
Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 7 (2014) 299–315

Minimal equivelar polytopes
Gabe Cunningham

University of Massachusetts Boston
Boston, Massachusetts, USA, 02125

Received 20 July 2012, accepted 5 January 2013, published online 10 May 2013

Abstract

Every equivelar abstract polytope of type {p1, . . . , pn−1} has at least 2p1 · · · pn−1 flags.
In this paper, we study polytopes that attain this lower bound, called tight polytopes. Us-
ing properties of flat polytopes, we are able to give a complete local characterization of
when a polytope is tight. We then show a way to construct tight polyhedra of type {p, q}
when p and q are not both odd, and a way to construct regular tight polytopes of type
{2k1, . . . , 2kn−1}.
Keywords: Abstract regular polytope, equivelar polytope, flat polytope, mixing.
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1 Introduction
Abstract polytopes are purely combinatorial generalizations of convex polytopes, maps
on surfaces, and infinite tessellations. Their study is a rich and varied field, tying together
combinatorics, group theory, topology, and geometry. The most-studied polytopes are those
with a high degree of symmetry, including the regular polytopes (see [9]) and the chiral
polytopes (see [11, 12]). We also know a great deal about polytopes in rank 3, thanks in
part to the fact that every 3-polytope can be naturally associated to a map on a surface (see
[10]). In higher ranks, however, relatively little is known about the landscape of polytopes.

In order to understand the structure of polytopes in higher ranks, it would be useful to
have many small examples we could study. Furthermore, finding the smallest polytope that
satisfies a certain set of properties is a worthwhile and interesting endeavor in and of itself.
There are many ways to interpret “smallest” in this context; here, we will work with the
number of flags, which is perhaps the easiest and most natural way to quantify the size of a
polytope, particularly when working with regular polytopes.

In this paper, we study the smallest equivelar polytopes; that is, polytopes that have
a Schläfli symbol. Regular and chiral polytopes are equivelar, as are many other highly-
symmetric polytopes, but there are no a priori bounds on how symmetric an equivelar
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polytope must be. We are able to show that every equivelar polytope with a fixed Schläfli
symbol {p1, . . . , pn−1} has at least 2p1 · · · pn−1 flags (Proposition 3.3). Our goal is then
to study those polytopes for which this lower bound is tight; appropriately enough, we
call these tight polytopes. The term was first used by Marston Conder in a mini-course
during the Workshop on Symmetry in Graphs, Maps and Polytopes at the Fields Institute
in Toronto, Canada, in October 2011. His lecture on the smallest regular polytopes in every
rank (which has now been written up in [4]) inspired the work that led to this paper.

We start by presenting background information on polytopes in Section 2. In Section 3,
after proving the lower bound for the number of flags of an equivelar polytope, we investi-
gate some simple properties of tight polytopes. Section 4 explores the connection between
tightness and flatness of polytopes, and Theorem 4.4 completely characterizes tightness
in terms of a local flatness property. In Section 5, we provide a method for building tight
polyhedra. Finally, we present a family of regular tight polytopes in every rank in Section 6.

2 Polytopes
Our background information is mostly taken from [9, Chs. 2, 3, 4], with a few small
additions.

2.1 Definition of a polytope

Let P be a ranked partially ordered set whose elements will be called faces, and let us say
that two faces are incident if they are comparable. The faces of P will range in rank from
−1 to n, and a face of rank j is called a j-face. The 0-faces, 1-faces, and (n− 1)-faces are
also called vertices, edges, and facets, respectively. A flag of P is a maximal chain. We say
that two flags are adjacent if they differ in exactly one face, and that they are j-adjacent if
they differ only in their j-face.

If F and G are faces of P such that F ≤ G, then the section G/F consists of those
faces H such that F ≤ H ≤ G. If F is a j-face and G is a k-face, then we say that the
rank of G/F is k− j − 1. If removing G and F from the Hasse diagram of G/F leaves us
with a connected graph, then we say that G/F is connected. That is, for any two faces H
and H ′ in G/F (other than F and G themselves), there is a sequence of faces

H = H0, H1, . . . ,Hk = H ′

such that, for each 1 ≤ i ≤ k, the faces Hi−1 and Hi are incident and F < Hi < G. By
convention, we also define all sections of rank 1 or less to be connected.

We say thatP is an (abstract) polytope of rank n, also called an n-polytope, if it satisfies
the following four properties:

(a) There is a unique greatest face Fn of rank n and a unique least face F−1 of rank −1.

(b) Each flag has n+ 2 faces.

(c) Every section is connected.

(d) (Diamond condition) Every section of rank 1 is a diamond. That is, whenever F <
G, where F is a (j−1)-face andG is a (j+1)-face for some j, then there are exactly
two j-faces H with F < H < G.

In ranks −1, 0, and 1, there is a unique polytope up to isomorphism. Abstract polytopes
of rank 2 are also called abstract polygons, and for each 2 ≤ p ≤ ∞, there is a unique
abstract polygon with p vertices and p edges, denoted {p}.
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Note that due to the diamond condition, any flag Φ has a unique j-adjacent flag (denoted
Φj) for each j = 0, 1, . . . , n− 1.

If F is a j-face and G is a k-face of a polytope with F ≤ G, then the section G/F is a
(k − j − 1)-polytope itself. We identify a face F with the section F/F−1 and we call the
section Fn/F the co-face at F . The co-face at a vertex F0 is also called a vertex-figure at
F0.

If P is an n-polytope, F is an (i− 2)-face of P , and G is an (i+ 1)-face of P such that
F < G, then the section G/F is an abstract polygon. We say that P has Schläfli symbol
{p1, . . . , pn−1}, or that P is of type {p1, . . . , pn−1} if, for each 1 ≤ i ≤ n− 1, the section
G/F is equal to {pi}, no matter which (i− 2)-face F and (i+ 1)-face G we choose. If P
has a Schläfli symbol, then we say that P is equivelar.

