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Abstract

Let P be a set of n points in the plane in general position such that its elements
are colored red or blue. We study the problem of finding two disjoint disks Dr and
Db such that Dr covers only red points, Db covers only blue points, and the number
of elements of P contained in Dr ∪ Db is maximized. We prove that this problem
can be solved in O(n11/3 polylogn) time. We also present a randomized algorithm
that with high probability returns a (1− ε)-approximation to the optimal solution in
O(n4/3ε−6 polylogn) time.

1 Introduction

In data mining and classification problems, a natural method for analyzing data is to
select prototypes representing different data classes. A standard technique for achieving
this is to perform cluster analysis on the training data [DHS01, HSM01]. The clusters
can be obtained by using simple geometric shapes such as disks or boxes. Aronov and
Har-Peled [AHP08], Eckstein et al. [EHL+02], and Liu et al. [LN03] considered disks and
axis-aligned boxes for the selection problem. Aronov and Har-Peled [AHP08] studied the
following problem: Given a bicolored set of n points in the plane, find a disk that contains
the maximum number of red points without containing any blue point. They propose
an algorithm to solve this problem optimally in O(n2 log n) time, and also provide a
(1 − ε)-approximation algorithm that needs near-linear time. This type of classification
is asymmetric in the way red and blue points are treated. In this paper, we consider a
symmetric two-class version, where we want to find a witness set for each color. We next
formalize the problem.

Let P be a set of n points in the plane such that its elements are colored red or blue.
Denote by R (resp. B) the set of red (resp. blue) elements of P . We say that Y ⊂ R

2 is
red (resp. blue) if Y contains only red (resp. blue) elements of P , and Y is monochromatic
if it is either red or blue. In this paper we study the following problem:
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The Two Disjoint Disks problem (2DD-problem): find a red disk Dr

and a blue disk Db such that Dr and Db are disjoint and |Dr ∩R|+ |Db ∩B|
is maximized.

We provide algorithms to solve the 2DD-problem optimally and approximately. It is easy
to see that the 2DD-problem can be solved optimally in O(n5) time. We reduce this
running time to O(n11/3 polylog n). This result is described in Section 2. We also provide
a randomized approximation scheme that, with probability at least 1 − O(1/n), returns
a (1 − ε)-approximation to the optimal solution in O(n4/3ε−6 polylog n) time. Under
the assumption that at least a constant fraction of the points is covered in the optimal
solution, the (1 − ε)-approximation can be obtained in O(nε−13 polylog n) time. This
approximation algorithm is described in Section 3. In our algorithms, we did not try to
improve the exponents of ε or log n.

We next discuss variants of the 2DD-problem that have been considered previously. If
in the 2DD-problem we do not restrict Dr and Db to be disjoint, then we can solve the
problem considering each color separately. First, we find the disk covering the maximum
number of red points and no blue point, and after that, the disk that contains the maximum
number of blue points and no red point. These two problems can be solved optimally in
O(n2 log n) time, or a (1−ε)-approximation can be obtained in near-linear time with high
probability [AHP08].

Another variant of the 2DD-problem that permits intersection of the disks but penalizes it
is the problem of finding disks Dr and Db that maximize |(Dr \Db)∩R|+ |(Db \Dr)∩B|.
This criterion is considered for axis-aligned boxes in [CDBPL+09]. An optimal solution
for this variant can be found in O(n2) time using a key observation and known approaches.
Namely, suppose that (Dr,Db) is an optimal solution, and denote by ` the radical axis ofDr

and Db. Let π1 and π2 be the open half-planes bounded by ` such that ((Dr \Db)∩R) ⊂ π1
and ((Db \Dr) ∩B) ⊂ π2. Note that (Dr \Db) ∩R = π1 ∩R and (Db \Dr) ∩R = π2 ∩B
because the pair (Dr,Db) is optimal. Since both half-planes bounded by the line ` are
disks with infinite radii, the problem reduces to finding a line ` such that the number of
red points to one side of ` plus the number of blue points to the other side is maximized.
This latter problem is known as the Weak Separation Problem [Cha05, ERvK96,Hou93]
and can be solved in O(n2) time in the worst case [Hou93]. Moreover, it was proven
in [BDBL+09] that the Weak Separation Problem is 3SUM-hard [GO95].

Another variant of the 2DD-problem is the problem of finding two unit disks Dr and Db

with disjoint interiors, but not necessarily monochromatic, such that |Dr ∩R|+ |Db ∩B|
is maximized. Note that in this variant there are two differences with the 2DD-problem:
the disks are unitary and do not need to be monochromatic. This variant was considered
in [CDBS+08], where an O(n8/3 log2 n)-time algorithm is described.

Notation. Given two points p and q we denote: by pq the straight line segment joining p
and q, by `(p, q) the straight line containing both p and q, by bis(p, q) the line perpendicular
to pq passing through the midpoint of pq (i.e. the bisector of p and q), and by D(p, q) the
disk centered at p with radius equal to the length of pq. Given a region S ⊂ R

2, let δS
denote the boundary of S.

General position. We assume general position, that is, there are no four cocircular
points in P , neither three collinear points. We relax the definition of our problem by
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allowing the boundary of the red disk (resp. blue disk) to contain one blue point (resp.
one red point). A solution to the relaxed problem induces a solution to the original one
by shrinking the disks slightly.

