvivalenten trditvi, da je mogoce povezave vsakega
enostavnega 3-povezanega kubicnega grafa povarvati s tremi barvami tako, da
sta dve sosednji povezavi pobarvani z razlicnima barvama. Povezave enos-
tavnega kubic¢nega grafa lahko pobarvamo s tremi ali pa s Stirimi barvami.
Kubicni grafi, katerih povezave ne moremo pobarvati s tremi barvami, so grafi
razreda 2. Izrek stirih barv pravi, da 3-povezani kubicni grafi razreda 2 niso
ravninski. Ena izmed posplositev izreka stirih barv je trditev, da so kubic¢ni
grafi, ki imajo poliedrsko vlozitev v kako orientabilno ploskev, razreda 1. Pos-
plositev je znana kot Griinbaumova hipoteza in je bila podana leta 1969 in je
po skoraj 40 letih Se vedno odprta.

Studij zacnemo s studijem znanih druzin snarkov. Dolo¢imo orientabilni in
neorientailni rod cvetnih snarkov in Goldbergovih snarkov. Potem Studiramo
rod 4-vsote grafov, posebej se posvetimo rodu 4-vsot Petersenovega grafa.

Nato studiramo poliedrske vlozitve znanih druzin snarkov. Pokazemo,
da so kratki cikli v kubi¢nih grafih lica v poliedrskih vlozitvah. Pokazemo,
da cvetni snarki nimajo poliedrskih vlozitev niti v orientabilne niti v neori-
entabilne ploskve in da Goldbergovi snarki nimajo poliedrskih vlozitev v ori-
entabilne ploskve. Za vsako neorientabilno ploskev N konstruiramo snark, ki
ima poliedrsko vlozitev v N.

V zadnjem poglavju Studiramo poliedrske vlozitve grafov dobljenih s su-
perpozicijo. Za Kocholove snarke pokazemo, da nimajo poliedrskih vlozitev
v orientabilne ploskve. Definiramo degeneriranost grafa kot mero kako dale¢
je kubicen graf od tega, da ima poliedrsko vlozitev. V primeru, da Griinbau-
mova hipoteza drzi, pokazemo povezavo med degeneriranostjo in odpornostjo
grafa. Odpornost meri, kako dale¢ je kubicen graf od tega, da ima 3-barvanje
povezav. Pokazemo, da so v primeru, da Griinbaumova hipoteza drzi, kubi¢ni
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grafi, ki so dale¢ od tega, da imajo 3-barvanje povezav, tudi dale¢ od tega, da
imajo poliedrske vlozitve.

Math. Subj. Class. (2000): 05C10 Topoloska teorija grafov, vlozitve,
05C15 Barvanja grafov in hipergrafov.

Kljucne besede: kromatic¢ni indeks, kubicen graf, snark, poliedrska vlozitev,
cvetni snark, Goldbergov snark, superpozicija, Kocholov snark.
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Chapter 1

Introduction

In the thesis we study the embeddings of snarks into closed surfaces. The study
is motivated by a conjecture of Griinbaum which states that no snark has a
polyhedral embedding into an orientable surface. This is a generalization of
the Four Color Theorem and is one of the most interesting and long standing
conjectures in graph theory. In the Introduction we define basic graph theory
and topological notions which are required in later chapters.

1.1 Graphs

A graph G is a structure defined by a pair of sets (V(G), E(G)). The set V(G)
is a non-empty set and its elements are called the vertices of G. The set E(G)
is a set of 2-element subsets of V(G) and its elements are called the edges of G.
A set {u,v}, representing an edge, will be denoted by uv. We will investigate
only finite graphs, that is graphs for which the set V(&) is finite. Also note
that graphs are simple, that is there are no parallel edges and no loops. The
number of vertices n = |V(G)] is called the order of the graph. For an edge
e =wv in E(G) we call vertices u and v the ends of the edge e. If for vertices
u,v € V(G) there is an edge e = wv € E(G) we say that the vertices v and v
are adjacent and that the edge e connects vertices u and v. If v is an end of an
edge e we say that v is incident with e and if vertices u and v are connected by
the edge e we say that v is a neighbor of u. The set of neighbors of a vertex v
is denoted by N(v). The degree degs(v) of a vertex v € V(@) is the number
of edges incident with v. The minimum degree of a vertex in the graph G
is denoted by 0(G) and the maximum degree of a vertex in the graph G is
denoted by A(G). If all degrees of vertices in the graph G are equal to k, the
graph is k-reqular. A cubic graph is a 3-regular graph.

A generalization of a simple graph is multigraph. A multigraph M is defined
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2 Introduction

as a triple (V(M), E(M),d) where V(M) is the set of vertices, E(M) is the
set of edges and ¢ is a mapping which assigns each edge e € F(M) a pair of
its ends, where we allow the ends to be the same vertex. In the latter case the
edge is called a loop. We allow that two edges have the same ends in which case
we say that the edges are parallel. The degree of a vertex v in a multigraph is
the number of edges such that v is its end where we count loops incident to v
twice.

A graph H is a subgraph of a graph G if V(H) C V(G) and E(H) C E(G).
If V(H) = V(G) then H is a spanning subgraph of G. If H is a subgraph of
G this will be denoted by H C G. If V(H) C V(G) and if for each pair of
vertices u,v € V(H) the edge uv € E(H) if and only if uv € E(G), then H is
an induced subgraph of G.

A bijection ¢ : V(G) — V(H) is an isomorphism if it maps adjacent ver-
tices into adjacent vertices and non-adjacent vertices into non-adjacent ver-
tices. If there exists an isomorphism between graphs G and H they are said
to be isomorphic. We will not distinguish between isomorphic graphs and will
write G = H if G and H are isomorphic.

A path P, of length n — 1 is a graph with vertices V(B,) = {v1,...,v,}
and edges E(P,) = {viviya | ¢ = 1,...,n — 1}. Vertices v; and v, are
the ends of the path P, and we say that the path P, connects its ends. A
cycle C,, of length n is a graph with vertices V(C,,) = {vy,...,v,} and edges
E(C,) ={vviyr | i=1,...,i =1} U{vv,}. A subgraph P C G isomorphic
to a path P, is called a path in G and we say that P connects its ends in G.
If for each pair of vertices u,v € V(@) there exists a path P in G connecting
u and v we call the graph G connected. A maximal connected subgraph in G
is called a connected component of G.

A walk W in a graph G is a sequence of vertices (vq,vs,...,v,) where
vertices v; and v;;1 are incident for ¢ = 1,...,n — 1. Vertices vy, ..., v, need
not be all distinct. If v; and v,, are connected then W is called a closed walk in
G. Instead of defining a walk by a sequence of vertices (vq,vs, ..., v,) we will
sometimes define it with the sequence of edges (e, ..., e,_1), where e; = v;v;41,
i=1,...,n—1.

For a subset S C E(G) we denote by G — S the graph H with vertices
V(H) = V(G) and with edges E(H) = E(G) \ S. If the number of connected
components of G — S is larger than the number of connected components of
G we call the set S a cut. A minimal set S which is a cut is called a minimal
cut. A connected graph G is k-edge-connected if every cut contains at least k
edges. A cut of size k will be called a k-cut.

For a subset U C V(G) we denote by G — U the graph H with vertices
V(H) = V(G)\ U and in H two vertices are connected if and only if they
are connected in G. A graph G is k-connected if every set U, for which the
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graph G — U is not connected, contains at least k vertices. A cubic graph is
k-connected if and only if it is k-edge-connected.

A k-edge-coloring of a graph G is a mapping ¢ : E(G) — {1,2,...,k}
such that each pair of adjacent edges is mapped into distinct elements of
{1,2,...,k}. The minimum number k, for which there exist a k-edge-coloring
of G, is the chromatic index, xX'(G), of G. Vizing proved the following theorem

Theorem 1.1 (Vizing). Every (simple) graph G satisfies

A(G) < X(G) S A(G) +1

Vizing’s theorem divides graphs into two groups. Graphs for which x'(G) =
A(G) are called class 1 graphs and graphs for which x'(G) = A(G) + 1 are
called class 2 graphs. As a special case cubic graphs of class 1 are those for
which x/(G) = 3 and cubic graph of class 2 are those for which y'(G) = 4.

1.2 Swurfaces and graph embeddings

In this section we give basic definitions for closed surfaces and graph embed-
dings. We do not define basic topological objects. We follow the book [1].
A closed surface is a connected compact Hausdorff topological space S which
is locally homeomorphic to an open disc in the plane R%. To simplify some
arguments we will assume that graphs in this section do not have vertices of
degree one or two. All results hold if we allow vertices of degree one or two
also.

Examples of surfaces are obtained as follows. Suppose F is a collection of
polygons with all sides of length 1 which altogether have an even number of
sides 01, ..., 09,. Arbitrarily orient each side o; by choosing one of its endpoints
as the initial endpoint and choose a partition of sides into pairs. Form a
topological space S by identifying two sides in each pair so that the orientations
are respected (that is for a pair 0;, 0; we identify the initial endpoint of o; with
the initial endpoint of ;). We get a compact Hausdorff topological space S
and if S is connected then S is a surface.

The sides of polygons in F and their endpoints define a multigraph G’. We
say that G’ is 2-cell embedded in the surface S. The collection of polygons F
is called the collection of faces of G'.

Take a triangulated surface S and on a face T" two disjoint triangles 7} and
T5. If we orient the sides of 77 and 75 so that the orientations are clockwise,
remove 1) and 75 from S and identify triangle 77 with T, we obtain a surface
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S’. We say S’ is obtained from S by adding a twisted-handle. If we orient
the sides of T} clockwise and the sides of T5 anticlockwise, remove 17 and 715
from S and identify triangles 77 and T3 we obtain a surface S”. We say S” is
obtained from S by adding a handle. Let @) be a equilateral quadrangle in T'.
If we delete Q from T and identify opposite points on the boundary of () we
obtain a surface S”’. We say S” is obtained by adding a cross-cap to S. When
we add handles and cross-caps we will usually use discs instead of triangles in
T.

Now start with a sphere Sy which is a tetrahedron. If we add n handles
to Sy we obtain a surface S,, which is called the orientable surface of genus n.
If we add n > 0 cross-caps to Sy we obtain a surface N, which is called the
non-orientable surface of genus n. The surface S is called the torus and the
surface Sy is called the double torus. The surface N; is called the projective
plane and the surface N, is called the Klein bottle. Instead of embedding
graphs into the sphere we will usually embed graphs into the plane, which is
equivalent by the stereographic projection of the sphere into the plane. The
torus will be represented as a quadrangle with corners a, b, ¢, d where we orient
sides as ab, bc, dc, ad and identify sides ab and dc and sides bc and ad. A
projective plane will be represented by a disc in which we identify antipodal
vertices.

It turns out that by adding handles and cross-caps to a sphere we can
construct all possible examples of surfaces. This is established by the following
theorem.

Theorem 1.2 (Classification of surfaces). Every surface S is homeomor-
phic to precisely one of the surfaces S,, n > 0 or N,, n > 1.

For surfaces S,, we define the Euler characteristic x(.S,) = 2 — 2n and for
surfaces N,, we define the Euler characteristic x(V,,) = 2 — n. For arbitrary
surface S we define k(S) as the Euler characteristic of the unique surface
S, or N,, which is homeomorphic to S. For S5, we define the orientable genus
g(S,) = n and for N,, we define the non-orientable genus §g(N,,) = n. A surface
S is an orientable surface if it is homeomorphic to 5, for some n > 0 and it is
a non-orientable surface if it is homeomorphic to some N,,, n > 1. The genus
g(S) of an orientable surface S is n if S is homeomorphic to S,. The non-
orientable genus g(S) of a non-orientable surface S is n, if S is homeomorphic
to N,. The FEuler genus of an orientable surface S is €(S) = 2¢(S) and the
Euler genus of a non-orientable surface N is €(NN) = g(N).

A 2-cell embedding of a graph G into a surface S is graph G’ which is 2-cell
embedded in S and isomorphic to GG. Faces of the embedding of G are faces
of G'.
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Let G be 2-cell embedded in S. Put a small disc D, on each vertex v of
G such that D, intersects G only in v and edges incident with v and so that
the intersection of D, with each edge incident with v is a segment. Choose an
orientation of the boundary of D,. Intersections of edges {ei, ..., ds} incident
with v and the boundary of D, define a clockwise ordering of edges incident
with v around v. This ordering defines a permutation m, of edges incident
with v for which 7, (e) = €’ if €’ follows e in the ordering. For an edge e = wv
we say that orderings 7, and m, are consistent if for an orientation of e the
discs D, and D, with orientations which define 7, and 7, cross e one from left
to right and the other from right to left. If =, and 7, are consistent than we
set A(e) = 1 and if they are not consistent we set A(e) = —1. The mapping
A is called the signature of edges (see Figure 1.1). It turns out that if S is
orientable then we can choose the orderings around vertices so that for each
edge e € E(G) we have A(e) = 1.

€9 €1 fm fm—l

f >

Figure 1.1: An edge e = wv in an embedded graph with chosen clock-
wise orderings at its ends and rotations w, = (eejes---e, 1€,) and w, =

(efifor - fm-1fm) and A(e) = 1.

Denote by m = {m, | v € V(G)} the collection of clockwise permutations
around vertices of the embedded graph G. The pair II = (7, \) is is called a
rotation system of the embedded graph G. Two rotation systems II and IT'
are equivalent if IT" can be obtained from II by a sequence of transformations
where in each transformation we reverse the clockwise ordering around a vertex
v and change the signs of all signatures of edges incident with v. It turns out
that a 2-cell embedding of G is completely determined by its rotation system
and that each rotation system defines a 2-cell embedding. A rotation system
is called a combinatorial embedding. From now on whenever we say that II is
an embedding of a graph G we mean that II is a rotation system which defines
the embedding.

A sequence of vertices of and embedded graph G which appears along a



6 Introduction

face of G is called a facial walk. If all vertices along W are distinct then W is
called a facial cycle.

Given a rotation system II of G the collection of facial walks is obtained as
follows. Choose a vertex vy and an edge e = vyu; incident with vy. Traverse
the edge e. From w; continue on the edge m, (e) and repeat this until an
edge f = v;_jv; is traversed from v;_; to v; for which A(f) = —1 (it could
be that f = e). Now traverse the edge which follows f in the anticlockwise
order around v;, 7, 1(f), and repeat this until an edge with negative signature
is traversed again. From there on traverse edges in clockwise order around
vertices and so on. Repeat this until e is traversed again in the same order
from vy to v;. When this happens we have obtained a facial walk of the
embedding of G. To get other facial walks repeat this procedure starting with
another vertex uy and an edge upu; which has not been traversed from ug to
u1. When no such edges remain (that is all edges have been traversed in both
directions) we get all facial walks of the embedding. Two equivalent rotation
systems define the same collection of facial walks.

A rotation system is determined by the collection of facial walks. Suppose
F is a collection of facial walks. Choose a vertex v and an edge e; incident
with v. There is a facial F} walk which contains the edge e;. This walk also
contains another edge incident with v, say es, so that the edges e; and ey are
consecutive along Fj. There is a facial walk F, which contains e, and a third
edge e3 such that e, and ez are consecutive along F5. We continue this until
we come back to the edge e;. We define the clockwise order around v to be
ey, s, .... Once we have clockwise orderings around each vertex we can define
the signatures of edges. Of course not every collection of walks is a collection of
facial walks of some embedding. For a cubic graph a sufficient condition that
a collection of closed walks F is a collection of facial walks of some embedding
is that each path of length 3 appears along exactly one walk in F.

Suppose we have an embedding II of a graph G into a surface S. Denote
with F(G) the collection of facial walks of the embedding. The number of
facial walks can be determined by the following relation.

Proposition 1.3 (Euler formula). The following equation holds
V(G| = [F(G) +[F(G)| = 2 —€(5).

If IT is an embedding of GG into an orientable surface S we define the ori-
entable genus of II as g(II) = ¢(S). If II is an embedding of G into a non-
orientable surface S we define the non-orientable genus of I1 as g(II) = g(.5).

The (orientable) genus of a graph G is the minimum

g(G) = {g(II) | II orientable embedding of G'}
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and the non-orientable genus of a graph G is the minimum
g(G) = {g(IT) | II non-orientable embedding of G}.

Let IT be an embedding of G into a surface S. We define the geometric
dual G* of G in S as follows. The vertices of G* correspond to facial walks
of the embedding of GG. The edges of G* are in bijective correspondence with
the edges of G. An edge e* joins vertices w and v in G* if the edge e appears
on facial walks corresponding to vertices w and v. For a facial walk W =
eirey - - - e, define the rotation around the vertex w in G* corresponding to
W as m, = (e1,eq,...,6,). We define A(e*) = 1 if facial walks W and V
corresponding to vertices w and v, e = vw, traverse e in opposite directions
and \(e*) = —1 otherwise. It is easy to verify using the Euler formula that II
and II* are embeddings into the same surface. Note that for a graph G the
dual G* can be a multigraph (that is there could be parallel edges or loops in
G*).

A graph G embedded into a surface S such that all facial walks are of
length 3 is called a triangulation of S. The geometric dual of a triangulation
is a cubic graph (see Figure 1.7).

1.3 Snarks

In this thesis we will mostly be interested in cubic graphs of class 2. Before
we start with the introduction to class 2 cubic graphs we state a very useful
Lemma about 3-edge-colorings of cubic graphs.

Lemma 1.4 (Parity lemma). Let ¢ be a 3-edge-coloring of a cubic graph G
and S a cut in G. Denote by S; the set of edges in S colored with color i.
Then

|S1| = |S2| = [Ss5] = |S]  (mod 3).

Snarks are non-trivial cubic graphs of class 2. A cubic graph G of class 2
is trivial if there is a reduction of G to a smaller snark or if there is an obvious
obstruction for G which prevents it to have a 3-edge-coloring. We now explain
what are trivial class 2 cubic graphs which will be excluded in the definition
of snarks.

Suppose S = {e} is a cut of size 1 in a cubic graph G. The edge e is called
a bridge of G. If ¢ is a 3-edge-coloring of G then we can assume that c(e) = 1
which implies that |S;| = 1 and |S2| = |S3] = 0 which is a contradiction to
the Parity lemma 1.4. Therefore if a cubic graph contains a bridge it can not
be 3-edge-colorable. We will therefore require that snarks must be bridgeless
graphs.
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Suppose S = {e, f} is a 2-cut in a bridgeless cubic graph G. Let G — S be
composed of graphs G; and G5. Suppose e = v1v9 and f = ujus and suppose
that v1,u; € V(Gy) and ve, uy € V(G2). Add edges ujv; to G obtain a cubic
graph G’ and usvy to Gy to obtain a cubic graph G5. If G and G, are 3-
edge-colorable then we have a coloring ¢’ of graphs GG} and G, and further we
can assume that ¢/(v1u1) = (voug) = 1. Now we define a coloring ¢ of G as
follows. For an edge g & {e, f} define ¢(g) = /(g) and c(e) = ¢(f) = 1. Tt
is easy to check that c is a 3-edge-coloring of G. Therefore if there is a 2-cut
in a class 2 cubic graph G, we can reduce G to smaller cubic graphs GG; and
(G5 such that at least one of them is of class 2. Therefore we will require that
snarks are 3-connected.

