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Abstract: This paper treats competitive predator-prey systems, which growth of populations and their mutual 

interactions are time dependent. For solving a general Lotka-Volterra system of equations, the multistage 

homotopy perturbation (MH-P) method  is developed to predict the time evolution of the dynamical system 

and its properties, such as existence of stable periodic orbits. As the newest achievement, the efficiency of 

MH-P method is provedintreatment of almost-periodic variations of coefficients with incommensurate 

excitation frequencies.The periodic variations of coefficients are analyzed as special case by assuming that 

excitation frequencies are commensurate. By using MH-P method, the approximate analytic solutions are 

obtained, which are very accurate in the long term behaviour. Although an usefull convergence test of the 

computed solution is provided, the accuracy of  MH-P method is compared also by results of the numerical 

integration of Lotka-Volterra equations by using the Runge-Kutta method, where an excellent agreement is 

obtained. 

Key words: predator-prey system; almost-periodic coefficients; MH-P method 

Povzetek: Članek obravnava tekmovalne sisteme plenilcev-plen, katerih rasti populacij in njih medsebojni 

vplivi so časovno odvisni. Za reševanje splošnega sistema enačb tipa Lotka-Volterra je razvita večstopenjska 

homotopsko perturbacijska (VH-P) metoda, s katero določimo časovni razvoj dinamičnega sistema in njegove 

lastnosti, kot denimo obstoj stabilnih periodičnih orbit. Kot najnovejši dosežek je prikazana učinkovitost VH-P 

metode v obravnavi skoraj periodičnih variacij koeficientov z nekomenzurnimi vzbujevalnimi frekvencami. 

Periodične variacije koeficientov so analizirane kot posebni primer s komenzurnimi vzbujevalnimi 

frekvencami. Z uporabo VH-P metode dobimo približne analitične rešitve, ki so zelo natančne v daljšem 

časovnem obdobju. Čeprav metoda predvideva uporaben test konvergence izračunanih rešitev, je natančnost 

VH-P  metode preverjena tudi s primerjavo rezultatov, dobljenih z numerično integracijo enačb Lotka-Volterra 

ob uporabi metode Runge-Kutta, pri čemer je ugotavljeno odlično ujemanje rezultatov. 

Ključne besede: sistemi plenilci-plen; skoraj periodični koeficienti; VH-P metoda 

 

1. Introduction 

Dynamical systems of predator-prey type appear in 

diverse branches of science and engineering. Predator-prey 

systems are applied successfully in the combustion theory 

to model the evolution of chemical radicals formed during 

H2 and O2 combustion [1] and are widely used in 

chemistry, biology, economics, medicine and ecology [2]. 

Due to the wide applicability such systems represent a 

great research challenge.The interaction mechanisms in 

predator-prey ecosystems are nonlinear because harvest-, 

birth-, death-, and migration rates depend strongly on 
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populations. Unfortunately, such models does not take into 

account the exogenous environmental factors, such as 

food, temperature, humidity, light, etc., which vary 

periodically or even almost-periodically in dependence on 

the season-,  daily-, month- and year cycles. The objective 

of this paper is the inclusion of such exogenous factors into 

dynamical system to obtain a more realistic model of the 

predator-prey system. 

Dynamical system describing the predator-prey 

ecosystem, which takes into account the time-dependent 

coefficients of populations growth rates as well as the 

time-dependent coefficients of mutual interactions between 

populations of species, is written in the following form of 

generalized Lotka-Volterra equations: 

   

   

1

0

,

0 , 1, ,

n

i i i ij i j
j

i i i

x t x a t x x

x x c i n





  


   

 (1) 

Functions  i t  represent the time-dependent 

coefficients of populations growth rates and functions 

 ija t   stand for time-dependent coefficients of mutual 

interactions between populations of species.Because the 

right hand sides of ODE's are explicitly dependent on the 

time, the dynamical system, described by Eqs. (1) is 

nonautonomous. It is required, that all  i t and  ija t  , 

respectively, are continuous functions of time, which for 

example may be polinomials, periodic or even almost-

periodic functions. In this paper, almost-periodic functions 

will be treated in details, because they represent the most 

relevant basis for modelling the realistic predator-prey 

ecosystems. When all coefficients of mutual interactions 

between populations of speciesare nonnegative,   0ija t   

for all times and for all indexes i,j, the ecosystem is 

competitive and when   0ij i ja t   , then ecosystem 

iscooperative [3]. To restrict yourself in this paper, only 

competitive ecosystems will be treated, although the 

present formulation of the MH-P method is not limited on 

the competitive systems only. By means of equations

0i ix c , the corresponding initial conditions in the time 

0t   are prescribed. 

