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Abstract

We construct a new example of an infinite family of groups acting on a d-adic tree, with
d ≥ 2 that is non-contracting and weakly regular branch over the derived subgroup.
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1 Introduction
Weakly branch groups were first defined by Grigorchuk in 1997 as a generalization of the
famous p-groups constructed by Grigorchuk himself [4, 5], and Gupta and Sidki [6]. These
groups possess remarkable and exotic properties. For instance, the Grigorchuk group is the
first example of a group of intermediate word growth, and amenable but not elementary
amenable. Also, together with the Grigorchuk group, other subgroups of the group of
automorphisms of rooted trees like the Gupta-Sidki p-groups and many groups in the family
of the so-called Grigorchuk-Gupta-Sidki groups have been shown to be a counterexample
to the General Burnside Problem.

For these reasons, (weakly) branch groups spread great interest among group theo-
rists, who have actively investigated further properties of these in the recent years: just-
infiniteness, fractalness, maximal subgroups, or contraction.

Roughly speaking, a group is said to be contracting if the sections of every element are
“shorter” than the element itself, provided the element does not belong to a fixed finite set,
called the nucleus (see the exact definition in Section 2).
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Even though in the literature there are many examples of weakly branch contracting
groups, not much is known about weakly branch groups that are non-contracting. In 2005
Dahmani [2] provided the first example of a non-contracting weakly regular branch au-
tomaton group. Another example with similar properties was constructed by Mamaghani
in 2011 [7]. Both are examples of groups acting on the binary tree. We also point out that
in [9] Sidki and Wilson proved in particular that every group acting on the binary tree with
finite abelianization (including non-contracting groups) embeds in a branch group. This
provides more examples of non-contracting branch groups acting on the binary tree.

For d ≥ 3, the Hanoi Towers group H(d) ≤ Aut Td (which represents the famous game
of Hanoi Towers on d pegs) is non-contracting and only weakly branch. To the best of our
knowledge if d > 3 it is not known if these groups can be branch. For more information on
the topic, see [3] and [10].

In this paper we explicitly construct an example of an infinite family of non-contracting
weakly branch groups acting on d-adic trees for any d ≥ 2. This result gives a wealth of
examples of groups with these properties. In the following we denote with Aut Td the
group of automorphisms of a d-adic tree.

Theorem 1.1. For any d ≥ 2, there exists a group M(d) ≤ Aut Td that is weakly regular
branch over its derived subgroup, non-contracting and fractal.

1.1 Organization

In Section 2 we give some definitions of groups acting on regular rooted trees and of prop-
erties like fractalness, branchness and contraction. In Section 3 we introduce these groups
and we prove the main theorem together with some additional results regarding the order
of elements of M(d).

2 Preliminaries
In this section we fix some terminology regarding groups of automorphisms of d-adic
(rooted) trees. For further information on the topic, see [1] or [8].

Let d be a positive integer, and Td the d-adic tree. We denote with Aut Td the group of
automorphisms of Td. We let Ln be the nth level of Td, and L≥n the levels of the tree from
level n and below.

The stabilizer of a vertex u of the tree is denoted by st(u), and, more generally, the
nth level stabilizer st(n) is the subgroup of Aut Td that fixes every vertex of Ln. If
G ≤ Aut Td, we define the nth level stabilizer of G as stG(n) = st(n) ∩ G. Notice that
stabilizers are normal subgroups of the corresponding group. We let ψ be the isomorphism

ψ : st(1) −→ Aut Td ×
d· · · ×Aut Td

g 7−→ (gu)u∈L1
,

where gu is the section of g at the vertex u, i.e. the action of g on the subtree Tu that
hangs from the vertex u. Let Sd be the symmetric group on d letters. An automorphism
a ∈ Aut Td is called rooted if there exists a permutation σ ∈ Sd such that a permutes
rigidly the vertices of the subtrees hanging from the first level of the tree according to the
permutation σ, i.e. if v = xu ∈ V (Td), with x ∈ L1, then a(xu) = σ(x)u. We usually
identify a and σ.
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Notice that if g ∈ st(1) with ψ(g) = (g1, . . . , gd), and σ is a rooted automorphism,
then,

ψ(gσ) =
(
gσ−1(1), . . . , gσ−1(d)

)
. (2.1)

Any element g ∈ G can be written uniquely in the form g = hσ, where h ∈ st(1) and σ is
a rooted automorphism.

Notice also that the decomposition g = hσ, together with the action (2.1), yields iso-
morphisms

Aut Td ∼= st(1)⋊ Sd
∼=

(
Aut Td × d. . .×Aut Td

)
⋊ Sd

∼= Aut Td ≀ Sd
∼= ((· · · ≀ Sd) ≀ Sd) ≀ Sd.