A cut S in G such that G — S has at least two components containing
a cycle is called a cyclic cut. A graph is cyclically k-edge-connected if every
cyclic cut contains at least k edges. Suppose that G is a 3-connected cubic
graph containing a cyclic cut S = {ej,e9,e3}. Then G — S consists of two
connected components GG; and G5 each containing a cycle. Graphs G and Go
each contain three vertices of degree 2 which are the ends of edges in S. If we
add a vertex v; to GGy and connect it to the degree 2 vertices in G; and add
a vertex vy to G5 and connect it to the degree 2 vertices in G5 we get cubic
graphs G and G). Suppose we have a 3-edge-coloring ¢’ of G; and G5. We
can assume that ¢ (viju;) = ¢ (vow;) = i where u; and w; are the ends of e;.
We can define a coloring ¢ of G by defining c(e) = /(e) if e & {e1, a2, €3} and
c(e;) = i. This is a 3-edge-coloring of G. So if there is a cyclic 3-edge-cut
in a class 2 graph GG, we can reduce G to smaller cubic graphs G and G
at least one of which is of class 2. Therefore we will require that snarks are
cyclically 4-edge-connected. Note that a 3-connected cubic graph is cyclically
4-edge-connected if every 3-cut separates the graph into two components, one
of which is a vertex.

Suppose we have a cubic graph G which contains a 3-cycle C'3 on vertices
0, 1, 2 (see Figure 1.2). If we replace C3 with a vertex v we obtain a cubic
graph G'. Suppose ¢ is a 3-edge-coloring of G’. Define a mapping ¢ : E(G) —
{0,1,2} as follows. If an edge is not incident with any of 0, 1, 2 then c¢(e) =
d(e). Further define c(v;i) = c(vi41vi42) = ¢(vv), i = 0,1,2, where incides
are modulo 3. Then c is a 3-edge-coloring of G. We see that if G is of class
2 then G’ is also of class 2. Therefore if we have a 3-cycle in a class 2 cubic
graph we can reduce it to a smaller cubic graph of class 2. We will therefore
require that snarks have no cycles of length 3.

Suppose we have a cubic graph G which contains a 4-cycle Cy on vertices 0,
1, 2, 3 (see Figure 1.3). If we replace C; with two edges ey = vov; and e; = v9v3
we obtain a cubic graph G’. We can assume that G’ is bridegles, otherwise
we add edges vgvs and vive. Suppose ¢ is a 3-edge-coloring of G’. Define a
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Figure 1.2: Removing a 3-cycle from a graph.
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Figure 1.3: Removing a 4-cycle from a graph.

mapping ¢ : E(G) — {0,1,2} as follows. If an edge is not incident with any
of 0, 1, 2, 3 then c(e) = (e). If d(eg) = /(eg) = 1 then color c¢(v;i) = 1,
c(01) = ¢(23) = 2 and ¢(12) = ¢(30) = 3. Otherwise c(eg) = 1 and c(e;) = 2
and we color ¢(vg0) = c(v11) = ¢(23) = 1, c(v92) = ¢(v33) = ¢(01) = 2 and
¢(03) = ¢(12) = 3. In both cases ¢ is a 3-edge-coloring of G. Therefore if we
have a 4-cycle in a class 2 cubic graph we can reduce it to a smaller cubic
graph of class 2. We will therefore require that snarks have no cycles of length

4.

The length of the shortest cycle in G is called the girth of G. Since we will
not allow cycles of length 3 or 4 in snarks, snarks will be required to have girth
at least 5. We now ready to give the formal definition of a snark. A snark is
a 3-connected, cyclically 4-edge-connected cubic graph of class 2 with girth at
least 5.
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Figure 1.4: The Petersen graph.

The smallest snark is the Petersen graph found by Petersen at the end of
19th century [2]. The Petersen graph is one of the most important graphs in
graph theory. It is shown in Figure 1.4.

Although the Petersen graph was found very early finding other snarks
proved to be a difficult task. This is where snarks get their name. The name
comes from the song The Hunting of the Snark by Lewis Carroll in which
snarks are monsters which are very hard to find.

The Petersen graph is the only snark on 10 vertices. The are no other
snarks on less than 18 vertices. In 1940’s Croatian mathematician Blanusa
discovered two snarks on 18 vertices, now known as Blanusa snarks [3]. They
are shown in Figure 1.5 and are the only two snarks on 18 vertices.

The first infinite family of snarks was discovered in 1970’s. Isaacs published
a paper [7] in which he describes a dot product of graphs which constructs
a snark GG as a product of two smaller snarks G; and G5. Although the
dot product is attributed to Isaacs the construction was published earlier by
a Russian mathematician Titus but this paper is unknown to many people
working on snarks.

The dot product of graphs G; and G5 is constructed as follows. Choose an
edge e = uv in G and two non-adjacent edges f; = vivs and fy = vzvz in G.
Denote the neighbors of u distinct from v with u; and us and the neighbors
of u distinct from v with us and uy. The dot product G = G, - Gy of graphs
(GG and (5 is constructed by removing the vertices v and v from Gy and edges
fi1 and fy from G5 and adding edges v;u; for i = 1,2,3,4. Note that if a
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graph is a dot product of two smaller graphs, then it is (at most) cyclically
4-edge-connected. The cut consisting of edges added to GG; and G is called
the product cut. It is easy to prove using the Parity lemma that if G; and G,
are snarks then G is also a snark. A reverse of previous statement also holds.
If G is a snark with a cyclic 4-cut S then there are two smaller graphs G| and
(G5 so that G is obtained as a dot product of G; and G», at least one of G
and G4 is a snark and that S is the product cut of the dot product.

It is clear from the definition of the dot product that the dot product of
G1 and G is not uniquely defined by GG; and G5 but it depends on the choice
of edges and vertices in GG; and G,. If we take two copies of the Petersen
graph for G; and G, there are two possible non-isomorphic dot product we
can construct. These two non-isomorphic dot products are exactly the Blanusa
snarks.

By starting with the Petersen graph and constructing bigger snarks from
smaller it is possible to construct the first infinity family of snarks. All snarks
in this family are cyclically 4-edge-connected. Isaacs also described an infinite
family of cyclically 6-edge-connected snarks which are known as flower snarks.
A flower snark Joy 1, k> 1, is a snark on vertices

V(J2k+1) - {aiabivciadi | L= 0772k}
and with edges
E(Jog1) = {aitis1, a;b;, bici, bid;, c;dir, diciq | 0 =0, ..., 2k}

where indices are modulo 2k + 1. The subgraphs Y; induced on vertices
{a;, b;, ¢;,d;} are called tiles of flower snarks. The flower snark Jor. is ob-
tained by putting tiles Y; on a circle and then appropriately adding three edges
between tiles Y; and Y,y for i = 0,...,2k. The flower snark J5 is shown in
Figure 1.6.

We note that the graph J; is of class 2 but is not a snark since it contains a
3-cycle. If we remove the 3-cycle in J3 and replace it with a vertex, we obtain
the Petersen graph.

Another well known infinite family of snarks was given by Goldberg. Gold-
berg snark Gogy1, k > 1, is the graph with vertices

V(G2k+1) = {az‘, bi, ci, di, ei, fi, i, i | 1=0,..., Qk}
and with edges

E(Gat1) = {aiaizr, a:b;, bici, bid;, ciei, cigi,
d; fi, dihi, gihi, e; f;, fi6i+lagihi+1 | 1=0,... >2k}
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where indices are modulo 2k + 1. The subgraphs 7; induced on vertices
{a;, b, ¢i,d;, e, fi, i, hi} are called tiles of the Goldberg snarks. Similarly as
flower snark the Goldberg snarks are obtained by putting tiles 7; on a circle and
appropriately adding three edges between tiles 7T; and T;,, for ¢« = 0,...,2k.
The Goldberg snark G5 is snown in Figure 1.6. If we do not require that there
are an odd number of tiles, we can define graphs J; and Gy for all £ > 3.
Graphs Jy, and Goy are of class 1.

Snarks described so far all have girth at most 6 (flower snarks Jog.1, k£ > 1,
have girth 6 and Goldberg snarks have girth 5). If there exist snarks with
arbitrary large girth has been an open question for some time. In 1980 Jaeger
and Swart [10] conjectured that all snarks have girth at most 6. This conjecture
was disproved by Kochol [17] in 1997 when he constructed an infinite family of
snarks which contain snarks with arbitrary large girth. Kochol’s construction
called superposition is the most general construction of snarks known. A
special class of snarks constructed by superposition for which Kochol proved
that it contains snarks with arbitrarily large girth is called Kochol snarks.

There are some other constructions of snarks known. For example Goldberg
snarks are a special case of the Loupekhine construction of snarks. Also all
snarks with at most 28 vertices are known [24].

1.4 Superposition

We give a short description of the superposition of graphs. Superposition is
the most general known construction of snarks. It generalizes many previ-
ously known constructions, for example the dot product. It was introduced by
Kochol in [17] where he disproved the girth conjecture for snarks. The girth
conjecture stated that snarks have bounded girth (in particular that for any
snark G, the girth of G is at most 6). Kochol proved that a special class of
snarks obtained as a superposition of the Petersen graph contains snarks with
arbitarilly large girth which disproves this conjecture.

Superposition is a construction of snarks in which we replace the edges and
vertices of snarks by cubic graphs (with pending edges) called supervertices
and superedges. There are almost no requirements for supervertices, all that is
required is that superedges satisfy certain properties. Because there are almost
no requirements for supervertices we can construct a very rich family of snarks
using superposition. We give a short description of the superposition, for more
details see [17].

A multipole M = (V, E,S) consists of a set of vertices V', edges F and
semiedges S. A semiedge s is incident to one vertex v and denoted by s = (v).
We assume that the degrees of vertices in a multipole are all 3 (the degree of
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Figure 1.6: The flower snark J; (above) and the Goldberg snark G5 (below).
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a vertex v in a multipole is the number of edges and semiedges incident with
v).

A (ki,...,k,)-pole is a multipole (V, E,S) with a partition of semiedges
into sets S = S1U---US, with |S;| =k;, i =1,...,n. The sets Sy,...,S, are
called the connectors of the multipole. A (ki, k2)-pole is called a superedge and
a (ki, k2, k3)-pole is called a supervertez. A (1,1, 1)-pole consisting of a single
vertex v and three semiedges incident with v is called a trivial supervertez.

Let G be a snark. We remove two non-adjacent vertices v and u from G
and replace all edges vz; incident with v with semiedges (z;), i = 1,2, 3, and
all edges uy; with semiedges (y;), i = 1,2,3. We define Sy = {(z1), (z2), (z3)}
and Sy = {(v1), (v2), (y3)} and we obtain a (3,3)-multipole with connectors
Sp and Sy called a proper superedge. We say we obtained this superedge by
removing vertices v and v from G. An empty multipole will be considered as
a special (1,1)-multipole and a proper superedge. For a broader definition of
a proper superedge see [17].

Let G = (V,E) be a cubic graph. To each vertex v € V we assign a
supervertex S(v) and additionally to each edge incident to v we assign one of
the connectors of S(v). To each edge zy € E we assign a (proper) superedge
E(zry) and additionally we assign one of the connectors to = and the other to
y (unless E(zy) is an empty multipole).

Assume that for each edge e = xy € FE the following holds. If &(xy)
is an empty multipole, then the connectors assigned e in supervertices S(x)
and S(y) have cardinality 1. Otherwise the connector assigned to edge e in
supervertex S(x) (S(y)) has the same cardinality as the connector assigned to
x (y) in superedge E(xy).

We can then construct a new graph as follows. If the superedge assigned to
e = xy is an empty multipole, then we remove semiedge (v) in the connector
of S(x) assigned to e and the semiedge (u) in the connector of S(y) assigned
to e and add an edge uv. Otherwise we have semiedges {(u1), (u2), (u3)} in
the connector of S(z) and semiedges {(z1), (x2), (x3)} in the connector of e
assigned to z. We remove them and add edges {ujz1, usws, usxs} and do the
same for vertex y. By repeating the procedure for all edges e € E we get a
cubic graph G’ called a superposition of G. If to all edges we have assigned
proper superedges, the graph G’ is called a proper superposition of G.

Kochol proved the following result [17]

Theorem 1.5. For a snark G a proper superposition G’ is a snark.

Snarks are important in graph theory because they appear as possible min-
imal counter-examples for some of the most important open problems in graph
theory. One of the most interesting open problems is the Cycle Double Cover
conjecture. A collection C of cycles in a graph G is called a double cover if every
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edge of GG is contained in exactly two cycles from C. The Cycle Double Cover
conjecture states that for every 2-edge-connected graph there exists a cycle
double cover. It is not too hard to show that every minimal counter-example
to this conjecture would be a cubic graph. Now suppose that c is a 3-edge-
coloring of a cubic graph G. A subgraph H;; induced on the edges colored
with colors ¢ and j, 1 <7 < j < 3 1is a union of cycles. The collection of cycles
in graphs H, 5, H; 3 and Hy 3 covers each edge twice since an edge colored for
example with color 1 is contained in a cycle in the graph H; 5 and a cycle in the
graph H; 3. Therefore we see that the minimal counter-example to the Cycle
Double Cover Conjecture would be a snark. Another well known conjecture
is the Tutte’s 5-flow conjecture. It states that every bridgless graph admits a
5-flow. Again, every minimal counter-example to the Tutte’s conjecture would
be a snark.

1.5 Embeddings of cubic graphs

One of the most famous solved problem in graph theory is the Four Color
Theorem. In its earliest form the Four Color Theorem states that regions of
every map in the plane can be colored with four colors such that two regions
which share a boundary are colored with two different colors. In the language
of graph theory the Four Color Theorem states that vertices of every graph
embedded into the sphere Sy can be colored with four colors such that any two
adjacent vertices are colored with different colors. The Four Color Theorem
was first proposed 1852 and various attempts were made to prove it but the first
proof was by Appel and Haken in 1977 using a computer ([8], [9]). Another
proof was published by Robertson, Sanders, Seymour and Thomas in 1996
[18], also using a computer. It is still an interesting question if a proof without
using a computer is possible.

Suppose we have a graph G embedded into a sphere and we want to color
its vertices with 4 colors. We can add to G all edges possible so that the graph
is still embedded into the sphere. We get a graph T for which all faces are
of size 3 (since otherwise we could still add some edges). If we can color the
vertices of T" with 4 colors then the coloring also defines a coloring of vertices
of G with 4 colors. So to prove the four color theorem we can assume that
the graph is a triangulation of the sphere. Now take the dual 7™ of T in the
sphere (see Figure 1.7). Since T is a triangulation, 7% is a cubic graph. Taitte
observed that if 7™ has a 3-edge-coloring than the vertices of T' can be colored
with 4 colors. The Four Color Theorem therefore states that snarks can not
be embedded into the plane.

Before the Four Color Theorem was proved by Apel and Haken, many at-
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Figure 1.7: A triangulation of the plane with its dual.

tempts have been made and some proofs have been published but were later
shown to be incomplete. Many of the attempts to prove the Four Color Theo-
rem opened new direction of research in graph theory. One possible approach
is to generalize the Four Color Theorem and maybe prove the generalization.
One of the interesting generalization is to generalize the statement that snarks
can not be embedded into the plane. The Petersen graph can be embedded
into the torus (see Figure 4.1). However in the embeddind there are two facial
walks that have more than one edge in common. This is true for all known
embeddings of snarks.

An embedding of a graph in called polyhedral embedding if all facial walks
are cycles and two facial walks are either disjoint, intersect in precisely one
vertex or intersect in precisely one edge. An embedding of a cubic graph is
polyhedral if all facial walks are cycles and two facial walks are either disjoint
or share precisely one edge.

Suppose G is embedded in a surface S. A cycle on the surface (a closed
simple curve on the surface) is contractible if it bounds a region isomorphic
to an open disc in the plane and non-contractible otherwise. We say that the
embedding of G has face-width k if every non-contractible cycle on S intersects
G at least k times. Using face-width we can describe polyhedral embeddings
of G using the following proposition.

Proposition 1.6. An embedding of a graph G is polyhedral if and only if G
is 3-connected and the embedding has face-width at least 3.
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If 1967 Griinbaum proposed a far-reaching generalization of the Four Color
Theorem (which had not yet been proved at that time). The lack of orientable
polyhedral embeddings of the Petersen graph and other non 3-edge-colorable
cubic graphs known at that time led Griinbaum to the following

Conjecture 1.7 (Griitnbaum [4]). If a cubic graph admits a polyhedral em-
bedding in an orientable surface, then it is 3-edge-colorable.

Another way of stating the Griinbaum conjecture is that cubic graphs which
are not 3-edge-colorable do not admit polyhedral embeddings. The conjecture
is not true for non-orientable surfaces since the Petersen graph has a polyhedral
embedding into the projective plane (see Figure 3.1). Later on we will construct
for each non-orientable surface N a snark which has a polyhedral embedding
in V.

Even though almost 40 years have passed since it was proposed, not much
progress has been made toward resolving the Griinbaum conjecture. The con-
jecture has been verified for flower snarks by Szekeres in [5] where he proves
that graphs Jor11 do not have orientable polyhedral embeddings. The proof
does not rely on the fact that graphs Jo,; are snarks and later we show that
indeed none of the graphs Ji, & > 3, have polyhedral embeddings into any
(orientable or non-orientable) surfaces. We also show that the conjecture is
true for Goldberg snarks and Kochol snarks.

Besides the Szekeres’ paper [5], not much has been published about poly-
hedral embeddings of snarks. Tinsley and Watkins studied the genus of flower
snarks [12]. They observe that the genus of snarks they study increases with
the order of the graph. In the next chapter we extend their results. We find
the genus of flower snarks and Goldberg snarks and prove some results about
the genus of dot products of the Petersen graph. In the third chapter we
study polyhedral embeddings of flower snarks and Goldberg snarks into ori-
entable and non-orientable surfaces. We show some obstructions for existance
of polyhedral embeddings and construct polyhedral embeddings of snarks into
non-orientable surfaces. In the last chapter we prove that Kochol snarks do
not have polyhedral embeddings into orientable surfaces. We define the defect
of a graph which is a measure for how far a graph is from having a polyhedral
embedding into an orientable surface and prove some results connecting the
Griinbaum conjecture, defect and resistance of cubic graphs.



Chapter 2

Genus of snarks

In this part of the thesis we give some results about the genus of snarks.
The genus of snarks has been studied in a paper of Tinsley and Watkins [12]
in which they determine the orientable genus of flower snarks. They give an
upper bound for the orientable genus of Goldberg snarks and make a conjecture
about the genus of dot products of the Petersen graph. Based on these results
they observe that the genus of the snarks they studied increases with the order
of the snark.