The sections of an equivelar polytope are all equivelar polytopes themselves. In partic-
ular, if P is an equivelar polytope of type {p1, . . . , pn−1}, then its facets are all equivelar
polytopes of type {p1, . . . , pn−2}, and its vertex-figures are all equivelar polytopes of type
{p2, . . . , pn−1}.

Let P and Q be two polytopes of the same rank. A surjective function γ : P → Q is
called a covering if it preserves incidence of faces, ranks of faces, and adjacency of flags.
We say that P covers Q if there exists a covering γ : P → Q.

The dual of a polytope P is the polytope obtained by reversing the partial order. If P is
an equivelar polytope of type {p1, . . . , pn−1}, then the dual of P is an equivelar polytope
of type {pn−1, . . . , p1}.

2.2 Regularity

For polytopes P andQ, an isomorphism from P toQ is an incidence- and rank-preserving
bijection on the set of faces. An isomorphism from P to itself is an automorphism of P ,
and the group of all automorphisms of P is denoted Γ(P). We say that P is regular if the
natural action of Γ(P) on the flags of P is transitive. For convex polytopes, this definition
is equivalent to any of the usual definitions of regularity.

Given a regular polytope P , fix a base flag Φ. Then the automorphism group Γ(P) is
generated by the abstract reflections ρ0, . . . , ρn−1, where ρi maps Φ to the unique flag Φi

that is i-adjacent to Φ. These generators satisfy ρ2i = ε for all i, and (ρiρj)
2 = ε for all i

and j such that |i − j| ≥ 2. Every regular polytope is equivelar, and if its Schläfli symbol
is {p1, . . . , pn−1}, then the order of each ρi−1ρi is pi. Note that if P is a regular polytope
of type {p1, . . . , pn−1}, then Γ(P) is a quotient of the string Coxeter group [p1, . . . , pn−1]
whose only defining relations are that ρ2i = ε, (ρi−1ρi)

pi = ε, and (ρiρj)
2 = ε whenever

|i− j| ≥ 2.
For I ⊆ {0, 1, . . . , n − 1} and a group Γ = 〈ρ0, . . . , ρn−1〉, we define ΓI := 〈ρi |

i ∈ I〉. If P is a regular polytope, then its automorphism group Γ := Γ(P) satisfies the
following intersection condition:

ΓI ∩ ΓJ = ΓI∩J for I, J ⊆ {0, . . . , n− 1}. (2.1)

In general, if Γ = 〈ρ0, . . . , ρn−1〉 is a group such that each ρi has order 2 and such
that (ρiρj)

2 = ε whenever |i − j| ≥ 2, then we say that Γ is a string group generated by
involutions (or sggi). If Γ also satisfies the intersection condition (2.1) given above, then
we call Γ a string C-group. There is a natural way of building a regular polytope P(Γ)
from a string C-group Γ such that Γ(P(Γ)) ' Γ and P(Γ(P)) ' P . In particular, the
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i-faces of P(Γ) are taken to be the cosets of

Γi := 〈ρj | j 6= i〉,

where Γiϕ ≤ Γjψ if and only if i ≤ j and Γiϕ∩Γjψ 6= ∅. This construction is also easily
applied to any sggi (not just string C-groups), but in that case, the resulting poset is not
necessarily a polytope.

2.3 Flatness

The theory of abstract polytopes accomodates certain degeneracies not present in the study
of convex polytopes. For example, the face-poset of a convex polytope is a lattice (any
two elements have a unique supremum and infimum), but this need not be the case with
abstract polytopes. The simplest abstract polytope that is not a lattice is the digon {2},
both of whose edges are incident on both of its vertices. This type of degeneracy can be
generalized as follows. If P is an n-polytope, and if 0 ≤ k < m ≤ n − 1, we say
that P is (k,m)-flat if each of its k-faces is incident on every one of its m-faces. If P
has rank n and it is (0, n − 1)-flat, then we also simply say that it is flat. Note that if
0 ≤ i ≤ k < m ≤ j ≤ n − 1 and if P is (k,m)-flat, then it must also be (i, j)-flat.
In particular, if P is (k,m)-flat for any 0 ≤ k < m ≤ n − 1, then it is also flat (i.e.,
(0, n− 1)-flat).

We will also need Lemma 4E3 in [9], which is stated below.

Proposition 2.1. Let P be an n-polytope, and let 0 ≤ k < m < i ≤ n− 1. If each i-face
of P is (k,m)-flat, then P is also (k,m)-flat. Similarly, if 0 ≤ i < k < m ≤ n − 1 and
each co-i-face of P is (k − i− 1,m− i− 1)-flat, then P is (k,m)-flat.

2.4 Mixing

The mixing construction on polytopes is analogous to the join of two maps or hypermaps
[2]. Its principal use is to find a polytope that covers two or more given regular polytopes.
We begin by describing the mixing operation on groups (also called the parallel product in
[14]). Let Γ = 〈x1, . . . , xn〉 and Γ′ = 〈x′1, . . . , x′n〉 be groups with n specified generators.
Then the elements zi = (xi, x

′
i) ∈ Γ×Γ′ (for i = 1, . . . , n) generate a subgroup of Γ×Γ′

that we denote Γ � Γ′ and call the mix of Γ and Γ′ (see [9, Ch.7A]).
If P and Q are regular n-polytopes, we can mix their automorphism groups. Let

Γ(P) = 〈ρ0, . . . , ρn−1〉 and Γ(Q) = 〈ρ′0, . . . , ρ′n−1〉. Let αi = (ρi, ρ
′
i) ∈ Γ(P) × Γ(Q)

for 0 ≤ i ≤ n − 1. Then Γ(P) � Γ(Q) = 〈α0, . . . , αn−1〉. Note that the order of any
word αi1 · · ·αit is the least common multiple of the orders of ρi1 · · · ρit and ρ′i1 · · · ρ′it . In
particular, each αi is an involution, and (αiαj)

2 = ε whenever |i − j| ≥ 2. Therefore,
Γ(P) � Γ(Q) is a string group generated by involutions, and we can build a poset out of it,
called the mix of P and Q and denoted P � Q. This poset will not, in general, be a poly-
tope; indeed, it is a polytope if and only if the group Γ(P) � Γ(Q) satisfies the intersection
condition (2.1).

