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1 Introduction
For a simple, connected, finite graph Γ = (V,E) and x, y ∈ V let d(x, y) denote the length
of a shortest path joining x and y.

Definition 1.1. Let Γ = (V,E) be a finite, connected, simple graph. Two vertices v1, v2 ∈
V are divided by S = {s1, s2, . . . , sr} ⊂ V if there exists si ∈ S so that d(v1, si) 6=
d(v2, si). A vertex v ∈ V is resolved by S if the ordered sequence (d(v, s1), d(v, s2), . . . ,
d(v, sr)) is unique. S is a resolving set in Γ if it resolves all the elements of V . The metric
dimension of Γ, denoted by µ(Γ), is the size of the smallest example of resolving set in it.

The study of metric dimension is an interesting problem in its own right and it is also
motivated by the connection with the base size of the corresponding graph. The base size of
a permutation group is the smallest number of points whose stabilizer is the identity. The
base size of Γ, denoted by b(Γ), is the base size of its automorphism group Aut(Γ). The
study of base size dates back more than 50 years, see [18]. A resolving set in Γ is obviously
a base for Aut(Γ), so the metric dimension of a graph gives an upper bound on its base
size. The difference µ(Γ) − b(Γ) is called the dimension jump of Γ. Distance-transitive
graphs whose dimension jump is large with respect to the number of vertices are rare, and
hence interesting objects. For more information about general results on metric dimension
and base size we refer the reader to the survey paper of Bailey and Cameron [2].

Resolving sets for incidence graphs of some linear spaces were investigated by several
authors [4, 9, 10, 12]. In these cases much better bounds than the general ones are known.
Estimates on the size of blocking sets can be used to prove lower bounds on the metric
dimension, and the knowledge of geometric properties is useful for constructions and upper
bounds. It was shown by Héger and Takáts [12] that the metric dimension of the point-line
incidence graph of a projective plane of order q is 4q−4 if q ≥ 23. In a recent paper Héger
et al. [11] extended this result for small values of q, too.

There are two natural generalizations of this planar result in higher dimensional spaces:
one can consider either the point-hyperplane incidence graph, or the point-line incidence
graph of PG(n, q). In the former case resolving sets are connected with lines in a higgledy-
piggledy arrangement which were investigated by Fancsali and Sziklai [9]. Their results
were recently improved by the authors of this paper [5]. The latter case is studied in the
present paper. We assume that the reader is familiar with finite projective geometries. For
a detailed description of these spaces we refer to [14, 16].

Let Γn,q denote the point-line incidence graph of the finite projective space PG(n, q).
The two sets of vertices of this bipartite graph correspond to points and lines of PG(n, q),
respectively, and there is an edge between two vertices if and only if the corresponding
point is incident with the corresponding line. In Γn,q the distance of two different lines is
2 if they intersect each other and 4 if they are skew. The distance of a point P and a line `
is 1 if P is on `, and it is 3 if P is not on `. Finally, the distance of two different points is
always 2. Hence, points cannot be resolved by other points. Considering these properties,
the following definitions are natural.

Definition 1.2. A set S of points and lines of PG(n, q) is a semi-resolving set for points
(lines) in Γn,q if it resolves all the vertices of Γn,q corresponding to points (lines).

Definition 1.3. Let S be a (semi-)resolving set in Γn,q . A point or a line is called inner
(outer) if it is (not) in S. An outer point is called t-covered if it is incident with exactly t
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lines of S.A point or a line is called uncovered if it has empty intersection with all elements
of S.

The paper is organized as follows. First, in Section 2 we provide a pure combinatorial
proof of a lower bound for resolving sets in Γn,q . In the second part of the section inter-
esting constructions are presented for n ≥ 3 which yield examples asymptotically close to
the lower bound. These resolving sets are related with regular spreads of lines in projec-
tive spaces. We prove that the metric dimension of Γn,q is asymptotically 2qn−1 and its
dimension jump is roughly 2

√
v where v denotes the number of its vertices. In Section 3

algebraic curves and blocking sets are applied. We consider a different type of line spread
in PG(3, q) and we obtain examples of resolving sets in Γn,q of smaller size when q = ph,
p prime and h > 1. Finally, in Section 4 computer aided results for small values of q are
given.