(2.2)

Throughout the paper, we will use the following shorthand notation: let f ∈ Aut T of
the form f = gh, where g ∈ stG(1) and h is the rooted automorphism corresponding to
the permutation σ ∈ Sd. If ψ(g) = (g1, . . . , gd), we write f = (g1, . . . , gd)σ.

Definition 2.1. Let G ≤ Aut Td, and let V (Td) be the set of vertices of Td. Then:

(a) The group G is said to be self-similar if for any g ∈ G we have

{gu | g ∈ G, u ∈ V (Td)} ⊆ G.

In other words, the sections of g at any vertex are still elements of G. For example,
Aut Td is self-similar.

(b) A self-similar group G is said to be fractal if ψu(stG(u)) = G for all u ∈ V (Td),
where ψu is the homomorphism sending g ∈ st(u) to its section gu.

To prove that a group is self-similar it suffices to show that the condition above is
satisfied by the vertices of the first level of the tree (see [3, Proposition 3.1]). The situation
is similar in the case of fractal groups. More precisely, using Lemma 2.2, we deduce that
to show that a group G is fractal, it is enough to check the vertices in the first level of Td.
We recall that G is said to be level transitive if it acts transitively on every level of the tree.

Lemma 2.2 ([11, Lemma 2.7]). If G ≤ Aut Td is transitive on the first level and
ψx(stG(x)) = G for some x ∈ L1, then G is fractal and level transitive.

Here we present a family of non-contracting weakly branch groups. To this end, in the
following, we recall the corresponding two definitions.

Definition 2.3. A self-similar group G ≤ Aut Td is contracting if there exists a finite
subset F ⊆ G such that for every g ∈ G there is n such that gv belongs to F for all
vertices v of L≥n. Note that if you take two finite sets F1 and F2 satisfying the condition
on the sections above, then also F1∩F2 will satisfy the condition. For this reason, one can
consider the set that is intersection of such sets. This is called the nucleus of G and it is
denoted by N .

Definition 2.4. Let G be a self-similar subgroup of Aut Td. We say that G is weakly
regular branch over a subgroup K ≤ G if G is level transitive and we have

ψ(K ∩ stG(1)) ≥ K × · · · ×K.

If, additionally, K is of finite index in G, then G is said to be regular branch over K.
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3 The groups M(d)

Let d ≥ 2, and let Td be the d-adic tree. The group M(d) ≤ Aut Td is generated by d
elements m1, . . . ,md, where m1, . . . ,md are defined recursively as follows:

m1 = (1, . . . , 1,m1)(1 . . . d)

m2 = (1, . . . , 1,m2, 1)(1 . . . d− 1)

m3 = (1, . . . ,m3, 1, 1)(1 . . . d− 2)
...

md−1 = (1,md−1, 1, . . . , 1)(1 2)

md = (m1, . . . ,md).

For example, for d = 3, we have M(3) = ⟨m1,m2,m3⟩, where

m1 = (1, 1,m1)(1 2 3), m2 = (1,m2, 1)(1 2), m3 = (m1,m2,m3).

m1 :
(1 2 3)

(1 2 3)

(1 2 3)

...

m2 :
(1 2)

(1 2)

(1 2)

...

m3 :
1

(1 2 3) (1 2) 1

(1 2 3) (1 2)
1

...

Figure 1: The generators of M(3).

3.1 Proof of the main theorem

In this section we prove the main result of the paper. In order to ease notation, and unless
it is strictly necessary, we will simply write M to denote an arbitrary group M(d).

Proposition 3.1. The group M is fractal and level transitive.
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Proof. Notice that the group is transitive on the first level because the rooted part of the
generator m1 is (1 2 . . . d). Also, it is straightforward to see that the group is self-similar,
since the sections of every generator at the first level are generators of M. To see that M is
fractal, note that

md
1 = (m1, . . . ,m1)

m
md−2

1

d = (mm1
3 , . . . ,m2)

...

m
m2

1

d = (mm1

d−1, . . . ,md−2)

mm1

d = (mm1

d , . . . ,md−1)

md = (m1, . . . ,md).

Then in the last component of the elements above we obtain all the generators of M. Using
Lemma 2.2, we conclude that M is level transitive and fractal.

Proposition 3.2. Let d ≥ 2. Then the group M(d) is weakly regular branch over its derived
subgroup M′(d).

