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Abstract: Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant 
viral pathogen that causes substantial economic losses to the swine industry worldwide. 
The limited efficacy of current therapeutic approaches and emergence of new PRRSV 
strains highlight the urgent need for novel antiviral strategies. Natural compounds de-
rived from plants, animals, bacteria, and fungi have attracted increasing attention as po-
tential antiviral agents. This comprehensive review focuses on natural compounds with 
antiviral activity against PRRSV and explores their mechanisms of action, efficacy, and 
potential applications. These compounds exhibit diverse antiviral mechanisms such as 
viral attachment and entry inhibition, replication suppression, and modulation of host 
immune responses. This review also highlights challenges and future directions in this 
field. Research gaps include the need for further elucidation of the precise mechanisms 
of action, comprehensive evaluation of safety profiles, and exploration of combination 
therapies to enhance efficacy. Further research and translational studies are warranted 
to harness the full potential of these natural compounds and pave the way for the effec-
tive control and management of PRRSV infections in the swine industry.
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Introduction 

Porcine reproductive and respiratory syndrome virus 
(PRRSV) is the etiological agent responsible for the path-
ological condition observed in swine, which was initially 
documented within the borders of the United States (U.S.) 
in 1987 and subsequently in Europe in 1990 (1). These out-
breaks were characterized by detrimental effects on repro-
duction, post-weaning pneumonia, and elevated mortality 
rates in growing swine. In the early stages, attempts to iden-
tify the causative agent responsible for this novel syndrome 
proved to be futile, leading to its provisional designation as 
a mystery swine disease (MSD) in North America. However, 
in 1991, Koch's postulates for MSD were eventually satis-
fied through the discovery of a hitherto unidentified RNA vi-
rus in Europe, which was subsequently named the Lelystad 
virus (LV) (2). Shortly after this significant finding, the virus 
was successfully isolated in North America and was initially 
referred to as swine infertility and respiratory syndrome vi-
rus (SIRSV) (3). 

PRRSV has emerged as a pervasive pathogen in most 
swine-producing nations, posing substantial economic re-
percussions to the swine industry. PRRSV can infect pigs 
across all age groups; however, its clinical manifestations 
are particularly pronounced in pregnant sows and young 
pigs (4). In pregnant sows, PRRSV infection during the final 
trimester of gestation may lead to adverse outcomes, such 
as abortion, characterized by the delivery of stillborn, par-
tially autolyzed, and mummified fetuses. Conversely, young 
pigs infected with PRRSV commonly display clinical signs, 
including elevated body temperature, severe dyspnea, di-
minished appetite, lethargy, eyelid edema, and ear discolor-
ation, appearing either blue or red (5). 

The term PRRSV encompasses two distinct genotypes: 
PRRSV-1, comprising genotypes initially isolated in Europe, 
and PRRSV-2, which consists of genotypes first identi-
fied in North America (6). Presently, both virus types have 
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achieved global distribution, with PRRSV-1 primarily prev-
alent in Europe, whereas PRRSV-2 exhibits a wider geo-
graphic range, including North America, Asia, and South 
America (7). Recent investigations into multiple arteriviral 
nucleotide sequences in nonhuman primates have prompt-
ed the reclassification of PRRSV into two separate entities: 
PRRSV-1 and PRRSV-2 (8). This classification was substan-
tiated by the recognition of remarkable genetic variability 
within both PRRSV-1 and PRRSV-2, as evidenced by phylo-
genetic analysis based on ORF5 (9). The extensive genetic 
diversity exhibited by PRRSV poses a significant challenge 
for the development of effective antiviral therapeutics. This 
review aims to discuss the molecular biology, clinical char-
acteristics, transmission, and different natural compounds 
with antiviral activity against PRRSV, and their respective 
molecular mechanisms.

Molecular Biology of PRRSV

Taxonomy and Structure

PRRSV is an enveloped RNA virus characterized by a single 
positive strand (Figure 1) (10). Taxonomically, it belongs to 
the order Nidovirales and family Arteriviridae, which also 
encompasses other viruses such as the lactate dehydroge-
nase-elevating virus of mice, equine arteritis virus, and sim-
ian hemorrhagic fever virus (11). The arterivirus genome is 
enclosed within a lipid envelope and associated with a sin-
gular N protein comprising 110-128 amino acids, forming 
a core structure. Furthermore, the viral particles exhibited 
an approximately spherical or oval shape with diameters 
ranging from 50 to 60 nm. The reported buoyant densities 

of PRRSV virions in sucrose range from 1.13 to 1.17 g/cm3 
(12). The enveloped surface of the virions appears relatively 
smooth, which can be attributed to the limited size of the 
ectodomains of the two major envelope proteins, GP5 and 
M.

Genome Organization

The complete genome of PRRSV spans approximately 15 
kb, featuring a cap structure at the 5' end during mRNA pro-
cessing and a poly A tail structure at the 3' end (Figure 2) 
(13). PRRSV isolates can be categorized into two distinct 
genotypes based on their genomic and antigenic varia-
tions: North American (NA), PRRSV-2, and European (EU), 
or PRRSV-1. These genotypes exhibit an approximate se-
quence identity of 65% (14). 

The PRRSV genome comprises 12 open reading frames 
(ORFs) designated as ORF1a, ORF1a', TF, ORF1b, ORF2a, 
ORF2b, ORF3, ORF4, ORF5a, and ORF5–ORF7 (15). Among 
these, ORF1a and ORF1b encode polyproteins pp1a and 
pp1ab, which undergo processing to yield 17 nonstructural 
proteins (NSPs) (NSP1α, NSP1β, NSP2, NSP2N, NSP2TF, 
and NSP3-14), which play a pivotal role in virus replication 
(16). Recently, a novel ORF known as the ORF trans-frame 
(TF) was discovered within the nsp2 region (17). This ORF, 
expressed through both −1 and −2 ribosomal frameshift-
ing, gives rise to two additional nsps: nsp2N, a truncated 
version of nsp2; and nsp2TF, a fusion protein formed by the 
N-terminal two-thirds of nsp2 and a C-terminal region en-
coded by the TF ORF spanning 169 amino acids (18). The 
major envelope proteins GP5 and M are encoded by ORF5 
and ORF6, respectively. These proteins interact with each 

Figure 1: Schematic representation of PRRSV structure 
PRRSV mature viral particle, composed of a lipid bilayer envelope with viral receptor glycoproteins involved in infection and cell internalization. Single-
stranded positive RNA is associated with nucleocapsid protein in the internal layer of the virus.
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other to form heterodimers on the surface of viral particles. 
Notably, GP5 exhibits substantial variability among struc-
tural proteins in the PRRSV genome, making it a commonly 
employed target for phylogenetic analyses (19). ORF2, 
ORF3, and ORF4 encode the minor envelope proteins GP2a, 
GP3, and GP4, respectively, forming noncovalent heterodi-
mers. In addition, two small non-glycosylated proteins, E 
and GP5a, are encoded by ORF2b and ORF5a, respectively. 
The highly conserved nucleocapsid protein (N protein) is 
encoded by ORF7 (20).

Clinical Characteristics

PRRSV infections are characterized by several distinctive 
clinical features, including elevated body temperature, pro-
nounced contagiousness, and substantial morbidity and 
fatality rates. Following infection, pigs often experience 
a rapid increase in body temperature, reaching 41-42°C 
within a span–1-2 days (21). This heightened contagious-
ness results in infection spreading throughout the entire pig 
population within 3-5 days, with a disease duration typically 
lasting 1-3 weeks. Notably, the highly pathogenic PRRSV 
(HP-PRRSV) demonstrated a particularly high fatality rate 
in suckling pigs (100%) and nursery pigs (approximately 
70%). Furthermore, adult pigs exhibit an increased mortal-
ity rate, with finishing pigs experiencing a mortality rate of 
20% and pregnant sows experiencing a minimum of 10% 
mortality (22). Additionally, PRRSV infections are frequently 
associated with an elevated incidence of abortions, ranging 
from 40% to 100%. Furthermore, affected pigs often display 
signs, such as skin erythema and severe respiratory symp-
toms, including coughing, dyspnea, and tachypnea. Some 

pigs may also exhibit neurological signs, such as limping, 
and gastrointestinal manifestations, such as constipation 
or diarrhea (21).