The following properties of P � Q follow immediately from the definitions:

Proposition 2.2. Let P be a regular polytope of type {p1, . . . , pn−1}, with facets iso-
morphic to K and vertex-figures isomorphic to L. Let Q be a regular polytope of type
{q1, . . . , qn−1}, with facets isomorphic to K′ and vertex-figures isomorphic to L′. If P �Q
is a polytope, then its facets are isomorphic to K � K′, its vertex-figures are isomorphic to
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L � L′, and it has type {`1, . . . , `n−1}, where `i is the least common multiple of pi and qi
for 1 ≤ i ≤ n− 1.

Dual to the mix is the comix of two groups. If Γ has presentation 〈x1, . . . , xn | R〉 and
Γ′ has presentation 〈x′1, . . . , x′n | S〉, then we define the comix of Γ and Γ′, denoted Γ�Γ′,
to be the group with presentation

〈x1, x′1, . . . , xn, x′n | R,S, x−11 x′1, . . . , x
−1
n x′n〉.

Informally speaking, we can just add the relations from Γ′ to Γ, rewriting them to use xi in
place of x′i.

The proof of the following simple proposition is essentially the same as [6, Prop. 3.3].

Proposition 2.3. Let P and Q be finite regular n-polytopes. Then

|Γ(P) � Γ(Q)| · |Γ(P)� Γ(Q)| = |Γ(P)| · |Γ(Q)|.

When mixing two polytopes, there is no guarantee that the result is itself a polytope. In
the following simple cases, however, polytopality is guaranteed.

Proposition 2.4. Let P and Q be regular polyhedra. Then P � Q is a regular polyhedron.

Proof. See [7, Cor. 3.2]

Proposition 2.5. Let P be a regular n-polytope with facets isomorphic to K. Let Q be a
regular n-polytope with facets isomorphic to K′. If K covers K′, then P � Q is polytopal.

Proof. The argument is essentially the same as for Lemma 3.3 in [1].

3 Structure of equivelar polytopes
Let |P| denote the number of flags of a polytope P . We start with a couple of general
remarks about the structure of equivelar polytopes.

Proposition 3.1. Let P be an equivelar n-polytope of type {p1, . . . , pn−1}, with n ≥ 2.
Then P has at least pn−1 facets and at least p1 vertices.

Proof. The claim is obvious when n = 2, since the only equivelar 2-polytopes are abstract
polygons. Suppose that n ≥ 3 and that the claim is true for all equivelar (n−1)-polytopes.
The vertex-figures of P are equivelar polytopes of type {p2, . . . , pn−1}, so by inductive
hypothesis, the vertex-figures have at least pn−1 facets. Since each distinct facet of P
yields a distinct facet of a vertex-figure of P , it is clear that P itself has at least pn−1
facets. A dual argument shows that P also has at least p1 vertices.

Proposition 3.2. Let P be an n-polytope. Then

|P| =
∑

facetsK of P

|K|.

Proof. The flags of a facet of P are in one-to-one correspondence with the flags of P
containing that facet. The claim follows immediately.

We are now able to give a lower bound on the number of flags of an equivelar polytope:



304 Ars Math. Contemp. 7 (2014) 299–315

Proposition 3.3. Let P be an equivelar n-polytope of type {p1, . . . , pn−1}, with n ≥ 2.
Suppose that P has f facets. Then |P| ≥ 2p1 · · · pn−2f ≥ 2p1 · · · pn−1.

Proof. The claim is obvious when n = 2; in fact, in that case |P| = 2p1. Suppose that
n ≥ 3 and that the claim is true for all equivelar (n − 1)-polytopes. The facets of P are
equivelar (n− 1)-polytopes of type {p1, . . . , pn−2}, so by inductive hypothesis, they each
have at least 2p1 · · · pn−2 flags. Then the first inequality follows from Proposition 3.2, and
the second inequality follows from Proposition 3.1.

Our main interest is in polytopes for which the bound in Proposition 3.3 is tight, and
thus we make the following definition.

Definition 3.4. Let P be a finite equivelar n-polytope of type {p1, . . . , pn−1}, with n ≥ 2.
(In particular, we suppose that each pi is finite.) If |P| = 2p1 · · · pn−1, then we say that P
is tight.

By Proposition 3.3, tight polytopes have the minimal number of flags for their given
Schläfli symbol. Note that the dual of a tight polytope is also tight.

Every (finite) polygon is tight, since {p} has 2p flags. There are also many examples
in the literature of tight polyhedra, including the hemi-cube {4, 3}3 (see [9, Sect. 4E]), the
regular toroidal map {4, 4}(2,0) (see [5]), and a chiral map of type {6, 9} (denoted C7.1 at
[3], and appearing earlier in [15]). There are fewer notable examples in higher ranks, but
the locally toroidal 4-polytope {{3, 6}(1,1), {6, 3}(1,1)} (see [13]) is one such example.

Many different (non-isomorphic) tight polytopes can share the same Schläfli symbol,
even if they are regular. For example, there are three regular polytopes of type {4, 6} with
48 flags listed at [8]. On the other hand, some Schläfli symbols are unable to support any
tight polytopes at all:

Proposition 3.5. Let P be an equivelar n-polytope of type {p1, . . . , pn−1}, with n ≥ 3. If
every pi is odd, then P is not tight.

Proof. First, we note that if n = 3, then every edge is incident on two vertices and two
facets, so |P| is divisible by 4. Otherwise, if n ≥ 4, then 4 divides the number of flags
in every 3-face of P , so again |P| is divisible by 4. Thus, if every pi is odd, 2p1 · · · pn−1
cannot equal |P|.