Proof. We will distinguish the case d = 2, and d ≥ 3 separately. Let d = 2. The element
[m1,m2] is non-trivial since

[m1,m2] = (m−1
1 m−1

2 m2
1,m

−1
1 m2),

and m−1
1 m2 /∈ stM(1). Then M(2)′ is non-trivial, and we have

[m2
1,m2] = (1, [m1,m2]). (3.1)

From (3.1) and since M(2)′ = ⟨[m1,m2]⟩M(2), we obtain that {1} ×M(2)′ ≤ ψ(M(2)′).
As M(2) is level transitive, we conclude that M(2)′ ×M(2)′ ≤ ψ(M(2)′), as desired.

Let d ≥ 3, and write M for M(d). First we show that M′ is non-trivial. Let us denote
σ = (1 2 . . . d) and τ = (1 2 . . . d− 1). We have

[m1,m2] = σ−1(1, . . . , 1,m−1
1 )τ−1(1, . . . , 1,m−1

2 ,m1)σ(1, . . . , 1,m2, 1)τ

= (1, . . . , 1,m−1
1 )σ(1, . . . , 1,m−1

2 ,m1)
τσ(1, . . . , 1,m2, 1)

τσ

[σ, τ ]

= (m−1
1 , 1, . . . , 1)(m1,m

−1
2 , 1, . . . , 1)(1, . . . , 1,m2)(1 2 d).

Hence, we obtain that

[m1,m2] = (1,m−1
2 , 1, . . . , 1,m2)(1 2 d). (3.2)

By (3.2), we have [m1,m2] /∈ stM(1), thus M′ is non-trivial.
Now, for i = 1, . . . , d− 2, and j = i+ 1, . . . , d− 1, we have

[md+1−i
i ,mj ]

md−1
1 = (1, . . . , 1, [mi,mj ]). (3.3)

Then in order to prove that {1} × · · · × {1} ×M′ ≤ ψ(M′ ∩ stM(1)), it only remains to
show that for any i = 1, . . . , d− 1, there exists x(i) ∈ M′ ∩ stM(1) such that

x(i) = (1, . . . , 1, [mi,md]).
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To find such x(i), we first observe that

[(md+1−i
i )m

i−1
1 ,md] = (1, i. . ., 1, [mi,mi+1], . . . , [mi,md−1], [mi,md]).

In order to cancel all these commutators above except for the last component, we use (3.3),
and we observe that since M is level transitive, if we conjugate with a suitable power of
m1, we get [mi,mi+1]

−1, . . . , [mi,md−1]
−1 in each component. For example, if i = 2,

we have
[(md−1

2 )m1 ,md] = (1, 1, [m2,m3], [m2,m4], . . . , [m2,md]).

By using the considerations above, we obtain that x(2) must be of the form

x(2) = [m3,m
d−1
2 ]m

2
1 [m4,m

d−1
2 ]m

3
1 . . . [md−1,m

d−1
2 ]m

d−2
1 [(md−1

2 )m1 ,md]

= (1, . . . , 1, [m2,md]).

To prove last part of the main theorem (that M(d) is non-contracting), we need some
preliminary tools. Namely, we show some results regarding the order of elements of M(d).
We will handle the case d = 2, and d > 2 separately. More precisely, we first prove
that M(2) is torsion-free, and then, for d > 2, we show that the groups M(d) are neither
torsion-free nor torsion, contrary to the case d = 2.

The following Remark 3.3 and Lemma 3.4 are key steps to prove that M(2) is torsion-
free. We write M for M(2).

Remark 3.3. Let h ∈ M′ with h = (h1, h2). Then h1h2 ∈ M′.

Proof. Consider the following map ρ:

ρ : stM(1) → M → M/M′

(h1, h2) 7→ h1h2 7→ h1h2.

Note that ρ is a homomorphism of groups since M/M′ is abelian. As stM(1)/Ker ρ is
abelian, M′ ≤ Ker ρ. This concludes the proof.

In the proof of next lemma, for a prime p we denote with νp(m) the p-adic valuation
of m, that is the highest power of p that divides m.

Lemma 3.4. We have M′ = (M′ ×M′)⟨[m1,m2]⟩. Furthermore

M/M′ ∼= ⟨m1M⟩ × ⟨m2M⟩ ∼= Z× Z.

Proof. Since M is weakly regular branch over M′ by Proposition 3.2, and

[m1,m2] = ([m1,m2]m
−1
2 m1,m

−1
1 m2),

we deduce that (m−1
2 m1,m

−1
1 m2) is an element of M′. Furthermore, we claim that the

elements [m1,m2]
y where y ∈ {m1,m2,m

−1
1 ,m−1

2 } are in ⟨[m1,m2]⟩ modulo M′ ×M′.
Indeed, we have

[m1,m2]
m1 = (m1

−2m2m1,m1
−1m−1

2 m1
2)

= ([m1
2,m2

−1]m2m1
−1, [m1,m2]m2

−1m1)

≡ (m1
−1m2,m2

−1m1) (mod M′ ×M′),
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and similarly for the other commutators. Thus M′ = (M′ ×M′)⟨[m1,m2]⟩, as required.
Now we claim that m1 is of infinite order. By way of contradiction suppose that, for

some k, m1 has order n = 2k, as m1 has order 2 modulo the first level stabilizer. We have

mn
1 = (mk

1 ,m
k
1) = (1, 1),

which yields a contradiction as k < n. This concludes the proof of the claim and implies
that also m2 is of infinite order, since m2 = (m1,m2).