PRRSV infection induces a wide array of pathological 
changes in affected pigs. Among the prominent gross le-
sions, multifocal hemorrhages are particularly notable, af-
fecting various tissues and organs, such as the skin, lungs, 
lymph nodes, kidneys, and heart (22). Another significant 
observation was the presence of lymphadenopathy accom-
panied by pronounced interstitial pneumonia, characterized 
by severe pulmonary edema and consolidation. In certain 
instances, edema and congestion can be observed within 
the brain. Additionally, severe thymus atrophy is frequently 
encountered, especially in piglets infected with HP-PRRSV 
(21).

Secondary bacterial infections are a significant and fre-
quently encountered issue in the context of HP-PRRSV in-
fections. Among the commonly detected bacterial patho-
gens, Escherichia coli, Streptococcus suis, Haemophilus 
parasuis, and Mycoplasma hyopneumoniae are frequently 
implicated (22). Furthermore, PRRSV-infected pig popula-
tions often exhibit the presence of various viral pathogens, 
including classical swine fever virus (CSFV), pseudorabies 
virus (PRV), and porcine circovirus type 2 (PCV2). The po-
tential synergistic effects of these coinfections on PRRSV 
pathogenesis have garnered substantial attention within 
the PRRSV research community, prompting intensive in-
vestigation (21).

Figure 2: Genome organization of PRRSV virus
Non-structural proteins are located in the 5′ end of the genome, coding for two different polyproteins pp1a and pp1ab that is cleaved into at least 14 nsps. 
Structural proteins near the 3′ end are associated with the viral envelope and RNA packaging.
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Transmission of PRRSV

Transmission Routes

PRRSV transmission in pigs can occur through various 
routes, including direct contact and indirect transmission 
via fomites. Exposure to PRRSV primarily occurs through 
respiratory and oral routes as well as through mucosal or 
percutaneous routes. The modes of transmission encom-
pass aerial transmission, either over short or longer distanc-
es, as well as transmission through coitus or insemination, 
ingestion, contact, and occasionally through inoculation, 
often arising from iatrogenic factors. Vertical transmission 
during the later stages of gestation is particularly notewor-
thy. The minimum infectious dose (MID) of PRRSV depends 
on the specific route of exposure. For instance, infectious 
dose 50 (ID50) through oral and nasal exposure has been 
previously evaluated. Notably, variations in infectivity have 
been observed among different PRRSV isolates via various 
transmission routes (23). In terms of sexual transmission, 
the ID50 for exposure via artificial insemination is 103.3 
TCID50 (24).

Based on available data, percutaneous exposure is asso-
ciated with the lowest MID. Within the farm environment, 
parenteral exposure is likely to occur frequently, involving 
routine practices, such as ear notching, tail docking, teeth 
clipping, and the administration of drugs and vaccines. 
During the peak viremia stage, infected animals typically 
exhibit a viral load of at least 103–104 TCID50/mL (25). 
Regular pig behavior can also contribute to parenteral ex-
posure, such as bites, cuts, scrapes, and abrasions, during 
instances of inter-pig fighting. Aggressive interactions be-
tween infected sows and susceptible contacts may play a 
significant role in PRRSV transmission (26).

PRRSV is notably susceptible to inactivation by various 
means, including lipid solvents, heat, desiccation, and ex-
treme pH conditions (27). Notably, LV was shown to under-
go inactivation after 6 min at 56°C or 3 h at 37°C. However, 
it displays stability for up to 140 hours at 4°C and remains 
viable for several months when maintained in a cell culture 
medium at pH 7.5 and temperatures ranging from -70°C to 
-20°C (28). In terms of disinfection, iodine ( 0.0075%) and 
quaternary ammonium compounds ( 0.0063%) achieve 
complete inactivation of the virus within 1 min (29). Chlorine 
can also completely inactivate PRRSV, although higher 
disinfectant concentrations (0.03%) and longer exposure 
times (10 min) are required. Additionally, a 10-minute ex-
posure to ultraviolet light effectively leads to the complete 
inactivation of the virus on commonly encountered farm 
surfaces and materials (30).

Development of Viremia and Viral Persistence

Following exposure to PRRSV, viral replication initially oc-
curs within permissive macrophages located in lymphoid 
tissues at the entry portal. Subsequently, the virus rapidly 

disseminates throughout the body via the lympho-haemat-
ic route. In a genotype 2 model, detectable viremia was ob-
served as early as 12 hours post-infection (hpi) (31). The 
viral load in the serum peak around 7-10 days post-infection 
(dpi). The duration of viremia can vary depending on factors 
such as the specific PRRSV strain and age of the infected 
animal (32). Various studies have indicated that the viremic 
period ranges from a few weeks, typically less than four 
weeks, in adult or grower-finisher pigs, to as long as three 
months in very young piglets (33). In the case of adult sows 
infected with genotype 1 PRRSV, viremia may be limited to 
just one week (34).

During the initial phase of infection, the lungs and various 
lymphoid organs, including tonsils, Peyer's patches, thy-
mus, and spleen, exhibit the highest viral loads (35). In the 
lungs, viral detection can typically be observed from 1 to 28 
dpi (36). Notably, in young pigs, the virus has been reported 
to persist in the lungs for up to 49 dpi (37).

Subsequent to the viraemic phase, viral infection enters a 
stage characterized by the sequestration of the virus within 
secondary lymphoid tissues, leading to a decline in viral rep-
lication. Over time, contagiousness diminishes, although 
transmission remains feasible for up to three months in 
horizontally infected pigs. However, in congenitally infected 
animals, the period of contagiousness may extend beyond 
this time frame (38). Several situations inducing stress, 
such as farrowing or regrouping, can trigger reactivation of 
viral replication and shedding (39).

Viral Shedding

The presence of viremia and the distribution of susceptible 
macrophages within the body contribute to PRRSV shed-
ding through various routes. In particular, nasal shedding 
appears to exhibit strain-dependent characteristics, par-
ticularly in genotype 1 PRRSV. For instance, nasal shedding 
of genotype 1 was limited, with only four out of eight pigs 
showing isolation of the virus at 3 dpi and one out of eight 
pigs at 7 dpi, always at low titers (25). In the case of geno-
type 2, nasal secretion was reported in only 1.9% (2/105) of 
nasal swabs collected from experimentally inoculated pigs 
during a 28-day observation period (40). Additionally, no vi-
rus has been isolated from the nasal secretions of experi-
mentally infected pigs (31). 

The shedding of PRRSV in oral fluids appears to be rela-
tively consistent, although most of the available data focus 
on genotype 2 viruses. The presence of the virus in oral flu-
ids and the steady nature of its shedding over time have 
important implications for PRRSV transmission. With re-
gard to viral shedding in the semen of infected boars, the 
detection of the viral genome using RT-PCR has been re-
ported as early as 3 dpi and persisted up to 92 dpi in 1 out 
of 4 boars inoculated with the VR-2332 isolate (41). PRRSV 
has also been found in the urine (40) and mammary gland 
secretions (42). In experimentally infected sows, genotype 
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2 PRRSV was detected using RT-PCR on the first day of 
lactation (42). Lastly, infected pigs have been observed to 
generate aerosols contaminated with the virus during re-
spiratory activities, such as breathing, sneezing, or cough-
ing, although the extent of aerosol transmission can vary 
depending on the strain (43).

Anti-PRRSV Agents

Natural compounds derived from plants, animals, fungi, 
and bacteria have received significant research attention 
because of their potent antiviral activities in vitro and in vivo. 
These compounds possess different molecular mecha-
nisms, such as activation of TLR signaling, activation of in-
terferon signaling, downregulation of receptors, and block-
ing of virus attachment, fusion, replication, translation, 

assembly, maturation, and release (Figure 3). The com-
pounds are discussed in detail in this section. 