2 General bounds
In this section we present lower and upper bounds on µ(Γn,q) for all q and n ≥ 3. Particular
attention is paid to the case n = 3, since general upper bounds in any dimension depend
on the 3-dimensional upper bound, see Proposition 2.15 and Theorem 2.11.

Theorem 2.1. The size of any semi-resolving set for points in Γn,q is at least

2
qn+1 − q
q2 + q − 2

.

Proof. Let S be a semi-resolving set for points in Γn,q which consists of k lines and m
points.

Count in two different ways the number of incident point-line pairs (P, `) with ` ∈ S.
On the one hand, this number is exactly k(q + 1). On the other hand, there is at most one
uncovered point, the number of 1-covered points is at most k and any other outer point
must be covered by at least two lines of S. Hence

k(q + 1) ≥ k + 2

(
qn+1 − 1

q − 1
− 1− k −m

)
,

so

k +m ≥ 2(qn+1 − q)
(q − 1)(q + 2)

+
qm

q + 2
.

This gives the required inequality at once.

Corollary 2.2. The size of any resolving set in Γ3,q is at least 2
(
q2 − q + 3− 6

q+2

)
.

Corollary 2.3. The metric dimension of Γ3,q is at least 2(q2 − q + 3) for q > 10.

From now on we focus on upper bounds which will be given by constructions. For our
examples we need the notion of spreads, in particular line spreads.

Definition 2.4. A k-spread Sk of PG(n, q) is a set of k-dimensional subspaces with the
property that each point of PG(n, q) is incident with exactly one element of Sk.
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By definition, a k-spread of PG(n, q) consists of qn+1−1
qk+1−1 elements. The following

theorem about the existence of spreads was proved independently by several authors, see
[1, 7, 17].

Theorem 2.5. The projective space PG(n, q) has a k-spread if and only if (k+1) | (n+1).

Hence there exists a line spread in any odd dimensional projective space. Two line
spreads are said to be disjoint, if they do not share any common line. Our first construction
for a semi-resolving set for points in Γn,q is based on disjoint line spreads. We use the
following theorem of Etzion [8] about the existence of disjoint line spreads.

Theorem 2.6 (Etzion). If n ≥ 3 is odd, then there exist at least two disjoint line spreads in
PG(n, q).

Theorem 2.7. If n ≥ 3 is odd, then there exists a semi-resolving set for points in Γn,q of
size

rP(n, q) = 2q2
qn−1 − 1

q2 − 1
. (2.1)

Proof. Let L1 and L2 be two disjoint line spreads in PG(n, q), and `i ∈ Li be arbitrary
lines. We claim that S = L1 ∪ L2 \ {`1, `2} is a semi-resolving set for points in Γn,q.

Each point not in `i is contained in a unique pair of lines (r1, r2) ∈ L1 × L2. Each
point of `1 \ `2 is contained in a unique line of L1 ∪L2 \ {`1, `2} and each point of `2 \ `1
is contained in a unique line of L1 ∪ L2 \ {`1, `2}. The (possible) unique point `1 ∩ `2 is
the only point of PG(n, q) not contained in any line of L1 ∪L2 \ {`1, `2}. The size of S is
2 q

n+1−1
q2−1 − 2, hence the statement follows.

Proposition 2.8. Let Σ be a hyperplane and L be a line spread in PG(n, q), n ≥ 3 odd.
Then Σ contains exactly qn−1−1

q2−1 elements of L.

Proof. Any element of L is either fully contained in Σ, or intersects it in exactly 1 point.
The elements of L partition the set of points of Σ. Hence, if x denotes the number of fully
contained lines, then

qn − 1

q − 1
= (q + 1)x+

(
qn+1 − 1

q2 − 1
− x
)
.

The claim follows from this equation at once.