2 An exact algorithm

In this section we provide an exact O(n11/3 polylog n)-time algorithm to solve the 2DD-
problem. First, we will show that we only need to consider a certain type of solutions, thus
obtaining a discretization of the problem. Secondly, we will consider a decision version
of the problem, where we want to decide if there exists a solution covering a prescribed
number of points of each color. Finally, we will discuss how to find an optimal solution to
the 2DD-problem.

2.1 Discretization

It is not hard to see that a simple discretization of our problem in which the boundary of
each disk contains three points of P , or two diametrically opposed points, is not possible.
In order to obtain an appropriate discretization we will use the following lemmas.

Lemma 2.1 If the points p, q, o, p′, q′, and o′ are such that o ∈ bis(p, q), o′ ∈ bis(p′, q′),
and D(o, p)∩D(o′, p′) = ∅, then both o and o′ can be moved simultaneously along bis(p, q)
and bis(p′, q′), respectively, so that at every moment D(o, p) ∩ D(o′, p′) = ∅, until o or o′

reaches infinity.

Proof. Notice that both p′ and q′ are in the same half-plane bounded by `(p, q), or both
p and q are in the same half-plane bounded by `(p′, q′). Assume w.l.o.g. the former case.
We prove now that such a movement exists so that o reaches infinity. Denote by π1 and
π2 the open half-planes bounded by `(p, q) and suppose w.l.o.g. that p′, q′ ∈ π1. Refer to
Figure 1 a). Let ho be the half-line starting at o such that ho ⊂ bis(p, q) and ho ∩ π2 is
unbounded. Analogously define ho′ as the half-line starting at o′ such that ho′ ⊂ bis(p′, q′)
and ho′ ∩ π1 is unbounded. If D(o′, p′) ⊂ π1 then the result follows by moving only o
through ho in direction to infinity. Otherwise, let ε > 0 be a small enough value and
u(o′) ∈ ho be the furthest point from o such that the disk D(u(o′), p) is exterior tangent to
D(o′, p′) (see Figure 1 b)). We first move o in direction to u(o′) until the distance between
o and u(o′) is equal to ε. After that we simultaneously move o′ through ho′ in direction to
infinity and o through ho in such a way that o stays at distance ε from u(o′). We stop this
simultaneous movement when D(o′, p′) ⊂ π1. At this moment the center o can be moved
to infinity. 2

Lemma 2.2 Let D1 be a disk with center o′. If the points p, q, and o, are such that
o ∈ bis(p, q) and D(o, p) ∩ D1 = ∅, then o can be moved along bis(p, q), in such a way
that D(o, p) ∩D1 = ∅ at every moment, until one of the next conditions is satisfied: (i) o
reaches infinity, or (ii) the segment oo′ contains p or q.

If D1 is a half-plane, then o can be moved to the line perpendicular to δD1 passing through
p or q.
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Figure 1: Proof of Lemma 2.1.

Proof. The set of centers o ∈ bis(p, q) such that D(o, p)∩D1 = ∅ is a connected interval of
bis(p, q). If this interval is unbounded, then we can move o to infinity, and condition (i)
is satisfied. If the interval is bounded, then the line `(p, q) intersects D1. The extremes
o1 and o2 of the interval correspond to the two points such that the disks D(o1, p) and
D(o2, p) are exterior tangent to D1. Consider w.l.o.g. that p is closer to o′ than q. See
Figure 2 a). Denote by o3 the intersection point of the line `(o1, o2) with `(p, o′). Since
`(p, q) intersects D1, the point p lies in the segment o′o3, and thus the disk D(o3, p) does
not intersect D1. This implies that o3 is on the segment o1o2, and condition (ii) can be
satisfied by moving o to o3.

Consider now the case where D1 is a half-plane, and assume w.l.o.g. that p is closer to
δD1 than q. See Figure 2 b) The set of centers o ∈ bis(p, q) such that D(o, p) ∩D1 = ∅ is
bounded, and thus the second case of the previous analysis applies. 2

o1 o2

D1

p

q

o3

a)

o′

D1

b)

o1

o2

p

q

o3

Figure 2: Proof of Lemma 2.2. a) Case when D1 is a disk. b) Case when D1 is a half-plane.

Solutions (Dr,Db) such that |Dr ∩ R| = 1 can be easily found as follows. We find a blue
disk Db that contains the maximum number of blue points by using [AHP08], and set Dr

to be a degenerate disk containing a single red point. Similarly, we can treat the case
|Db ∩B| = 1. Thus we assume from now on that |Dr ∩R| ≥ 2 and |Db ∩B| ≥ 2.
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We now proceed with the discretization to the 2DD-problem. Let DR be the family of the
disks D with red interior such that δD contains exactly three red points, or two red points
and one blue point. Let HR be the family of the closed red half-planes H such that δH
contains two red points. Let the families DB and HB be defined analogously for the blue
color.

Lemma 2.3 For any feasible solution (D′
r,D

′
b) to the 2DD-problem, there exists another

feasible solution (Dr,Db) with D′
r ∩ R ⊆ Dr ∩ R and D′

b ∩ B ⊆ Db ∩ B that satisfies one
of the next conditions:

(a) Dr ∈ DR ∪HR and Db ∈ DB.