Plant-derived Compounds

Tea polyphenols 
Tea polyphenol (TPP) refers to the collective group of poly-
phenols found in tea leaves, with catechins and their de-
rivatives being the primary constituents (44). TPP exhibits a 
wide range of physiological activities, including antioxidant, 
anti-radiation, anti-aging, blood lipid-lowering, blood sug-
ar-lowering, and inhibition of bacteria and enzymes (45). 
Structurally, TPP possesses polyphenolic characteristics 
such as catechins and anthocyanins (46). Green tea, which 
serves as a primary source of TPP, exerts notable antiviral 
and antifungal effects (47). Notably, epigallocatechin gal-
late (EGCG) has demonstrated antiviral properties against 

Figure 3: Life cycle and molecular targets of antiviral compound
The life cycle of PRSSV begins with binding of PRRSV with sialoadhesin (1) that will trigger clathrin-mediated endocytosis (2) to fuse with an endosome (3). 
The virus is then disassembled and the viral RNA is released (4) for translation in the endoplasmic reticulum (5). Translated viral proteins are assembled into 
new progeny virions (6) followed by maturation and budding in the Golgi body (7). This new progeny virions are released outside of the cell via exocytosis (8).
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various viruses, including hepatitis C (HCV), chikungunya 
(CHIKV), hepatitis B (HBV), and Zika (ZIKV) viruses (48).

TPP potently inhibited PRRSV infection in Marc-145 cells 
in a dose-dependent manner. TPP exerts its inhibitory ef-
fects across multiple stages of the PRRSV life cycle, includ-
ing attachment, internalization, replication, and release. 
Mechanistically, TPP impeded the transport of p65 into the 
nucleus, thereby suppressing the activation of the NF-κB 
signaling pathway, which ultimately resulted in the down-
regulation of inflammatory cytokine expression induced by 
PRRSV infection. Additionally, TPP can interfere with the 
synthesis of viral nsp2, a crucial component of replication 
transcription complexes (RTC), leading to inhibition of viral 
protein translation and assembly (49). 

Matrine 
Matrine, a prominent quinolizidine alkaloid derived from the 
dried roots of Sophora flavescens Ait, as described in the 
Chinese Pharmacopeia 2005, exhibits a range of pharma-
cological effects, including antiviral, anti-inflammatory, and 
immunoregulatory properties (50). Previous studies have 
revealed the inhibitory effects of matrine on PRRSV infec-
tion in Marc-145 cells, suggesting that matrine can directly 
inactivate PRRSV and disrupt viral replication within host 
cells. Furthermore, an indirect immunofluorescence assay 
and western blot analysis demonstrated that matrine is ca-
pable of inhibiting the expression of N protein in Marc-145 
cells. Additionally, matrine impedes PRRSV-induced apop-
tosis by inhibiting the activation of caspase-3 (51).

Moreover, matrine exhibits antiviral activity against both 
PRRSV and PCV2 (51). The antiviral mechanisms under-
lying the effects of matrine are thought to involve partial 
regulation of the TLR3/TLR4/NF-κB/TNF-α pathway (50). 
Notably, matrine treatment has been shown to improve 
pneumonia symptoms in PRRSV/PCV2 co-infected mice 
and has shown efficacy in attenuating inflammation in mice 
with LPS-induced acute lung injury. Furthermore, matrine 
directly hindered PRRSV replication by inhibiting the activ-
ity of Nsp9. Recent studies have also revealed that matrine 
can inhibit IL-1β secretion in primary porcine alveolar mac-
rophages (PAMs) by acting on the MyD88/NF-κB pathway 
and the NLRP3 inflammasome. This inhibition is associat-
ed with downregulated expression of MyD88, NLRP3, and 
caspase-1 as well as suppression of ASC speck formation, 
IκBα phosphorylation, and hindered translocation of NF-κB 
from the cytoplasm to the nucleus (52). 

Rottlerin 
Rottlerin, a polyphenolic ketone compound derived from 
the Indian Kamala tree (Mallotus philippensis Muell. Arg), 
has gained prominence as a selective PKCδ inhibitor (53). 
Historically, rottlerin has been used in traditional Indian 
medicine to treat tapeworm, scabies, and herpetic ring-
worm infections, implying its long-standing safety record. 
Notably, several prior studies have documented the antivi-
ral properties of rottlerin against various viruses, including 

rabies, influenza, human immunodeficiency virus, and 
PRRSV (54). 

Earlier investigations have highlighted the significant im-
pact of rottlerin pretreatment on diminishing both viral 
RNA synthesis and titer. More recently, it has been demon-
strated that the administration of rottlerin during the early 
stages of PRRSV infection effectively impedes viral replica-
tion. PRRSV infection is known to induce phosphorylation 
of protein kinase C-δ, a process that is specifically coun-
teracted by rottlerin (55). Treatment with rottlerin disrupts 
the entry pathway of PRRSV by impeding endocytosis of 
virions. Moreover, in vivo studies involving the administra-
tion of rottlerin-liposomes to PRRSV-infected pigs, specifi-
cally those infected with LMY or FL12 strains, revealed a 
notable dose-dependent reduction in blood viral load, inter-
stitial pneumonia, and clinical scores when compared to 
untreated pigs (55).

Sanguinarine
Sanguinarine, a quaternary benzo[c]phenanthridine alkaloid 
found in various plants such as Macleaya cordata (Wild.) 
R.Br., Bocconia frutescens L., Chelidonium majus L., Fumaria 
officinalis L., and Sanguinaria canadensis L., has been ex-
tensively studied for its anti-inflammatory, anti-tumor, and 
antimicrobial properties (56). While its antiviral activity has 
rarely been reported, there have been observations of mod-
erate antiviral effects of sanguinarine against tobacco mo-
saic virus (57). Furthermore, a derivative of sanguinarine, 
8-hydroxydihydrosanguinarine, has recently emerged as a 
potential drug candidate for combating COVID-19 (58).

Regarding its effects on PRRSV, sanguinarine demon-
strates potent antiviral activity by targeting multiple stages 
of the virus life cycle, including internalization, replication, 
and release (59). Network pharmacology and molecular 
docking studies identified potential anti-PRRSV targets of 
sanguinarine, including ALB, AR, MAPK8, MAPK14, IGF1, 
GSK3B, PTGS2, and NOS2. Additionally, the combination of 
sanguinarine and chelerythrine, another bioactive alkaloid 
derived from Macleaya cordata, has shown improved anti-
viral effects (59).

Platycodin D
Platycodon grandiflorum A. DC is a widely recognized 
Chinese herb that is used to treat pulmonary and respira-
tory diseases. Notably, saponins have been identified as the 
primary bioactive constituents of P. grandiflorum roots (60). 
Among these saponins, platycodin D (PD), an oleanane-
type triterpenoid saponin with sugar chains attached at the 
C-3 and C-28 positions of the aglycone, is the most potent 
in terms of biological activity (61). Previous investigations 
have demonstrated the diverse pharmacological effects of 
PD, including its antitumor properties (62), anti-inflammato-
ry effects (63), and immunological adjuvant activities (60). 
Moreover, PD has been shown to possess hepatoprotective 
properties and anti-hepatitis C virus (HCV) activity (64).
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PD demonstrated remarkable efficacy against PRRSV in-
fection in both Marc-145 cells and primary PAMs (65). Its 
inhibitory effects extend across various strains of PRRSV, 
including the highly pathogenic type 2 strains GD-HD and 
GD-XH, as well as the classical strains CH-1a and VR2332. 
Notably, PD displayed dose-dependent inhibition of PRRSV 
RNA synthesis, viral protein expression, and production of 
progeny viruses, with significant effects observed at con-
centrations ranging from 1 to 4 μM. The EC50 values of PD 
against the four tested PRRSV strains in Marc-145 cells 
ranged from 0.74 to 1.76 μM (65).

The antiviral mechanism of PD involves direct interaction 
with PRRSV virions, thereby affecting multiple stages of the 
viral life cycle, including viral entry and release of progeny 
virus. Furthermore, PD exhibited the ability decreases the 
production of cytokines (IFN-α, IFN-β, IL-1α, IL-6, IL-8, and 
TNF-α) induced by both PRRSV and LPS in PAMs (65).