The method Tinsley and Watkins used to prove their results on the genus
of Jori1 are topological. We first prove their result on the orientable genus
of Jopi1 using a combinatorial method. This method extends to the non-
orientable case aswell. Using the same idea we determine orientable and non-
orientable genus of Goldberg snarks.

Next we study the orientable genus of dot products. We first disprove the
conjecture of Tinley and Watkins about the orientable genus of P". We show
that there are infinitely many graphs P™ which can be embedded in the torus.
Further for each g, 1 < g < n, we show that there is a product P" such that
the orientable genus of P" is equal to ¢g. Finally we give tight bounds for the
orientable genus of a dot product of two cubic graphs.

2.1 Flower snarks and Goldberg snarks

Tinsley and Watkins determined the orientable genus of flower snarks. They
use topological methods to prove the lower bound and used a different approach
for the non-orientable genus. In this section we give a short combinatorial proof
of their results which works for both orientable and non-orientable genus. The
proof works by counting arguments and uses the Euler formula. A similar
approach also works for Goldberg snarks.

19
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Theorem 2.1 (Tinsley, Watkins). The orientable genus of the flower snark
is g(Joxs1) = k and the non-orientable genus is §(Jog11) = 2k — 1.

Proof. An embedding of Jox,1 in an orientable surface of genus k& is described
by a list of facial cycles

® apdy - - - Agk,

o CodapCop—1dak—2 - - - c1dpCay - - - dyco,

o dobocodybicy - - - dorbarcardy,

o F;=a;bidicii1bi1a;01a; for i =0, ... 2k,

which gives g(Jog11) < k (see also Figure 2.1 which show an embedding of J;
into an orientable surface of genus 2).

Figure 2.1: The flower snark J; embedded into an orientable surface of genus
2.

A non-orientable embedding of Jo,. 1 in a surface of genus 2k —1 is described
by a list of facial cycles
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® apay - - - Agg,

codibicidabacy . . . dop—1bag—1Cop—1dakCo,

codicads . . . dop—1corbardayco,

doc1dacy . . . dagbaxCord,
® Fz = aibidiciﬂbiﬂaiﬂai for i = O, Ce 2]€,

which gives the upper bound §(Jor+1) < 2k — 1. See also Figure 2.2 which
shows the embedding of the flower snark .J5 into the non-orientable surface Nj.
Is is easy to see from the figure how to embed snarks Joi, 1 into surfaces Noj_4
for k > 3.

Figure 2.2: The flower snark J; embedded into the non-orientable surface of
genus 3.

By contracting each tile Y; of Jor11 to a vertex ¢ we get a cycle @ of length
2k + 1. Each facial walk W in an embedding II of Jy, .1 induces a walk W’ in
Q). We define the winding number w(W) of W to be the winding number of
W’ in Q. A facial walk in IT is local if w(WV) is zero and global otherwise.

We show that in the embedding of Il we can have at most 2k + 1 local
facial walks. For each local facial walk W there exists an index i, such that
W contains a path P = xgx; ...x;_17;, where vertices xy and z; are in the tile
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Y;_1 and vertices x1,...,x;_1 are in the tile Y;. To the walk W we assign the
vertex 1 of Q).

There are three paths of the form xgx,b; where zq is in the tile Y;_;. Since
each walk assigned to the vertex ¢ contains two such paths and each path of
length tree can appear at most once along facial walks of II, we see that to
each vertex of (5,1 we assigned at most one facial walk. So we can have at
most 2k + 1 local facial walks in the embedding of Jo 1.

In the embedding of Jy;,1 we can either have 6 global facial walks or at
most 2k + 1 local facial walks and 4 global walks. This implies that there are
at most 2k + 5 facial walks in an embedding of Jox;.

Suppose II is an embedding of Jo,11 into a non-orientable surface of mini-
mum possible genus §(Jo11). By Euler formula

2=g(Jors1) = [V(Jawr1)| = [E(Japr1)] + [Fri(Jons1)]
< 4(2k+1)—-6(2k+1)+2k+5=3—-2k
the non-orientable genus is §(Jory1) > 2k — 1.

Suppose 11 is an embedding of Jox 1 into an orientable surface of minimum
possible genus g(Jag11). Since |V (Jopy1)| = 4(2k+ 1) and |E(Jog11)| = 6(2k +
1), by Euler formula |V (Jort1)| — |E(Joks1)| + [ Fi(Joks1)| = 2 — 29(J2541),
there are an even number of facial walks in II. Therefore there can be at most
2k + 4 facial walks in II. Now the Euler formula

2-29(Jo1) = |V(Joksr| = [E(Jokta| + [Fri(Jor1)]
< A2k +1)—6(2k+1)+ 2%k +4=2— 2k

implies that g(Jort1) > k. O

The same argumentats also work for graphs Jo,. We can show that in every
embedding of Jy; there can be at most 2k. If there are 2k local facial walks,
then there are four global facial walks. Since every embedding can have at
most 2k + 4 facial walks we get a lower bound for genera of Jy.

Theorem 2.2. The orientable genus of the flower graph Joy, is g(Jor) = k — 1
and the non-orientable genus is §(Jo) = 2k — 2.

Proof. The lower bound is obtained in the paragraph before the theorem.
From Figure 2.4 it is easy to obtain embeddings of Jo; into non-orientable
surfaces of genus 2k — 2. An embedding of Jy; into an orientable surface of
genus k — 1 is given by the following list of facial cycles:

® apay - - A2k—1,
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doCog—1dog—2Cak—3 - . . do,

codap—1dak—2dok—3 . . . Co,

dobocodrbic . . . dag—1bok—1c25—1do,

Fz’ = aibidicHlelaHlai for i = 0, .2k — ]_7

O

Tinsley and Watkins obtained an upper bound for the orientable genus of
Goldberg snark Gyiyq1 by showing an embedding into the orientable surface
of genus 2k. Using ideas similar to those used in the proof of the previous
theorem we show that this bound is the correct value for the orientable genus
of Gogi1. We also determine the non-orientable genus of Gagy 1.

Theorem 2.3. The orientable genus of the Goldberg graph is g(Gy) = k — 1
and the non-orientable genus is §(Gy) = k.

Proof. We first look at orientable genus. An embedding of the Goldberg
graph G}, in the orientable surface of genus k is described by facial cycles

® apdy - - Ag—10Qg,

o (= asbd; fieir1cipibip1a,10; for i = 0,... k-1,

Di = bzczgzhzdzbu for i = 0, R ,k — 1,
JooSfrk—1€x-1" - f1€1fo,

hogoh1g1 - - - hi—1Gi—1ho,

b fodohog%ck—lek—lfk—de—Qhk—2 e 'gocoeofk—ldk—lhk—l e '9101€1f0-

See also Figure 2.3.

For the lower bound for the orientable genus we use the Euler formula. We
have |V(Gy)| = 8k, |E(Gy)| = 12k and in the embedding into the orientable
surface of genus k there are 2k + 2 facial walks. We show that if II is an
orientable embedding of G}, then there are at most 2k + 2 facial walks in II,
which gives the lower bound £ for the genus of the surface.

We group facial walks in the embedding II of Gy into three groups. A
facial walk is short if it is contained in a tile T; of Gy and long otherwise.
By contracting tiles 7T; of Gy into vertices ¢ we obtain a cycle ) of length k.
Each facial walk W in the embedding IT defines a walk W’ in ). The winding
number of W’ in @) defines the winding number w(W) of W. A long facial
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Figure 2.3: The Goldberg snark G5 embedded in the orientable surface of
genus 4.

walk is local if the winding number is zero and global otherwise. With this we
have grouped facial walks of II into three groups: short and long local walks
and global walks.

We show that we can have at most 2k 4 2 local walks. To each local walk
we assign a vertex in () as follows. To a short walk in a tile 7T; we assign
the vertex ¢. If W is a long walk, there exists an index ¢ and a sub-walk
P = xgxq1...2_12; on W such that zo and x; are in the tile T;_; and all
vertices x1,...x;_q are in the tile T}, since otherwise the winding number of W
could not be zero. To W we assign the vertex ¢ in @ (if there are more than
one possibilities for ¢ we arbitrarily choose one of them). We now prove that
to each vertex ¢ we can assign at most two facial walks which implies that we
have at most 2k local walks.
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Suppose we have assigned three long local walks Wy, W5 and W3 to ¢. Since
there are only three edges from tile T;_; to T;, all are contained twice in walks
Wy, Wy and W3, and in particular edge a;_ia; is contained twice in them. But
since we assigned all of W7, W5 and W3 to ¢ we see that if W contains a;_1a;,
it must contain a;_1a;b;. But in the embedding II it is not possible that a path
of length 3 appears twice along facial walks in II.

Suppose we have assigned three local walks Wy, W5 and W3 to i, where Wy
is short and W5 and W3 are long. There are two possibilities for W;. Either
it contains the cycle h;g;c;b;d;h; or h;g;cie; fid;h; (the case when it contains
d;b;cie; f;d; is symmetric to the first case).

Suppose Wi contains h;g;ce; fid;h;. We have facial walks which contain
paths hi—lgihigi—l—l; ei_lfieif,;ﬂ and A; —1A;Q54 1. This is a contradiction with
the fact that a;_1a;, e;_1f; and h;_1g; appear twice on each of Wy and Wj.
Suppose that the consistent orientation of facial walks W; contains the path
higicibid;h;. We have facial walks which contain paths (in some orientation)
hi—19:h;g;+1 and a;_qa;a;.1. It follows that both W5 and W3 contain the edge
ei_1fi. Now W5 must contain e; 1 f;d;b;a;a;_1. The walk W3 must contain
edges f;e;_1 and g;h;_1 in these orientations. But this is a contradiction.

Finally assume that we have assigned two short local facial walks W; and
W5 to i. Since a short local walk at 7 contains one of three cycles h;g;c;b;d;h;,
d;bcie; fid; or h;g;cie; fid;h; it follows that at least one path of length 3 is
contained twice along facial walks of the embedding, which is a contradiction.
So in an embedding of Gy there can be at most 2k local facial walks. In
particular we have shown that there can be at most k short local walks in an
embedding of Gj.

Now suppose we have an embedding II into an orientable surface of genus
less than k£ — 1. By Euler formula

2—-29(Gr) = |V(Gp)| = |E(G)| + |F(Gy)
= 8k — 12k + |F(Gy)|
= |F(Gi| — 4k

we get
|F(Gy)| = 4k 42 — 29(Gy,) > 4k + 2 — 2(k — 2) = 2k + 6.

Since at most 2k of them can be local walks, we have at least 6 global walks.
Since each global walk contains at least one edge connecting the tile T;_; with
the tile T; and there are three edges connecting tile 7;_; and T;, we see that no
local walk can contain an edge between two tiles. So all local walks are short.
But we can have at most k short local walks, a contradiction. We have shown
that the genus of Gy, is at least k — 1.
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We now prove that the non-orientable genus of the Goldberg snark is
§(G) = k. An embedding of Gy into a non-orientable surface of genus k
is described by facial cycles

® Qpay - - - Ag—1k0ao,

C; = a;bid; fieit1¢cip1bivr1ai0; for 0 =0,k — 1,

Di = bzczglhzdzbz for 1 = 07 ey k — ]_,

E; = fieina firidivihivigicieif for i =0,k — 1,
o [ = hogohigi . .. hig—1Gk—1ho.

An embedding of G5 into the non-orientable surface of genus 5 is shown in
Figure 2.4. Is is easy to see how to get an embedding of arbitrary G} into a
non-orientable surface of genus k.

To prove the lower bound we show that in a non-orientable embedding
of Goiy1 there can be at most 3k local facial walks which will give an upper
bound for the number of facial walks to be 3k 4 2. This implies that the genus
of the surface is at least k. Again as before we can assign to each local facial
walk a vertex of (). We show that to each tile T; we can assign at most three
local facial walks. As in the case of the orientable embedding there can be at
most one short facial cycle in each tile. If we assigned three long local walks to
a tile T;, then all three edges between tiles T;_; and T; must appear on them,
each twice. But this implies that the path a;_;a;b; is contained in two facial
walks, which is a contradiction. To each tile we can assing at most three local
facial walks (one short and two long), which implies that there can be at most
3k local facial walks. If we assigned three local facial walks to any tile, then
there can be at most two global facial walks. So the biggest possible number
of facial walks is 3k + 2 and by Euler formula

2—-09(Gy) = 8k—12k+ |F(Gy)|
< 8k—-12k+3k+2=2-k

we have §(Gy) > k. O

In particular case, the last theorem states that for Goldberg snarks we have
9(Gart1) = 2k and §(Gopy1) = 2k + 1.
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Figure 2.4: The Goldberg snark G5 embedded in the non-orientable surface of
genus o.

2.2 Toroidal snarks

Let P" denote a dot product of n copies of the Petersen graph. In [12] authors
proposed a conjecture, that a graph P" has orientable genus precisely n — 1.
In the construction of P? there are two non-equivalent ways to choose edges e;
and es in the first copy of P, so there are two non-isomorphic dot products of
two copies of the Petersen graph (which are the only two snarks on 18 vertices).
The previous conjecture was disproved in [21], where it was shown that one of
the two possible dot products P? has orientable genus 2, so that the genus can
be bigger than conjectured.

In this section we show that for every positive integer n a dot product of n

copies of the Petersen graphs exists, which can be embedded in the torus and
has therefore genus 1, so there exists and infinite family of counter-examples for
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which the value of the genus can also be (much) smaller than the conjectured
value. We also show that for each g there are infinitely many snarks with
orientable genus precisely g.

Let G be a cubic graph embedded into an orientable surface S, and G
be a cubic graph embedded in the torus 7. Let e; = x1x9 and e; = x3724 be
two edges of GGy such that in the embedding of G} there are two facial walks
01 = $1[E2P1$3[E4P21’1 and CQ = $2[E1P4$4[E3P3I2. Then we say that edges €1
and ey satisfy property P. Let f = uv be an edge in G5 such that the neighbors
of u, distinct from v, are yi, 32, the neighbors of v, distinct from u are ys3, y4
and in the embedding of G5 there are distinct facial walks Dy = yyuvys Ryyy,
Dy = ysvuys R3ys and D3 = youy1 Royavys Rays.

Lemma 2.4. Let GG; and G be as above. Then a dot product G = Gy - Go
exists which has an embedding into the surface S;. Furthermore, the edges
e; = xy; and €; = x;y; in G have property P.

5 Cl i 5
1 O O To Yo
Cy

Figure 2.5: The configuration of faces in Gy and Gs.

Proof. Let G; and Gy be embedded as in the Lemma. Let G be the dot
product as described in the paragraph above the Lemma. We define the embed-
ding of G by specifying vertex rotations. Denote with X the set {x;,y; | i =
0,1,2,3,4}. The rotations at vertices in V(G)\ X are the same as the rotations
in the embeddings of G; and 5. The rotations at vertices in X are the same
as the rotations in the embeddings of G; and Go where we naturally replace
the deleted edges with the added ones. This is clearly an embedding into an
orientable surface. To prove that this surface is S, we count the facial walks of
the embedding. The facial walks which do not contain any of the vertices from
X are facial walks in the embedding of GG; or G5. The facial walks, which con-
tain vertices from X are woPix3ysRiysxa, T1y1 RoysxsPoxy, ToPix3ysRiysxo



2.2 Toroidal snarks 29

and 1 PyxsysRyy1r1. So we have replaced five facial walks with four. We
have [V(G)| = [V(G1)| + [V(Go)| — 2, |E(G)| = |E(G1)| + |E(Gy)| — 3 and
|[F(G)| = |F(G1)| + |[F(Ga)| — 1. So

V(G| = [E@G)| +[F(G)] = V(G| = [E(G)] + [F(G1)] +
[V(G2)| = [E(Ga)| + [F(G2)| — 1
= 142-29—-1=2-2g

which shows that this is an embedding in Sy. It is also easy to see that edges
x1y1 and ysxy satisfy the property P O

Corollary 2.5. For every positive integer n there exists a dot product of n
copies of the Petersen graph, that can be embedded in the torus.

€ €2

xs3 T4

Figure 2.6: The Petersen graph in the torus.

Proof. An embedding of the Petersen graph in the torus is shown in Figure
2.6. It is easy to check that if we take the edges 125 and z3x4 in one copy and
the edge wv in the other, the conditions of Lemma 2.4 are satisfied for both
copies. The corollary follows. O

As an immediate corollary of this result we show that for each g > 0 there
are infinitely many snarks with orientable genus precisely g. This result will
also follow from Corollary 2.9.

Corollary 2.6. For each g > 0 there exist infinitely many snarks with ori-
entable genus g.

Proof. We already constructed infinitely many snarks embedded in the torus.
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Figure 2.7: A graph P? in the torus.

For g > 1 we start with the snark Jo;4; which has orientable genus g.
In the embedding described in the proof of theorem 2.1 edges cyd; and cods
satisfy property P. By Lemma 2.4 we have infinitely many snarks Gy = Jog41,
Gi =Gy -P,Gy =GP, ... embedded in S;. There are two disjoint paths
P, connecting y; and y, and P, connecting y3 and y, in P — {u,v}. Therefore
there is a subgraph in G;,; which is isomorphic to a subdivision of G;. This
implies that in G; there is a subgraph which is a subdivision of Jy,1 and
therefore G; can not be embedded in a surface of genus less than g. O

2.3 The genus of P"

In Corollary 2.5 we have described products P™ which are embeddable in the
torus. In this section we describe products P™ which have genus g, 1 < g < n.
We need the following lemma for the construction.

Lemma 2.7. 1. If two adjacent vertices u and v are removed from the
Petersen graph P then in a drawing of P — {u,v} in the plane, the
degree 2 vertices can not be drawn on the boundary of the same face.

2. If we remove two edges e, f as indicated in Figure 2.8 from the Petersen
graph, then the graph P — {e, f} is not planar.

3. For any vertex x € V(P) the graph P — {x} is not planar.

Proof. For the first part note that if we have an embedding of P — {u,v} in
the plane such that the degree two vertices are on the boundary of one face,
then we can add a vertex in that face and connect it to the degree two vertices.
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Figure 2.8: The Petersen graph in torus with dashed edges e and f.

We get an embedding of the P/uwv in the plane, which is a contradiction since
P and P/uv are not planar graphs.

For the second and third part note that in graphs P — {e, f} and P — {z}
there are subdivisions of the graph K33 which implies they are not planar. O

Theorem 2.8. For each genus n > 1, there exists a dot product P"™ of n
copies of the Petersen graph, whose genus is equal to n.

Proof. We construct products P" together with their embeddings II,, with
the following properties.

e The genus of P" is g(P") = g(II,,) = n

e In the embedding II,, there are two edges e, f € E(P™) on the same facial
walk F such that the genus of the graph P—{e, f}is g(P"—{e, f}) = n.
Further there are two distinct facial walks F; and F>, both distinct from
F, such that F; contains e and F» contains f (or equivalently there is
exactly one facial cycles F which contains both e and f).

For n = 1 we have g(P) = 1 and edges e, f from Lemma 2.7 (See Figure
2.8) satisfy the stated conditions.