(b) Dr ∈ DR, δDb contains two blue points, and one blue point in δDb is on the segment
connecting the center of Dr to the the center of Db.

(c) Dr ∈ HR, δDb contains two blue points, and one blue point in δDb is on the line
perpendicular to δDr passing through the center of Db.

(d) the cases symmetric to (a)-(c) by exchanging colors.

Proof. We can shrink D′
r into a disk D′′

r contained in D′
r that has two red points on its

boundary and satisfies D′′
r ∩ R = D′

r ∩ R. An analogous transformation can be done to
obtain D′′

b from D′
b.

Assume that D′′
b is the blue disk centered at o with p and q on its boundary, and that D′′

r

is the red disk centered at o′ with p′ and q′ on its boundary. Keeping the set of points
in the interior of D(o, p) and D(o′, p′) invariant, we move o and o′ as in Lemma 2.1 until
D(o, p) belongs to DB ∪ HB or D(o′, p′) belongs to DR ∪ HR. Up to symmetry, we may
assume the latter case: D(o′, p′) ∈ DR ∪ HR. We leave D1 = Dr = D(o′, p′) unchanged
for the rest of the proof. Keeping the set of points in the interior of D(o, p) unchanged,
we can now move o as in Lemma 2.2. If at any moment D(o, p) belongs to DB because
its boundary touches a third point we obtain a feasible solution satisfying case (a). If o
reaches infinity (condition (i) in Lemma 2.2), then D(o, p) belongs to HB, and we obtain
a solution satisfying case (d) symmetric to (a). If D(o′, p′) is a disk and o is moved to
satisfy condition (ii) in Lemma 2.2, then we obtain case (b). If D(o′, p′) is a half-plane
and o is moved as described in Lemma 2.2, then we obtain case (c). The result follows. 2

2.2 Decision and optimization problem

We now consider the following decision version of the problem for integers i, j, 2 ≤ i, j ≤ n.

(i, j)-2DD-problem: find a solution (Dr,Db) to the 2DD-problem subject to
the constraints |Dr ∩R| ≥ i and |Db ∩B| ≥ j; or report that no such solution
exists.

Note that, if there exists a solution to the (i∗, j∗)-2DD-problem, then there is a solution
to the (i, j)-2DD-problem whenever i ≤ i∗ and j ≤ j∗. Also, when searching for a solution
to the (i, j)-2DD-problem, it is enough to restrict the search to pairs of disks that contain
exactly i red points and j blue points.
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Lemma 2.4 The (i, j)-2DD-problem can be solved in O(n8/3 polylog n) time.

Proof. Let DR(i) be the set of disks of DR containing exactly i red points, and let HR(i) be
the set of half-planes of HR containing exactly i red points. Notice that the centers of the
disks of DR(i) are vertices of the (i− 2)th-order or the (i− 1)th-order Voronoi Diagram of
R ∪B, while the half-planes in HR(i) correspond to some of the unbounded edges in the
(i− 1)th-order Voronoi diagram. Since the kth-order Voronoi diagram has combinatorial
complexity O(k(n− k)) = O(n2) in total [Aur91], the sets DR(i) and HR(i) have at most
O(n2) elements. Analogous sets DB(j) and HB(j) can be defined as those covering j blue
points.

For every blue point q, let SB(q, j) be the set of straight-line segments s such that for each
point o of s the disk D(o, q) is blue, covers j blue points, and its boundary contains other
blue point distinct from q. The set SB(q, j) is a subset of the edges in the (j − 1)th-order
Voronoi diagram of R ∪B.

We next discuss how to construct DR(i) and HR(i) in O(n8/3) time. Using [ABMS98,
CSY87], the kth-order Voronoi diagram (k = i− 2, i− 1) for n points can be constructed
in O(n2+δ) = O(n8/3) time, for any δ > 0. Within the same time bound, we can attach to
each vertex (resp. edge) of the diagram a label telling how many of its k+2 (resp. k+1)
closest neighbours are red and how many are blue.

Both the vertices of the (i−2)th-order Voronoi diagram of R∪B whose i closest neighbours
are red, and the vertices of the (i−1)th-order Voronoi diagram of R∪B whose i+1 closest
neighbours are all red except one that is blue, correspond to the centers of the disks DR(i).
The infinite edges of the (i− 1)th-order Voronoi Diagram of R∪B whose i neighbours are
all red correspond to the half-planes HR(i).

Similarly, using the (j − 2)th- and the (j − 1)th-order Voronoi diagrams of R ∪B we can
construct the sets DB(j) and HB(j). Furthermore, the sets SB(q, j) for all q ∈ B can also
be constructed using the (j − 1)th-order Voronoi diagram. In this case, we have to attach
to each edge the two furthest points among its j closest neighbours.

Let Vj denote the Furthest Disk Voronoi Diagram of DB(j). The Furthest Disk Voronoi
Diagram is the furthest site Voronoi diagram for a set of disks. Given a point p and a
disk (i.e. site) D, the distance function used is φ(p,D) = d(p, c(D)) − r(D), where d is
the Euclidean distance, and c(D) and r(D) are the center and the radius of D, respec-
tively. The Furthest Disk Voronoi Diagram for m disks can be constructed in O(m logm)
time [Rap92], and thus we can construct Vj in O(n2 log n) time. We further preprocess Vj
in O(n2 log n) time in order to support O(log n)-time point location queries [Sno97].