Cryptotanshinone 
Cryptotanshinone (CPT) is a natural compound derived 
from the roots of Salvia miltiorrhiza Bunge (Danshen). The 
roots of S. miltiorrhiza have long been used in traditional 
oriental medicine to treat various circulatory disorders, liver 
diseases, coronary heart disease, hepatitis, and chronic 
renal failure (66). Notably, CPT exhibited remarkable anti-
bacterial activity, surpassing the effectiveness of the other 
tested tanshinones. Furthermore, its anti-inflammatory 
properties have been attributed to the inhibition of cyclo-
oxygenase II activity and endothelin-1 expression (67).

CPT has demonstrated notable efficacy in impeding the in-
fection of diverse PRRSV strains in PAMs, which serve as 
primary targets of PRRSV in vivo. The underlying mecha-
nism involves the inhibition of signal transducer and acti-
vator of transcription 3 (STAT3) activation, the blockade of 
interleukin 10 (IL-10)-stimulated CD163 expression, and the 
basal level of CD163 expression in PAMs (68). Remarkably, 
CPT was effective in both pre- and post-PRRSV infection 
treatment, with the combined application resulting in sub-
stantial dose-dependent inhibition of PRRSV infection. 
Moreover, CPT displays inhibitory effects against both type 
I and type II PRRSV infections in PAMs (68). 

Allicin 
Garlic (Allium sativum L.) and its organosulfur compounds 
(OSC) have been extensively studied for their pharmaco-
logical properties, including antibacterial, antiviral, anti-in-
flammatory, anticancer, and antioxidant effects (69). Allicin, 
an OSC present in garlic, onion, and other Allium plants, has 
been recognized for its significant antiviral activity against 
herpes simplex virus-1 and 2, parainfluenza-3, vaccinia vi-
rus, vesicular stomatitis virus, and human rhinovirus-2 (70). 
Previous investigations have also demonstrated the an-
tiviral potential of allicin against respiratory viruses, such 
as influenza, SARS-CoV, and rhinovirus (71). In a recent 
study, allicin was found to alleviate SARS-CoV-2 infection 
in vitro and restore host cellular pathways disrupted by 

viral infections (72). Furthermore, allicin has shown effi-
cacy as an antiviral agent against the reticuloendotheliosis 
virus by reducing inflammation and oxidative damage, pri-
marily through inhibition of the ERK/MAPK pathway (73). 
Additionally, allicin exhibits anti-inflammatory properties by 
inhibiting the P38 and JNK pathways as well as the TLR4/
NF-κB signaling pathway (74).

Supplementation of garlic botanicals in the nursery basal 
diet has been shown to have beneficial effects on PRRSV-
infected pigs, including reduction of viral loads and im-
provement of immune responses (75). Allicin demonstrat-
ed a dose-dependent inhibitory effect on both HP-PRRSV 
and NADC30-like PRRSV. It exerts its antiviral activity by 
interfering with various stages of the viral life cycle, includ-
ing entry, replication, and assembly. Additionally, allicin alle-
viates the expression of pro-inflammatory cytokines (such 
as IFN-β, IL-6, and TNFα) induced by PRRSV infection. 
Treatment with allicin effectively restores dysregulated pro-
inflammatory signaling pathways, including the TNF and 
MAPK signaling pathways, which are upregulated during 
PRRSV infection (76).

Curcumin 
Curcumin, a natural polyphenolic compound isolated from 
Curcuma longa L. rhizomes, has been extensively studied 
for its various biological and pharmacological effects. It 
is the major component of C. longa and accounts for its 
immunomodulatory, antitumor, anti-inflammatory, antioxi-
dant, antimutagenic, antibacterial, antifungal, and antiviral 
activities associated with this plant (77). Among its antiviral 
properties, curcumin has been shown to inhibit the entry 
of several viruses into cells, including HCV, CHIKV, and ve-
sicular stomatitis virus (VSV) (78). In the context of PRRSV 
infection, curcumin has been found to effectively inhibited 
the infection of both Marc-145 cells and PAMs by four dif-
ferent genotype 2 PRRSV strains. Interestingly, curcumin 
did not affect the levels of major PRRSV receptor proteins 
on the cell surface or PRRSV binding to cells. Instead, it 
specifically targets two crucial steps in the PRRSV infec-
tion process: virus internalization and virus-mediated cell 
fusion (79).

Aloe vera extracts 
Aloe vera is known for its remarkable inhibitory effect on 
a wide range of viruses, including herpes simplex virus 
type 1, influenza virus, and pigeon paramyxovirus type 1 
(80). Notably, this antiviral property has been attributed 
not only to the whole extract of Aloe vera but also to its 
isolated compounds. Emodin (1, 3, 8-trihydroxy-6-methyl-
anthraquinone), an anthraquinone compound found in the 
roots and bark of pharmaceutical plants, such as Chinese 
rhubar (Rheum palmatum L.) and Aloe vera L. (81), has 
demonstrated significant inhibitory effects against vari-
ous viruses. These include Cyprinid herpesvirus 3 (CHV3) 
(82), coxsackieviruses (CV) (83), ZIKV (84), enterovirus 71 
(EV71) (85), Epstein-Barr virus (EBV) (86), HCoV-OC43 (87), 
herpes simplex virus (HSV) (88), HBV (89), and SARS-CoV 
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(90). Emodin exerts its antiviral activity through multiple 
mechanisms, including blockade of virus-receptor interac-
tions, inhibition of viral protein translation, suppression of 
viral maturation, and inhibition of viral release (90).

Aloe extract (Ae) has been found to exhibit potent inhibi-
tory effects against PRRSV in vitro, specifically in Marc-145 
cells and PAMs (91). Emodin demonstrated an inhibitory 
effect by targeting various stages of the PRRSV infection 
cycle. Emodin was able to directly inactivate PRRSV par-
ticles. Additionally, emodin treatment significantly upregu-
lated the expression of Toll-like receptor 3 (TLR3) (p < 0.01), 
IFN-α (p < 0.05), and IFN-β in iPAMs. This suggested that 
the anti-PRRSV effect of emodin may be attributed to the 
induction of antiviral agents through TLR3 activation (91).

Cepharanthine 
Cepharanthine (CEP) is an alkaloid derived from Stephania 
cepharantha Hayata, which has a long history of use in 
Japanese medicine for various conditions, including radia-
tion-induced leukopenia and certain skin and ear disorders 
(92). The therapeutic potential of CEP extends beyond its 
traditional applications, as it possesses diverse properties 
such as anti-inflammatory, antioxidant, immunomodula-
tory, and antiparasitic effects, making it an attractive candi-
date for treating viral diseases such as COVID-19 (93).

Notably, CEP has demonstrated antiviral activity against 
HCoV-OC43, a mildly pathogenic human coronavirus (94), 
and severe acute respiratory syndrome coronavirus (SARS-
CoV) (95). Moreover, in a comprehensive drug screen-
ing study involving 2406 clinically approved drugs, CEP 
emerged as the most effective compound against pan-
golin coronavirus closely related to SARS-CoV-2, the virus 
responsible for the COVID-19 pandemic (96). This discov-
ery is particularly significant considering the high genomic 
similarity between SARS-CoV and SARS-CoV-2 (97). Given 
these promising findings, CEP has garnered significant at-
tention as a potential therapeutic option for the treatment 
of COVID-19 by exploiting its established antiviral properties 
and favorable activity against related coronaviruses (96).

In recent investigations, CEP has demonstrated superior in-
hibitory effects on PRRSV infection compared to tilmicosin, 
as evidenced by reductions in both RNA and protein levels. 
Notably, CEP treatment led to a 5.6-fold decrease in TCID50, 
providing substantial protection against PRRSV infection 
in Marc-145 cells (98). Mechanistically, detailed analyses 
involving western blot assessments of Marc-145 cells and 
PAMs subjected to CEP treatment and PRRSV infection 
at various time points revealed the ability of CEP to sup-
press the expression of integrins β1 and β3, integrin-linked 
kinase (ILK), RACK1, and PKCα. These effects culminated 
in the suppression of NF-κB signaling, ultimately alleviating 
PRRSV infection. These findings underscore the potential 
of CEP as a valuable intervention strategy against PRRSV 
infection, offering new insights into its antiviral mecha-
nisms and therapeutic implications (98).