Theorem 2.9. Let L1 be a line spread in PG(3, q). Then there exists another line spread
L2 in PG(3, q) such that L1 and L2 do not share any common line.

Proof. Let f(X,Y ) be an irreducible homogeneous quadratic polynomial and H′i denote
the hyperbolic quadric in PG(3, q) with equation

f(X0, X1) + if(X2, X3) = 0

for i = 1, 2, . . . , q − 1. Apply a suitable linear transformation so that the images `1 and `2
of the lines `′1 : X0 = X1 = 0 and `′2 : X2 = X3 = 0 do not belong to L1. Let Hi denote
the image of H′i, and let Ei and Fi denote the two reguli of lines on Hi. Then for each i
at most one of Ei and Fi contains some elements of L1, because any line of Ei intersects
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any line of Fi and no two elements of L1 intersect each other. Hence we can choose the
notation so that Ei does not contain any element of L1 for all i. This implies that the spread

L2 =

q−1⋃
i=1

Ei ∪ {`1, `2}

does not share any common line with L1.

The next proposition gives a useful recursive construction method.

Proposition 2.10. Let S be a semi-resolving set for points in Γd,q of size k. Suppose that
m elements of S are contained in a hyperplane Σd−1 of PG(d, q), and Σd−1 also contains
the (at most one) uncovered point. Then Γd+1,q has a semi-resolving set for points of size
(q + 1)k − qm.

Moreover, if S is a resolving set in Γd,q and Σd−1 also contains the (at most one)
uncovered line, then Γd+1,q admits a resolving set of size (q + 1)k − qm+ qd−1−1

q−1 .

Proof. Embed Σd−1 ⊂ PG(d, q) into PG(d+1, q), and consider in PG(d+1, q) the pencil
of hyperplanes with carrier Σd−1. These hyperplanes, Σ1

d,Σ
2
d, . . . ,Σ

q+1
d , are isomorphic

to PG(d, q). Take a copy of S in Σid and denote it by Si for i = 1, 2, . . . , q+ 1. Finally, let

S =

q+1⋃
i=1

Si.

We claim that S is a semi-resolving set for points in Γn+1,q. Inner points are resolved
by definition. If two outer points, P1 and P2, are in the same Σid, then they are already
divided by Si. If P1 is in Si and P2 is in Sj with i 6= j, then, as none of P1 and P2 is
uncovered and none of them is in Σd−1, there exist distinct lines `i ∈ Si through P1 and
`j ∈ Sj through P2. Hence `i does not contain P2, so d(P1, `

i) 6= d(P1, `
i). Since the size

of S is m+ (q + 1)(k −m), the first part of the statement is proved.
Now suppose that S is a resolving set in Γd,q. Then the elements of any point-line pair

are obviously divided by S. Let `1 and `2 be two lines. If at least one of them is an element
of S, then they are divided by definition. From now on we assume that none of the two
lines is an element of S. We distinguish three main cases and some subcases.

1. If both of them are entirely contained in the same Σid, then they are divided by Si.
2. If there is no Σid that contains both `1 and `2, but each of the lines is entirely con-

tained in some Σid, say `1 ⊂ Σi1d and `2 ⊂ Σi2d , then none of the lines is in Σd−1.
Let Pj denote the unique point `j ∩ Σd−1 for j = 1, 2.

• If P1 = P2, then let P3 6= P1 be a point on `1. Since Si1 is a semi-resolving
set for points in Σi1d and P3 is not an uncovered point, either P3 ∈ Si1 or
there exists at least one line ` ∈ Si1 which contains P3 but does not contain
P1. In the former case d(`1, P3) = 1 6= 3 = d(`2, P3). In the latter case
d(`1, `) = 2 6= 4 = d(`2, `), so we are done.