As a consequence of Proposition 3.5, though every tight polytope is minimal (i.e., has
the fewest flags among polytopes with the same Schläfli symbol), not every minimal poly-
tope is tight. For example, for each n, the minimal (and only) polytope of type {3, . . . , 3}
is the n-simplex, which has (n + 1)! flags instead of the 2 · 3n−1 required in order to be
tight.

We now examine some of the basic structure of tight polytopes.

Proposition 3.6. Let P be a tight n-polytope of type {p1, . . . , pn−1}, with n ≥ 2. Then P
has pn−1 facets and p1 vertices.

Proof. The first part follows from Proposition 3.3 combined with Definition 3.4, and the
second part follows from a dual argument.

Proposition 3.7. Let P be a tight n-polytope of type {p1, . . . , pn−1}, with n ≥ 3. Then
every facet and vertex-figure of P is tight.
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Proof. By Proposition 3.6, P has pn−1 facets; each of these is an equivelar polytope of
type {p1, . . . , pn−2}. Then Proposition 3.3 says that each of those facets has at least
2p1 · · · pn−2 flags. If any facet has more than that many flags, then Proposition 3.2 im-
plies that P has more than 2p1 · · · pn−1 flags, contradicting the tightness of P . The other
part then follows by a dual argument.

Proposition 3.8. Let P be a tight polytope. Then every section of P of rank 2 or greater is
tight.

Proof. Let Fi and Fj be faces of P of rank i and j, respectively, such that Fi < Fj and
j − i ≥ 3. Let

F−1 < · · · < Fi < · · · < Fj < · · · < Fn

be a flag of P containing Fi and Fj . Now, Proposition 3.7 tells us that since P is tight, so
is the section Fn−1/F−1. Similarly, the section Fn−2/F−1 must be tight. Continuing in
this manner, we can conclude that Fj/F−1 is tight. Now, since Fj/F−1 is tight, so are its
vertex-figures Fj/F0, and by repeatedly applying Proposition 3.7 again, we see that Fj/Fi

is itself tight.

Propositions 3.7 and 3.8 prove extremely useful in deducing properties of tight poly-
topes. Using these results, we are often able to prove that tight polytopes satisfy a certain
property by using induction on the rank.

By combining Proposition 3.8 with Proposition 3.5, we can prove the following:

Proposition 3.9. Let P be a tight n-polytope of type {p1, . . . , pn−1}, with n ≥ 3. Then no
two consecutive values pi and pi+1 are both odd.

4 Flatness and tightness
In order for a polytope to be small enough to be tight, there must be a high number of
incidences among a small number of faces. These incidences force the polytope to be flat:

Proposition 4.1. Let P be a tight n-polytope, with n ≥ 3. Then P is flat; that is, every
facet is incident on every vertex.

Proof. First, suppose that P is a tight 3-polytope of type {p1, p2}. Then the facets are p1-
gons and Proposition 3.6 tells us that there are only p1 vertices; therefore, P is flat. Now,
suppose that n ≥ 4 and that the claim is true for tight (n−1)-polytopes. By Proposition 3.7,
the facets of P are tight. Therefore, by inductive hypothesis, the facets are flat (that is,
(0, n − 2)-flat). Then Proposition 2.1 says that P is itself (0, n − 2)-flat, from which it
follows that P must also be (0, n− 1)-flat.

In fact, tight polytopes actually satisfy a much stronger property:

Proposition 4.2. Let P be a tight n-polytope with n ≥ 2. Then P is (i, i+ 2)-flat for each
0 ≤ i ≤ n− 3.

Proof. For n = 2, there is nothing to prove, and by Proposition 4.1, the claim is true for
n = 3. Suppose that n ≥ 4 and that the claim is true for all tight (n − 1)-polytopes. By
Proposition 3.7, the facets of P are all tight. Therefore, by inductive hypothesis, the facets
are all (i, i+ 2)-flat for 0 ≤ i ≤ n− 4. Then we can apply Proposition 2.1 to conclude that
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P is itself (i, i+ 2)-flat for 0 ≤ i ≤ n− 4. Similarly, the vertex-figures of P are all tight,
and by inductive hypothesis, they are all (i, i + 2)-flat for 0 ≤ i ≤ n − 4 Therefore, by
Proposition 2.1, P is (i+ 1, i+ 3)-flat for 0 ≤ i ≤ n− 4; in other words, it is (i, i+ 2)-flat
for 1 ≤ i ≤ n− 3, and the claim follows.

Using the following lemma, we can show that this strong flatness property fully char-
acterizes tight polytopes.

Lemma 4.3. Let P be a flat equivelar n-polytope of type {p1, . . . , pn−1}, with n ≥ 2. If
P has tight facets and tight vertex-figures, then P is tight.

Proof. For n = 2, the claim is trivial, since all equivelar polytopes of rank 2 are (ab-
stract) polygons, which are tight. If n ≥ 3, then the vertex-figures of P are polytopes
of type {p2, . . . , pn−1}. By assumption, the vertex-figures are tight, and thus they have
2p2 · · · pn−1 flags. The facets of P are polytopes of type {p1, . . . , pn−2}, and these are
also tight by assumption. Therefore, Proposition 3.6 says that each facet has p1 vertices.
Now, since P is flat, every facet is incident on every vertex, and thus the facets all share the
same p1 vertices. Therefore, P has p1 vertices, and thus |P| = 2p1 · · · pn−1 by the dual
version of Proposition 3.2.

Theorem 4.4. Let P be an equivelar n-polytope, with n ≥ 2. Then P is tight if and only if
it is (i, i+ 2)-flat for each 0 ≤ i ≤ n− 3.

Proof. The claim is trivial for n = 2, and Proposition 4.2 settles one direction for all n ≥ 3.
Now, suppose that n ≥ 3, that the claim is true for rank n − 1, and that P is an equivelar
n-polytope that is (i, i + 2)-flat for each 0 ≤ i ≤ n − 3. The facets of P are equivelar
(n − 1)-polytopes, and since P is (0, 2)-flat, every facet of P must also be (0, 2)-flat.
Similarly, for any given facet of P and for every 0 ≤ i ≤ n− 4, that facet is (i, i+ 2)-flat.
Therefore, by inductive hypothesis, the facets are all tight. A similar argument shows that
the vertex-figures are tight. Since P is (0, 2)-flat, it is a flat equivelar n-polytope with tight
facets and vertex-figures; therefore, Lemma 4.3 says that P is tight.