Glycyrrhizin 
Glycyrrhizin, a triterpene saponin found in licorice root 
(Glycyrrhiza glabra L.), possesses a diverse range of bio-
logical activities, including antibacterial, antiviral, anti-
inflammatory, anticancer, antioxidant, liver protection, 
neuroprotection, skin whitening, hypoglycemic, and mem-
ory-enhancing properties (99). These characteristics high-
light the promising potential of licorice in cosmetic produc-
tion and therapeutic applications for various conditions 
such as liver disease, diabetes, ischemia-reperfusion injury, 
Alzheimer's disease, Parkinson's disease, epilepsy, depres-
sion, and cancer (100). 

Numerous studies have documented the potent antiviral 
effects of glycyrrhizin against a range of viruses, including 
the hepatitis B virus (HBV) (101), HCV (102), herpes simplex 
virus (HSV) (103), SARS coronavirus (104), and influenza 
viruses (105). Recent studies have revealed dose-depen-
dent inhibitory effects of glycyrrhizin on the proliferation 
of PRRSV. Treatment with glycyrrhizin effectively reduced 
PRRSV proliferation and PRRSV-encoded protein expres-
sion, which primarily targeted the penetration stage of the 
PRRSV life cycle, exerting minimal influence on the pro-
cesses of viral adsorption or release (105).

Flavaspidic acid AB 
Flavaspidic acid AB (FA-AB) is a naturally occurring com-
pound derived from Dryopteris crassirhizoma Nakai, 
a semi-evergreen fern with a rich history in traditional 
Chinese medicine (106). The rhizome of D. crassirhizoma 
has traditionally been employed as an anti-infection agent, 
particularly for respiratory ailments such as the common 
cold and flu. Notably, it has been utilized in combination 
with other Chinese herbal medicines, including Astragalus, 
Atractylodes, Red Atractylodes, Pogostemon, Adenophora, 
and Lonicera, in a prescription formula to prevent SARS 
(106).

FA-AB belongs to the phloroglucinol derivative family (107). 
Extensive investigations have demonstrated the antibacte-
rial, antitumor, and antioxidant properties of phloroglucinol 
derivatives (107). Additionally, dimeric phloroglucinols have 
shown inhibitory effects against HIV-1 reverse transcrip-
tase, highlighting their potential for antiviral intervention 
(108). 

FA-AB inhibits the internalization and intercellular transmis-
sion of PRRSV, although it does not interfere with the initial 
binding of PRRSV to host cells (109). Remarkably, when 
FA-AB treatment was initiated 24 hours after viral infection, 
it effectively suppressed PRRSV replication, as evidenced 
by kinetic analysis of viral replication. Moreover, FA-AB can 
induce the expression of important antiviral cytokines, in-
cluding IFN-α, IFN-β, and IL1-β, in PAMs (109). 

Caesalpinia sappan (CS) heartwood  
Caesalpinia sappan L. 1753 (CS), derived from the 
Leguminosae family, is a renowned medicinal plant that is 
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widely distributed and cultivated in various tropical Asian 
regions such as Southern China, India, Myanmar, Vietnam, 
Sri Lanka, and Thailand (110). CS dried heartwood has been 
utilized in traditional medicine practices, including Indian 
Ayurveda and Traditional Chinese Medicine (111). CS heart-
wood exhibits a diverse range of biological activities, includ-
ing antioxidant (112), antibacterial (113), anti-inflammatory 
(114), hypoglycemic (115), and hepatoprotective (116) prop-
erties, as reported in previous studies. Moreover, CS extract 
constituents have demonstrated significant activity against 
the H3N2 strain of influenza virus (117). Additionally, CS 
showed promising antiviral activity against PRRSV replica-
tion in MARC-145 cells, with a significant reduction in the 
viral titer observed at 72 hpi. Notably, this antiviral effect 
was attributed to the presence of specific compounds such 
as byakangelicin, brazilin, naringenin, and brazilein (118). 

Saponin Components 
Saikosaponin A (SSA), Saikosaponin D (SSD), Panax no-
toginseng saponins (PNS), Notoginsenoside R1 (SR1), and 
Anemoside B4 (AB4) have gained significant attention in 
recent research because of their diverse bioactivity (119). 
Specifically, its antiviral potential against PRRSV was in-
vestigated. In a study involving 132 healthy piglets, saponin 
components were evaluated for their effects on PRRSV-
induced immunopathological damages (120). Piglets were 
divided into 22 groups, with each group consisting of six ani-
mals. The control group received an intramuscular injection 
of PRRSV solution, while the low-, middle-, and high-dose 
treatment groups were administered PRRSV solution fol-
lowed by intraperitoneal injections of AB4, PNS, SR1, SSA, 
or SSD at varying doses. The results demonstrated that all 
five saponin components reduced the incidence and sever-
ity of PRRSV-induced immunopathological damage, includ-
ing symptoms, such as elevated body temperature, weight 
loss, anemia, and internal inflammation. Furthermore, 
these saponin components exhibited the ability to enhance 
protein absorption and immune responses (120). 

Isobavachalcone 
Isobavachalcone (IBC) is a prenylated chalcone compound 
belonging to the flavonoid subclass that was originally de-
rived from Psoralea corylifolia L. (121). Extensive research 
has revealed that IBC exhibits a broad range of biological 
activities, including antibacterial, antifungal, anticancer, 
antireverse transcriptase, antitubercular, and antioxidant 
properties (121). Notably, IBC demonstrated inhibitory ef-
fects on PRRSV replication at the post-entry stage of in-
fection. This suggests that IBC may serve as a promising 
therapeutic candidate for the treatment of PRRSV infection 
in swine (122). 

Ursolic acid derivatives
Ursolic acid (UA) and its derivatives are widely recognized 
as prominent examples of pentacyclic triterpenoids (PTs), 
which possess diverse biological activities, including anti-
viral and antibacterial properties. UA has exceptional anti-
HIV activity, which is attributed to its ability to inhibit HIV-1 

proteases (123). Both oleanolic acid (OA) and UA possess 
anti-HCV activity by suppressing the enzymatic activity of 
HCV NS5B RNA-dependent RNA polymerase, acting as 
non-competitive inhibitors (124). 

Recent investigations have revealed that the amidation of 
the 17-carboxylic acid group of UA yields notable improve-
ments in both anti-PRRSV efficacy and cytotoxicity at-
tenuation in MARC-145 cells. This modified derivative po-
tently inhibited PRRSV infection not only in MARC-145 cells 
but also in PAMs and PRRSV-infected cells in vivo (125). 
Moreover, it displayed broad-spectrum inhibitory activities 
against various PRRSV strains, including the highly patho-
genic NADC30-like and GD-XH strains, as well as the clas-
sical CH-1a and VR2332 strains in vitro. Mechanistically, the 
compound exerted its antiviral effects by directly inactivat-
ing PRRSV virions, thereby disrupting multiple stages of the 
viral life cycle, including viral entry, replication, and release, 
while leaving cellular susceptibility to PRRSV unaffected 
(125).

Xanthohumol 
Xanthohumol (Xn), a prenylated flavonoid originating from 
the hop plant Humulus lupulus L., emerges as a natural 
compound with diverse bioactive properties, (126). Notably, 
Xn has garnered attention for its anti-inflammatory poten-
tial, as demonstrated by its ability to counteract lipopoly-
saccharide (LPS)-induced acute lung injury and ischemia 
reperfusion-induced liver injury in murine models (127). 
Additionally, Xn exhibits anti-proliferative effects in vari-
ous cancer cell lines, including breast, colon, and ovarian 
cancers (128). The antiviral activity of Xn has also been 
documented against human immunodeficiency virus (HIV), 
bovine viral diarrhea virus (BVDV), and HSV-1 and -2 (129).