For each blue point q and each edge e of SB(q, j), consider the double wedge obtained
by the union of lines that intersect both q and e, and let 4(q, e) be wedge that does not
contain e. Thus 4(q, e) has q as apex and the prolongation of its sides pass through the
endpoints of e. (If e is infinite then a side of 4(q, e) is parallel to e.) The set 4(q, e) has
the following property: a point x ∈ R

2 is in 4(q, e) if and only if the ray emanating from
x towards q intersects e after q.

We now discuss how to decide if there exists a solution to the (i, j)-2DD-problem. We
only need to restrict our search to solutions satisfying the properties listed in Lemma 2.3.
Finding if there is a solution satisfying condition (a) can be done as follows. For each disk
D in DR(i) centered at o, we make a point location query in Vj with o in order to obtain
the furthest disk D′ to o in DB(j). If the disks D and D′ are disjoint, then (D,D′) is
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a solution satisfying condition (a). If they intersect, then there is no solution satisfying
condition (a) for the disk D. A similar point location procedure can be used to detect if
there is a solution involving a half-plane from HR(i): we query Vj with the “center” of
the half-plane, which we can take to be any symbolic point far enough in the direction
perpendicular to the boundary of the half-plane. We spend here O(n2 log n) time in total
because we have to make O(|DR(i)| + |HR(i)|) = O(n2) point locations in Vj .

Finding if there is a solution satisfying condition (b) can be done as follows. For each
disk D in DR(i) centered at o, and each blue point q not in δD we want to know if the
ray emanating from o towards q crosses a segment of SB(q, j) after passing through q. If
such intersection o′ exists, then (D,D(o′, q)) is a solution satisfying condition (b). And
vice versa, each solution satisfying condition (b) corresponds to one such intersection. The
intersection exists if and only if o belongs to the union

⋃
e∈SB(q,j)4(q, e). We can test

for this intersection over all blue points q and all disks in DR(i) together. We are thus
interested in deciding

does some center of some disk in DR(i) lie in
⋃

q∈B

⋃

e∈SB(q,j)

4(q, e)?

which is a problem of deciding if there is any incidence between a set of O(n2) points
and O(n2) triangles in the plane. This problem can be solved in O((n2)4/3 polylog n) =
O(n8/3 polylog n) time using machinery for simplicial range searching [Cha10,Mat93].

Finding if there is a solution satisfying condition (c) can be done similarly to condition (b),
as follows. For each half-plane H of HR(i), let v(H) be the vector normal to δH that is
included in H. We want to decide if the vector v(H) is contained inside any of the
wedges

⋃
e∈SB(q,j)4(q, e). Again, this can be solved using range searching techniques in

O(n8/3 polylog n) time [Cha10,Mat93]. (This can actually be done faster because it is a
1-dimensional range query.) The solutions satisfying condition (d) can be obtained with
symmetric algorithms. 2

Theorem 2.5 The 2DD-problem can be solved in O(n11/3 polylog n) time.

Proof. We find values for i and j so that there exists a solution to the (i, j)-2DD-problem
and i + j is maximized. In fact, we find all the Pareto optimal pairs (i, j) for which the
(i, j)-2DD-problem has a feasible solution. We start with i = n − 2 and j = 2. If the
(i, j)-2DD-problem has a solution, the value of j is incremented in one. Otherwise, the
value of i is decremented by one. This process is continued until i = 1 or j = n − 1.
During this process we keep the best feasible solution found to the (i, j)-2DD-problem.
The time complexity is O(n11/3 polylog n) because the decision problem of Lemma 2.4 is
invoked O(n) times. 2

3 An approximation algorithm

In this section we provide a (1 − ε)-approximation algorithm to the 2DD-problem whose
running time is roughly O(n4/3), for any constant ε. The algorithm is randomized and
successful with high probability. We assume henceforth that ε < 1/4. We first consider an
approximate version of the (i, j)-2DD-problem, in a precise sense that will be described
below. The main idea for this step is using sampling to approximately count the number
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of points in any disk. However, care has to be taken to restrict the search to feasible
solutions in the original scenario. Thus, we have to work with the original sets of points
and the sample sets together. Then, we run a search for the optimal pair (i, j), trying
values that are exponentially increasing. We did not attempt to reduce the number of
logarithmic factors or the dependency on ε.

3.1 Random samples

Given a finite set A and a parameter ρ ∈ [0, 1], a ρ-sample of A is a subset of A obtained
by taking each element from A with probability ρ, independently. We will use notation
like Ã to denote such random samples. It is natural to use ρ−1|D ∩ Ã| as an estimator for
|D ∩ A|. We first describe the properties of this estimator that we will use.

Lemma 3.1 Let Q be set of n points in the plane and a be a given parameter. Let Q̃ be
a ρa-sample of Q, where ρa = min{1, ca−1ε−2 log n} and c > 0 is an appropriate constant.
With probability at least 1− 1/n3 we have

(i) for all disks D that contain at least a/4 points of Q

(1− ε/2)|D ∩Q| ≤ ρ−1
a · |D ∩ Q̃| ≤ (1 + ε/2)|D ∩Q| .