Corollary 4.5. An equivelar polyhedron is tight if and only if it is flat.

Theorem 4.4 turns the global criterion for tightness into a series of local criteria, which
makes it much easier to build a tight polytope inductively.

5 Tight polyhedra
As we have seen, tight polytopes have a number of restrictive properties. We begin to
wonder to what extent they exist. For example, Proposition 3.5 tells us that if p and q are
both odd, then there is no tight polyhedron of type {p, q}. It turns out that the condition
that p and q are not both odd is also sufficient for the existence of such polyhedra.

Theorem 5.1. Suppose p and q are not both odd. Then there is a tight polyhedron of type
{p, q}.
Proof. By working with the dual if necessary, we can assume that p is even. In light of
Corollary 4.5, it suffices to show that there is a flat equivelar polyhedron of type {p, q}. In
other words, we need to construct a polyhedron such that

(i) The facets are p-gons.
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(ii) The vertex-figures are q-gons.

(iii) Every facet is incident on every vertex.

(iv) Every edge is incident on two vertices and two facets.

(v) For every pair of facet and vertex, there are two edges incident to both.

We start with p vertices, labeled v1, . . . , vp. Let m = b q2c, and for 1 ≤ i ≤ p and
1 ≤ j ≤ m, add an edge ei,j incident on vertices vi and vi+1 (where vp+1 means v1). That
is, we start with a p-cycle withm-tuple edges. To finish the construction, we consider three
cases.

(a) Suppose q is also even, so that q = 2m. For 1 ≤ t ≤ m, the face f2t−1 will consist
of the simple cycle e1,t, e2,t, . . . , ep,t, while the facet f2t will consist of the simple
cycle e1,t, e2,t+1, e3,t, . . . , ep,t+1 (where ei,m+1 is understood to be ei,1). It is clear,
then, that each facet is a p-gon.

(b) Suppose that q is odd, so that q = 2m + 1, and suppose that p = 4s + 2 for
some s. For each 1 ≤ i ≤ p/2, we add an edge di incident to vi and v2s+1+i

(reducing the index 2s + 1 + i modulo p if necessary). Faces f1 through f2m−1
are generated in the same way as in the previous case. Face f2m consists of the
edges e1,m, e3,m, . . . , ep−1,m as well as the edges d1, . . . , dp/2. Finally, facet f2m+1

consists of the edges e2,1, e4,1, . . . , ep,1 as well as the edges d1, . . . , dp/2. Though it
is clear that f1, . . . , f2m−1 are all p-gons (i.e., simple cycles), we need to prove the
same for the faces f2m and f2m+1. In f2m, starting from 1, we visit vertices in the
order

1, 2, 2s+ 3, 2s+ 4, 3, 4, . . . , 4s+ 1, 4s+ 2, 2s+ 1, 2s+ 2, 1;

therefore, we get a simple cycle. Similarly, starting from 2 in f2m+1, we visit vertices
in the order

2, 3, 2s+ 4, 2s+ 5, 4, 5, . . . , 4s+ 2, 1, 2s+ 2, 2s+ 3, 2;

again, we get a simple cycle. See Figure 1 for an illustration of the three faces when
p = 6 and q = 3. (In this case, we obtain the toroidal polyhedron {6, 3}(1,1); see [9,
Ch. 1D].)
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Figure 1: The three faces of a tight polyhedron of type {6, 3}

(c) Suppose again that q is odd, so that q = 2m + 1, but now suppose that p = 4s for
some s. Add an edge d1 incident to v1 and v2s+1, and for each 2 ≤ i ≤ 2s, add an
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edge ci incident to vi and v4s−i+2 (reducing the index 4s − i + 2 modulo p if nec-
essary). We construct f1, . . . , f2m−1 as before. The facet f2m consists of the edges
e1,m, e3,m, . . . , ep−1,m as well as d1 and c2, . . . , c2s. Similarly, the facet f2m+1 con-
sists of the edges e2,1, e4,1, . . . , ep,1, as well as the edges d1 and c2, . . . , c2s. Once
more, we need to show that f2m and f2m+1 are simple cycles. In f2m, we visit the
vertices in the order

1, 2, 4s, 4s− 1, 3, 4, . . . , 2s− 1, 2s, 2s+ 2, 2s+ 1, 1,

and in f2m+1, we visit the vertices in the order

2, 3, 4s− 1, 4s− 2, 4, 5, . . . , 2s, 2s+ 1, 1, 4s, 2.

See Figure 2 for an illustration of the three faces when p = 8 and q = 3.
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Figure 2: The three faces of a tight polyhedron of type {8, 3}

Now, in every case, we have demonstrated that the faces are p-gons, and since there
are only p vertices, it is clear that every facet is incident to every vertex. Furthermore,
each edge is incident on exactly two vertices and two faces. Since each facet is a simple
cycle, every facet/vertex pair has exactly two edges in common. It remains to be shown
that the vertex-figures are q-gons. In fact, at any given vertex, the sequence f1, f2, . . . , fq
yields a simple cycle of faces, where consecutive faces share one of the edges at that vertex.
Therefore, the vertex-figures are q-gons, completing the proof.

The construction used here is by no means canonical; there are many tight polyhedra
that do not arise in this way. For example, we can build a tight polyhedron of type {4, 6}
that includes two edges between every pair of vertices (see Figure 3). In the tight polyhe-
dron of type {4, 6} that Theorem 5.1 produces, each vertex shares three edges with each of
two other vertices. These two polyhedra are clearly non-isomorphic.

Note also that when q is odd and q ≥ 5, then the tight polyhedron of type {p, q} that we
construct is not regular. In fact, it is not even edge-transitive, since some pairs of vertices
have m edges between them, while other pairs have only a single edge.