Homotopy perturbation (H-P) method is videly applied 

in a broad range of nonlinear problems describing various 

physical phenomena [4].Such a phenomena are governed 

by systems of nonlinear ordinary or partial differential 

equations. The strength of the H-P method comes from the 

fact, that solutions can be expressed in the form of power 

series, where the coefficients of power series are 

determined in a similar manner as in perturbation methods 

without the need for the introduction of a small expansion 

parameter [5],[6].Due to this, the H-P method is ideally 

suited to solve strongly nonlinear problems if the 

nonlinearities appear in the polinomial form. Besides this, 

the power series produce analytical solutions, which offer 

numerous advantages (the implementation of parametric 

studies, stability and bifurcation analysis).On the other 

side, there is a limiting factor in the H-P method, namely 

the length of the time intervalin which is desired to obtain 

an accurate solution. In dynamical systems exhibiting 

chaos, the length of the time interval as a rule must be very 

large in order to obtain the fully developed characteristics 

of chaos. The standard H-P method applied on dynamical 

systems in which chaos appears, fails on large time 

intervals.To overcome this deficiency, the multistage 

homotopy perturbation (MH-P) method is first proposed in 

[7] and then applied in predator-prey systems in [8]. The 

main idea behind the MH-P method is the division of the 

entire time interval on the finite number of subintervals 

with equal length and succesive application of the H-P 

algorithm on each subinterval. The only difficulty in such a 

procedure are unknown initial conditions on all 

subintervals except on the first. This difficulty can be 

easily overcomed by assuming that unknown initial 

conditions must be equal to the final values on the 

preceding interval in order to ensure the C
0
 continuity. 

MH-P method can be applied purely natural on Lotka-

Volterra Eqs. (1), because these equations contain 

nonlinearities in the polinomial form. In this paper, the 

general form of the MH-P method is presented, which is 

capable to solve Lotka-Volterra equations with time-

dependent coefficients. The solution obtained has an 

explicit form. Application of the method is shown in 

details for almost-periodic coefficients with 

incommensurate excitation frequencies including two 

special examples. The first special example is reduced on 

the standard Lotka-Volterra equations with constant 

coefficients giving an autonomous dynamical system. 

Nevertheless, interesting properties of the competitive 

predator-prey model are demonstrated in this case: the 

exinction of all populations of predators except the 

dominant one from ecosystem viewpoint and the absolute 

necessity of the multistage homotopy perturbation in the 

long term behaviour ensuring the desired accuracy. In the 

second special example, excitation frequencies are chosen 

commensurate, excluding the phenomenon of the 

extinction and leading to the stable periodic orbit in the 

long term behaviour. 
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2. Multistage Homotopy Perturbation (MH-P) Method 

for Predator-Prey Systems with Time-Dependent 

Coefficients  

The multistage homotopy perturbation (MH-P) method 

is improvement of the standard homotopy perturbation 

(SH-P) method. The SH-P method is distinguished by high 

accuracy on short time intervals.Short time intervals 

represent a serious limitation in dynamical systems, 

exhibiting chaos. An example of such a dynamical system 

is the famous Lorenz system, where the chaos is fully 

developed on the relatively long time interval.In this paper 

will be shown, that short time intervals represent a serious 

limitation in respect of the required accuracy in the 

predator-prey systems, too. Fortunately, the desired high 

accuracyof the method can be maintained even on long 

time intervals, when the entire time interval is divided into 

finite number of subintervals with equal length and the 

homotopy perturbation method is applied on each 

subinterval.In such a way, the MH-P method is obtained. 