(ii) for all disks D containing at most a/4 points of Q

ρ−1
a · |D ∩ Q̃| ≤ a/2.

Proof. This is a standard application of Chernoff bounds [MR96] using the fact that there
are at most O(n3) different sets in the family {D ∩ Q | D is a disk}. Similar arguments
are used in [AHP08,dBCHP09].

If ρa = 1 then Q̃ = Q and all inequalities hold. Thus, we consider the case ρa =
ca−1ε−2 log n. For each point p ∈ Q, let Xp be the indicator random variable, that

takes value 1 if the point p is in the sample Q̃ and value 0 otherwise. Thus, for a disk D
we have

|D ∩ Q̃| =
∑

p∈D∩Q

Xp

whose expected value is

µD := E

[
|D ∩ Q̃|

]
=

∑

p∈D∩Q

E [Xp] = |D ∩Q| · ρa.

Since the variables Xp are independent, we can use Chernoff bounds for |D ∩ Q̃|. We
distinguish the two cases of the statement:

• For a fixed disk D with |D ∩Q| ≥ a/4 we have

Pr
[∣∣∣ρ−1

a · |D ∩ Q̃| − |D ∩Q|
∣∣∣ > (ε/2) · |D ∩Q|

]
= Pr

[∣∣∣|D ∩ Q̃| − µD

∣∣∣ > (ε/2) · µD
]

≤ e−Ω(µDε2)

= e−Ω(|D∩Q|·ρa·ε2)

= e−Ω(|D∩Q|·ca−1 logn)

= n−Ω(c) .
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• For a fixed disk D with |D ∩ Q| ≤ a/4 we consider a disk D′ containing D and
exactly a/4 points of Q. We can then use the previous case for D′ and obtain, with
probability at least 1− n−Ω(c),

ρ−1
a · |D ∩ Q̃| ≤ ρ−1

a · |D′ ∩ Q̃| ≤ (1 + ε/2)|D′ ∩Q| = (1 + ε/2)a/4 ≤ a/2 .

Therefore, for a fixed disk, the inequalities of the lemma are true with probability at least
1 − n−Ω(c). We choose the constant c so that n−Ω(c) ≤ n−6. Since there are at most n3

distinct sets D ∩Q over all disks D, the result for all disks follows from the union bound.
2

3.2 Decision problem

We now consider the approach to approximately solve the (i, j)-2DD-problem for given
values i, j. Throughout this section, we assume that i and j are fixed.

We construct a ρi-sample R̃ of R and a ρj-sample B̃ of B, where ρa = min{1, ca−1ε−2 log n}
as defined in Lemma 3.1. The samples will be used to approximately count the points
contained in a pair of disks. However, we cannot just discard the sets R and B, since they
are important to restrict the search to feasible solutions in the original scenario. Thus, we
have to work simultaneously with the sets R, B, R̃, and B̃.

Note that i · ρi = j · ρj = cε−2 log n is the average “target” number of points in each disk,
where c is the constant in Lemma 3.1. However, there can be some error in the counting
because of using the random sample. We thus set

k := (1− ε/2) · cε−2 log n = (1− ε/2) · i · ρi = (1− ε/2) · j · ρj

as the relevant threshold for approximately counting. Consider the following problem:

ApproxDecision-2DD-problem: find two disjoint disks Dr and Db subject
to Dr ∩ B = Db ∩ R = ∅, |Dr ∩ R̃| ≥ k, and |Db ∩ B̃| ≥ k; or report that no
such solution exists.

Like before, to solve the ApproxDecision-2DD-problem it is enough to restrict the search
to pairs of disks (Dr,Db) with |Dr ∩ R̃| = |Db ∩ B̃| = k. We will use the following relation
between the (i, j)-2DD-problem and the ApproxDecision-2DD-problem.

Lemma 3.2 Assume that there is a solution to the (i, j)-2DD-problem. With probability
at least 1−O(1/n3):

(i) there is a solution to the ApproxDecision-2DD-problem;

(ii) any solution to the ApproxDecision-2DD-problem is a solution to the ((1− ε)i, (1 −
ε)j)-2DD-problem.

Proof. Assume that there is a solution (D∗
r ,D

∗
b ) to the (i, j)-2DD-problem. Because of

Lemma 3.1 (i) we have, with probability at least 1−O(1/n3),

|D∗
r ∩ R̃| ≥ ρi · (1− ε/2) · |D∗

r ∩R| ≥ ρi · (1− ε/2) · i = k .
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A similar argument shows that |D∗
b ∩ B̃| ≥ k, and we conclude that (D∗

r ,D
∗
b ) is a solution

to the ApproxDecision-2DD-problem. This finishes the proof of part (i).

Consider now any feasible pair of disks (Dr,Db) that is not a solution to the ((1−ε)i, (1−
ε)j)-2DD-problem. We will then show that, with probability at least 1 − O(1/n3), the
pair (Dr,Db) is not a solution to the ApproxDecision-2DD-problem. It follows that, with
high probability, only solutions to the ((1 − ε)i, (1 − ε)j)-2DD-problem can be solutions
to the ApproxDecision-2DD-problem.