6 Regular tight polytopes
Our goal now is to find tight polytopes that are regular. As we commented earlier, the
polyhedra that we construct in Theorem 5.1 often fail to be regular. Is this a defect of
the construction, or do such tight regular polyhedra even exist? Consider, for example,
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Figure 3: The six faces of a tight polyhedron of type {4, 6}

tight polyhedra of type {8, 5} and of type {10, 5}. By checking the list of small regular
polytopes at [3], we see that there are no tight regular polyhedra of type {8, 5}, but that there
is a tight regular polyhedron of type {10, 5}. Other than this polyhedron and the universal
polyhedron of type {2, 5}, no other tight regular polyhedra of type {p, 5} are listed. Since
the list includes all regular polytopes with up to 2000 flags, we can conclude that there are
no tight regular polyhedra of type {p, 5} when 11 ≤ p ≤ 200. Similar observations for
other odd values of q lead us to the following conjecture.

Conjecture 6.1. Let q be odd and p > 2q. Then there are no regular tight polyhedra of
type {p, q}.

When p and q are both even, the situation is entirely different. For even p and q, there
is always a regular tight polyhedron of type {p, q}. In fact, with a little more work, we can
build a regular tight polytope in any rank as long as each pi is even. We start by giving a
presentation for the automorphism group. We define Γ(k1, . . . , kn−1) to be the quotient of
[2k1, . . . , 2kn−1] by the n−2 extra relations (ρiρi+1ρi+2ρi+1)2 = ε, where 0 ≤ i ≤ n−3.
That is,

Γ(k1, . . . , kn−1) = 〈ρ0, . . . , ρn−1 |ρ20 = · · · = ρ2n−1 = ε,

(ρ0ρ1)2k1 = · · · = (ρn−2ρn−1)2kn−1 = ε,

(ρiρj)
2 = ε if |i− j| ≥ 2,

(ρ0ρ1ρ2ρ1)2 = · · · = (ρn−3ρn−2ρn−1ρn−2)2 = ε〉.
Thus, for n = 3, we get the presentation

Γ(k1, k2) = 〈ρ0, ρ1, ρ2 |ρ20 = ρ21 = ρ22 = ε,

(ρ0ρ1)2k1 = (ρ0ρ2)2 = (ρ1ρ2)2k2 = ε,

(ρ0ρ1ρ2ρ1)2 = ε〉.
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We define P(k1, . . . , kn−1) to be the poset P(Γ(k1, . . . , kn−1)). (See [9, Ch. 2E] for the
details of this construction.) Our goal will be to show that P(k1, . . . , kn−1) is a regular
tight polytope of type {2k1, . . . , 2kn−1}.

We start by working with the case n = 3:

Lemma 6.2. The group Γ(k1, k2) has order 8k1k2.

Proof. Let Γ(k1, k2) = 〈ρ0, ρ1, ρ2〉, and let α = (ρ1ρ2)2. The relation (ρ0ρ1ρ2ρ1)2 = ε
implies that

ρ0(ρ1ρ2ρ1ρ2)ρ0 = (ρ0ρ1ρ2ρ1)ρ2ρ0

= (ρ1ρ2ρ1ρ0)ρ2ρ0

= ρ1ρ2ρ1ρ2,

so that ρ0αρ0 = α. Furthermore, ρ1αρ1 = α−1 = ρ2αρ2. Therefore, the cyclic subgroup
N of order k2 generated by α is normal in Γ(k1, k2). Now, by adding the relation α = ε to
the relations of Γ(k1, k2), we can pass to the factor group Γ(k1, k2)/N . In the factor group,
the relation (ρ0ρ1ρ2ρ1)2 = ε is equivalent to (ρ0ρ2)2 = ε, rendering the former relation
redundant. Then we can remove that relation and the redundant relation (ρ1ρ2)2k2 = ε to
see that the factor group has presentation

〈ρ0, ρ1, ρ2 |ρ20 = ρ21 = ρ22 = ε,

(ρ0ρ1)2k1 = (ρ0ρ2)2 = (ρ1ρ2)2 = ε〉.

This is the presentation for the Coxeter group [2k1, 2] of order 8k1, and since N has order
k2, the order of Γ(k1, k2) is 8k1k2.

Theorem 6.3. The poset P(k1, k2) is a tight regular polyhedron of type {2k1, 2k2}, and

P(k1, k2) = P(k1, 1) � P(1, k2) = {2k1, 2} � {2, 2k2}.

Proof. First of all, it is clear from the presentations of their automorphism groups that
P(k1, 1) = {2k1, 2} and P(1, k2) = {2, 2k2}. Let P = {2k1, 2} � {2, 2k2}. By Propo-
sition 2.4, P is a regular polyhedron, and its type is {2k1, 2k2}. Now, in [2k1, 2], the
generator ρ2 is in the center, so the relation (ρ0ρ1ρ2ρ1)2 = ε holds. Similarly, in [2, 2k2],
the generator ρ0 is in the center, and again the relation (ρ0ρ1ρ2ρ1)2 = ε holds. Therefore,
this relation must hold in the mix of the two groups, which is Γ(P). Then Γ(P) satisfies
all of the relations of Γ(k1, k2), and thus it is a (not necessarily proper) natural quotient
of Γ(k1, k2). Since Γ(k1, k2) has order 8k1k2 (by Lemma 6.2), the group Γ(P) has order
8k1k2 or less. On the other hand, P is a regular polyhedron of type {2k1, 2k2}, and so
Γ(P) must have order at least 8k1k2. Therefore, |Γ(P)| = 8k1k2, from which it follows
that Γ(P) = Γ(k1, k2). Therefore, P(k1, k2) = P , a regular tight polyhedron of type
{2k1, 2k2}.

We note here that the polyhedron P(k1, k2) is isomorphic to the tight polyhedron P of
type {2k1, 2k2} that we built in Theorem 5.1. Indeed, if we take the base flag Φ of P to
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consist of v1, e1,1 and f1, then there are automorphisms ρ0, ρ1, and ρ2 that act as follows.