To implement MH-P method on the some subinterval, the 

initial values at the beginning of the subinterval must be 

known, however these values are actually known at the 

beginning of the first subinterval only. To overcome this 

difficulty, the final values of the preceding subintervals are 

computed and chosen as initial conditions on the next 

subinterval to ensure the C
0
 continuity (an exception of this 

procedure represents the  first subinterval, which does not 

have a preceding subinterval at all). 

Suppose, that we are interested in the solution of Eqs. 

(1) on the time interval  0,t t . According to the MH-P 

method, the time interval  0,t t  is divided intos 

subintervals of equal length t . The solution is sought 

iteratively on subintervals  

       0 1 1 2 2 3 1, , , , , , , ,st t t t t t t t , where initial values on 

each particular subinterval are unknown except initial 

values on the first subinterval in the time *
0t t . The 

homotopy perturbation method on a particular subinterval 

can be formulated in the simplest way, if the folowing 

homotopy: 

 

            
1

0, 1, ,
n

i i i i i ij i j
j

L x L v pL v p t x a t x x i n


 
       

 

 (2)

is assigned to the system of ODE's (1), where d
dt

L   

denotes the linear operator,  0,1p  is an embedding 

parameter and variables jv denote initial approximations 

of the solution, which must satisfy initial conditions. 

Homotopy (2) is reduced on the linear system of equations, 

when 0p   and is transformed during the so called 

deformation process into the original nonlinear system of 

equations, when embedding parameter approaches 1p  . 

The approximate solution of Eqs. (1) is represented in the 

form of power series:  

 

              2 3
0 1 2 3

0

, 1, ,k
i i i i i ik

k

x t x t px t p x t p x t p x t i n




       , , (3)

where    , 1,2,ikx t k   denote unknown functions of 

time, which must be determined in the following 

perturbation procedure.By introduction of power series (3) 

into equation of homotopy (2) one obtains: 

 

 

         

       

1

0 0

1

1 0 0

0, 1, ,

k k
ik i i i ik

k k

n
k l

ij ik jl
j k l

L p x t L v pL v t p x t

a t p x t x t i n


 



 

 
 

  

 
    

 

    

 (4) 

By collecting coefficients at like powers of the embedding 

parameter p one obtain the following equations for 
0p  and 

1p , respectively: 
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    0
0 0: 0, ,i i i ip L x L v x v     (5) 

              1
1 0 0 0

1

: 0
n

i i i i ij i j
j

p L x t L v t x t a t x t x t


       , (6) 

and for each  , 1rp r  the equation: 

            
1

, 1 , 1
1 0

: 0
n r

r
ir i i r ij ik j r k

j k

p L x t t x t a t x t x t


  
 

       . (7)

The system of equations (5-7) is obtained in an explicit 

form and can be solved by successive integrations of linear 

operators    , 1,2, ,irL x t r m   .Although Eqs. (5-7) 

are developed by the perturbation procedure, the small 

perturbation parameter, which is present in all standard 

perturbation methods, is not required here at all. In other 

words, functions  i t and  ija t , respectively, do not 

contain such a small perturbation parameter. Consequently, 

the MH-P method can be applied in the analysis of the 

predator-prey ecosystems, which contain high polynomial 

nonlinearities and time-dependent coefficients. In the rest 

of the paper, we will apply the following explicit form of 

functions  i t and  ija t :  

 

 

   

     

0
1

,0 , , , ,
1

cos sin ,

cos sin , , 1,2, ,

t

t

M

i i iq iq iq iq
q

M

ij ij ij q ij q ij q ij q
q

t t t

a t t t i j n

     

    





  

   

 (8) 

where 0i , ,0ij , iq , iq , ,ij q , ,ij q areexcitation 

amplitudes and iq , ,ij q ;  1,2, , tq M are 2 tM

excitation frequencies. If all pairs of frequencies iq , ,ij q

have an integer ratio, then frequencies iq , ,ij q ;

 1,2, , tq M are commensurate and all excitations are 

periodic. If all pairs of frequencies iq , ,ij q have an 

irational ratio, then frequenciesare incommensurate and 

functions   i t and  ija t are almost-periodic. A special 

example of Eqs. (8) occurs, when there are 0tM  tones. 

In such a case, the predator-prey ecosystem is autonomous 

and contains the constant coefficients.  