Let u,v be adjacent vertices in P and denote the neighbors of v distinct
from u with v; and v, and the neighors of u distinct from v with u; and ws.

Now suppose we have an embedding II,, of P,, edges e = xyx5 and f = y19-
and a facial walk F with required properties. We can assume that vertices
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x1, %2, Y1, Y2 appear in this order along the walk F. Denote the walks which
contain edges e and f by F = xyxo Py Poxy, Fi = xox1Rixe and Fy =
Y21 Rays. We construct P*! by removing edges e, f from P™ and vertices u, v
from P and adding product edges e; = x1v1, €3 = Tavo, f1 = y1u1, foyava. We
claim that g(P"™!) = g(P"™ — {e1,e2}) =n + 1.

Since P™ — {e, f} has genus n it follows that g(P"™') > n. Suppose that
g(P"1) = n. Since the embedding of P" — {e, f} induced by the embedding
of P"*! has genus n it follows that the embedding of P**! also induced an
embedding of P — {u, v} into the plane so that the degree two vertices are on
the same face. But this is a contradiction to Lemma 2.7.

Now suppose that g(P"™ — {e;,es}) = n. Again, since the induced em-
bedding of P" — {e, f} has genus n, the induced embedding of P — {u, v} is in
the plane such that two vertices uq, us are on the same face. But this would
induce an embedding of P — {v} in the plane, a contradition to Lemma 2.7.

Figure 2.9: The graph P — {u,v} embedded on the cylinder.

We have shown that g(P"*) > n + 1. Let P — {u,v} be embedded into
the cylinder Z as shown on the Figure 2.9. In the embedding II, remove a
disc from the face F and join .S,, with the cylinder Z using a sphere with three
discs removed to obtain a surface S,,1. We can add product edges on S, to
obtain an embedding II,,;; into S,+1 (see Figure 2.10).

Facial cycles containing product edges are xoPiyi1u112v0x9, Yo Pox1v13Usys
and x1 Ry xoveduyyy Royous2lvixy so the embedding I1,,., satisfies all require-
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Figure 2.10: The sphere minus three discs with the product edges.

ments. U

Corollary 2.9. For each g, 1 < g < n there exists a product P" with ori-
entable genus g(P") = g.

Proof. Suppose 1 < g < n. By Theorem 2.8 we can construct a product PY
with orientable genus g(P?) = g. By construction there is an embedding of
P9 into S, such that all product edges are on the same face. This implies that
there are two edges e and f which satisfy property P of Lemma 2.4. From
P9 we can then construct a product P" with orientable genus g(P") = g by
successively applying Lemma 2.4. O

2.4 Genus of the dot product

In this section we give general bounds for the genus of the dot product.

Theorem 2.10. Let GG; and Gy be two cubic graphs with orientable genera
9(G1) = g1 and g(G2) = go. Then the genus of the dot product G -Gy satisfies

G+92-2<g(G1-Ga)<g1+g2+ 1.
The bounds are best possible, even if G; and Gy are required to be snarks.

Proof. First we show the upper bound. Let G; be embedded into the surface
Sy of genus ¢g; and (G5 into the surface S5 of genus g,. Suppose that in the
construction of the dot product we remove edges e = x5 from GG and vertices
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w and v with neighbors {uy, us, v} and {vy, ve, u} respectively from G5. Remove
a small disc D around the edge uv in Sy which intersects GG only in vertices
uy, Uz, V1, V2. Note that the vertices appear in this order around the disc D.
Remove two discs D; and D, from S; around edges e and f which intersect
GGy only in end vertices of edges e and f. Now join the surfaces S; and S; by
a sphere with three discs removed. It is possible to add the product edges on
the surface to get an embedding of G; and G5 (see Figure 2.11).

Figure 2.11: The sphere minus three discs with the produce edges.

For the lower bound let G = G, - Gy be embedded into a surface S, of
genus g. The product edges form a cut in GG hence in the dual G* of G in
Sy the edges corresponding to product edges in G form a union of cycles (we
consider a loop to be a cycle of length 1). If we cut the surface S, along these
cycles, the surface is split into two surfaces S| and S, without some discs so
that G; —{e, f} is embedded into S| and Go —{u, v} is embedded into S5. We
can assume that the vertices of degree 2 in G; and G5 are on the boundaries
of S and S;. We do a case analysis on the number of cycles in G* (discs on
the boundary of S| and S}) corresponding to the cut formed by the product
edges. Denote the set of these cycles by C.

Suppose first that the boundary of S} is a cycle C' and that the boundary
of S% is a cycle D. Further assume that the vertices x4, 2, y1, Y2 appear in this
order along C' and vertices uq, us, v1, V2 appear in this order along D. Then we
can add discs to S} and S to get surfaces Sy and S so that g(S1)+¢g(S2) = g(.5)
and we can also add edges e, f to obtain embeddings of (G; into S; and vertices
u, v to Sy to obtain and embedding of Gy into Sy. Therefore g(G1) + g(Gs) <
g(G) in this case.

Assume that the order around C'is x1y;22y2 and that the order around D
is v1u1v9us. Now we can discs with handles to S] and S} to obtain embeddings
of G| and GY into S; and S;. We can add edges e, g to G| and vertices u, v
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to Sy to get embeddings of G; and G5 into S; and S5. Therefore in this case
9(G1) + g(G2) — 2 < ¢g(@G). Because of symmetry these are all possible cases if
we have one cycle in C.

Suppose we have two cycles in C. Surfaces S| and S, have boundaries
consisting of cycles C, Cs and Dy, D, respectively. There are three possibilities
for positions of vertices 1, xo, x3, x4 (21, x9, x3,24) around C; and Cy (D; and
Dg).

Assume that vertices x; and x5 are on the cycle C; and y; and s are on
the cycle Cy. Then we can add two discs to S} to get a surface S; and product
edges to get an embedding of G into S;. We can add a handle to S to get a
surface S, and vertices u, v to S5 to get an embedding of GG into Ss. In this
case we have ¢g(51) + g(S2) — 1 = ¢(S5) — 1 and hence g(Gy) + g(G2) < g(G).

Assume that vertices x; and y; are on the cycle C; and x5 and 5 are on
the cycle Cy. In this case we can add a handle to S} and a handle to S}
to get surfaces S; and Sy and add product edges to S7 and vertices u,v to
Sy to get embeddings of G and G, into S; and S;. in this case we have
9(51) +9(82) — 2 =g(S) — 1 and hence g(G1) + g(G2) — 1 < ¢g(G).

The last possible case is that there is a vertex x; on ' and vertices x1, y1, yo
on Cs. In this case we again get g(G1)+¢g(G2)—1 < ¢g(G). Because of symmetry
these are all possible cases when there are two cycles in C.

Suppose that there are three cycles in C. There are cycles Cy,Cs, C3 on
the boundary of S} and cycles Dy, Dy, D3 on the boundary of S,. Up to
symmetry there are two possibilities for arrangement of vertices 1, x2, Y1, ¥2
around C7,Cs and C5. First case is when vertices x; and x5 are on C4 and
y1 and yo are on Cy and C3. The second case is when vertices x; and y; are
on (4 and vertices x5 and yy are on Cy and C5. In both cases we can add
a sphere minus three discs to surfaces S7 and 5% to get surfaces S; and So
in which we can embed graphs GG; and G,. Therefore in this cases we have
9(51) + g(S2) + 4 = g(5) — 2 and hence g(G1) + g(G2) — 2 < g(G).

The last possible case is that C consists of four cycles. In this case the
boundares of S| consist of four cycles each containing one of the vertices
x1, T2, Y1,Ys. In this case we can add two handles to S} to get a surface S, and
a sphere with four discs removed to get a surface Sy so that graphs G; and Gs
embed into S and Ss. In this case we have g(S1) + g(S2) —5 = ¢(S) — 3 and
hence g(G1) + g(G2) — 2 < g(G).

We only give a sketch of the proof that the bounds are best possible. Let
C be a cycle in a graph G. A relative C'-component of G is either an edge
in E(G) \ E(C) with end points on C' or a connected component of G — C
together with all edges between G — C' and C' with their endpoints. An edge
between a relative component of C' and C'is called a foot. A sequence of cycles
C1,Cy, ..., Cy is planarly nested if for each C; there exist relative components
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H; of C; such that H; D Hy D --- D C}, and that graphs obtained from G by
contracting each edge of H; except its feet are planar. We use the following
theorem from [15].

Theorem 2.11 (Mohar). If1l is an orientable embedding of G into a surface
S of minimum genus g and C,Cy,...,Cy, k > g is a sequence of planarly
nested cycles then cycles Cy,Cs, . ..,Cy_, bound discs in S.

By using superposition we can construct a snarks G; and Gy with an em-
bedding of minimum genus g such that they contain planarly nested cycles
Cy,...,Cy (with relative components Hy, ..., Hy) and Dy, ..., Dy (with rela-

tive components Hj, ..., H; which are contained in subgraphs corresponding
to supervertices of G; and (G5. Further we can add edges e and f a face in
the relative component H; such that relative components Hy, ..., Hy are no

longer planar and similarly adjacent vertices u and v connected to four vertices
of a face in Hj such that components Hi, ..., H,. Denote obtained graphs by
G and G). Since we only changed parts of G; and G corresponding to su-
pervertices, graphs G| and GY are snarks. From Theorem 2.11 it follows that
9(GY) = g(G%) = g+ 1. If we construct the dot product by using edges e and
f and vertices v and v we get a snark G - G, with genus ¢g(G - GS) = 2g and
so 9(G1) +9(Gy) =2 = g(G} - G).

Using a similar idea we show that the upper bound is tight. O



Chapter 3

Polyhedral embeddings of
snarks

In this chapter we look at polyhedral embeddings of cubic graphs. We first
prove that short cycles in polyhedral embeddings must be facial cycles. Us-
ing this fact we show that Goldberg snarks and Szekeres snark do not have
polyhedral embeddings into orientable surfaces. Szekeres showed that flower
snarks do not have polyhedral embeddings into orientable surfaces. We give
a simpler proof of this result which works also for graphs J;, where k is even.
We also show that flower snarks do not have polyhedral embeddings into non-
orientable surfaces. On the other hand we construct polyhedral embeddings
of the Goldbers snarks into non-orientable surfaces. We prove that for each
non-orientable surface N there exist snarks which have polyhedral embedding
into V.

3.1 Short cycles

In this section we look at short cycles in polyhedral embeddings. Let G be a
cubic graph with a short cycle C' has a polyhedral embedding, then C' is very
likely to be a facial cycle. This is established by the following lemmas.

Lemma 3.1. Let G be a cubic graph and C' a 3-cycle of G. Then C' is a facial
cycle in every polyhedral embedding of G.

Proof. Let C = vyvivov9 be a 3-cycle of G. Denote the neighbor of v; not in
C with v}, i = 0,1,2. A facial cycle in a polyhedral embedding of G cannot
contain any of the paths vjv;v;410;42v;, 4, i = 0,1,2, indices modulo 3, since
it must be induced. This implies that we have three facial cycles at C', which
contain vjv;v;41v; 4, 1 = 0,1,2, indices modulo 3. Then C is a facial cycle. O

37
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Lemma 3.2. Let G be a cubic graph other than K, and let C' be a 4-cycle of
G. Then C' is a facial cycle in every polyhedral embedding of G.

Proof. If G has a polyhedral embedding and G is not K4, then every 4-cycle
of G is induced, since G is 3-connected by Proposition 1.6.

Let C' = vyv1v9v3v0 be a 4-cycle of G and let v} be the neighbor of v; not
inC,71=0,1,2,3.

Suppose that all facial cycles, which intersect C, intersect C' in one edge
only. For each edge v;v;,1 there is a facial cycle C; which contains the path
V;;V; 11V, Where indices are modulo 4. Therefore all edges v;v; are contained
twice and edges v;v; 41 are contained once in facial cycles ¢;, 1 = 0,1, 2. There-
fore C' must be a facial cycle since edges v;v;,1 must be covered twice by facial
cycles.

Suppose there is at least one facial cycle C; # C which intersects C' in more
than one edge. Facial cycles in polyhedral embeddings are induced. Hence we
may assume that C contains the path vjvgv;vev). The other facial cycle Cy,
which contains the edge v{vy, must contain the path vjvyvsv} in order not to
intersect C; at vo. The third facial cycle through vy then contains edges vyvy,
vov3 and v3vy, which is a contradiction. O

Let a graph G be embedded in a surface S, let F' be a facial cycle and let
C be a cycle of G. We say that F'is k-forwarding at C, if F' and C intersect
precisely in k consecutive edges on C.

Lemma 3.3. Let G be a cubic graph and C' an induced 5-cycle of G. If G
has a polyhedral embedding in a surface S, then the following holds.

(a) If S is orientable, then C' is a facial cycle.

(b) If S is non-orientable, then either C' is a facial cycle or all facial cycles
that intersect C' are 2-forwarding at C'.

Proof. Let C' = vgvvav3v4v9 be a 5-cycle of G. Suppose that no facial cycle
(other than possibly C') intersects C' in more than one consecutive edge on C'.
Then it is easy to see that C' is a facial cycle.

Now let F' be a facial cycle that intersects C' in at least two consecutive
edges on C. Facial cycles in polyhedral embeddings are induced. Therefore F
is either 3-forwarding or 2-forwarding at C.

If Fis 3-forwarding, we can assume that the path vjvgvivovsvy is in F.
Then the facial cycle, which contains the path vyv,vs, intersects twice with F'.
This contradiction implies that no facial cycle is 3-forwarding at C'.
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Figure 3.1: The Petersen graph embedded in the projective plane.

We may assume that F' contains the path vjvgvivevy. The facial cycle,
which contains the path vjvivy, must contain the path vjvivovs so it is 2-
forwarding. If we continue along the cycle C', we see that all facial cycles at C
are 2-forwarding at C'.

To complete the proof, we will show that S is not orientable, if all facial
cycles at C' are 2-forwarding. Suppose that S is orientable and let C; be the
facial cycle, which contains the path v;v;11v;12, @ = 0,1,2, 3,4, indices modulo
5. We can assume that in the orientation of Cj, induced by the orientation of
S, vertices vgu1vy are in clockwise order. Then the vertices vsvovy are in this
clockwise order on (. If we continue along C', we see that in C} vertices v4vov;
are in clockwise order. But then Cy and C} induce the same orientation of the

edge vovy, which is a contradiction with the assumption that S is orientable.
|

Corollary 3.4. If a cubic graph G contains two induced 5-cycles, whose inter-
section is nonempty and is not just a common edge, then G has no orientable
polyhedral embeddings.

Proof. Suppose we have an orientable polyhedral embedding of G. By
Lemma 3.3 both 5-cycles are facial. This is a contradiction with the fact that
their intersection contains more than just one edge. O

In the Petersen graph P every edge is contained in four induced 5-cycles.
Lemma 3.3 therefore implies that P has no orientable polyhedral embeddings.
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However, P has a polyhedral embedding in the projective plane (see Figure
3.1).

Lemma 3.3 and its Corollary 3.4 can be applied on many other snarks, for
example the Szekeres snark that is shown in Figure 3.2.

Theorem 3.5 (Szekeres). The Szekeres snark has no polyhedral embed-
dings.

Proof. Each of the five “parts” of the Szekeres snark (see Figure 3.2) contains
a path vivy...v9 on 9 vertices and a vertex vy that is adjacent with vg, vs, vg
and further there are edges v1vg and v4v9. There are four induced 5-cycles C =
VU1 VgUsVy, (o = UgUaU304U50g, C3 = vgugtgv 50y and Cy = vgUgU706VUs500.
Cycles € and Cf intersect at two edges adjacent to vy. Therefore they are
not both facial cycles. If none of C, C is facial, then the 2-forwarding facial
cycles at C'; and Cs, which contain their intersection C; N Cs, are distinct and
intersect in two edges. So one of them is facial and the other is not. Similarly,
one of the cycles (3, Cj is facial and the other one is not.

Suppose the cycle Cj is facial. Then it is 1-forwarding at Cy, so Cj is facial
and C; and Cj5 are not facial. This implies that there is a facial cycle that
contains the path vivgv5v4v9 and another facial cycle that contains the path
V1U2VgUgVg, Which is a contradiction.

Suppose now that C5 is not facial. Then (] is facial and is 1-forwarding
at Cy. So Cy is a facial cycle and Cj5 is not. This implies that there is a facial
cycle that contains the path vzvvgvgv; and another facial cycle that contains
the path vsvsvsvgv7, which is a contradiction. O

Nonexistence of orientable polyhedral embeddings of the Szekeres snark
has been proved earlier by Szekeres [5].

3.2 Small edge-cuts

Let G; and G2 be cubic graphs and v; € V(Gy), va € V(Gz). Denote the
three neighbours of v, in G by 2, 21, 22 and the three neighbours of vy in G,
by wug,u1,us. Let G = G * Gy be the cubic graph obtained from graphs G,
and Gy by deleting vertices v; and v, and connecting vertices u; with z; for
1=0,1,2. We call G the star product of G; and G5. It is easy to see that the
graph G is 3-edge-colorable if and only if both GG; and G5 are 3-edge-colorable.

Theorem 3.6. The star product G = G * Gy has a polyhedral embedding in
an (orientable) surface if and only if both G and Gy have polyhedral embed-
dings in some (orientable) surfaces.
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Figure 3.2: The Szekeres snark.

Proof. Suppose we have polyhedral embeddings of G and Gy. At vertex
v; we have three facial cycles C; = z;v12;11P;z; for i = 0,1, 2, indices modulo
3. At vertex vy, we have three facial cycles D; = w; Rju;q1vou; for @ = 0,1, 2.
Since the embeddings are polyhedral, paths Py, P;, P, and paths Ry, R, Rs
are pairwise disjoint. In the embedding of the star product G = G *x G5 we
keep all facial cycles from embeddings of G; and G5, which do not contain
vertices v; and vy, and add three new facial cycles F; = zu; Riu;i12i11 P2,
1 = 0,1, 2, indices modulo 3. Facial cycles in G, which are facial cycles in G
or (35, intersect pairwise at most once. A facial cycle F, which is also a facial
cycle in GGy or G, intersects the facial cycle Fj, © = 0, 1,2, only on the path P;
or only on the path R;. So it intersects F; at most once. Facial cycles F; and
F; .1 intersect only in the edge u;112;41, ¢ = 0, 1,2, indices modulo 3, since the
paths Py, P, P, and Ry, Ry, Ry are pairwise disjoint. So the embedding of G
is polyhedral. It is easy to see that the embedding of GG is orientable if and
only if the embeddings of G; and G4 are orientable.

Suppose now that GG has a polyhedral embedding. The three edges z;u;,
1 = 0,1,2, form a 3-cut in GG. Since the embedding is polyhedral, we have
three facial cycles F; = u; R;u;1 1241 F;z;u;, such that F; and Fj,; intersect in
the edge z;11u;41, ¢ = 0,1,2, indices modulo 3. We may assume that there
are no negative signatures on edges z;u;, ¢ = 0,1,2. In the embedding of G,
(and G3) we keep all facial cycles, which do not intersect G, (respectively
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Figure 3.3: The star product G of graphs GG; and Gb.