ρ0 : vi ↔ v2k1+3−i

ei,j ↔ e2k1+2−i,j

Fixes all faces

ρ1 : vi ↔ v2k1+2−i

ei,j ↔ e2k1+1−i,k2+2−j

fi ↔ f2k2+2−i

ρ2 : Fixes all vertices

ei,j ↔
{
ei,k2+2−j if i is odd,
ei,k2+3−j if i is even

fi ↔ f2k2+3−i

(If necessary, we reduce the index of v modulo 2k1, the index of f modulo 2k2, and the
indices of e modulo 2k1 and k2, respectively.) Since each ρi sends Φ to Φi, this suffices
to show that P is regular. It is also simple to verify that (ρ0ρ1ρ2ρ1)2 = ε, from which
it follows that P is a quotient of P(k1, k2). Then since P and P(k1, k2) have the same
number of flags, they must be isomorphic.

In order to extend the result of Theorem 6.3 to higher ranks, we start with several
lemmas.

Lemma 6.4. Let Γ(k1, . . . , kn−1) = 〈ρ0, . . . , ρn−1〉. Then ρn−1 /∈ 〈ρ0, . . . , ρn−2〉.
Proof. Let Γ := Γ(k1, . . . , kn−1) = 〈ρ0, . . . , ρn−1〉. Every relator of Γ contains every
generator an even number of times (possibly zero). Therefore, any relation of the form
ρn−1 = w that holds in Γ must have at least one instance of ρn−1 appearing in w. In
particular, ρn−1 /∈ 〈ρ0, . . . , ρn−2〉.

Lemma 6.5. Let Γ(k1, . . . , kn−1) = 〈ρ0, . . . , ρn−1〉. Then

〈ρ0, . . . , ρn−2〉 ' Γ(k1, . . . , kn−2)

and
〈ρ1, . . . , ρn−1〉 ' Γ(k2, . . . , kn−1).

Proof. It suffices to prove the first claim, since the second will then follow from a dual
argument. Let Γ(k1, . . . , kn−1) = 〈ρ0, . . . , ρn−1〉, and let Γ = 〈ρ0, . . . , ρn−2〉. It is clear
that Γ is a natural quotient of Γ(k1, . . . , kn−2), since the generators of Γ satisfy all of the
relations that are satisfied by the generators of Γ(k1, . . . , kn−2). The generators of Γ also
satisfy the extra relations

(ρn−3ρn−2ρn−1ρn−2)2 = ε,

(ρn−2ρn−1)2kn−1 = ε,

and
(ρiρn−1)2 = ε, for 0 ≤ i ≤ n− 3.
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It remains to show that these extra relations do not cause Γ to collapse to a proper quotient
of Γ(k1, . . . , kn−2). Suppose we add the relation ρn−1 = ε to the relations of Γ to obtain
a new group Γ′. In Γ′, we can rewrite the relations above as

ρ2n−3 = ε,

ρ
2kn−1

n−2 = ε,

and
ρ2i = ε for 0 ≤ i ≤ n− 3.

and these relations are all redundant with the relations that come from Γ(k1, . . . , kn−2).
Therefore, we can eliminate these relations from Γ′. Then Γ′ has all of the relations from
Γ(k1, . . . , kn−2) and the single extra relation ρn−1 = ε. Since this is the only remaining
relation that contains ρn−1, and since Γ′ = 〈ρ0, . . . , ρn−2〉, we can remove that relation
without affecting Γ′. So we see that we can take the relations of Γ(k1, . . . , kn−2) to be
the defining relations of Γ′, from which it follows that Γ′ ' Γ(k1, . . . , kn−2). Since Γ′

is a natural quotient of Γ, which is a natural quotient of Γ(k1, . . . , kn−2), we see that
Γ ' Γ(k1, . . . , kn−2) as well.

Lemma 6.6. Suppose that P(k1, . . . , kn−2) is a tight regular polytope of type {2k1, . . . ,
2kn−2} and thatP(k2, . . . , kn−2, 1) is a tight regular polytope of type {2k2, . . . , 2kn−2, 2}.
Then P(k1, . . . , kn−2, 1) is a tight regular polytope of type {2k1, . . . , 2kn−2, 2}.

Proof. Let Γ(k1, . . . , kn−2, 1) = 〈ρ0, . . . , ρn−1〉. To prove polytopality and regularity, it
suffices to show that Γ(k1, . . . , kn−2, 1) is a string C-group. By Lemma 6.5,

〈ρ0, . . . , ρn−2〉 ' Γ(k1, . . . , kn−2)

and
〈ρ1, . . . , ρn−1〉 ' Γ(k2, . . . , kn−2, 1).

By assumption, both of these subgroups are string C-groups. Then [9, Prop. 2E16 (a)] says
that Γ(k1, . . . , kn−2, 1) is a string C-group if

〈ρ0, . . . , ρn−2〉 ∩ 〈ρ1, . . . , ρn−1〉 = 〈ρ1, . . . , ρn−2〉.

Let v be in this intersection. Now,

v ∈ 〈ρ1, . . . , ρn−1〉 ' Γ(k2, . . . , kn−2, 1).

By inspecting the presentation for this group, we see that ρn−1 is in the center. Therefore,
we may write v = uρin−1 with u ∈ 〈ρ1, . . . , ρn−2〉 and where i is 0 or 1. On the other
hand, v ∈ 〈ρ0, . . . , ρn−2〉, and therefore

ρin−1 = u−1v ∈ 〈ρ0, . . . , ρn−2〉.

Since ρn−1 /∈ 〈ρ0, . . . , ρn−2〉 by Lemma 6.4, it follows that i = 0 and that v = u. There-
fore, v ∈ 〈ρ1, . . . , ρn−2〉, and thus

〈ρ0, . . . , ρn−2〉 ∩ 〈ρ1, . . . , ρn−1〉 ≤ 〈ρ1, . . . , ρn−2〉.
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The other containment being obvious, we see that Γ(k1, . . . , kn−2, 1) is a string C-group,
and therefore, P(k1, . . . , kn−2, 1) is a regular polytope.