• If P1 6= P2, then we may assume that P1 is not an uncovered point, because
there is at most one uncovered point. Again, either P1 ∈ Si1 or there exists at
least one line ` ∈ Si1 which contains P1 but does not contain P2. In the former
case d(`1, P1) = 1 6= 3 = d(`2, P1), while in the latter case d(`1, `) = 2 6=
4 = d(`2, `), so `1 and `2 are divided by Si1 .
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3. If `1 is not contained in any Σid, then it cannot meet Σd−1, so there exists a unique
point P i1 = `1 ∩ Σid for all i = 1, 2, . . . , q + 1.

• If `2 is not contained in any Σid, then it cannot meet Σd−1, so there exists a
unique point P i2 = `2 ∩ Σid for all i = 1, 2, . . . , q + 1. The two lines have at
most one point of intersection, hence there exist at least q superscripts so that
P i1 6= P i2. Since Si is a semi-resolving set for points in Σid, there exists at least
one element s ∈ Si so that d(P i1, s) 6= d(P i2, s). Hence

d(`1, s) = d(P i1, s) + 1 6= d(P i2, s) + 1 = d(`2, s),

so the lines are divided by Si.
• If `2 is contained in a unique Σid, then it is not contained in Σd−1, so there exists

a unique point P2 = `2 ∩ Σd−1. Let j 6= i and consider Σjd, which contains
both P j1 and P2. Since Sj is a semi-resolving set for points in Σjd, there exists
at least one element s ∈ Sj so that d(P j1 , s) 6= d(P2, s). Hence

d(`1, s) = d(P j1 , s) + 1 6= d(P2, s) + 1 = d(`2, s),

the claim is proved.
• Finally, suppose that `2 is contained in Σd−1. Then `1 and `2 are not necessarily

divided by S. Suppose that S consists of lines only. Then `2 and P i1 are divided
by Si, but it could happen that a line of Si intersects `2 if and only if it contains
P i1. If it holds for all i, then `1 and `2 have the same distance sequence with
respect to S. We can handle this problem by extending S with all the qd−1−1

q−1
points of a hyperplane in Σd−1. Then `2 contains at least one of these points
and `1 does not contain any of them. Hence the two lines are divided.

The size of the constructed resolving set is (q + 1)k − qm + qd−1−1
q−1 , the statement is

proved.

Theorem 2.11. If n ≥ 4 is even, then there exists a semi-resolving set for points in Γn,q of
size

rP(n, q) = 2qn−1 + 2qn−2 + 2(qn−4 + qn−6 + · · ·+ q2). (2.2)

Proof. We apply Proposition 2.10 for d = n−1. Let S be the semi-resolving set for points
in Γn−1,q which was constructed in Theorem 2.7. Its size is

k = 2
qn − q2

q2 − 1
.

By Proposition 2.8, we can choose the hyperplane Σn−2 so that it contains

m = 2

(
qn−2 − 1

q2 − 1
− 1

)
= 2

qn−2 − q2

q2 − 1

elements of S. Thus we get from Proposition 2.10 that there exists a semi-resolving set for
points in Γn,q of size

rP(n, q) = 2(q + 1)
qn − q2

q2 − 1
− 2q

qn−2 − q2

q2 − 1

= 2qn−1 + 2qn−2 + 2(qn−4 + qn−6 + · · ·+ q2).
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Now we turn to semi-resolving sets for lines. Let us start with a simple, but very useful
observation.

Lemma 2.12. Let Σ be a hyperplane in PG(n, q), S be a semi-resolving set for points in Σ
and `1 and `2 be two distinct lines in PG(n, q). Suppose that none of the lines is contained
in Σ and the points P1 = Σ∩ `1 and P2 = Σ∩ `2 are distinct. Then the lines `1 and `2 are
divided by S in Γn,q.

Proof. Since S is a semi-resolving set for points in Σ, there exists at least one element
s ∈ S so that d(P 1

1 , s) 6= d(P 1
2 , s). Hence

d(`1, s) = d(P 1
1 , s) + 1 6= d(P 1

2 , s) + 1 = d(`2, s),

the statement follows.

Theorem 2.13. For all n > 3 and q ≥ 2n− 1 there exists a semi-resolving set for lines in
Γn,q of size rL(n, q) = 2nrP(n − 1, q), where rP follows (2.1) or (2.2) depending on the
parity of n− 1.