If (Dr,Db) is not a solution to the ((1−ε)i, (1−ε)j)-2DD-problem, then |Dr∩R| < (1−ε)i
or |Db ∩ B| < (1 − ε)j. Let us assume the former case; the other case is similar. If
|Dr ∩R| > i/4, then Lemma 3.1 (i) tells that, with probability at least 1−O(1/n3),

|Dr ∩ R̃| ≤ ρi · (1 + ε/2) · |Dr ∩R|

< ρi · (1 + ε/2) · (1− ε)i

≤ ρi · (1− ε/2)i

= k.

If |Dr ∩R| ≤ i/4, then Lemma 3.1 (ii) tells that, with probability at least 1−O(1/n3),

|Dr ∩ R̃| ≤ ρi · i/2 < k.

In either case, |Dr ∩ R̃| < k with high probability, and (Dr,Db) cannot be a solution to
the ApproxDecision-2DD-problem. This finishes the proof of part (ii). 2

To solve the ApproxDecision-2DD-problem we will use a discretization, analogous to
Lemma 2.3. Let D̃R be the family of the disks D with red interior such that δD con-
tains exactly three red points of R̃, or two red points of R̃ and one blue point of B; and
let H̃R be the family of the closed red half-planes H such that δH contains two red points
of R̃. Let the families D̃B and H̃B be defined analogously with respect to the points B̃.

Lemma 3.3 If there exists a solution (D′
r,D

′
b) to the ApproxDecision-2DD-problem, then

there exists another solution (Dr,Db) with D′
r ∩ R̃ ⊆ Dr ∩ R̃ and D′

b ∩ B̃ ⊆ Db ∩ B̃,
satisfying one of the next conditions:

(a) Dr ∈ D̃R ∪ H̃R and Db ∈ D̃B.

(b) Dr ∈ D̃R, δDb contains two blue points of B̃, and one blue point in δDb is on the
segment connecting the center of Dr to the the center of Db.

(c) Dr ∈ H̃R, δDb contains two blue points of B̃, and one blue point in δDb is on the
line perpendicular to δDr passing through the center of Db.

(d) the cases symmetric to (a)-(c) by exchanging colors.

Proof. The proof is similar to the proof of Lemma 2.3, but during the transformation we
enforce that the red disk Dr keeps both Dr ∩ B and the elements of R̃ contained in the
interior of Dr invariant, while the blue disk Db keeps both Db ∩R and the elements of B̃
contained in the interior of Db invariant. 2

Lemma 3.4 The ApproxDecision-2DD-problem can be solved in O((k2n+(kn)4/3) polylog n)
time.
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Proof. The approach is very similar to the algorithm in Lemma 2.4, and we will thus
skim over some of the details. Let D̃R(k) be the set of disks of D̃R containing exactly
k red points of R̃, and let H̃R(k) be the set of half-planes of H̃R containing exactly k
red points of R̃. The centers of the disks of D̃R(k) are vertices of (k − 2)th-order or the
(k − 1)th-order Voronoi Diagram of R̃ ∪ B, while the half-planes in H̃R(k) correspond to
unbounded edges in the (k − 1)th-order Voronoi diagram. Since the kth-order Voronoi
diagram has combinatorial complexity O(k(n − k)) = O(kn) in total [Aur91], the sets
D̃R(k) and H̃R(k) have at most O(kn) elements. Analogous sets D̃B(k) and H̃B(k) can be
defined with respect to the blue color, and they are related to the higher-order Voronoi
diagrams of R ∪ B̃.

For every blue point q ∈ B̃, let S̃B(q, k) be the set of straight-line segments s such that
for each point o of s the disk D(o, q) is blue, covers k blue points of B̃, and its boundary
contains other blue point of B̃ distinct from q. The set of segments S̃B(q, k) is a subset of
the edges in the (k − 1)th-order Voronoi diagram of R ∪ B̃.

The sets D̃R(k) and H̃R(k) can be obtained from the (k − 2)th- and the (k − 1)th-order
Voronoi Diagrams of R̃ ∪ B. Since computing the kth-order Voronoi diagram of n points
can be done in O(k2n log n) time [Lee82], the sets D̃R(k) and H̃R(k) can be obtained in
O(k2n log n) time. Similarly, using the (k−2)th- and the (k−1)th-order Voronoi diagrams
of R∪ B̃ we can construct the sets D̃B(k) and S̃B(q, k) for all q ∈ B in O(k2n log n) time.

Let Ṽk denote the Furthest Disk Voronoi Diagram of D̃B(k). We can compute Ṽk and
preprocess it for point location queries in O((kn) log(kn)) = O(kn log n) time [Rap92,
Sno97], so that any point location in Ṽk can be answered in O(log n) time. For each blue
point q and each edge e of S̃B(q, k), consider the double wedge obtained by the union of
lines that intersect q and e, and let 4(q, e) be wedge that does not contain e.

We now discuss how to decide if there exists a solution with the properties listed in
Lemma 2.3 that covers k points of R̃ and k points of B̃. Finding if there is a solution
satisfying condition (a) reduces to point location queries in Ṽk with the centers of disks
from D̃R(k) and far enough points representing the “centers” of half-planes from H̃R(k).
We spend here O(kn log n) time in total because we have to make O(|D̃R(k)|+ |H̃R(k)|) =
O(kn) point locations in Ṽk.