When functions  i t  and  ija t are given in the form 

(8), then Eqs. (5-7) can be integrated analytically. 

Therefore, it is evident, that a very large class of predator-

prey ecosystems can be analytically solved by means of the 

presented MH-P method. Now look for the implementation 

of the MH-P method on each subinterval.  

Denote the starting time on an arbitrary subinterval by 

*t  and the corresponding final time of the subinterval by t. 

Then the entire time interval in SH-P method as well as the 

first subinterval in the MH-P method can be denoted by 

 0* ,t t t , the second subinterval of the MH-P method by 

 1* ,t t t  and the last subinterval by  1* ,st t t , respectively. 

By using this convention, the entire time interval as well as 

all subintervals can be computed in the same way. As 

initial solutions on an arbitrary subinterval we choose 

initial conditions of that subinterval. Because initial 

conditions differ on subequent intervals, we use the same 

convention as above and write: 

        ** *
0 , 1, ,i i i iv t x t x t c i n    ,        (9) 

where 
*

ic  denote initial conditions on an arbitrary 

subinterval, which are equal to the computed values  ix t  

on the end of the preceding subinterval. From Eq. (9) it 

follows:  

   0iL v  , (10) 

which in turn simplifies Eq. (6). As already mentioned, the 

system of Eqs. (5-7) is solved successively by using the 

inverse linear operator:   

    
*

1 d
t

t

L t    . (11) 

Actually, integration (11) is first applied on Eq. (6), 

because Eq. (5) is fullfilled trivially. After this, the 

integration is continued on subsequent equations. 

Approximate solutions of the original Lotka-Volterra 
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equations (1) are obtained by execution ofthe limit process 

1p  on the power series (3), where only the first mterms 

are retained from the practical reasons:  

     
1

,
1 0

lim
m

i m i ik
p k

t x t x t


 

    (12) 

The algorithm of the MH-P method for predator-prey 

ecosystems with time-dependent coefficients is now 

completed. The algorithm is ideally suited for 

implementation in the programming environment 

Mathematica
®
. 

3. Results and discussion 

In this paper, three different competitive predator-prey 

ecosystems are analyzed by using the MH-P method. In the 

first example, the predator-prey system with three species 

is analyzed, where population growth rates and coefficients 

of mutual interactions between populationsare prescribed 

in the form of almost-periodic functions. The predator-prey 

system, which is studied in this example, is competitive, 

because in addition, coefficients of mutual interactions 

fullfill conditions   0ija t  .The governing Lotka-Volterra 

equations have the following form: 

 

 
           

           

              

1 1 1 1 1 2 3

2 2 2 1 2 2 3

3 3 3 1 2 3 3

5 4cos 3 cos

4 3sin 3 sin

1
3 2cos 2 4 cos 2

5

x t x t t t x t x t x t

x t x t t x t t x t x t

x t x t t x t x t t x t

 

 

 


        


        


          

 (13)

where excitation frequencies are incommensurate having 

values  1
1 2 1 3 1

3
1, , 2        and where theinitial  

conditions

      10 1 1 20 2 2 30 3 30 0.4, 0 0.4, 0 0.4x x c x x c x x c          (14)

are prescribed. The first equation of (13) belongs to the 

prey population, the second equation belongs to the 

superpredator population and the third belongs to the 

population of predators. The meaning of incommensurate 

frequenciesisthat grow rate cycles and cycles of mutual 

interactions between population of species are completely 

independent of each other. Because Eq. (5) is trivial, it can 

be omitted and only Eqs. (6,7) are written down: 
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 (15) 
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 (16) 
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System of equations (15,16) is complete, because equation 

of an arbitrary order can be constructed in the explicit 

form. By successive integration of equations, analytical 

solutions        1 , ; 1,2,3 , 2, ,i irx t x t i r m   are 

obtained, which are then used in Eq. (12) to construct 

approximate analytical solutions  ,i m t  of the m-th 

order. As an example, the integration of Eq. (15) is shown, 

which leads on the result: 

 

 

         

       

         

 