Xn, a prenylated flavonoid compound, displays potent in-
hibitory effects against various sub-genotype strains of 
PRRSV when tested on PAMs (130). Notably, Xn exhibited 
a low half-maximal inhibitory concentration (IC50), empha-
sizing its efficacy in combating PRRSV infections in vitro. 
Furthermore, Xn treatment led to a reduction in the expres-
sion levels of pro-inflammatory cytokines, including IL-1β, 
IL-6, IL-8, and TNF-α, in PAMs infected with PRRSV and 
those treated with LPS. Animal challenge experiments us-
ing highly pathogenic PRRSV infections have shown that 
Xn effectively mitigates clinical signs, lung pathology, and 
inflammatory responses in the lung tissues of infected pigs 
(130).

Toosendanin 
Toosendanin (TSN) is a tetracyclic triterpene derived 
from the bark and fruit of Melia toosendans Sieb. et Zucc. 
Traditionally, it has been used as an agricultural insecti-
cide and digestive tract parasiticide in China (131). Notably, 
TSN has demonstrated significant efficacy in combating 
botulism, as evidenced by in vivo and in vitro studies (132). 
Subsequent studies have highlighted its potential as an an-
ticancer agent with the ability to induce apoptosis in diverse 
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cancer cell types (133). Recently, TSN has garnered atten-
tion for its antiviral properties, exhibiting activity against 
influenza A virus (IAV) (134), HCV (135), severe fever with 
thrombocytopenia syndrome virus (SFTSV), and SARS-
CoV-2 (136).

TSN exhibited robust inhibitory effects on the replication of 
type 2 PRRSV both in vitro, using Marc-145 cells, and ex 
vivo, using PAMs, even at sub-micromolar concentrations 
(137). Transcriptomic analyses further elucidated that TSN 
treatment upregulated IFI16 expression in Marc-145 cells. 
Additionally, we demonstrated that TSN induces the activa-
tion of caspase-1 and maturation of IL-1β through an IFI16-
dependent pathway (137).  

Iota-Carrageenan 
Carrageenan (CG), a sulfated galactan derived from marine 
red algae (Rhodophyta), has garnered significant attention 
because of its various biological activities (138). It is widely 
recognized as a safe compound by regulatory authorities 
and has extensive applications in the food, cosmetic, and 
pharmaceutical industries as a stabilizer, emulsifier, or 
thickener (139). Previous studies have demonstrated the 
anticoagulant, antitumor, and immunomodulatory proper-
ties of carrageenan (140). Notably, carrageenan exhibits 
potent inhibitory effects against a range of viruses includ-
ing IAV, dengue virus-2 (DENV-2), human rhinovirus (HRV), 
and HSV-1 (141).

Recent investigations have revealed the effectiveness of CG 
in inhibiting replication of the CH-1a strain of PRRSV at both 
the mRNA and protein levels in Marc-145 cells and PAMs 
(142). The antiviral mechanism of CG primarily occurs 
during viral attachment and entry into the viral life cycle. 
Moreover, CG hampered viral release in Marc-145 cells and 
mitigated CH-1a-induced apoptosis during the late stages 
of infection. Furthermore, CG inhibits CH-1a-induced NF-
κB activation, thereby interfering with cytokine production 
in both Marc-145 cells and PAMs (142).

Griffithsin 
Griffithsin, a lectin derived from marine red algae of 
Griffithsia spp., is a small protein consisting of 121 amino 
acids (143). Griffithsin effectively inhibits viral infectiv-
ity through its interaction with glycan moieties associated 
with the glycoproteins of various enveloped viruses (144). 
Extensive studies have demonstrated the remarkable an-
tiviral activity of Griffithsin against several human envel-
oped viruses, including HIV (143), Middle East respiratory 
syndrome coronavirus (MERS-CoV) (145),SARS-CoV (146), 
HCV (147), HSV-2 (148), and Japanese encephalitis virus 
(JEV) (149).

An exceptional characteristic of Griffithsin is its impressive 
thermostability, as it remains stable even at temperatures 
as high as 80°C (150). Griffithsin displays resistance to or-
ganic solvents (143) and protease degradation (151), further 
emphasizing its potential as a therapeutic agent. Moreover, 

extensive cytotoxicity studies have revealed the superior 
safety profile of Griffithsin (152). No cytotoxic effects were 
observed against various cell types, and it demonstrated 
minimal impact on peripheral blood mononuclear cell acti-
vation as well as cytokine and chemokine production (152).

Griffithsin demonstrated potent antiviral activity against 
PRRSV, which was likely mediated by its specific inter-
actions with glycans present on the surface of the virus, 
thereby impeding viral entry. Notably, Griffithsin effectively 
blocked viral adsorption while leaving viral penetration un-
affected. Additionally, Griffithsin exhibited the ability to hin-
der cell-to-cell spread, thereby interrupting virus transmis-
sion (153).

Proanthocyanidin A2 
Proanthocyanidins, a class of naturally occurring polyphe-
nolic bioflavonoids abundant in various plant sources, such 
as fruits, vegetables, nuts, seeds, and bark, including grape 
seeds, have garnered attention for their diverse array of bio-
active properties, including antioxidant, cardioprotective, 
anticancer, antibacterial, antiviral, and anti-inflammatory 
activities (154). Notably, grape seed-derived proanthocyani-
dins have demonstrated significant bioactivity in vitro (155).

Of particular interest is Proanthocyanidin A2 (PA2), a dimer-
ic form of proanthocyanidin that results from the conden-
sation of catechins (156). The antiviral potential of PA2 and 
its analogs has been highlighted against various viruses, 
including HSV, Coxsackie B virus (CBV), and canine distem-
per virus (CDV) (157). 

PA2 showed remarkable antiviral activity against PRRSV 
infection both in vitro (158). Notably, PA2 exhibited broad-
spectrum inhibitory effects against traditional genotype II 
PRRSV strains, such as CH-1a, GD-XH, and GD-HD strains, 
with comparable potency and EC50 values ranging from 
2.2 to 3.2 μg/ml. Treatment with PA2 results in a dose-de-
pendent reduction in viral RNA synthesis, viral protein ex-
pression, and progeny virus production in PRRSV-infected 
Marc-145 cells (158).

Furthermore, PA2 exerted immunomodulatory effects 
by suppressing the expression of key cytokines (TNF-α, 
IFN-α, IL-1β, and IL-6) induced by PRRSV infection in PAMs. 
This highlights the potential of PA2 in mitigating the in-
flammatory response associated with PRRSV infection. 
Mechanistically, PA2 exhibits multifaceted antiviral mecha-
nisms by targeting various pathways, including inhibition of 
viral entry and blocking progeny virus release (158).

Bacterial Compounds

Tilmicosin
Tilmicosin, a chemically modified macrolide antibiotic 
derived from tylosin, is an essential veterinary antimicro-
bial agent used to treat bacterial infections in animals. 
Originally synthesized in Streptomyces fradiae, tilmicosin 
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has specifically been formulated for veterinary use in cattle, 
sheep, and swine. It is available in injectable form for cattle 
and sheep, whereas a premix feed formulation is utilized 
for swine (159). The antimicrobial activity of tilmicosin is 
effective against a wide range of gram-positive and gram-
negative bacteria. Additionally, tilmicosin demonstrates ef-
ficacy against intracellular bacteria such as Rhodococcus 
sp. and Mycoplasma sp., making it a valuable therapeutic 
option in veterinary medicine (160). 

Limited research has explored the antiviral properties of 
tilmicosin against PRRSV; however, promising findings 
have emerged. Previous investigations have demonstrat-
ed the dose-dependent inhibitory effects of tilmicosin on 
PRRSV replication in cultured PAMs (160). Additionally, 
tylvalosin, a macrolide derivative, exhibits inhibitory activ-
ity against both European and North American strains of 
PRRSV in cultured cells (161). In an experimental setting us-
ing PRRSV-infected pigs, the administration of tilmicosin as 
a feed additive resulted in noticeable reductions in lymph 
node hypertrophy, lung lesions, and viremia compared with 
non-medicated infected controls (162). 

Tilmicosin has demonstrated significant potential for 
mitigating the severity of PRRSV infections in various ex-
perimental settings. In a study involving experimentally 
PRRSV-infected nursery pigs, tilmicosin treatment yielded 
notable improvements in disease outcomes, as evidenced 
by reduced clinical signs, improved feed consumption, and 
enhanced weight gain, compared to non-medicated chal-
lenged pigs. Furthermore, there was a tendency towards 
lower virus titers in the lungs and serum of tilmicosin-treat-
ed pigs (163).