Proof. Let H = {Σ1,Σ2, . . . ,Σ2n} be a subset of 2n hyperplanes of the (q + 1)-element
set formed by the dual hyperplanes of points on a normal rational curve. Then these hy-
perplanes are in general position, no n + 1 of them have a point in common. Let Si be a
semi-resolving set for points in Σi. We claim that S =

⋃2n
i=1 Si is a semi-resolving set for

lines in Γn,q.

Let `1 and `2 be two distinct lines in PG(n, q). We may assume that `j is contained
in the intersection of mj elements of H for j = 1, 2, and m1 ≥ m2. The elements of
H are in general position, so n − 1 ≥ mj , hence 2n − m1 − m2 ≥ 2. We may assume
without loss of generality that `j intersects Σi in a single point, denoted by P ij , for i =

1, 2, . . . , 2n −m1 −m2 and j = 1, 2. It could happen, that P i11 = P i21 = · · · = P ik1 for
some indices, but k ≤ n −m2, otherwise the point would be a common point of at least
m1 + (n−m2 + 1) > n elements ofH. So we may assume that P 1

1 6= P 2
1 . As `2 contains

at most one point of `1, we may also assume that P 1
1 is not on `2. Then, by Lemma 2.12,

`1 and `2 are divided by S1.
By Theorems 2.7 and 2.11, the size of S is at most 2nrP(n− 1, q) for n > 3, thus the

theorem is proved.

The union of a semi-resolving set for points and a semi-resolving set for lines is a
resolving set. Thus Theorems 2.7, 2.11 and 2.13 give our first general upper bound.

Corollary 2.14. For all n > 3 and q ≥ 2n− 1 there exists a resolving set in Γn,q of size

r(n, q) = 2qn−1 + (4n+ 1 + (−1)n)qn−2 + gn(q),

where gn is a polynomial of degree n− 3 whose coefficients depend only on n.

In this bound the coefficient of the second highest degree term depends on the dimen-
sion. In the next part, by a more sophisticated construction, we prove an upper bound in
which the coefficient of the second highest degree term is a constant.
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Proposition 2.15. Let q = ph, p prime. Suppose that there exists a resolving set S3 in Γ3,q

of size 2q2 + aq + g3(p), where a ∈ R, g3 is a polynomial of degree s ≤ h − 1, and S3
contains the 2q2 + 2 elements of two disjoint line spreads. Then there exists a resolving set
S4m+3 in Γ4m+3,q of size

2qn−1 + aqn−2 + g4m+3(p)

where g4m+3 is a polynomial of degree at most (n− 3)h+ s.

Proof. As (4m+3)+1 is divisible by 3+1, there exists a 3-spread in PG(4m+3, q). This
3-spread contains t = q4(m+1)−1

q4−1 elements, say Σ1
3,Σ

2
3, . . . ,Σ

t
3, each of them is isomorphic

to PG(3, q). By the assumption of the theorem, in each Σi3 there exists a resolving set Si3
of size 2q2 + aq + g3(p). We claim that

S =

t⋃
i=1

Si3

is a resolving set in Γ4m+3,q. The elements of any pair of points and any point-line pair are
obviously divided by S. Let `1 and `2 be two lines. If at least one of them is contained in
a Σi3, then they are divided by Si3. If none of them is contained in any Σi3, then we may
assume without loss of generality that `1 ∩ Σ1

3 is a point P which is not on `2. Let s1 and
s2 be the two elements of the disjoint line spreads in S13 which are incident with P. Then
d(`1, s1) = d(`1, s2) = 2. As `2 is not contained in S13 , it cannot intersect both s1 and s2.
Hence at least one of the distances d(`2, s1) and d(`2, s2) is 4. Thus `1 and `2 are divided
by S13 ⊂ S.