G1), and add vertices vy, vy with such local rotations that we obtain new
facial cycles Cz = Zivlzi—l—lpizi in Gl and Dz = uiRiui+1U2ui in GQ, 1= 0, ]., 2,
induces modulo 3. Since we have no new intersections between facial cycles
(intersections on z;u; become intersections on z;v; and u;vy), the embeddings
of G7 and GGy are polyhedral. It is also clear that both embeddings are in
orientable surfaces if and only if the embedding of GG is orientable, since we did
not change local rotation at any vertex or change the signature of any edge. O

If the embedding of G = G * G5 in a surface S is constructed as in the
proof of Theorem 3.6 from embeddings of G; and G5 in surfaces S; and Sy of
Euler genus €(S1) = k; and €(S) = ko, respectively, then the Euler genus of S
is €(S) = ki + k9. This is easily proved by using Euler’s formula for G, G; and
G5. Let G7 and G5 be cubic graphs. Choose an edge e = xy in G; and two
nonadjacent edges f; = ugu; and fo = usuz in G. Denote the neighbors of x
in Gy by vy, v, and the neighbors of y by vy, v3. Let G be the dot product of
(G; and (G5 obtained by deleting vertices x, y in (G; and edges f1, fo in G5 and
joining pairs v;u;, ©+ = 0,1, 2, 3.

Theorem 3.7. Let G| and G5 be cubic graphs. If G; and G5 have polyhedral
embeddings in (orientable) surfaces Sy and Ss, such that the geometric dual
of GGy is not a complete graph, then a dot product G = G, - Gy exists, which
has a polyhedral embedding in an (orientable) surface S. If the Euler genera
of surfaces Sy and Sy are €(S1) = ky and €(Sy) = ko, then the Euler genus of
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Figure 3.4: The dot product G of graphs G; and G,.

S is E(S) = kfl + ]{52.

Proof. Suppose that we have polyhedral embeddings as described. We claim
that G contains facial cycles Dy, Dy, Do, such that D, intersects Dy and D,
but Dy and Dy do not intersect. To see this, consider the dual graph R. Since
it is not a complete graph, it has two vertices ¢y and ¢, that are at distance
two in R. If ¢q is their common neighbor, then we can take Dy, Dy, Dy to be
the facial cycles corresponding to ¢y, ¢; and co, respectively.

Let fi = wou; and fo = wouz be the intersections between Dy, D; and
D1, Dy, respectively, and choose an arbitrary edge e = xy in G;. Denote the
neighbors of z and y in G; so that the facial cycles, which contain = or y,
are Cy = voxv, Pyvg, C1 = vizyve Pivr, Co = vayu3 Pavs, and C5 = vsyxvg Pavs.
Since the embedding of GGy is polyhedral, paths Fy, P, P, P; are pairwise
disjoint, except that Fy and P, may intersect. In Gy we will use the following
notation for facial cycles: Dy = ugRouiug, D1 = uguy RiusuzR3ug and Dy =
us Rouzus. The paths Ry, Ry, Ry, Rz are pairwise disjoint. In the embedding
of G we keep all local rotations at vertices of G; and (G5, which are not deleted
(with added edges naturally replacing deleted edges), and all edge signatures.
Instead of facial cycles C;, D; we get a facial cycle F; = vu; Rju; 1041 Pv;,
1 = 0,1,2,3, indices modulo 4. Since the paths P;, R; are pairwise disjoint,
except for the possible intersection between P, and P, all intersections between
facial cycles F;, + = 0,1,2,3, are the intersections of F; and Fj,; in edges
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Vit1Uit1, ¢ = 0,1,2,3, indices modulo 4, and possibly one more intersection
between Fj and F5. It is clear that any facial cycle F' that does not contain
any of the vertices v;, u; intersects at most once with any F; and that two such
facial cycles intersect at most once. So the embedding of GG is polyhedral. It is
also clear that if the embeddings of G; and (G5 are in orientable surfaces, the
embedding of GG is also in an orientable surface.

The Euler genus of S is obtained from Euler’s formula and equalities

V(@) = V(G +IV(G2)| -2
|E(G)] = |E(G1)|+|E(G2)| -3
[F(G)] = [F(G)|+[F(G2)| =3
from which we conclude that €(.S) = ky + k. O

Theorem 3.8. Let G be a cubic graph and S a minimal cyclic 4-cut in G.
If G admits a polyhedral embedding (in an orientable surface), then there
exist graphs GG1 and (G, such that G = G - G5 and G admits a polyhedral
embedding (in an orientable surface).

Proof. Suppose that the edges u;v;, i = 0,1,2,3, form a 4-cut S in G. If a
facial cycle contains more than two edges of S, the embedding of G can not be
polyhedral. So we have four distinct facial cycles Fy, I, F5, F3 that contain
edges of S. Since S is a cut, every cycle F;, ©+ = 0, 1,2, 3, contains two edges of
S.

Since the embedding is polyhedral, each of the F; intersects two other
Fj, Fy. In the dual a subgraph induced by the vertices corresponding to Fj,
1 = 0,1,2,3, is a simple graph on four vertices in which all vertices are of
degree 2. It must be a 4-cycle. Therefore we can assume that faces F; and
F; 1 intersect in the edge v, 1u;11, ¢ = 0,1, 2,3, indices modulo 4. Each facial
cycle F; is then of the form F; = v;u; Rju;1v;01 Pyv;. Since Fy and F’ intersect
at most once, we can assume they do not intersect at the paths Py and P,. Let
(G1 be the component of G — S, which contains paths P;. If we set rotations
of all vertices in G5 as they are in G (and replace deleted edges naturally with
added edges), we can set rotations around vertices x and y so that the facial
cycles in Gy, which do not contain x or y, remain unchanged and we have
four new facial cycles Cy = voxvi Pyvg, C1 = vixyve Pivy, Co = voyv3 Pavo, and
C3 = v3yxvgPyvs. Since we added no new intersections between facial cycles,
which were already in G, and facial cycles C;, i = 0,1, 2,3 intersect pairwise
only once, the embedding of (; is polyhedral. If the embedding of G is in
an orientable surface, it is clear that the embedding of GG; is in an orientable
surface. O
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Suppose we have polyhedral embeddings of cubic graphs G and Gs, at least
one of which is in a non-orientable surface. Let us construct the embedding of
the dot product G = Gy - G5 as in the proof of Theorem 3.7. If the embedding
of G is in orientable surface, then we may assume that all signatures of edges
are positive. Now we can construct embeddings of Gy and G5 similarly as the
embedding of (G; in the proof of Theorem 3.8, which are both in orientable
surfaces and have the same set of facial cycles as the embeddings of G; and
G5 with which we started. Since at least one of these two is an embedding in
a non-orientable surface, we have a contradiction. This shows

Corollary 3.9. If we have polyhedral embeddings of G| and G5, at least one of
which is non-orientable, and construct a polyhedral embedding of G = G1 - G,
as in the proof of Theorem 3.7, then the embedding of GG is non-orientable.

Let GG; and G5 be cubic graphs. Choose a vertex v in GGy, an edge vsvy
in G; and a vertex zp in GG5. Let the three neighbors of v be vy, vy, vy and
let 21, 29, u4 be the neighbors of z5. Let the neighbors of zq, 2o other than u
be ug, u; and us, usz, respectively. If all these vertices are distinct, remove the
vertex v from Gy, vertices zg, z1, 2o from G5 and the edge vsvy from G;. If
we join pairs v;u,;, ¢ = 0,1, 2, 3,4, we get a cubic graph G = G10G2, which is
called a square product of graphs G; and G (see also Figure 3.5). The cut
Q = {vu; | i =0,...,4} in G is said to be the product cut. It is claimed in
[19] that if G; and G9 are snarks, then G is also a snark, however this is not
true in general. For results concerning 5-cuts in snarks, see [13].

Theorem 3.10. Let G be a cubic graph with a matching (), which is a 5-
cut of G. If G admits a polyhedral embedding (in an orientable surface), then
there exist graphs G1 and G5 such that G = G10G5 and Q) is the corresponding
product cut and such that G5 admits a polyhedral embedding (in an orientable
surface).

Proof. Suppose that G has a polyhedral embedding. Since @ is a cut, every
facial cycle contains an even number of edges in (). It is easy to see that
none of them contains four edges of @ (since the embedding is polyhedral).
This implies that there are precisely 5 facial cycles Fp,..., Fy that intersect
@ and that the edges v;u; of @, ¢« = 0,...,4, can be enumerated so that

F; contains edges v;u; and v;41u;11, indices modulo 5, and vy, ...,vs are in
the same component of G — ). The facial cycles F; are of the form F; =
viui Riui v P, @ = 0,...,4, indices modulo 5. Since the embedding is

polyhedral, every one of the pairs of paths P;, P11 and R;, R;1; is disjoint.
Suppose that the facial cycles F; and Fj,o are disjoint for some i. Then
both pairs P;, P15 and R;, R;.o are disjoint. One of the pairs P, o, P14 and
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Figure 3.5: The square product of GG; and Gs.
Riio, Riigq,1=0,...,4, is disjoint. Because of the symmetry, we can assume
that the pair R; o, R;y4 is disjoint.
Suppose now that all pairs of cycles F;, Fj o, 1 = 0,....,4, intersect. In at

least three out of five pairs, F; and Fj, 5 intersect on the same “side” (P; and
Piis or R; and R;;2). By symmetry, we may assume that intersections are
between P; and P;,,. Since facial cycles F; and Fj,o intersect at most once,
it follows that there exists an index j such that R;, Rj s, Rji4 are pairwise
disjoint.

By above, we can assume that R4, R, R3 are pairwise disjoint. Now we
can add to G — @) new vertices v, zg, 21, 22 and edges vov, V1V, VU, V3U4
and wugz1, U121, UsZy ,U3Z2, 2120, 2220, UsZo SO that the graph G is a square
product of G; and G5. In the embedding of G5 we keep all rotations and
signatures of vertices and edges that were already in G and we naturally replace
deleted edges with the added ones. Around vertices zp, z1, 2o we can set
rotations so that facial cycles in Go, which were not already in G, are Dy =
UoR()UlZl, D1 = 2021u1R1u22220, D2 == ZQUQRQUgZQ, D3 == ZQZQU3R3U4ZO and
Dy = zgugRyugz129. The only new intersections of facial cycles of G5 are
between D4y and D; and between D; and Ds. Hence the embedding of G,
is polyhedral and if the embedding of G is in an orientable surface, so is the
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Figure 3.6: The Flower snark J;.

embedding of Gbs. O

3.3 Flower snarks

In this section we prove that Flower snarks Jo;,1 do not have polyhedral em-
beddings. This was first proved by Szekeres using polyhedral decompositions.
His proof only worked for graphs Joy 1 but not for graphs Jo, and only for ori-
entable embeddings. We give a simpler proof which also works for all graphs
Ji. and also for non-orientable embedding.

The goal for this section is to prove the following theorem.

Theorem 3.11. For k > 4 the flower graph J; has no polyhedral embeddings.

We first prove the theorem for larger £ and then prove the theorem for
smaller values of k. Note that the graph J; is obtained from the Petersen
graph P by replacing one vertex in P by a triangle. Since Petersen graph
has a polyhedral embedding into the projective plane so does .J3. Since there
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are no polyhedral embeddings of P into orientable surfaces it follows from the
Lemma 3.1 that J5 has no polyhedral embeddings.

Suppose that we have a polyhedral embedding of J;. Let us look at how
facial cycles can traverse Y;. If we walk along a facial cycle C', come to Y; from
Y;_1 and then leave Y; going back to the tile Y;_;, we say that C' is a backward
face at'Y;. Similarly we define a forward face at j, which is a facial cycle that
enters Y; from Y, and leaves it towards Yj,.

If a cubic graph G has a polyhedral embedding, then at every vertex v €
V(G) with neighbours vy, ve, v3, each path P = v;vv;, j # i, defines a unique
facial cycle, which we will denote by F(P).

Lemma 3.12. If C' is a facial cycle that contains at least two vertices of Y,
then the intersection of C' with Y; is one of the three possible paths: a;b;c;,
Cljbjdj or Cjbjdj.

Proof. A cycle C' can enter and exit Y; only through vertices a;, ¢; or d;.
Suppose now that a;,c; € V(C). The facial cycle C" = F(a;bjc;) intersects
C' in two nonadjacent vertices a; and ¢;, so C' = C’" and C’ contains the path
a;bjc;. Similar conclusion holds if a; and d; are on C or if ¢; and d; are on C'.
Since all facial cycles are induced, the intersection C'NY; can consists only of
one of the three paths. O

A facial cycle, which is neither forward nor backward at Y}, is called a cross
face. It follows from Lemma 3.12 that each facial cycle, which intersects Y}, is
either a backward, forward or a cross face.

Lemma 3.13. At Y; there can be at most one backward (forward) face. If
there is one backward face, then there is also one forward face and four distinct
cross faces. The backward face at Y is forward at Y,;_, and the forward face
at Y is backward at Y.

Proof. Suppose we have two backward (forward) faces. By Lemma 3.12
they intersect at an edge adjacent to b;. If they intersect at bja;, they also
intersect at a;_ja;, which is a contradiction. Similarly we get a contradiction,
if they intersect at b;c; or b;d;. This shows that there is at most one backward
(forward) face.

Suppose now that C'is a backward face. The edges between Y; and Y, are
traversed twice by C' and four times by cross faces. The cross faces therefore
traverse the edges between Y; and Yj;; at most four times, hence there must
be a forward face at Y.

If C' contains the path a;b,c;, then {a;_1,d;_1} C CNY;_;. By Lemma 3.12,
CNYj_1 =aj_1bj_1d;j_1, so C'is a forward face at Y;_;. A similar conclusion
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holds if C'NY;] is either a;b;d; or ¢;b;d;. Similarly we also show that a forward
face at Y; is backward at Y.

Out of facial cycles F(a;bjc;), F(a;b;d;) and F(c;b;d;) one is a backward
face, one is a forward face and one is a cross face. Since the one that is a cross
face is the only cross face, which contains more than one vertex of Y}, all cross
faces are distinct. O

A backward face at j is called a bottom face if it contains the edge a;_;a;
and is called a top face if it does not contain a;_ja;. A top face at Y; is of the
form c;_1bj_1d;_1c;b;djcj—1. So it is clear that we cannot have backward top
faces at Y; and Y, at the same time.

The tile Y} is of type 0, if all facial cycles, which intersect it, are cross faces.
It is of type 1, if there is one forward and one backward face at Y;.

Lemma 3.12 implies that if the graph J; has a polyhedral embedding, then
all tiles are of type 0 or all tiles are of type 1.

Lemma 3.14. If J; has a polyhedral embedding, then k < 6 and all tiles are
of type 1.

Proof. By Lemma 3.12 every polyhedral embedding of J; has at least four
cross faces. For each j = 0,...,k—1 we have at least one intersection between
four selected cross faces on edges from Y; to Y. Since we can have at most
6 such intersections, we have k£ < 6.

If all tiles are of type 0, then Jj has precisely 6 facial cycles. The geometric
dual of G on S has 6 vertices and 4’“7'3 = 6k edges. Since the dual is a simple
graph, it has at most 15 edges, so 6k < 15. This implies that k < 2. O

Lemma 3.15. The graph Jy has no polyhedral embeddings.

Proof. Suppose we have a polyhedral embedding of J;. All tiles are of type
1, so there are precisely 4 cross faces. We have three 4-cycles C = agayasasay,
Cy = dycdacsdy, C3 = codycacscy in Jy, which are facial cycles by Lemma 3.2.
These cycles are all cross faces. As in the proof of Lemma 3.14, we see that
there are at least four intersections of cross faces. But since C}, Cs, C3 are
pairwise disjoint, this is not possible. O

Lemma 3.16. The flower snark Js; has no polyhedral embeddings.

Proof. Suppose we have a polyhedral embedding of J;5. Each tile must be
of type 1. If all backward faces are bottom faces, then the inner cross face
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apaiasazasag does not intersect any other cross faces. So we have 5 intersec-
tions between three cross faces, which is not possible.

Since we cannot have two consecutive top faces, we must have two consec-
utive bottom faces at tiles 7 and 7 + 1 and a top face at tile 5 + 2. We can
assume j = 1. The facial cycle F(agajas) contains the path agajasaszay. If
not, it would intersect twice with one of the bottom faces at tiles 1 or 2. So it
must be ag .. .aqag. The facial cycle, which contains bsas and is different from
the backward face at tile 2, must contain the path bsasasbs. This facial cycle
intersects twice with the facial cycle dybycodsbscsds, which is a contradiction.
1

Lemma 3.17. The graph Jg has no polyhedral embeddings.

Proof. All tiles in Jg are of type 1. We have three 6-cycles C7 = agay . . . asag,
Cy = codicy . . . dscy and C3 = codicy . .. dscy. From previous proofs it follows
that at each tile Y; one of the four cross faces goes from one of Cy, Cs, Cs
to another. We say that this cross face has made a transition at Y;. It is
obvious that if a cross face makes at least one transition, it makes more than
one transition. So one cross face makes no transitions, since we can have at
most 6 transitions. Let the four cross faces be Fi, Fy, F3, F; and let I} be the
one, which does not make any transition. Because of the symmetry, we can
assume that F; = C.

There are four cross faces and six intersections between them. This implies
that they must all pairwise intersect and in particular, all cycles Fy, F3, F}
intersect F;. All transitions of cross faces are transitions of Fj; to C; and from
Ch, i = 2,3,4. In particular, the cycle F, makes a transition to the cycle C
at some tile Y; and a transitions from C) at the tile Y;;;. But then F5 is not
induced, which is a contradiction. O

This completes the proof of Theorem 3.11.

3.4 (Goldberg snarks

We now look at polyhedral embeddings of Goldberg snarks. We show that
Goldberg snarks do not have polyhedral embeddings into orientable surfaces
but they do have polyhedral embeddings into non-orientable surfaces.

Theorem 3.18. No Goldberg graph has a polyhedral embedding in an ori-
entable surface. On the other hand, every Goldberg graph Gy, k > 3, has a
polyhedral embedding in the non-orientable surface of Euler genus k.
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Figure 3.7: The Goldberg snark Gs.
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Proof. Suppose that the graph G} has a polyhedral embedding in an ori-
entable surface. For every ¢ = 0,...,k — 1 we have have two 5-cycles B; =
bid;h;g;c;b; and C; = byd; f;e;c;b;. By Lemma 3.3 both are facial cycles. This is
a contradiction, since B; and C; intersect in two edges ¢;b; and b;d;.

An embedding in a non-orientable surface has the following facial cycles:

(a) A=apas...ax—1a0 and B = foegfier ... fr_1ex—1fo,
(b) C; =bid;fieicibi;, i =0,..., k—1,

(¢) Di= gihigivihiy1dita fireicigi, i =0,... k=1,

(d) E; = a;a;41biv1¢i019i01hidibia;, i =0, ...k — 1.