Field evaluations of tilmicosin in sows have yielded prom-
ising results (164). In one study, the administration of an 
aqueous form of tilmicosin to nursery pigs in a controlled 
environment resulted in a 50% reduction in mortality, lower 
body temperature, a significant increase in average daily 
gain, and reduced lung lesions in the medicated group 
compared to the non-treated group (165,166). These find-
ings highlight the potential of tilmicosin in improving both 
clinical outcomes and performance indicators in PRRSV-
infected pigs. The accumulation of tilmicosin in macro-
phages, the primary target cells for PRRSV replication, may 
provide a mechanistic explanation for the observed reduc-
tion in clinical severity (167). 

Tulathromycin 
Tulathromycin (TUL), a triamide compound, possesses 
unique structural features characterized by a lactone ring 
containing three polar amine groups. This antimicrobial 
agent is commonly employed for the treatment and pre-
vention of swine respiratory diseases associated with 
Actinobacillus pleuropneumoniae (App), a gram-negative 
bacterium frequently found in PRRSV-infected pigs (168).

Recent investigations have revealed additional properties 
of tulathromycin beyond its antimicrobial effects. Studies 
have demonstrated its ability to inhibit the production of 
CXCL-8 and LTB4, the key mediators of inflammation, in 
stimulated neutrophils and macrophages (169). Moreover, 
tulathromycin promotes apoptotic death of neutrophils and 
facilitates their phagocytic clearance by macrophages, a 
crucial process known as efferocytosis, which contributes 
to the resolution of inflammation (170). TUL also exhibited 
potent immunomodulatory properties in the absence of any 
direct antiviral effects against PRRSV. TUL has exhibited an 
additive effect with PRRSV in inducing macrophage apop-
tosis and effectively inhibiting virus-induced necrosis (171).

Actinobacillus pleuropneumoniae
Porcine pleuropneumonia, a significant disease affecting 
the swine industry worldwide, is caused by Actinobacillus 
pleuropneumoniae (App). In recent years, in vitro models 
using St. Jude Porcine Lung (SJPL) cell line, an immortal-
ized epithelial cell line, have been developed to investigate 
host-pathogen interactions (172). These models have been 
instrumental in studying co-infections involving App and 
porcine viral pathogens. Interestingly, during App-PRRSV 
coinfection of SJPL cells, it was unexpectedly observed that 
App culture supernatants exhibited robust antiviral activity 
against PRRSV (173). This finding was further supported 
by another study that confirmed the antiviral effect of App 
culture supernatant (174). Antiviral activity of App against 
PRRSV has also been observed in PAMs (174). Moreover, 
App inhibits PRRSV replication by inducing cell cycle arrest 
in the G2/M phase of SJPL cells (175).

Fungal Compounds 

Cryptoporus volvatus
The utilization of mushrooms in medical applications has 
a rich history in Asian countries, and its usage has slightly 
increased in the Western hemisphere over the past few 
decades (176). Antiviral properties have been attributed 
not only to whole mushroom extracts but also to isolated 
compounds (177). C. volvatus, a member of the Order 
Aphyllophorales and genus Cryptoporus (178), is found in 
specific regions of China. The fruiting body of this mush-
room has been traditionally employed in the treatment of 
asthma and bronchitis, with references dating back to the 
15th century in the "Materia Medica of Yunnan" (178).

Extracts of C. volvatus obtained from various separation 
processes exhibit differing degrees of inhibitory activity 
against PRRSV (179). A specific anti-PRRSV component, 
CM-H-L-5, was isolated from a water-soluble fraction of C. 
volvatus. The inhibitory effect of CM-H-L-5 against PRRSV 
was dose-dependent. Chemical analysis revealed that CM-
H-L-5 is a low-molecular-weight polyol fragment containing 
amide and carboxylic acid groups (179).
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Deoxynivalenol (DON) Mycotoxin
Deoxynivalenol (DON), a trichothecene mycotoxin, is pro-
duced by various Fusarium spp. molds that are commonly 
found in feed and other organic substrates. Cereal grains 
such as wheat, barley, and corn are major sources of DON 
contamination (180). Pigs, owing to their high grain-based 
diets, are particularly susceptible to DON toxicity, making 
them frequently exposed to this mycotoxin (181).

In the context of PRRSV infection, it has been observed 
that DON concentrations ranging from 140 to 280 exert a 
significant impact on cell survival (182). Specifically, these 
DON concentrations remarkably increased the survival rate 
of PRRSV-infected cells. Furthermore, DON at these con-
centrations led to a substantial reduction in PRRSV repli-
cation. This inhibitory effect is attributed to the induction 
of pro-inflammatory cytokines and the early activation of 
apoptosis. These mechanisms appear to interrupt the viral 
replication cycle and impede PRRSV propagation within the 
host (182).

Animal-Derived Compounds

Honeybee Venom
Honeybee (Apis mellifera Linnaeus 1758) venom (HBV) is 
recognized as an alternative medicine owing to its thera-
peutic properties, particularly in the management of pain, 
inflammation, and immune-related conditions such as 
rheumatoid arthritis and multiple sclerosis (183). Notably, 
HBV has demonstrated immunomodulatory effects on the 
Th1 immune response. Administration of HBV leads to the 
differentiation of CD4+ T lymphocytes into Th1 cells, there-
by enhancing the production of interferon-gamma (IFN-γ) 
in mouse models (184). Furthermore, HBV phospholipase 
plays an important role in the maturation of dendritic cells 
and subsequent activation of dendritic cell-associated im-
mune responses (185,186).

Investigations have been conducted to explore the potential 
antiviral activity of HBV against PRRSV. In a recent study, 
HBV was administered to healthy pigs via nasal, neck, and 
rectal routes, followed by intranasal inoculation with PRRSV 
(187). Significantly increased levels of CD4+/CD8+ cell ratio, 
IFN-γ, and IL-12 were observed in HBV-administered pigs 
via nasal and rectal administration. In pigs experimentally 
challenged with PRRSV, the viral genome load in the serum, 
lung, bronchial lymph nodes, and tonsils was significantly 
reduced, accompanied by mitigation of interstitial pneumo-
nia severity in the nasal and rectal administration groups. 
Moreover, HBV administration leads to a substantial eleva-
tion in the levels of Th1 cytokines (IFN-γ and IL-12) and up-
regulation of pro-inflammatory cytokines (TNF-α and IL-1β) 
(187).

Caprylic Monoglyceride
Medium-chain fatty acids (MCFAs), including caprylic 
monoglycerides (CMG), are a class of fatty acids with 
carbon chain lengths ranging from 8 to 10 carbon atoms. 

While MCFAs are present in small quantities in nature, they 
are primarily derived from milk and breast milk and can also 
be found in palm kernel oil and coconut oil (188). Notably, 
MCFAs possess antimicrobial properties and their effects 
on animal productivity vary depending on the dosage em-
ployed (189).

One significant application of MCFAs is their ability to miti-
gate the transmission of the porcine epidemic diarrhea vi-
rus (PEDV) through feed and ingredients (190). Additionally, 
MCFAs have been demonstrated to influence the growth 
performance of animals by serving as readily available en-
ergy substrates, modulating gastrointestinal morphology, 
and exerting antimicrobial effects (191). MCFAs as a feed 
additive can also suppress African swine fever virus (ASFV) 
infection(192). 

In light of the potential antiviral and antimicrobial effects 
of MCFAs, we investigated their antiviral activity against 
PRRSV. Recently, a study evaluated the cytotoxicity of four 
MCFAs, namely caprylic acid, CMG, decanoic monoglycer-
ide, and monolaurin, along with their inhibitory effects on 
PRRSV. The results demonstrated that CMG exhibited the 
lowest toxicity towards cells among the four MCFAs, while 
displaying the highest inhibition rate against PRRSV (193).