Finding if there is a solution satisfying condition (b) reduces to deciding

does some center of some disk in D̃R(k) lie in
⋃

q∈B

⋃

e∈S̃B(q,k)

4(q, e)?

This is a problem of deciding if there is any incidence between a set of O(kn) points and
a set of O(kn) triangles in the plane, which can be solved in O((kn)4/3 polylog(nk)) =
O((kn)4/3 polylog n) time using machinery for simplicial range searching [Cha10,Mat93].
Finding if there is a solution satisfying condition (c) can be done similarly to condition (b).
The solutions satisfying condition (d) can be obtained with symmetric algorithms.

The algorithm spends O(k2n log n) +O((kn)4/3 polylog n) = O((k2n+ (kn)4/3) polylog n)
time in total. 2

Lemma 3.5 Let c0 be a constant, and assume that i, j > εn/c0. Then the ApproxDecision-
2DD-problem can be solved in O(k4ε−3n polylog n) time with high probability.

Proof. We reuse the notation and approach in the proof of Lemma 3.4. In this case, with
high probability R̃ and B̃ have O((n/i)ε−2 log n) = O(k/ε) points. Since each disk of
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D̃R(k) can contain only red points in its interior, the set D̃R(k) contains O(|R̃|3) disks,
which is bounded by O((k/ε)3) with high probability. Similarly, D̃B(k), H̃R(k), and H̃B(k)
contain O((k/ε)3) disks or half-planes with high probability.

All the steps in the proof of Lemma 3.4 take O(kn log n) time but for the step where we
have to decide

does some center of some disk in D̃R(k) lie in
⋃

q∈B

⋃

e∈S̃B(q,k)

4(q, e)?

In this scenario, the problem is that of deciding if there is an incidence between a set of
O((k/ε)3) points and O(kn) triangles. This problem can be solved trivially in O(k4ε−3n)
time by checking each point against each triangle. The result follows. 2

We can summarize the results of this section with the following Lemma.

Lemma 3.6 There is a randomized algorithm RandAlg that in time O(n4/3ε−4 polylog n)
returns a feasible solution and has the following property: if there is a solution to the
(i, j)-2DD-problem, with probability at least 1 − O(1/n3) it returns a solution to the
((1− ε)i, (1 − ε)j)-2DD-problem.

If c0 is a constant and i, j > εn/c0 then the algorithm RandAlg takes O(ε−11n polylog n)
time with high probability

Proof. We construct the ρi-sample R̃ or R and the ρj-sample B̃ of B, and set k = (1 −
ε/2)cε−2 log n. We then solve the ApproxDecision-2DD-problem using Lemma 3.4, which
takes O((k2n + (kn)4/3) polylog n) = O(((ε−2 log n)2n + n4/3(ε−2 log n)4/3) polylog n) =
O(n4/3ε−4 polylog n) time. If we find a solution (Dr,Db) to the ApproxDecision-2DD-
problem, then we return that solution. Otherwise, we return an arbitrary pair of fea-
sible disks. The properties of the algorithm follow from Lemma 3.2. When i, j >
εn/c0, we just use the algorithm from Lemma 3.5 instead of Lemma 3.4, which takes
O(k4ε−3n polylog n) = O(ε−11n polylog n) time because k = O(ε−2 log n). 2

3.3 Algorithm to approximate the 2DD-problem.

Theorem 3.7 There is a randomized algorithm that computes a (1− ε)-approximation to
the 2DD-problem in O(n4/3ε−6 polylog n) time. The probability of error is at most O(1/n).

Proof. Consider the set

T =
{
d(1 + ε)se | s = 0, 1, 2, 3, . . . , log1+ε n

}
.

Note that T has O(log1+ε n) = O(ε−1 log n) elements because

lim
ε→0

ε−1 lnn

log1+ε n
= lim

ε→0

ε−1 lnn

lnn / ln(1 + ε)
= lim

ε→0

ln(1 + ε)

ε
= lim

ε→0

1/(1 + ε)

1
= 1.

For any integer i, define ψ(i) =
⌈
(1 + ε)blog1+ε ic

⌉
, and note that ψ(i) ∈ T . We have that

ψ(i) =
⌈
(1 + ε)blog1+ε ic

⌉
≤

⌈
(1 + ε)log1+ε i

⌉
= die = i
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and

ψ(i) =
⌈
(1 + ε)blog1+ε ic

⌉
≥

⌈
(1 + ε)(log1+ε i)−1

⌉
=

⌈
i

1 + ε

⌉
≥

i

1 + ε
≥ (1− ε)i .

We thus conclude that
(1− ε)i ≤ ψ(i) ≤ i.

We can now see that among the pairs (i, j) ∈ T 2 for which there exists a solution to
the (i, j)-2DD-problem, one maximizing i + j is a (1 − ε)-approximation to the 2DD-
problem. Indeed, if (i∗, j∗) is an optimal solution, then there exists a solution to the
(ψ(i∗), ψ(j∗))-2DD-problem because ψ(i∗) ≤ i and ψ(j∗) ≤ j. Furthermore, a solution to
the (ψ(i∗), ψ(j∗))-2DD-problem covers ψ(i∗)+ψ(j∗) ≥ (1− ε)(i∗ + j∗) points, and is thus
a (1− ε)-approximation. Finally, note that (ψ(i∗), ψ(j∗)) ∈ T 2.