It is easy to see that this determines a non-orientable polyhedral embedding.
The Euler genus of the underlying surface of the embedding is calculated from
Euler’s formula 2 —e(Gy) = |V (Gi)| — | E(Gk)| + | F(Gk)| = 8k — %8k+3k—|—2 =
2 —k. O

Goldberg graphs have more than one polyhedral embedding, not all of the
same genus. They can be described as follows.

Consider the subgraph 7; induced on vertices a;, b;, ¢;, d;, €;, fi, g; and
h;. Let us look at how facial cycles can traverse it. There are (at least) two
possibilities.

There is a facial 5-cycle O = b;d;h;g;c;b; and there are facial cycles that
contain paths PIZ = A;j—1a;A541, P2Z = gi—lhigihi+17 P3Z = gz—lhzdz ieifi_l, Pi =
hiy19icidie; fieiqt, P5i = €41 fidibiaza;1y and Pei = fiieicibjaza;_y, where Pf
and P} can possibly be part of the same facial cycle. In such case, we say that
T; is of type 1.

The second possibility is the following. There is a facial 5-cycle D! =
bicie; fid;b; and there are facial cycles that contain paths R = a;_ja;a;41, Ry =
fi—leifi€i+1; Ré = aj—1a;b;d;h;g;_1, Rf:; = ai+1'aibicigihi+17 R?, = fi1€icigihigi—
and Ry = et fid;bihigihit1, where R} and RY can possibly be part of the same
facial cycle. We say that T; is of type 2.

We now choose arbitrary the types of all subgraphs T; and join facial seg-
ments described above into facial cycles as follows. There is an automorphism
of the graph G}, which sends all cycles C* into cycles D?, so we can assume
that the subgraph T} is of type 1. If not, we join facial segments symmetrically
according to this automorphism.

If subgraphs T; and T, are both of type 1, we join facial segments P} and
Pt Piand Py, Pjand Pyt and facial segments P and Pitt.
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If the subgraph T; is of type 1 and T;,; of type 2, we join facial segments
Pi.R5™ and P, facial segments R P! and Ryt and facial segments Pj and
R

If all subgraphs T; are of type 1 (or all are of type 2), then the embedding
is the one described in the proof of Theorem 3.18. If there are two consecutive
subgraphs T; and T;,; of different types, we say that there is a transition at i. It
is easy to see that the embedding is polyhedral if we have at least 6 transitions.
It is also easy to see that the number of facial cycles of the embedding is 3k.
In this manner we have obtained a large number of (combinatorially) different
polyhedral embeddings of the graph G}, in a surface of Euler genus k + 2.

This shows that Goldberg snarks admit polyhedral embeddings in distinct
non-orientable surfaces (of Euler genera k and k + 2) and that they admit
combinatorially different polyhedral embeddings in the same non-orientable
surface (of Euler genus k + 2).

Corollary 3.19. For every positive integer k there exists a snark which has
a polyhedral embedding into Ny.

Proof. The Petersen graph P has a polyhedral embedding in N;. By Theorem
3.18 the Goldberg snark Gyx1 has a polyhedral embedding in Nog. for every
k > 1. The graph (3 is not a snark since it contains a 3-cycle C' = agajasag.
If we contract C' to a vertex, we obtain a snark G%, which polyhedrally embeds
in N3 (cf. Theorem 3.6). For k& > 1 we have a snark Hoyyo = Gopyq - P, which
polyhedrally embeds in Nogyo, and Hy = GY% - P, which polyhedrally embeds
in Ny (cf. Theorem 3.7). The dot product Hy = P - J3 polyhedrally embeds in
N5. The graph H, is not 3-edge-colorable, but is not a snark, since the girth
of Hy is 4.

There are two non-isomorphic dot products of two copies of the Petersen
graph P, but since the dual of P in the projective plane is Kg, we cannot
use Theorem 3.7 to obtain a snark with polyhedral embedding into the Klein
bottle. Indeed, it can be shown that they do not have such embeddings.

We construct a superposition Gag of the Petersen graph in the projective
plane to get a snark embedded in the Klein bottle. Take an edge e = uv in
the Petersen graph. Replace vertices u and v with (1,1,3)-supervertices in the
Figure 4.6 and the edge e with the superedge obtained from the Petersen graph
by removing vertices = and y (see Figure 3.8). We claim that we get a snark
with polyhedral embedding into the Klein bottle (see Figure 3.9).

Gog is clearly a snark since it was constructed as a superposition of the
Petersen graph. In the embedding in Figure 3.9, facial cycles which cross
cross-caps do not contain bad edges since these cycles come from embeddings
of the Petersen graph into the projective plane. It is also clear from the figure
that other cycles do not contain bad edges. O
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Figure 3.9: Polyhedral embedding of a snark into the Klein bottle.



Chapter 4

The defect of a graph

In this part of the thesis we define the defect of a graph which is a measure
for how far a graph is from having a polyhedral embedding. The defect is
defined so that for a given graph it is easy to compute. Using a computer
and a database of snarks with up to 28 vertices we show that the Griinbaum
conjecture is true for all snarks with up to 28 vertices.

Using the defect we show that the Griinbaum conjecture is true for Kochol
snarks. The family of Kochol snarks is a rich family of snarks which includes
for instance snarks with arbitrarily large girth.

We then prove some theoretical results about the defect. In particular we
show that if Griinbaum conjecture is true than the defect for any snark is at
least two, and for any k£ > 2 we construct an infinite family of snarks with
defect precisely k.

We show that the Griinbaum conjecture implies a strong inequality between
the defect and resistance of snarks. Resistance is a measure for how far a snark
is from having 3-edge-coloring. We prove that if the Griinbaum conjectrure is
true, graphs with high resistance have high defect.

4.1 Definition of defect and computer search

We define the defect of a graph as a measure for how far a (cubic) graph is
from having a polyhedral embedding. Let II be an embedding of a cubic graph
G and let F = {Wy,..., Wy} be the collection of facial walks of II. For a walk
W; € F we define the defect d(W;) of W; to be the number of edges which
appear twice along W;. For two facial walks W;, W, € F, i # j, we define the
defect d(W;, W;) as

0 ;| E(

- )NE(W;)| =0
d(Wi, Wj) { [ EW)NEW)| -1 ; |E(

)
)N E(W))| > 0.

S5
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The defect of the embedding II is defined as

k

dI) =" dwi) + Y AW, W)).

i=1 1<i<j<k
and the defect of the graph G is defined as
d(G) = min{d(II) | II an orientable embedding of G}.

In an embedding II of G a pair of facial walks is a bad pair if they have more
than one edge in common. An edge e is a bad edge if it appears twice along a
facial walk of II or if there is another edge f such that e and f both appear
along two facial walks W; and W;.

It is clear from the definition of the defect that a graph G admits a poly-
hedral embedding into an orientable surface if and only if d(G) = 0. The
Griinbaum conjecture is therefore equivalent to the statement that for any
snark G the defect d(G) is at least 1. We give a stronger implication in the
last section of this chapter.

Using a computer program which examines all possible orientable embed-
dings of a graph we have determined the defects for snarks with up to 28
vertices. We found that the smallest defect among these snarks is two. The
smallest snark with defect two has 26 vertices. It has two embeddings into
the torus with defect two and it is the only snark on 26 vertices with defect
2. There are two snarks on 28 vertices with defect two. One of them has two
embeddings of defect two and the other has one embedding of defect two. All
these embeddings are into the double torus. There is one snark on 18 vertices
with three distinct embeddings of defect three into the torus. There are two
snarks on 24 vertices with defect three, one has a unique embedding and the
other has two embeddings of defect three, all embeddings are into the double
torus. There is one snark on 26 vertices with three embeddings of defect three
into the double torus. There are 8 snarks on 28 vertices with defect three, 5
of them have unique embeddings of defect three and all embeddings are into
the double torus.

We describe a snark Gag on 26 vertices with defect 2. The vertex set of Gag
are integers between 1 and 26 and the adjacency lists are

1: 2 3 4
2: 1 5 6
3: 1 7 8
4: 1 910
5: 2 7 9
6: 2 11 12
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Figure 4.1: Embedding of the Petersen graph in the torus.
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The orientable embedding into the torus is described by the collection of facial

walks
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Face 3: 3 1 410 7

Face 4: 5 2 61113 8 3 7
Face b: 5 7 10 16 25 26 23 15 9
Face 6: 4 9 15 22 24 16 10

Face 7: 11 6 12 19 17

Face 8: 8 13 20 21 14

Face 9: 13 11 17 24 22 20

Face 10: 12 18 26 25 19

Face 11: 18 14 21 23 26

Face 12: 17 19 25 16 24

Face 13: 21 20 22 15 23

Another embedding of the same graph into the torus with defect two is de-
scribed by the collection of facial walks

Face
Face
Face
Face
Face
Face
Face
Face
Face
Face
Face
Face
Face

10:
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7
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24 22 15 9
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20

24 17

26
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25

22

We note that Gy is cyclically 4-edge-connected. It can be constructed as a
dot product of three copies of the Petersen graph.

We now describe embeddings of other snarks with low defect. We list facial
cycles of all embeddings of snarks on less than 28 vertices of defect at most

three.

Two embeddings of the first graph on 28 vertices with defect two.

Face
Face
Face
Face
Face
Face

O W
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Face 7:
Face 8:
Face 9:
Face 10:
Face 11:
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of the second snark on 28 vertices with defect two.
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The three embeddings of the Blanusa graph with defect three.
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Face 6: 8 6 11 15 12

Face 7: 4 9 13 16 17 14 10
Face 8: 15 11 16 13 18

Face 9: 12 15 18 14 17

Face 1: 1 2 65 9 4

Face 2: 2 1 3 81215 11 6
Face 3: 3 1 410 7

Face 4: 5 2 6 8 3 7

Face b5: 5 7 10 14 17 16 13 9
Face 6: 8 6 11 16 17 12

Face 7: 4 9 13 18 14 10

Face 8: 11 15 18 13 16

Face 9: 15 12 17 14 18

Face 1: 1 2 5 9 4

Face 2: 2 1 3 8 6

Face 3: 3 1 410 7

Face 4: 5 2 6111512 8 3 7
Face b5: 5 7 10 14 18 13 9
Face 6: 6 8 12 17 16 11

Face 7: 4 9 13 16 17 14 10
Face 8: 15 11 16 13 18

Face 9: 12 15 18 14 17

Two embeddings of the

Face
Face
Face
Face
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Face
Face
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first snark on 24 vertices with defect 3.
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Face
Face

Face
Face
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The embedding of the second snark on 24 vertices with defect three
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Three embeddings of a snark on 26 vertices with defect three
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Face 9: 18 12 19 24 25 22 23

Face 10: 14 20 25 24 26 21

Face 11: 17 21 26 23 22

Face 1: 1 2 61218 1315 9 4
Face 2: 2 1 3 7 5

Face 3: 3 1 410 16 11 17 21 14 8
Face 4: 2 5 91520 25 22 17 11 6
Face b: 7 3 8 13 18 23 22 25 24 19 16 10
Face 6: 5 710 4 9

Face 7: 6 11 16 19 12

Face 8: 13 8 14 20 15

Face 9: 18 12 19 24 26 23

Face 10: 20 14 21 26 24 25

Face 11: 21 17 22 23 26

The defects of some particular snarks are summarized in the following
Lemma.

Lemma 4.1. e d(P)=5.
e d(B;) = 3 where By is the Blanusa snark of genus 1.
[ ] d(GgG) = 2.

Figure 4.1 shows an embedding of the Petersen graph in the torus with defect
5 and Figure 4.5 show the graph B; embedded in the torus with defect 3.

4.2 Kochol snarks

We now prove the Griinbaum conjecture for Kochol snarks. Kochol snarks are
a special class of snarks obtained as a superposition of the Petersen graph. To
describe this superposition we will use the Petersen graph with the notation
given in Figure 4.2.

Let G be a superposition of the Petersen graph P. If we assigned the trivial
supervertex S(v) to a vertex v € V(P), we denote the only vertex in S(v)
with v and call it original vertex. We call edges incident with original vertices
original edges. A connected subgraph of G which is induced by nontrivial
supervertices and superedges between them is called a block.

We will be describing cycles in G. If a cycle C' contains a path x; ... xy this
will be denoted by C' = *x;...zpx. If a cycle enters a block in a supervertex
S(z2) from an original vertex x; and leaves this block from a supervertex S(y;)
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Figure 4.2: The Petersen graph.

to an original vertex ys, this will be denoted by C' = xxx9.y1y2%. It is possible
that xo = y; in which case we will sometimes write C' = *xzoys*%. There are
no original vertices on C' between z; and ys.

A Kochol snark of type 1 is a proper superposition of the Petersen graph
where we assign trivial supervertices to vertices 0, 3, 6, 7, 8, 9 of P (see also
Figure 4.3).

Theorem 4.2. Kochol snarks of type 1 have no orientable polyhedral embed-
dings.

Proof. Let G be a Kochol snark of type 1 which is polyhedrally embedded
into an orientable surface. Assume the notation from Figure 4.3.

Look at the facial cycles on edges 01 and 81. There are at least 3 dis-
tinct facial cycles on these two edges, otherwise the embedding would not be
polyhedral.

We now show that there are exactly 3. Suppose we have four facial cycles
A =x01.23%x, B = %01.27%, C' = *81.27x and D = %81.23%. Since the embed-
ding is polyhedral, the cycle C' must be C' = 81.2768 and the cycle A must be
A =01.2390. Since B already intersects cycles A and C' it can not use the edge
43 or 48, therefore it must be B = 01.2750 and similarly D = 81.2348. There
is another facial cycle which contains the vertex 3. It must be F' = 439675.4
since the embedding is polyhedral. Since the embedding is orientable, we can
consistently orient the facial cycles. Suppose that F' is oriented so that the
edges 43 and 67 are in the direction of orientation. Then the cycle D is oriented
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Figure 4.3: A Kochol graph of type 1.

so that the edges 34 and 81 are in the direction of the orientation. Finally the
cycle C'is directed so that edges 18 and 67 are in the direction of the orien-
tation. This is a contradiction since facial cycles C' and F' are oriented in the
same direction on the edge 67.

By symmetry we have exactly 3 facial cycles at edges from other super-
vertices. The facial cycles which contain original edges therefore induce an
embedding of the underlying Petersen graph. Since the embedding of G is
orientable we have a consistent orientation of cycles. We use this orientation
in the induced embedding of P. Since facial walks are oriented consistently on
original edges of GG, this orientation is consistent on all edges of P and so the
embedding is orientable.

Suppose that in the induced embedding of the Petersen graph we have two
facial cycles A and B which have k£ 4+ 1 edges in common. This implies that
at least k of these edges correspond to superedges in GG. It follows that the
induced embedding of the Petersen graph has defect at most 2, since in G' we
have two superedges. This is a contradiction with Lemma 4.1. O

A Kochol snark of type 2 is a proper superposition of the Petersen graph
where we assign trivial supervertices to vertices 6, 7, 8, 9 and additionally
trivial superedges to edges (5,0) and (1,2) (see also Figure 4.4). Note that
Kochol snarks of type 1 have cyclic 4-cuts, but Kochol snarks of type 2 are
cyclically 5-edge-connected.
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Figure 4.4: A Kochol snark of type 2.

If a cycle C' enters a block on a supervertex x, from an original vertex
x1, then uses some vertices from a supervertex x3 and then leaves the block
from a supervertex x3 to an original supervertex x4, this will be denoted by
C = *x1.x9.203%.

Theorem 4.3. Kochol snarks of type 2 have no orientable polyhedral embed-
dings.

Proof. Assume that a Kochol snark of type 2 has a polyhedral embedding
into an orientable surface. Similarly as in the proof of the previous theorem
we first show that this embedding induced an embedding of the underlying
Petersen graph. Call supervertices 0, 1,2 with superedges between them the
lower block and supervertices 3,4,5 with superedges between them the upper
block.

Assume that on edges 75 and 45 we have four distinct facial cycles, A =
x75.0%x, B = *x75.0%, C' = %45.0%x and D = %45.0%. Since the embedding
is polyhedral, there must be two distinct facial cycles which enter the lower
block on the edge 90. This implies that not all four of A, B, C, D can leave the
lower block on edges 12 and 18.

CASE 1: Assume that only a facial cycle, which contains the edge 75, say
A, leaves the lower block on the edge 09. Since the embedding is polyhedral,
the face *967* can not be distinct from A, so we have A = 75.0967 and
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B = %275.0.1x. We can assume C' = %45.0.12%x and D = %45.0.1.8%. The cycle
B can not leave the lower block on the edge 18 since then there would be a facial
cycle at vertex 6 which would intersect it twice. So we have B = 275.0.12. The
cycle C' can not leave the upper block on edge 48 since it already intersects cycle
D and also not on edge 39 since it would have to continue on the path 3968.
Similarly it can’t leave on the edge 27, so it must be C' = 45.0.12.3.4. We have
another cycle F' which enters the lower block on the edge 81, F' = %81.093x.
This cycle will intersect with the cycle which contains the path 869 twice, a
contradiction with the assumption that the embedding is polyhedral.

CASE 2: Assume that only a facial cycle, which contains the edge 45,
say C' leaves the lower block on the edge 09. So C' = %45.09%, D = %45.0.1x,
A = %75.0.18+« and B = x75.0.12%. Since the embedding is polyhedral we have
A =75.0.1867 and B = 75.0.127. If we have D = %45.0.12% then we must have
another facial cycle F' = %90.184% which will intersect the facial cycle which
contains the path 869 twice, a contradiction. So we have D = 45.0.184 and
C = 45.093. There is a facial cycle F' = %21.096x. If we have F' = %21.0967x,
then F and B intersect twice, and if we have F' = %x21.0968% then cycles A, B
and F' can not be consistently oriented.

CASE 3: Assume there that two cycles, say A and C, leave the lower block
on the edge 09. Again we have A = 75.0967, B = %275.0.1%, C' = %45.0.93x
and D = %45.0.1x. If B leaves the lower block on the edge 18, then it is
B = %275.0.184% and it intersects the facial cycle, which contains the path
867, twice. So we have B = %275.0.12x and D = 45.0.184. Now we have a
facial cycle F' = %x218693% and we get a contradiction since cycles C, D and F'
can not be consistently oriented.

So we have that there are exactly 3 facial cycles on edges 45 and 75. By
symmetry the same holds for edges at supervertices 1, 2 and 4. Since the
embedding of GG is polyhedral and orientable we get that facial cycles which
contain the original edges of G induce an orientable embedding of P, which
has defect at most 4. This is again a contradiction to Lemma 4.1. O

4.3 Defect and Griinbaum conjecture

Let M = (V,E,S) be a multipole. A combinatorial embedding of M is an
assignment of rotations to vertices V. As with combinatorial embeddings of
graphs, we can define the collection of facial walks F, which consists of closed
walks and walks which start and end at a connector. Again we can describe
the embedding of M by specifying F. If in the definition of the defect we
replace graphs with multipoles, we get the definition of a defect of a multipole.
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Figure 4.5: The Blanusa graph embedded in the torus with defect 3.
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Figure 4.6: Supervertices used for replacing edges.