To further assess the impact of CMG on PRRSV infection, 
piglets were treated with varying concentrations of CMG, 
revealing a significant decrease in mortality and viral load 
following PRRSV infection in piglets administered higher 
CMG concentrations (p < 0.05). Additionally, the pulmonary 
pathology in piglets was ameliorated by CMG treatment. 
Notably, CMG administration resulted in a significant down-
regulation of pro-inflammatory cytokines, including IL-6, IL-
8, IL-1β, IFN-γ, and TNF-α, while upregulating the levels of 
the anti-inflammatory cytokine IL-10 in comparison to the 
positive control group (p < 0.05) (193).

Protegrin-1
Antimicrobial peptides (AMPs), including protegrin-1 (PG-1), 
are polypeptides of less than 100 amino acids (194). AMPs 
are found in both plant and animal kingdoms and exhibit 
broad-spectrum antimicrobial activity against bacteria, fun-
gi, and viruses involved in the innate immune response to 
infection (195). PG-1, originally isolated from porcine leuko-
cytes (196), is considered to be an antibiotic agent against 
Gram-positive and Gram-negative bacteria and fungi in vi-
tro (197). Furthermore, previous studies have shown that 
PG-1 inhibits dengue NS2B-NS3 serine protease and viral 
replication in MK2 cells (198).

PG-1 also strongly inhibits PRRSV infection and replication 
by suppressing viral RNA and protein synthesis, virus prog-
eny production, and viral particle release. Furthermore, dur-
ing the PRRSV life cycle, PG-1 mainly blocked viral attach-
ment in Marc-145 cells. However, in PAMs, PG-1 neither 
inhibits PRRSV replication nor elevates antiviral cytokine 
expression (199).



Slov Vet Res 2024  |  Vol 61 No 1  |  21

Porcine Plasma Ficoline
Ficolins are proteins that activate the complement system 
and exhibit the ability to bind N-acetyl groups in various 
saccharides, particularly N-acetylglucosamine (GlcNAc) 
(200). This suggests that ficolins may also have the capac-
ity to bind certain viruses that display host glycans on their 
surfaces (201).

Viral glycoproteins often possess complex-type oligosac-
charides that are characterized by two terminal GlcNAc res-
idues (202). Similar collagenous lectins have been shown 
to bind glycoproteins in IAV, HIV, HSV, and non-enveloped 
rotavirus (RV) (203). In a recent study, the antiviral activity 
of plasma-purified and recombinant ficolin α was assessed 
against PRRSV. The results revealed a reduction in the cy-
topathic effect of PRRSV-infected Marc-145 cells and inhi-
bition of viral replication in the presence of ficolin α, which 
is dependent on GlcNAc recognition. Additionally, plasma 
ficolin α and recombinant ficolin α bind to PRRSV-coated 
wells in a GlcNAc-dependent manner (204).

Cecropin P1
Cecropin P1 (CP1) is a small antimicrobial peptide originally 
derived from the intestine of pigs, and it has demonstrated 
antiviral activity against various viruses, including infectious 
hematopoietic necrosis virus, viral hemorrhagic septicemia 
virus, snakehead rhabdovirus, and infectious pancreatic 
necrosis virus, in in vitro studies (205). CP1 exhibits signifi-
cant antiviral effects against PRRSV, both as an extracel-
lular virucidal agent and as an inhibitor, when administered 
prior to, simultaneously with, or following viral inoculation. 
The inhibitory mechanism of CP1 primarily targets viral at-
tachment rather than viral entry into Marc-145 cells (206). 
Moreover, CP1 effectively impeded viral particle release and 
mitigated virus-induced apoptosis during the late stages of 
infection. The inhibitory action of CP1 against PRRSV was 
also extended to PAMs in vivo. Additionally, CP1 upregu-
lates the expression of IL6 in PAMs, which could potentially 
contribute to its ability to inhibit PRRSV infection (206).

Cecropin D 
Cecropin D (CD) is an antimicrobial peptide originally de-
rived from Hyalophora cecropia Linnaeus 1758 pupae, and 
it has been previously demonstrated to possess antibacte-
rial activity against both Gram-positive and Gram-negative 
bacteria, including Escherichia coli DH5α, K88, K99, 
Streptococcus zooepidemicus C55138, and Staphylococcus 
aureus Cowan I (207). In the context of PRRSV infection, CD 
exerted inhibitory effects during viral attachment and the 
early stages of viral entry into Marc-145 cells. Furthermore, 
CD effectively suppressed virus-induced apoptosis during 
the late phase of PRRSV infection and attenuated viral re-
lease within cells. These observations collectively contrib-
ute to the inhibition of PRRSV infection by CD. Importantly, 
similar inhibitory effects against PRRSV infection are evi-
dent when CD is utilized in PAMs during in vivo infection in 
pigs (208).

Conclusions

This comprehensive review highlights the potential of natu-
ral compounds derived from plants, animals, bacteria, and 
fungi as effective antiviral agents against PRRSV. These 
compounds exhibit diverse mechanisms of action target-
ing various stages of the PRRSV replication cycle (attach-
ment, entry, fusion, replication, translation, maturation, and 
release). These compounds have shown promising broad-
spectrum antiviral activities both in vitro and in vivo. 

Although significant progress has been made in the field 
of natural compounds with antiviral activity against PRRSV, 
several research gaps still need to be addressed. First, fur-
ther studies are needed to elucidate the precise mecha-
nisms by which these natural compounds exert their an-
tiviral effects. Understanding the molecular interactions 
between these compounds and PRRSV components will 
provide valuable insights for the development of more 
targeted interventions. Second, comprehensive investiga-
tions on the safety, pharmacokinetics, and toxicity profiles 
of these natural compounds are essential. These studies 
will help determine the optimal dosage and administration 
routes as well as evaluate potential side effects, ensur-
ing their safe use in veterinary medicine. Finally, there is a 
need for more comprehensive studies to evaluate the ef-
ficacy of combination therapies using natural compounds. 
Investigating the synergistic effects of combining differ-
ent compounds or combining them with existing antiviral 
drugs may enhance overall antiviral efficacy and reduce the 
emergence of drug-resistant viral strains.

Future research should explore the application of advanced 
technologies, such as nanotechnology and targeted deliv-
ery systems, to enhance the bioavailability and therapeutic 
potential of these natural compounds. These innovative ap-
proaches may improve compound stability, increase tissue 
specificity, and enhance the antiviral efficacy. Further re-
search addressing the aforementioned research gaps and 
exploring new avenues, combined with rigorous preclinical 
and clinical trials, will accelerate the translation of these 
natural compounds into effective antiviral therapies for the 
control and prevention of PRRSV infections in swine.
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Od naravne lekarne do zdravja prašičev: Izkoriščanje naravnih spojin 
proti okužbi z virusom PRRSV

F. L. Orosco   

Izvleček: Virus prašičjega reprodukcijskega in respiratornega sindroma (PRRSV) je pomemben virusni patogen, ki po-
vzroča znatne gospodarske izgube v prašičereji po vsem svetu. Zaradi omejene učinkovitosti obstoječih terapevtskih 
pristopov in pojavov novih sevov PRRSV so nujno potrebne nove protivirusne strategije. Naravne spojine, pridobljene iz 
rastlin, živali, bakterij in gliv, so vse bolj poznana kot potencialna protivirusna sredstva. Ta izčrpen pregled se osredotoča 
na naravne spojine s protivirusnim delovanjem proti PRRSV ter raziskuje mehanizme njihovega delovanja, učinkovitost 
in morebitno uporabo. Te spojine imajo različne protivirusne mehanizme, kot so zaviranje pritrjevanja in vstopa virusa, 
zaviranje razmnoževanja in modulacija gostiteljevega imunskega odziva. Pregled izpostavlja tudi izzive in prihodnje us-
meritve na tem področju. Raziskovalne vrzeli vključujejo potrebo po nadaljnjem pojasnjevanju natančnih mehanizmov 
delovanja, celoviti oceni varnostnih profilov in raziskovanju kombiniranih terapij za povečanje učinkovitosti. Potrebne so 
nadaljnje raziskave in translacijske študije, da bi izkoristili celoten potencial teh naravnih spojin in utrli pot učinkovitemu 
nadzoru in obvladovanju okužb z virusom PRRSV v prašičereji.

Ključne besede: protivirusna sredstva; naravne spojine; PRRSV; prašičereja
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