The size of S is

(2q2 + aq + g3(p))
qn+1 − 1

q4 − 1
= 2qn−1 + aqn−2 + g4m+3(p),

where the degree of g4m+3 is (n− 3)h+ deg g4m+3 = (n− 3)h+ s ≤ (n− 2)h− 1, so
we are done.

Theorem 2.16. Let q = ph, p prime. Suppose that there exists a resolving set in Γ3,q of
size 2q2 + aq + g33(p) where g33 is a polynomial of degree s ≤ h− 1. Then for n ≥ 3 there
exists a resolving set in Γn,q of size

r(n, q) =


2qn−1 + (a+ 2)qn−2 + gn,0(p), if n ≡ 0 (mod 4),

2qn−1 + (a+ 2)qn−2 + gn,1(p), if n ≡ 1 (mod 4),

2qn−1 + (a+ 4)qn−2 + gn,2(p), if n ≡ 2 (mod 4),

2qn−1 + aqn−2 + gn,3(p), if n ≡ 3 (mod 4),

where gn,i (i = 0, 1, 2, 3) is a polynomial of degree (n−3)h+ s whose coefficients depend
only on n.

Proof. We prove it by induction on the dimension modulo 4. For n ≡ 3 (mod 4) the
statement follows from Proposition 2.15.

If n ≡ 0 (mod 4), then we apply Proposition 2.10 for d = n−1 with k = rP(n−1, q)
and m = 0. Therefore by the induction hypothesis

rP(n, q) ≤ (q + 1)rP(n− 1, q) +
qn−2 − 1

q − 1

= 2qn−1 + (a+ 2)qn−2 + (q + 1)gn−1,3(p) + (a+ 1)qn−3 + qn−4 + · · ·+ 1.
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Thus gn,0(p) = (q + 1)gn−1,3(p) + (a + 1)qn−3 + qn−4 + · · · + 1, hence its degree is
(n− 3)h+ s ≤ (n− 2)h− 1.

If n ≡ 1 (mod 4), then n − 2 ≡ 3 (mod 4), hence we can apply Proposition 2.10
for d = n− 1 so that Σd−1 contains a resolving set constructed in Proposition 2.15. Then
k = 2qn−2 + (a+ 2)qn−3 + gn−1,0(p) and m = 2qn−3 + aqn−4 + gn−2,3(p). Hence

rP(n, q) = (q + 1)k − qm+
qn−2 − 1

q − 1
= 2qn−1 + (a+ 2)qn−2 + gn,1(p),

where

gn,1(p) = (q + 1)gn−1,0(p)− qgn−2,3(p) + 3qn−3 + qn−4 + · · ·+ 1,

so its degree is (n− 3)h+ s ≤ (n− 2)h− 1.
Finally, if n ≡ 2 (mod 4), then n − 3 ≡ 3 (mod 4). Hence we cannot do better than

apply Proposition 2.10 for d = n − 1 so that Σd−1 contains entirely only elements of a
(d− 2)-dimensional resolving set constructed in Proposition 2.15. Now k = 2qn−2 + (a+
2)qn−3 + gn−1,1(p) and m = 2qn−4 + aqn−5 + gn−3,3(p). This gives

rP(n, q) = (q + 1)k − qm+
qn−2 − 1

q − 1
= 2qn−1 + (a+ 4)qn−2 + gn,2(p),

where

gn,2(p) = (q + 1)gn−1,1(p)− qgn−3,3(p) + (a+ 1)qn−3 + qn−4 + · · ·+ 1,

thus its degree is (n− 3)h+ s ≤ (n− 2)h− 1 again. The theorem is proved.

Let us remark that the polynomials gn,i can be determined exactly. We omit the long,
but straightforward calculations, because their coefficients do not play any role in the rest
of the paper.

In the next part of the section semi-resolving sets for lines in Γn,q are investigated. In
their constructions double blocking sets and their duals play an important role. For the rel-
evant definitions and estimates on their sizes we refer to the paper of Ball and Blokhuis [3].

Theorem 2.17. For all q > 3 there exists a semi-resolving set for lines in Γ3,q of size

rL(3, q) = min{12q − 22, 4τ2(q)− 10},

where τ2(q) denotes the size of the smallest minimal double blocking set in PG(2, q).