Suppose we have an orientable embedding of a superedge M = (V, E,S; U
Sy). Let the connectors be S7 = {(u1), (u2), (uz)} and Sy = {(v1), (ve), (v3)}.
Suppose that in the consistent orientation of facial walks we have walks W; =
w Proy, Uy = uaRiuy, Uy = ugRoug, Wo = v3Pus, Vi = v1Q1vp and Vp =
va(Qov3. Suppose further that walks P; and P, are disjoint. An embedding as
described is called a nice embedding of a superedge.

Take the Blanusa snark B; embedded in the torus and remove vertices
x and y (see Figure 4.5) to obtain a proper superedge Bj. Note that the
embedding of B; in the torus induces a nice embedding of B} with defect 1.
Using a computer we find that

Lemma 4.4. Blanusa superedge Bj obtained by removing vertices x and v
from B; has defect 1.

We now describe what we mean by replacing an edge in an embedded
graph with a nicely embedded superedge. Suppose II is an embedding of G
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and e = (z,y) € E(G) is an edge. Denote the neighbors of = with {y, z, z2}
and the neighbors of y with {z,y;, 92} so that in the embedding II there are
facial walks C] = xxi1xyy;*, Cy = *y1yys*, C3 = *yoyxxo* and Cy = *xoxx1*.

We will use the (1,1,3)-supervertex V from the left of Figure 4.6 where the
connectors are {(1)},{(5)} and {(2),(3),(4)}. To vertices x and y we assign
V(z) and V(y), both copies of V, to e we assign the nicely embedded superedge
(with the notation defined at the beginning of this section) and to all other
vertices and edges we assign trivial supervertices and superedges. We denote
the vertices in V(y) with 1/, 2/, . .. to distinguish them from the vertices in V(z).
In V(x) we assign connectors {(1)},{(5)},{(2),(3),(4)} to zxy,zxe,e and in
V() we assign connectors {(1)},{(5)},{(2), (3"),(4")} to yy1,yya, e. In the
superposition we add edges (2,u1), (3,u2), (4,u3) and (v1,2'), (ve,3), (vs,4’).

This superposition has an induced embedding defined by facial walks F
defined as follows. Take all facial walks of IT which do not contain vertices x
and y and modify facial walks C;, 1 = 1,2, 3,4, to get walks C?, 1 = 1,2, 3,4, as
follows: Cf = *x121uy Pyv12' 1y %, Ch = %y 15 yox, Cf = *ys5'4' v3 Pyugdbaa*
and C) = w351z *. Add walks 543215 and 1'2'3'4'5'1". Add all closed walks
in the embedding of the superedge M. Add walks 23usRiu 2, 34usRous3,
320101193 and 4'3'v,(Qov34". We have described an orientable embedding of
G'. If in the embedding II the cycles C and Cy are distinct then the bad edges
in the induced embedding of G’ are bad edges of II minus possibly e and bad
edges in the embedding of the superedge M.

Using the (3,1, 3)-supervertex from Figure 4.6 we can similarly replace all
edges on a facial cycle C' in G. Again the bad edges in the induced embedding
of the superposition are bad edges in the original graph minus possibly the
edges of C' and the bad edges in superedges.

Lemma 4.5. The following statements are equivalent:

1. Griinbaum conjecture is true,
2. all snarks have defect at least 2,
3. all nicely embedded proper superedges have defect at least 1.

Proof. First we prove that 1 is equivalent to 3.

If the Griinbaum conjecture is false, then there exists an embedding of a
snark with defect 0. If we remove two vertices from one facial cycle in the
embedding we get a nicely embedded superedge with an induced embedding
of defect 0.

Suppose we have a nicely embedded superedge with defect 0. Take the
embedding of P in the torus and replace each edge along the unique 9-cycle
with the nicely embedded proper superedge to get a snark with defect 0.
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It is clear that 2 implies 1. The Griinbaum conjecture implies that snarks
have defect at least 1. We show that 3 implies that there is no snark with
defect precisely 1, which completes the proof.

Suppose II is an embedding of a snark G with defect 1. First we show
that all facial walks are cycles and that there are two facial cycles C' and D
which have two edges e = zy and f = wv in common and that e and f are on
distance at least 2 along C' and D.

If there is a vertex v in G which appears twice along a facial walk W, then
there is an edge incident with v which appears twice along W and contributes
1 to the defect of II. There is another facial walk which contains v and it
intersects W in at least two edges incident with v. So the defect of II is at
least 2, which shows that all facial walks are cycles.

There are two facial cycles C' and D which intersect at two edges e and
f. Suppose that e and f are at distance at most 2 on C'. Edges e and f can
not be adjacent since in this case C' and D could not be facial cycles in an
embedding of G. If they are at distance 1 on C, assume y and u are adjacent
and there are vertices x; # z,u and vy # y,v such that x; is adjacent to y
and v; is adjacent to u. Cycle C contains the path zyuv and cycle D contains
paths x1yxr and vuv;. There is another facial cycle which contains the path
viuyx; and we get that the defect of the embedding is more than 1.

Now we can choose two vertices u and v on C' which are not incident with
e or f and u and v separate e and f on C. Since the defect is 1, vertices u
and v are not on the cycle D. Remove vertices u and v from G to obtain a
superedge. This is a nicely embedded superedge with defect 0. O

If the Griinbaum conjecture is true then we get lower bounds for the defect
of snarks or superedges. We now prove that these bounds are best possible

since we can construct infinitely many snarks (superedes) with defect & for any
kE>2(k>1).

Theorem 4.6. For each k > 2 there exist infinitely many snarks with de-
fect precisely k. For each k > 1 there exist infinitely many nicely embedded
superedges with defect precisely k.

Proof. Suppose we have an embedding I of a snark G' with defect k in which
all facial walks are cycles and there are k£ bad edges which form an independent
set. Let B] be the nicely embedded superedge obtained from the Blanusa snark
by removing vertices x and y. Replace each bad edge in G by Bj to obtain an
embedded snark G’. By construction we see that the defect of G’ is at most
k. By lemma 4.4 each superedge contributed at least 1 to the defect of G’ so
we get that the defect of G’ is precisely k.
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Suppose that in G we can choose k + 1 edges such that k of them are bad
and one of them is good and they form an independent set of edges. If we
replace each edge with B} we get a snark with the defect precisely k& + 1.

Note that if we take the snark GGog embedded into the torus we can perform
both operations. Also it is easy to see that after we have performed one
operation, the embedding of the superposition is such that allows us to perform
both operations again. Thus for any k£ > 2 we can generate infinitely many
snarks with defect precisely k.

Let M be a nicely embedded superedge such that all semiedges are good.
Then we can perform above operations on M to obtain a nicely embedded
superedge M’ such that all semiedges of M’ are good. Thus starting with the
nice embedding of B we can for each k£ > 1 construct infinitely many nicely
embedded proper superedges with defect precisely k. O

Since the defect is a measure for how far a cubic graph is from having
a polyhedral embedding, the last theorem shows that there are arbitrarily
large snarks with nice embeddings (that is with embeddings with low defect).
Similar measures have been introduced in the literature (for instance [20]) to
measure how far a snark is from having a 3-edge-coloring. In the following we
introduce resistance which is a measure for how far a graph is from having a
3-edge-coloring and prove an implication of the Griinbaum conjecture to the
relation of defect and resistance. We show that if resistance is high then the
defect is high. This implies that graphs which are far from having a 3-edge-
coloring are do not have nice embeddings.

Suppose G is a cubic graph and let ¢ be a 4-edge-coloring of G' where we
allow two edges of color 4 to be adjacent. The coloring ¢ is minimum coloring
if the number of edges colored with the color 4 is minimum possible among
all such 4-edge-colorings of G. The number of edges colored with the color 4
in a minimum coloring is called the resistance, r(G), of G, [20]. Note that in
the minimum coloring the edges of color 4 can not be adjacent (since in this
case the coloring is not minimum) and so the minimum coloring is a proper
4-edge-coloring of G. A cubic graph is not 3-edge-colorable if and only if its
resistance is at least 1.

Suppose II is an embedding of a cubic graph G. A vertex is called a
bad vertex if in the embedding II it appears three times along a facial walk.
Denote the number of bad vertices in the embedding II with d,(II). We define
the modified defect d'(I1) of the embedding I with

d' (IT) = d(I1) + 2d,,(I1).
and the modified defect of the graph G with
d'(G) = min{d'(IT) | II an orientable embedding of G}.
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To Yo X2 Yo

T n

Figure 4.7: Thickening an edge.

Obviously for each graph G we have d'(G) > d(G) and the Griinbaum conjec-
ture is equivalent to the statement that d'(G) > 0 for every snark G. Stated
with resistance, the Griinbaum conjecture is equivalent to the statement that
for every graph G, d'(G) > 0 if (G) > 0. The following theorem gives a
stronger implication.

Theorem 4.7. The following statements are equivalent:
1. the Griinbaum conjecture is true,

2. for all snarks G we have d'(G) > @

Proof. It is clear that 2 implies 1. We show that 1 implies 2.

Suppose 2 is false. We have a we have a snark G which has a polyhedral
embedding into an orientable surface with defect 2d'(G) < r(G).

We will construct a sequence of graphs Gy = G, Gy, Go, ..., G such that
d(G;) >0fori <k, d(Gy) =0,d(G;) <d(Gi-q)—1fori=1,...,k and
r(G;) > r(Gi—1)—2fori=1,..., k. Theinequality d'(G;) < €'(G;_1—1 implies
that d'(G) > k. By 2d'(G) < r(G) we have r(G) > 2k. Now the inequality
r(G;) > r(G;—1)—2 implies r(Gy) > 0. So Gy, is a snark which has a polyhedral
embedding and is therefore a counter-example for the Gruiinbaum conjecture.

Suppose we have an embedding of G;. We replace a bad edge e = (zy)
in the embedding of G; with a graph on 10 vertices to get a graph G;.; with
an induced embedding of smaller modified defect (see Figure 4.7). In the
embedding of GG; we can assume we have facial walks Wy, Wy, W3, W, which
contain paths xi1zyy;, y1yy2, yoyxrre and xoxaxy respectively, where some of
Wy, Wy, W3, Wy may be equal. To define an embedding of G;; we take facial
walks of the embedding of G;, replace paths x1xyy1, y1yys, Yyoyxrxrs and zoxa,
on walks Wy, Wy, W3, W, with paths x1654y,, 11432y, 1221025 and 250762,
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and add facial cycles 01870, 123981, 34593 and 567895. By appropriately
choosing the bad edge e we can guarantee that the modified defect decreases
by at least one.

We distinguish 4 choices for the bad edge e. At each step we can make
choice 3 only if we can not make choices 1 or 2 and can make choice 4 if we can
not make choices 1, 2, or 3. As long as the defect of the embedding is more
than 0 we can make one of the choices.

Choice 1: bad edge e = (z,y) where z and y are bad vertices. In this case
Wy =Wy =W;3 =W,

To calculate the modified defect of the embedding of G;, 1 observe that bad
edges in the embedding of GG;;; are bad edges of the embedding of GG; minus
e plus bad pairs {(70), (01)}, {(12),(23)}, {(34),(45)} and {(56), (67)}. So
d(II(Gy41)) = d(II(G;)) — 1+4 = d(G;) + 3. Since we removed two bad vertices
x and y and created no new bad vertices we have d,(II(G;41)) = d,(II(G;)) — 2
and therefore the modified defect is d' (I1(G;41)) < d'(II(G;)) — 1. We conclude
that d/(Gi+1) S d/<Gl) — 1.

Choice 2: bad edge with e = (z,y) where x is a bad vertex and y is not.
In this case W7 = W3 = W,y and Wy £ Wj.

The defect of the induced embedding of G,y is d(II(G;41) = d(II(G;)) —
1+2=4d(G;)+ 1 and d,(II(Gi11) = d,(II(G;)) — 1. Therefore the modified
defect is d'(I1(G,41)) = d'(II(G;)) — 1. We conclude that d'(G41) < d'(G;) — 1.

Choice 3: bad edge e = (x,y) which appears twice along one facial walk.
Since we can not make choices 1 or 2 we can assume that W; = W3 and
Wy # Wy and Wy # Wy (but it is possible that Wy = Wy).

In the embeddings of GG; and G, there are no bad vertices. The defect of
the embedding of G, is d(II(G;11) = d(II(G;)) — 1 and therefore d'(G;41) <
d(G;) — 1.

Choice 4: e = (x,y) which does not appear twice along one facial walk.
Since we can not make choices 1, 2, or 3 it is only possible that maybe Wy = Wi.

In the embeddings of GG; and G, there are no bad vertices. The defect of
the embedding of G;41 is d(II(G;41) = d(II(G;)) — 1 and therefore d'(Gj41) <
d(G;) — 1.

It remains to show that r(G;11) > r(G;) — 2. Suppose we have a minimum
coloring ¢ of the graph G;.;. We define a coloring ¢ of G; as follows: ¢/(e) =
c(e) if e is not incident with = or y, and we let ¢'(z12) = c(216), ¢ (yy2) =
¢(2y2). We can color the edge e with one of the colors 1, 2, 3 and color edges
290 and y14 with color 4. So r(G;) < r(Giyq) + 2. O

The last theorem implies that if Griinbaum conjecture is true, we can bound
d'(G) from below with r(G), which would be a very strong connection between
the defect, which is a topological property, and resistance, which is a coloring
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property. We conclude with the following problems, which could be considered
as a weakening of the Griinbaum conjecture:

Problem 4.8. Is there a nondecreasing function f with lim, ., f(z) = oo,
such that d'(G) > f(r(G)) for all cubic graphs.

Problem 4.9. Find a constant ¢ > 0 such that d'(G) > ¢r(G) for all cubic
graphs.
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Razsirjeni povzetek

Definicije

Graf G je podan s parom mnozic V(G) in E(G). Mnozica V(G) je konéna
mnozica vozlis¢ ali tock grafa G, F(G) pa mnozica povezav. Povezava grafa
G je mnozica {u,v}, krajse uv, kjer sta u,v € V(G) vozliséi grafa G. Vozlisci
u in v sta povezani, ¢e je e = uv € E(G). Vozliscu v re¢emo soseda tocke wu.

vozliséa. Najvecjo stopnjo vozliséa grafa G oznacimo z A(G). Za povezavi,
ki vsebujeta kako skupno vozlisce, recemo da sta sosednji vozlis¢i. Vsi grafi
so enostavni, torej ne vsebujejo veckratnih povezav niti zank. Ce v grafu
dovolimo veckratne povezave ali zanke, govorimo o multigrafu.

k-barvanje povezav grafa G je preslikava ¢ : E(G) — {1,2,...,k}, ki so-
sednjima povezavama priredi razlicni stevili. Stevilom {1,2,...,k} re¢emo
barve. Najmanjsemu sStevilu k, za katerega obstaja k-barvanje povezav grafa
G, recemo kromaticni indeks grafa G in ga oznac¢imo s x'(G). Za enostavne
grafe velja:

Izrek 1 (Vizing). Za enostaven graf G je X'(G) € {A(G), A(G) + 1}.

Grafom, za katere velja x'(G) = A, recemo grafi razreda 1, grafom, za katere
velja X'(G) = A(G) + 1, pa recemo grafi razreda 2.

Ce je stopnja vsakega vozliséa grafa G enaka k, je graf G k-reqularen.
3-regularnim grafom recemo kubicni grafi.

Ce za vsaki vozliséi u, v € V(G) obstaja pot P = vguy - - - vy, kjer sta tocki
v; in viy1, ¢ = 0,...,n — 1 povezani, in je vy = u ter v, = v, je graf G
povezan. Maksimalni povezani podmnozici grafa G recemo komponenta grafa
G. Za podmnozico S C E(G) oznacimo z G — S graf z mnozico vozlisc V(G)
in mnozico povezav E(G) \ S. Podmnozica S C E(G) je prerez, ¢e ima graf
G — S vet komponent kot graf G. Ce je velikost vsakega prereza povezanega
grafa G vsaj k, je G povezavno k-povezan. Podmnozica S C E(G) je ciklicni
prerez, ¢e ima graf G — S vsaj dve komponenti, ki vsebujeta cikel. Povezan

77
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graf G je ciklicno k-povezan, ¢e ima vsak cikliéni prerez grafa G velikost vsaj
k.

Slika 4.8: Petersenov graf.

Kubic¢ni graf razreda 2, ki je 3-povezan, cikli¢cno 4-povezan z dolzino naj-
krajSega cikla vsaj 5, se imenuje snark. Ime so snarki dobili po pesmi The
Hunting of the Snark avtorja Lewisa Carrolla, v kateri so snarki posasti, ki jih
je zelo tezko najti. Najmanjsi snark je Petersenov graf (glej sliko 4.8), ki ima
10 vozlisc. Odkrili so ga konec 18. stoletja [2]. Naslednja odkrita snarka sta
Blanuseva snarka, ki ju je leta 1946 odkril hrvaski matematik Blanusa [3] (glej
sliko 4.9). To so edini trije snarki z manj kot 20 toc¢kami.

Prva znana neskonc¢na druzina snarkov so bili snarki, ki jih dobimo kot
4-vsote manjsih snarkov, odkrita pa je bila v sedemdesetih letih prejsnjega
stoletja [7]. Denimo da sta Gy in Gy kubi¢na grafa. Naj bosta e, f nesose-
dnji povezavi grafa GG; in u,v sosednji vozlisci grafa G5. Oznac¢imo z vy, v9
oznacimo z uy, us in sosedi tocke v, razlicni od u, oznac¢imo z uz in uy. Grafu
(G1 odstranimo povezavi e, f, grafu G5 ostranimo vozliséi u, v in dodamo po-
vezave v;u;, © = 1,2,3,4. Dobimo kubicen graf G = G, - G5, ki ga imenujemo
4-vsota grafov Gy in Gy. Prerezu {vu; | i =1,2,3,4} reCemo prerez 4-vsote.
Ce sta Gy in G5 snarka, potem je njuna 4-vsota tudi snark. Velja tudi obrat:
¢e ima snark G cikli¢ni prerez S velikosti 4, potem obstajata taka grafa G in
G, da je G = Gy - G9, vsaj eden od G in Gy je snark in S prerez 4-vsote
G. Ocitno 4-vsota grafov ni enoli¢no dolocena. Ce za G, in Gy vzamemo dve
kopiji Petersenovega grafa, lahko konstruiramo dve neizomorfni 4-vsoti. Izkaze
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Slika 4.9: BlanusSeva grafa.
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se, da sta to ravno Blanuseva grafa. 4-vsoto pripisujejo Isaacsu, jo je pa pred

njim opisal ze ruski matematik Titus, a njegov ¢lanek na zahodu ni poznan.
[saacs je opisal Se druzino ciklicno 6-povezanih snarkov, ki jih imenujemo

cvetni snarki (glej sliko 4.10). Cvetni snark Jogyq je graf z mnozico vozlisé

V(J2k+1) = {ai,bi,ci,di | 1= 0,,2]{3}
in mnozico povezav
E(Joks1) = {aiaiy1, aibi, bici, bid;, ¢idivq, diciq | i =0,...,2k},

kjer so indeksi vzeti po modulu 2k + 1.
Naslednjo neskon¢no druzino je odkril Goldberg [11]. Goldergov graf Gagi1
(glej sliko 4.10) je graf z mnozico vozlisé

V(G2k+1) = {ai, bi, ci, di, €3, i, i i | i=0,..., 21{5}
in mnozico povezav

E(Gokt1) = Haiaitr, aibi, bici, bid;, cie;, s,
d;fi, dihi, gihi, e fi, fieiv1, gilia ’ 1=0,..., Qk}a

kjer so indeksi vzeti po modulu 2k + 1.