For each pair (i, j) ∈ T 2 we use the algorithm RandAlg of Lemma 3.6 to find a feasible
solution. Among all the returned solutions, we select the best one by counting the points
covered. Let us assume first that there are no errors in all our calls to RandAlg in
Lemma 3.6. When we call RandAlg for the value (ψ(i∗), ψ(j∗)), we obtain a solution to
the ((1− ε)ψ(i∗), (1− ε)ψ(j∗))-2DD-problem, and thus a solution to the ((1− ε)2i∗, (1 −
ε)2j∗)-2DD-problem. Thus, the best solution found among the O(|T |2) calls to RandAlg

is a (1−ε)2-approximation to the optimal solution. Since (1−ε)2 ≥ 1−2ε, we can achieve
a (1− ε′)-approximation by taking ε = ε′/2. 1

To analyze the running time of the algorithm, note that it makes |T |2 = O(ε−2 log2 n)
calls to the algorithm RandAlg, and thus takes O(ε−2 log2 n · (n4/3ε−4 polylog n)) =
O(n4/3ε−6 polylog n) time. Selecting the best solution among the |T |2 feasible solutions can
be done in O(|T |2n) = O(nε−2 polylog n) time. Since each call to RandAlg (Lemma 3.6)
has a probability of error bounded by 1/n3 and |T 2| = O(n2) it follows from the union
bound that all outputs of RandAlg are correct2 with probability at least 1 − O(1/n).
Thus, the algorithm finds a (1− ε)-approximation with probability at least 1−O(1/n). 2

For the special case where the optimal solution covers several points, we can obtain a
(1− ε)-approximation in near-linear time.

Corollary 3.8 Let c0 be a constant. If the optimal solution to the 2DD-problem covers
at least n/c0 points, then we can compute a (1− ε)-approximation to the 2DD-problem in
O(nε−13 polylog n) time. The probability of error is at most O(1/n) and the running time
of the algorithm is with high probability.

Proof. We use the same algorithm as in Theorem 3.7, but only restrict attention to values
(i, j) ∈ T 2 with i, j ≥ εn/c0. Since we can use the second case in Lemma 3.6, each
call to RandAlg takes O(ε−11n polylog n) time with high probability. We make |T |2 =
O(ε−2 log2 n) calls to the algorithm RandAlg, and thus spend a total of O(ε−2 log2 n ·
ε−11n polylog n) = O(ε−13n polylog n) time. 2

1We could run a more careful search in T 2 as it was done in Theorem 2.5. However, this would only
decrease the running time by a factor of |T | = O(ε−1 log n). Also, we could reduce the number of calls
to RandAlg by computing first a simple 2-approximation algorithm: choose the best among the disks
covering only blue points and the disks covering only red points. If the returned solution covers A points,
only pairs (i, j) ∈ |T |2 with A ≤ i + j ≤ 2A are relevant. However, with the approach that we describe,
we obtain (1− ε)-approximations for both i∗ and j∗. This is convenient in several scenarios, for example,
when maximizing min{|Db ∩B|, |Dr ∩R|}.

2In fact, the algorithm returns a (1 − ε)-approximation unless the call to RandAlg with the value
(ψ(i∗), ψ(j∗)) fails. However, with this approach we (1 − ε)-approximate both i∗ and j∗.
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4 Conclusions

Given a bicolored point set P = R ∪ B, in this paper we have studied the problem of
finding two disjoint disks Dr and Db such that Dr (resp. Db) covers only red (resp. blue)
points and the number of elements of P contained in Dr ∪ Db is maximized. We gave
an exact algorithm running in O(n11/3 polylog n) time based on solving instances of the
(i, j)-2DD-problem, which asks for the same disks Dr and Db subject to |Dr ∩R| ≥ i and
|Db ∩B| ≥ j. The (i, j)-2DD-problem was solved in O(n8/3 polylog n) time for any given
values of i and j.

Using random samples of R and B to estimate |D∩R| and |D∩B|, where D is any disk, we
presented a randomized (1− ε)-approximation algorithm running in O(n4/3ε−6 polylog n)
time, where the probability of error is O(1/n). A better, near-linear time algorithm was
obtained when the solution covers a constant fraction of the input points.

It is worth noticing that if we want to solve the max-min version of the problem, that
is, to maximize the minimum between |Dr ∩ R| and |Db ∩ B|, then we can consider
|Dr ∩R| = |Db∩B|. Therefore, the problem reduces to finding a maximum value of i such
that the (i, i)-2DD-problem has solution. This can be done in O(log n · n8/3 polylog n) =
O(n8/3 polylog n) time using a binary search. Additionally, a (1 − ε)-approximation al-
gorithm can also be obtained. Indeed, we can run RandAlg of Lemma 3.6 only for the
pairs (i, i) ∈ T , where T is the set in the proof of Theorem 3.7. Since |T | = O(ε−1 log n), a
randomized (1− ε)-approximation algorithm running in O(ε−1 log n ·n4/3ε−4 polylog n) =
O(n4/3ε−5 polylog n) time is obtained.
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