*

*

2
* * * * * * *

11 11 1 1 1 1 1 2 1 3

* * * * * * *
1 1 1 1 1 2 3

1

2
* * * * * * *

21 21 2 2 2 1 2 2 2 3

* *
2 2 2

2

5 4cos 3 cos d

1
4 sin sin 5 3 ,

4 3sin 3 sin d

1
3 cos cos

t

t

t

t

x t x t c c c c c c

c c t t c c c t t

x t x t c c c c c c

c c t

    

 


    

 


 
        

 

 
        

 

 
        

 

        

           

      

*

* * * * *
2 1 2 3

2
* * * * * * *

31 31 3 3 3 1 3 2 3 3

* * * * * * *
3 3 3 3 1 2 3

3

4 3 ,

1
3 2cos 2 4 cos 2 d

5

1 1 1
1 sin 2 sin 2 3 4

2 5

t

t

t c c c t t

x t x t c c c c c c

c c t t c c c t t

    

 














 
     

 
  

        
 


                    

, (17) 

where is considered, that relations 

     * * *
11 21 31 0x t x t x t   always hold, because initial 

conditions are fulfilled already by values 

           * * * * * * * * *
10 1 1 20 2 2 30 3 3, ,x t x t c x t x t c x t x t c      . 

On the same way, the integration of subsequent equations 

of higher order is carried out. Results of computation of 

populations evolution by using the MH-P method and 

comparison with Runge-Kutta method are shown on 

Figures 1, 2 and 3, respectively, where an excellent 

agreement is established. The high accuracy of the MH-P 

method in the entire observation range is achieved with 

relatively small number (m=4) of terms in power series 

(12), but using a great number of subintervals s=500.  To 

evaluate the accuracy of results, one computes the integral 

of the absolute error between two subequent solutions 

   1s
ix t

 and      , 1, , 3
s

ix t i n   over the entire time 

interval  0,t t , where the first solution contains s-1 

subintervals and the next solution has s subintervals, 

respectively and check, if the values of the computed 

integral are less than the prescribed tolerance tol: 

         
0

1
d , 1,2,3

t
s s

i i i
t

J x t x t t tol i


     (18) 

If this check fails, then the number of subintervals is too 

small. In the predator-prey system (13), the tolerance tolis 

prescribed to be equal 410tol   . The number of 

subintervals s=500 is then sufficient to fulfill the criterion 

(18) on the entire time interval  0 0, 50t t   with 

computed values of integrals:

-5 -5
1 24.72776 10 , 1.53379 10J J     and

-5
3 8.23404 10J   . On the Figure 4, the parametric 

dependencies of evolutions of populations    1 2,x t x t  

and  3x t , which are computed by MH-P method and 

comparison of results with Runge-Kutta method are 

plotted, where again the excellent agreement is shown.
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Figure 1. Evolution of populationx1(t) in the almost-periodic case.        Solution, computed by MH-P method,                

         Solution, computed by numerical integration using Runge-Kutta method. 

Figure 2. Evolution of populationx2(t) in the almost-periodic  case.        Solution, computed by MH-P 

method, - - -  Solution, computed by numerical integration using Runge-Kutta method. 

Figure 3.  Evolution of populationx3(t) in the almost-periodic case.       Solution, computed by MH-P 

method,- - -Solution,computed by numerical integration using Runge-Kutta method. 

Figure 4. Parametric dependencies of populationsx1(t), x2(t) in x3(t) in the almost-periodic case.               Solution, 

computed by MH-P method, - - - Solution, computed by numerical integration using Runge Kutta method. 

Time histories on Figures 1-3, as well as orbits on the 

Figure 4 reveal the essential nature of almost-periodic 

oscillations. Time histories consist from series of cycles, 

which do not repeat. This property is a direct consequence 
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of incommensurate frequencies involved. On the other 

side, it can be recognized, that the time histories are not 

random or even chaotic. This property is evident also from 

the parametric plots, where numerous loops can be seen, 

but no random behaviour. 