Now we want to show that if mi
1m

j
2 ∈ M′, then necessarily i = j = 0. As mi

1m
j
2 ∈

M′ ≤ stM(1), then i must be even. By way of contradiction, we choose the element
mi

1m
j
2 ∈ M′ subject to the condition that i is divisible by the least possible positive power

of 2, say 2a, for some a. In other words, ν2(i) = a. Then if mr
1m

s
2 ∈ M′, necessarily

2a | r. Note that it cannot happen that r = 0 and s ̸= 0 as m2 is of infinite order. Now,
writing i = 2i1 for some i1, we have

mi
1m

j
2 = (m1

i1+j ,m1
i1m2

j) ≡ [mk
1 ,m

k
2 ] ≡ (m1

km2
−k,m1

−km2
k) (mod M′ ×M′).

This implies that m1
i1+j−km2

k ∈ M′ and m1
i1+km2

j−k ∈ M′. As 2a | i1 + j − k and
2a | i1 + k, then 2a divides also j. This is because 2a | 2i1 + j = i+ j and by hypothesis
2a | i. Finally, we also have m1

i1+km2
j−k ∈ M′, from which we get

m1
i1+km2

j−k =

(
m

i1+k
2 +j−k

1 ,m
i1+k

2
1 mj−k

2

)
.

By Remark 3.3, we have mi1+j
1 mj−k

2 ∈ M′ which implies that 2a | i1 + j. As ν2(i1) =
a − 1 and 2a | j, then ν2(i1 + j) = a − 1, a contradiction as 2a | i1 + j. This completes
the proof.

As a consequence, we prove the following.

Proposition 3.5. The group M(2) is torsion-free.

Proof. Suppose by way of contradiction that there exists an element of finite order in M.
Since M/M′ ∼= Z × Z by Lemma 3.4, then this element must lie in M′ ≤ stM(1).
Suppose that among all elements of finite order, we take the element g that lies in
stM(n) \ stM(n + 1), with n minimum with this property. Write g = (g1, g2). As g is of
finite order, then also g1, g2 must be of finite order. By our minimality assumption of n, the
elements g1, g2 must lie at least in stM(n). This implies that g = (g1, g2) ∈ stM(n+ 1), a
contradiction to the fact that g ∈ stM(n) \ stM(n+ 1).

In the following we determine the order of some elements of M(d), for d > 2.

Proposition 3.6. Let d > 2. Then the group M(d) is neither torsion-free nor torsion.

Proof. For ease of notation we write M for M(d). We start by proving that the given
generators of M are of infinite order. Consider m1, and suppose by way of contradiction
that its order is n. Then if mn

1 = 1, we obtain that mn
1 must lie in stM(1). Also, its order

must be a multiple of d, say n = dk for some k, since m1 has order d modulo the first level
stabilizer. Since m1 = (1, . . . , 1,m1)(1 2 . . . d), we obtain

mn
1 = (mk

1 , . . . ,m
k
1) = (1, . . . , 1).



36 Ars Math. Contemp. 20 (2021) 29–36

This yields a contradiction since mk
1 = 1 and k < n. Similar arguments can be used for

the generators m2, . . . ,md−1, and md has infinite order because md = (m1, . . . ,md).
Furthermore, by (3.2), we have

[m1,m2] = (1,m−1
2 , 1, . . . , 1,m2)(1 2 d).

Thus it follows readily that [m1,m2]
3 = 1. Hence M is not torsion-free.

We conclude the paper by proving the remaining part of the main theorem.

Proposition 3.7. The group M is non-contracting.

Proof. Suppose by way of contradiction that M is contracting with nucleus N . Notice that
the element mm1

d stabilizes the vertex 1. As a consequence, by induction, mm1

d fixes all the
vertices of the path v = 1 n. . .1 for all n ≥ 1. Also, (mm1

d )v = mm1

d . Clearly, this implies
that mm1

d lies in N . Consider now a power k of mm1

d . Arguing as before, we obtain again
that (mm1

d )k fixes v and its section at v is (mm1

d )k. Thus, (mm1

d )k ∈ N for any k ≥ 1.
This concludes the proof since mm1

d has infinite order.
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