Next, we observe that

Γ(k1, . . . , kn−2, 1) = 〈ρ0, . . . , ρn−1〉
= 〈ρ0, . . . , ρn−2〉 × 〈ρn−1〉,

since ρn−1 is in the center. Then since P(k1, . . . , kn−2) is of type {2k1, . . . , 2kn−2}, it
follows that P(k1, . . . , kn−2, 1) is of type {2k1, . . . , 2kn−2, 2}. Furthermore,

|P(k1, . . . , kn−2, 1)| = 2|P(k1, . . . , kn−2)|
= 2 · (2k1 · · · 2kn−2 · 2),

and therefore P(k1, . . . , kn−2, 1) is tight.

Lemma 6.7. Let k1, . . . , kn−1 and k′1, . . . , k
′
n−1 be positive integers. If for each i, k′i

divides ki, then Γ(k1, . . . , kn−1) naturally covers Γ(k′1, . . . , k
′
n−1).

Proof. When each k′i divides ki, the group Γ(k′1, . . . , k
′
n−1) satisfies all of the same rela-

tions as Γ(k1, . . . , kn−1), and the result follows.

Theorem 6.8. The poset P(k1, . . . , kn−1) is a tight regular n-polytope of type {2k1, . . . ,
2kn−1}, and P(k1, . . . , kn−1) = P(k1, . . . , kn−2, 1) � P(1, k2, . . . , kn−1).

Proof. Theorem 6.3 shows that the claim is true for n = 3. Suppose that n ≥ 4 and
that the claim is true in rank n − 1. Let Γ = Γ(k1, . . . , kn−2, 1), P = P(Γ), Γ′ =
Γ(1, k2, . . . , kn−1), and P ′ = P(Γ′). We need to show three things:

(a) P � P ′ is a regular polytope of type {2k1, . . . , 2kn−1}
(b) |Γ � Γ′| = 2nk1 · · · kn−1
(c) Γ(k1, . . . , kn−1) = Γ � Γ′

By inductive hypothesis, P(k1, . . . , kn−2) is a tight regular polytope of type {2k1, . . . ,
2kn−2}, and P(k2, . . . , kn−2, 1) is a tight regular polytope of type {2k2, . . . , 2kn−2, 2}.
Therefore, by Lemma 6.6, the poset P = P(k1, . . . , kn−2, 1) is a tight regular polytope of
type {2k1, . . . , 2kn−2, 2}. A dual argument shows thatP ′ is a tight regular polytope of type
{2, 2k2, . . . , 2kn−1}. Now, by Lemma 6.5, the facets of P have group Γ(k1, . . . , kn−2),
whereas the facets of P ′ have group Γ(1, k2, . . . , kn−2). Then Lemma 6.7 says that the
group Γ(k1, . . . , kn−2) covers Γ(1, k2, . . . , kn−2), and thus the facets of P cover the facets
of P ′. Then P �P ′ is a regular polytope, by Proposition 2.5. By Proposition 2.2, the facets
of P �P ′ are isomorphic to P(k1, . . . , kn−2)�P(1, k2, . . . , kn−2) = P(k1, . . . , kn−2), the
vertex-figures are isomorphic toP(k2, . . . , kn−2, 1)�P(k2, . . . , kn−1) = P(k2, . . . , kn−1),
and P � P ′ is of type {2k1, . . . , 2kn−1}.

Next we show that Γ � Γ′ has the appropriate size. By Proposition 2.3,

|Γ � Γ′| = |Γ| · |Γ
′|

|Γ� Γ′| ,

Since P and P ′ are tight,
|Γ| = 2nk1 · · · kn−2
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and
|Γ′| = 2nk2 · · · kn−1.

Now, we obtain a presentation for Γ�Γ′ by adding the relations for Γ′ to those for Γ. This
gives us a presentation for the group Γ(1, k2, . . . , kn−2, 1). Using Lemma 6.6 again, we can
conclude thatP(1, k2, . . . , kn−2, 1) is a tight regular polytope of type {2, k2, . . . , kn−2, 2}.
Therefore,

|Γ� Γ′| = |Γ(1, k2, . . . , kn−2, 1)|
= 2nk2 · · · kn−2,

and thus

|Γ � Γ′| = |Γ| · |Γ
′|

|Γ� Γ′|

=
(2nk1 · · · kn−2)(2nk2 · · · kn−1)

2nk2 · · · kn−2
= 2nk1 · · · kn−1.

So P � P ′ is tight.
It remains to show that Γ � Γ′ is naturally isomorphic to Γ(k1, . . . , kn−1). It is clear

from the presentation for Γ that Γ(k1, . . . , kn−1) covers Γ and that the natural covering map
is one-to-one on the subgroup 〈ρ0, . . . , ρn−2〉. Then since Γ is a string C-group (because
P is a polytope), we can apply [9, Thm. 2E17] to see that the group Γ(k1, . . . , kn−1) is
also a string C-group. Therefore, P(k1, . . . , kn−1) is a regular polytope, and Lemma 6.5
says that its facets are P(k1, . . . , kn−2) and its vertex-figures are P(k2, . . . , kn−1). By
[9, Thm. 4E5], since P(k1, . . . , kn−2) and P(k2, . . . , kn−1) are both flat, there is only a
single regular polytope (up to isomorphism) with those facets and vertex-figures. Since
P � P ′ is one such regular polytope, we see that P(k1, . . . , kn−1) = P(k1, . . . , kn−2, 1) �
P(1, k2, . . . , kn−1), as desired.

Theorem 6.8 gives us an easy way to generate small regular polytopes in any rank,
providing us with many more examples we can study. We note that it is also possible to
prove the existence of a tight regular polytope of type {2k1, . . . , 2kn−1} in an entirely
group-theoretic way; Marston Conder provides such an account as [4, Thm. 5.3] (and
indeed, his regular polytopes are isomorphic to ours).
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