Now look on the periodic counterpart of the predator-

prey ecosystem (13). To obtain periodicity, the general 

form of Eqs. (13) and corresponding values of initial 

conditions are retained, but excitation frequencies are now 

required to be commensurate. To obtain the 

commensurability of frequencies, we prescribe an 

additional condition in the form 1 2 3 1     , which of 

course is restrictive and therefore it must be justified in 

reality. The results of computation by application of the 

MH-P method and comparison with results of numerical 

integration using Runge-Kutta method are plotted on 

Figures 5, 6 and 7, where again an excellent agreement can 

be found.The convergence test with prescribed tolerance 

410tol   results in values of integrals: 

-5 -5
1 23.05072 10 , 8.46863 10J J     and

-5
3 5.82898 10J   . The parametric dependencies of 

evolutions of populations    1 2,x t x t  and  3x t , which 

are computed by MH-P method and comparison of results 

with Runge-Kutta method are shown on Figure 8, where 

again an excellent agreement is obtained. 

Unlike time histories of populations in almost-periodic 

case, oscillations on Figures 5-7 after the transient phase 

now consist from repeating cycles, which confirm the 

periodicity. The same conclusion follows also from the 

Figure 8, where trajectories approaches the periodic orbits 

after the transient phenomenon dies. 

Figure 5. The evolution of populationx1(t) in the periodic case.       Solution, computed by MH-P 

method,          Solution, computed by numerical integration using Runge-Kutta method. 

 

Figure 6. The evolution of populationx2(t) in the periodic case.          Solution, computed by MH-P method, - 

- -  Solution, computed by numerical integration using Runge-Kutta method. 
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Figure 7. The evolution of populationx3(t) in the periodic case.            Solution, computed by MH-P method, 

- - - Solution,computed by numerical integration using Runge-Kutta method. 

 

Figure 8. Parametric dependencies of populationsx1(t), x2(t) in x3(t) in the periodic case.         Solution, 

computed by MH-P method, - - - Solution, computed by numerical integration using Runge-Kutta method

As third example, the competitive predator-prey 

ecosystem (13) is analyzed, which has constant coefficients 

only. Therefore, all time-dependent terms in Eqs. (13) are 

omitted and corresponding Lotka-Volterra equations are 

reduced on the form: 

         

         

         

1 1 1 2 3

2 2 1 2 3

3 3 1 2 3

5 3

4 3

1
3 4

5

x t x t x t x t x t

x t x t x t x t x t

x t x t x t x t x t


      


      


        

 (19) 

The computation by MH-P method is performed with the 

same initial conditions as in first two examples. The results 

of computation by application of the MH-P method are 

plotted on the Figure 9. The comparison with results of 

numerical integration using Runge-Kutta method is shown 

and an excellent agreement is obtaned again. The 

convergence test with prescribed tolerance 410tol   

results in values of integrals: 

-5 -5
1 28.35791 10 , 3.40169 10J J     and

-6
3 2.45845 10J   . 

 

Figure 9. The evolution of populationx3(t) in the periodic case.            Solution, computed by MH-P method, 

- - -  Solution,computed by numerical integration using Runge-Kutta method. 
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Time histories on the Figure 9 reveal, that first two species, 

which belong to the prey and predator, respectively, 

survive. Their populations grow according to the logistic 

curve, approaching the corresponding carrying capacities. 

On the contrary, the third species of superpredator is after 

some growth in a short initial phase driven to the 

extinction.  

4. Conclusions 

In this paper, a generalized predator-prey model with 

time-dependent coefficients of populations growth rates 

and time-dependent coefficients of mutual interactions 

between populations of speciesis treated, where 

competitive ecosystems with almost-periodic, periodic and 

constant coefficients are analyzed in details. To obtain 

approximate analytical solutions of generalized Lotka-

Volterra equations for almost-periodic, periodic and 

constant coefficients, respectively, the MH-P metod is 

developed in an explicit form, which is appropriate for 

analysis on long time intervals. To ensure the desired 

accuracy of the MH-P method on the entire time interval, 

the  useful convergence test of the subsequent solutions is 

provided.Nevertheless, the results computed by MH-P 

method are in all examples compared with results of the 

numerical integration using Runge-Kutta method, where an 

excellent agreement is always obtained. The analytical 

form of solutions has many advantages, which allow 

analysis of stability, parametric studies and bifurcations. 

Such possibilities as well as the study of the chaotic 

behaviour in predator-prey ecosystems [9] are challenging 

for the future research work. Besides this, the MH-P 

method is well suited for computation of highly nonlinear 

ecosystems. 
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