Cvetni in Goldbergovi snarki so konstruirani tako, da liho stevilo podgrafov
Y; oziroma T;, induciranih na vozliséih {a;, b;, ¢;, d;} oziroma {a;, b;, ¢;, d;, €;, f;,
gi, hi} ciklicno povezemo med seboj. Ce pri definiciji cvetnih oziroma Gold-
bergovih snarkov ne zahtevamo, da imamo liho stevilo teh podgrafov, dobimo
splosnejse grafe Ji in Gj. Grafi Jy, in Ggy so razreda 1.

Vzemimo druzino poligonov s stranicami dolzine 1, ki imajo skupaj sodo
Stevilo stranic oy, ..., 09,. Vsaki stranici izberemo orientacijo tako, da si izbe-
remo zacetno oglisce stranice. Izberemo si particijo stranic na pare. Konstru-
irajmo ploskev tako, da identificiramo stranice skladno z izbrano orientacijo
(zacetne tocke identificiramo z zac¢etnimi tockami). Dobimo ploskev S. Grafu,
ki ga definirajo oglisca ploskve S in stranice kot povezave, recemo vloZen graf.
Celiéna vloZitev grafa G je je vlozen graf G’, izomorfen grafu G. Zacetne
poligone imenujemo lica vloZitve. Lica identificiramo s sprehodi, definirani z
obhodi lic.

Po klasifikaciji sklenjenih ploskev je vsaka ploskev izomorfna natanko eni
od ploskev S, (orientabilni ploskvi roda g) oziroma N, (neorientabilni ploskvi
roda g). Orientabilni rod g(G) grafa G je najmanjsi g, za katerega obstaja
vlozitev grafa G v ploskev izomorfno S,. Neorientabilni rod §(G) grafa G je
najmanjsi g, za katerega obstaja vlozitev grafa G v N,. Eulerjeva karakteristika
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Slika 4.10: Cvetni snark J; (zgoraj) in Goldbergov snark G5 (spodaj).
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orientabilne ploskve S, je €(S;) = 2¢, Eulerjeva karakteristika neorientabilne
ploskve N, pa je e(N,) = g.

Vlozitev grafa G je poliedrska, ¢e je vsako lice cikel in ¢e sta vsaki dve
razliéni lici bodisi disjunktni, se sekata v natanko enem vozlis¢u ali pa se
sekata v natanko eni povezavi. Vlozitev kubi¢nega grafa je poliedrska, ce je
vsako lice cikel in Ce sta vsaki dve razliéni lici disjunktni ali pa se sekata v
natanko eni povezavi.

Motivacija za studij vlozitev snarkov prihaja iz poskusov dokaza izreka
stirih barv. Izrek stirih barv pravi, da lahko vozlisca vsakega ravninskega
grafa brez zank pobarvamo s Stirimi tockami tako, da sta vsaki sosednji vo-
zlis¢i pobarvani z razlicnima barvama. Tutte je pokazal, da je izrek stirih
barv ekvivalenten trditvi, da ima vsak 3-povezan kubicen graf G v ravnini
kromaticni indeks x'(G) = 3.

Izrek stirih barv trdi, da snarki niso ravninski grafi. Snarke lahko vlozimo
v ploskve viSjega roda, vendar imajo vse znane vlozitve lice, ki vsebuje kako
povezavo dvakrat, ali pa dve lici, ki se sekata v ve¢ kot eni povezavi. Torej
vlozitve niso poliedrske. Griinbaum je leta 1969 podal hipotezo

Hipoteza 2 (Griinbaum). Ce ima kubicen graf poliedrsko vloZitev v orien-
tabilno ploskev, potem je razreda 1.

Griinbaumova hipoteza je posplositev izreka stirih barv.

Rod snarkov

Rod snarkov sta studirala Tinsley in Watkins [12]. Pokazala sta, da je ori-
entabilni rod cvetnih snarkov enak g(Jory1) = k. V prvem poglavju podamo
krajsi dokaz njunega rezultata in hkrati izracunamo neorientabilni rod cvetnih
snarkov.

Izrek 3. Orientabilni rod cvetnega snarka Jo,y1 je g(Joxi1) = k. Neorienta-
bilni rod cvetnega snarka Jogi1 je g(Joxs1) = 2k — 1. Orientabilni rod grafa
Jok je g(Jar) = k — 1, neorientabilni rod pa g(Jor) = 2k — 2.

Tinsley in Watkins sta podala zgornjo mejo za orientabilni rod Goldbergo-
vih snarkov. Pokazemo, da je njuna meja v resnici orientabilni rod Goldber-
govih snarkov. Dolo¢imo Se neorientabilni rod Goldbergovih grafov.

Izrek 4. Orientabilni rod Goldbergovega grafa Gy je g(Gy) = k — 1. Neori-
entabilni rod Goldbergovega grafa Gy, je g(Gx) = k.
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Tezji del dokaza zadnjih dveh izrekov je dokaz spodnje meje za rod. V
obeh primerih pri dokazu omejimo stevilo lic, ki jih lahko imamo v vlozitvah,
in tako dobimo mejo za rod s pomocjo Eulerjeve formule. Lica razdelimo na
lokalna in globalna lica in pokazemo, da v vlozitvah ne moremo imeti veliko
lokalnih lic.

V istem ¢lanku sta Tinsley in Watkins postavila hipotezo o orientabilnem
rodu 4-vsot Petersenovih snarkov. S P™ ozna¢imo 4-vsoto n kopij Peterseno-
vega grafa. Tinsley in Watkins sta domnevala, da je g(P") = n — 1. Hipoteza
je bila ovrzena v [21], kjer so avtorji pokazali, da ima eden od Blanusevih snar-
kov rod 1, drugi pa 2. Rod je torej lahko visji od domnevanega. Pokazemo,
da je lahko tudi veliko manjsi od domnevanega.

Izrek 5. Za vsak n > 0 obstaja 4-vsota n kopij Petersenovega grafa, ki ima
rod 1.

Pri konstrukeiji P* = P- P"! je lahko rod grafa P™ enak rodu grafa P" !,
ali pa se rod poveca za 1. Razis¢emo pogoje, pri katerih se rod 4-vsote poveca
in pogoje, pri katerih se rod ne spremeni. Tako lahko konstruiramo 4-vsoto n
kopij Petersenovega grafa, za katero lahko natanc¢no povemo njen orientabilni
rod.

Izrek 6. Za vsako celo stevilo k, 1 < k < n obstaja 4-vsota n kopij Peterse-
novega grafa P™, ki ima rod g(P") = k.

Na koncu pokazemo Se meje za orientabilni rod 4-vsote poljubnih kubi¢nih
grafov.

Izrek 7. Za kubicna grafa G| in G je rod 4-vsote Gy - Gy omejen z
9(G1) + 9(G2) =2 < g(Gr - G) < g(Gr) + 9(Ga) + 1.

Meje so najboljse mozne, tudi ¢e zahtevamo, da sta GGy in G5 snarka.

Poliedrske vlozitve

Najprej pokazemo, da so kratki cikli v poliedrskih vlozitvah lica.

Lema 8. e Ce je C' 3-cikel v kubicnem grafu G, potem je C' obhod lica v
vsaki poliedrski vlozitvi grafa G.

e Ce je C 4-cikel v kubi¢nem grafu G, potem je C' obhod lica v vsaki
poliedrski vilozitvi grafa G.
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Ce je C cikel v grafu in F obhod lica, potem re¢emo da je F pri C k-
napredujoc¢ obhod, ¢e se C in F' sekata na k zaporednih povezavah na obhodu
F.

Lema 9. Ce je C 5-cikel v kubi¢nem grafu G, potem je

e v vsaki poliedrski vilozitvi grafa G v orientabilno ploskev cikel C' obhod
lica,

e v vsaki poliedrski vlozitvi G v neorientabilno ploskev cikel C' ali obhod
lica ali pa je vsako lice 2-napredujoce pri C'.

Naj bosta G in G kubi¢na grafa in v € V(G) ter u € V(G3). Oznacimo
sosede vozliséa v v G z v1, v, v3 in sosede vozlisca u v Ga z uq, us, us. Grafu
(G, odstranimo vozlisce v skupaj z njenimi povezavami, grafu GG, odstranimo
vozlisce u skupaj z njenimi povezavami ter dodamo povezave u;v;, ¢ = 1,2, 3.
Dobimo kubicen graf G = G * G, ki ga imenujemo 3-vsota grafov G in Gs.

Izrek 10. Naj bo G 3-vsota grafov Gy ter Gy. Graf G ima poliedrsko viozitev
(v orientabilno ploskev) natanko tedaj ko imata grafa G ter Go poliedrski
vlozitvi (v orientabilni ploskvi).

Posledica zadnjega izreka je, da je Griinbaumovo hipotezo dovolj pokazati
za ciklicno 4-povezane grafe. Po Lemi 8 je Griinbaumovo hipotezo dovolj
pokazati za grafe z najkrajsim ciklom dolzine vsaj 4.

S pomocjo Leme 9 lahko za Goldbergove snarke pokazemo, da nimajo poli-
edrskih vlozitev v orientabilne ploskve. To sledi iz dejstva, da imamo v Gold-
bergovih grafih 5 cikla na tockah b;d; f;e;c;b; in b;c;g;h;d;b;. 'V poliedrski vlozitvi
v orientabilno ploskev sta oba 5-cikla obhoda lic, to pa ni mogoce, saj je v tem
primeru pot ¢,b;d; dolzine 3 vsebovana v dveh razlicnih obhodih lic.

Da cvetni snarki nimajo poliedrskih vlozitev v orientabilne ploskve je po-
kazal ze Szekeres. Podamo enostavnejsi dokaz te trditve. Hkrati pokazemo, da
cvetni snarki Jogiq1, £ > 1, nimajo poliedrskih vlozitev v neorientabilne plo-
skve. Graf J; ima poliedrsko vlozitev v projektivno ravnino, vendar ni snark,
saj vsebuje cikel dolzine 3. Sledi izrek:

Izrek 11. e Cvetni snarki nimajo poliedrskih vlozitev niti v orientabilne
niti v neorientabilne ploskve.

e Goldbergovi snarki nimajo poliedrskih vlozitev v orientabilne ploskve.

Pri dokazu Izreka 11 ne uporabimo dejstva, da so grafi razreda 2. Isti dokaz
pove, da tudi grafi Jop nimajo poliedrskih vlozitev.

Za Goldbergove snarke konstruiramo poliedrske vlozitve v neorientabilne
ploskve. Poliedrska vlozitev grafa Gj v neorientabilno ploskev je podana z
naslednjimi obhodi lic (indeksi so po modulu k)
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o A=uagay...a_1a9 in B = foegfier ... fr_1ex_1fo,
o C; =bid;fieicib;, 1 =0,....k—1,

o D; = gihigix1hiy1diy1 fizr€icigi, i =0,... k —1,

o E;i = a;a;41bit1¢i419i1hidibia;, i =0, ...k — 1.

Zgoraj opisana vlozitev ima rod k. Za Goldbergove snarke konstruiramo tudi
poliedrske vlozitve v neorientabilne ploskve roda k + 2.

Iz znanih poliedrskih vlozitev lahko konstruiramo nove poliedrske vlozitve
snarkov s pomocjo 4-vsote.

Izrek 12. Naj bosta G in G5 kubicna grafa. Ce imata Gy in Gy taki poliedrski
vlozitvi v (orientabilni) ploskvi Sy in Ss, da dual grafa Go v Sy ni poln graf,
potem obstaja 4-vsota G, - Gy, ki ima poliedrsko vlozitev v (orientabilno)
ploskev S. Ce je Eulerjev rod ploskev €(S1) = k; in €(Sy) = ko, potem je
Eulerjev rod ploskve S enak €(S) = ki + k.

Velja tudi obrat:

Izrek 13. Naj bo G kubicen graf s ciklicnim 4-prerezom S ki ima poliedrsko
vlozitev. Potem obstajata taka kubicna grafa G| in G, da je G 4-vsota grafov
G in Gy ter da je S prerez 4-vsote. Vsaj eden od GGy in Gy ima poliedrsko
vlozitev.

Goldbergovi snarki imajo poliedrske vlozitve v neorientabilne ploskve roda
2k + 1, Petersenov graf pa ima poliedrsko vlozitev v projektivno ravnino. S
pomocjo Izreka 12 dobimo posledico:

Posledica 14. Za vsako nenegativno celo Stevilo k obstaja snark s poliedrsko
vlozitvijo v neorientabilno ploskev Nj roda k.

Pri dokazu posledice posebej obravnavamo Kleinovo steklenico, saj Izreka
12 ne moremo uporabiti za dve kopiji Petersenovega grafa, vlozeni v projek-
tivno ravnino. Snark s poliedrsko vlozitvijo v Kleinovo steklenico dobimo kot
superpozicijo Petersenovega grafa.

Degeneriranost

Naj bo G kubicen graf in II vlozitev grafa GG v orientabilno ploskev. Za obhod
lica F' v vlozitvi II definiramo degeneriranost d(F) kot Stevilo povezav grafa
G, ki nastopajo dvakrat na obhodu F'. Za dva razlicna disjunktna obhoda lic
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F; in F; definiramo degeneriranost d(F;, F;) = 0. Ce imata obhoda lic F} in F;
kako skupno povezavo, definiramo degeneriranost d(F;, F;) kot stevilo povezav,
ki nastopajo hkrati na obhodu F; in Fj, minus 1. Naj ima vloZitev II mnoZico
obhodov lic F = {Fy, Fy, ..., Fi}. Potem definiramo degeneriranost vloZitve 11

kot
k

dI) =Y d(F)+ > d(F,F)

i=1 1<i<j<k

in degeneriranost grafa G kot
d(G) = min{d(IT) | II vlozitev grafa G}.

Povezavam, ki nastopajo ve¢ kot enkrat na kakem obhodu lica, recemo slabe
povezave. Paru povezav e, f, ki nastopata hkrati na dveh razlicnih obhodih
lic, recemo slab par. Tocki, ki nastopa trikrat na obhodu kakega lica, recemo
slaba tocka. Za vlozitev II oznacimo z d,(II) stevilo slabih tock v vlozitvi II.
Popravljena degeneriranost vlozitve II je definirana kot

d' (IT) = d(IT) + 2d,,(I1).
Popravljena degeneriranost grafa je definirana kot
d'(G) = min{d'(II) | II vlozitev grafa G}.

Degeneriranost meri, kako dale¢ je kubicen graf od tega, da ima poli-
edrsko vlozitev. Ocitno je Griinbaumova hipoteza ekvivalentna trditvi, da
imajo kubic¢ni grafi razreda 2 degeneriranost vsaj 1. S pomocjo rac¢unalnika
izracunamo degeneriranost snarkov z manj kot 30 tockami.

Izrek 15. Snarki z manj kot 28 tockami nimajo poliedrskih vlozitev.

Najmanjsa degeneriranost, ki jo imajo snarki na manj kot 30 tockah, je
2. Najmanjsi snark z orientabilno vlozitvijo degeneriranosti 2 ima 26 vozliSc.
Dobimo ga kot 4-vsoto BlanuSevega grafa in Petersenovega grafa in ima dve
razliéni vlozitvi z degeneriranostjo 2. Na 28 vozlis¢ih obstajata dva snarka
degeneriranosti 2. Prvi ima dve razliéni vlozitvi, drugi pa eno vlozitev dege-
neriranosti 2. Vse vlozitve so vlozitve v dvojni torus. BlanuSev graf (roda 1)
ima tri razlicne vlozitve z degeneriranostjo 3 v torus. Na 24 vozlis¢ih obtajata
dva snarka degeneriranosti 3, eden z dvema, drugi pa z eno vlozitvijo degene-
riranosti 3 v dvojni torus. Na 26 vozlis¢ih obstaja en snark degeneriranosti
3, ima tri vlozive degeneriranosti 3 v dvojni torus. Na 28 vozlis¢ih obstaja 8
snarkov degeneriranosti 3.
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Izrek 16. e Ce Griinbaumova hipoteza drzi, potem imajo snarki razreda
2 degeneriranost vsaj 2.

e Za vsak k > 2 obstaja neskoncna druzina snarkov, ki imajo degenerira-
nost natanko k.

Najsplosnejsa znana konstrukcija snarkov je Kocholova superpozicija. Ja-
eger in Swart sta leta 1980 postavila hipotezo, da ima vsak snark cikel dolzine
kvec¢jemu 6 [10]. Prvi je snarke brez kratkih ciklov s pomocjo superpozicije
konstruiral Kochol leta 1996 [17]. Druzini snarkov, ki jo je konstruiral Kochol
in ki vsebuje snarke brez kratkih ciklov, recemo Kocholovi snarks.

Kocholove snarke dobimo kot superpozicijo Petersenovega grafa. Obstajata
dva tipa Kocholovih snarkov, prvi imajo cikli¢ne 4-prereze, drugi so pa cikli¢no
5-povezani. Petersenov graf ima degeneriranost 5 in posledica tega je, da
Kocholovi snarki nimajo poliedrskih vlozitev.

Izrek 17. Kocholovi snarki nimajo poliedrskih vilozitev v orientabilne ploskve.

Naj bo ¢ 4-barvanje povezav kubicnega grafa GG, kjer dovolimo, da so pove-
zave pobarvane z barvo 4, sosednje. Barvanju ¢ re¢emo minimalno barvanje,
¢e je stevilo povezav, pobarvanih z barvo 4, minimalno mozno med vsemi 4-
barvanji grafa G. Vsako minimalno barvanje je pravo barvanje povezav (torej
tudi povezave barve 4 niso sosednje). Odpornost grafa G, r(G), je stevilo po-
vezav barve 4 v minimalnem barvanju. Oc¢itno je kubi¢ni graf G' graf razreda
1 natanko tedaj, ko je r(G) = 0. Pokazemo, da v primeru, da Griilnbaumova
hipoteza drzi, obstaja povezava med odpornostjo in popravljeno degenerirano-
stjo.

TIzrek 18. Ce Griinbaumova hipoteza drzi, potem za vsak kubicen graf G velja

G
2 > "G
2
Zadnji izrek pravi, da so grafi, ki so dale¢ od tega, da imajo 3-barvanje
povezav, tudi dale¢ od tega, da imajo poliedrsko vlozitev.
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