Proof. First, we construct two sets of lines in PG(2, q) which are semi-resolving sets for
points.

1. Let E1, E2, and E3 be the vertices of a triangle, `i denote the line EjEk and Pi be
the pencil of lines with carrier Ei. Let

S = P1 ∪ P2 ∪ P3 \ {`1, `2, `3, `},

where ` ∈ P1, `2 6= ` 6= `3. Then S is a semi-resolving set for points in Γ2,q,
because U = ` ∩ `1 is a unique uncovered point, every point in the set `1 ∪ `2 ∪
`3 \ {E1, E2, E3, U} is 1-covered and all other points are at least 2-covered, hence
resolved. The size of S is 3q − 4.
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2. Let D be a dual double blocking set in PG(2, q). Then, by definition, each point
is incident with at least two lines of D. Thus if we delete an arbitrary line ` from
D, then the set of lines D \ {`} is still a semi-resolving set for points and, by the
Principle of Duality, its size is at most τ2(q)− 1.

Hence, for all q > 3 there is a set of lines in PG(2, q) of size min{3q − 4,
τ2(q) − 1} which is a semi-resolving set for points. Let H1,H2,H3, and H4 be the faces
of a tetrahedron K in PG(3, q). Let T i be a semi-resolving set for points inHi which con-
sists of lines only. We can choose T i so that each edge of K belongs to both corresponding
semi-resolving sets, because the full collineation group of PG(2, q) acts transitively on
triangles. We claim that S = ∪4i=1T i is a semi-resolving set for lines in Γ3,q.

The edges of K belong to S, thus they are resolved by definition. Let `1 and `2 be lines
such that none of them is an edge of K. Then each of them is contained in at most one face
of K, so we may assume without loss of generality that `1 intersects Hi in a single point,
denoted by P i1, for i = 1, 2, 3. We distinguish two main cases.

1. If P 1
1 = P 2

1 = P 3
1 , then this point is a vertex K of K.

• If `2 also contains K, thenH4 ∩ `1 6= H4 ∩ `2, hence, by Lemma 2.12, the two
lines are divided by T 4.

• If `2 does not contain K, then we may assume that H2 ∩ `2 is a single point
P 2
2 . Since P 2

2 6= K, by Lemma 2.12, the two lines are divided by T 2.

2. If none of `1 and `2 contains any vertex, then we may assume that P 1
1 6= P 2

1 .

• If `2 is not contained in neither H1 nor H2, then it intersects Hi in a single
point, denoted by P i2, for i = 1, 2. Since `1 ∩ `2 contains at most one point, we
may assume that P 1

1 6= P 1
2 . Then, by Lemma 2.12, the two lines are divided

by T 1.

• Finally, if `2 is contained in one of H1 and H2, then we may assume that
`2 ⊂ H1 and `2 ∩ H2 in a single point P 2

2 . Then P 2
2 is in H1, so P 2

2 6= P 2
1 ,

because otherwise `1 ⊂ H1. Hence, by Lemma 2.12, the two lines are divided
by T 2.

Since S has the required size, we are done.

Remark 2.18. Let us remark that if the double blocking setD in the proof of Theorem 2.17
is the disjoint union of two dual blocking sets, then not only one, but two lines can be
deleted without violating the semi-resolving set property. We will consider this case in
Section 3, Theorem 3.1.

Unfortunately, the exact value of τ2(q) is not known in general. It is known that τ2(q) =
2q + 2

√
q + 2 for q is a square and q > 16 [3, Theorem 3.1], and for some small values

of q. In the latter case for the known values τ2(q) > 3q − 3 always holds. Combining the
semi-resolving set for points constructed in Corollary 2.7 and the semi-resolving set for
lines of Theorem 2.17, we get the following upper bound on µ(Γ3,q).

Theorem 2.19. The metric dimension of Γ3,q satisfies the inequality

µ(Γ3,q) ≤ 2q2 + 12q − 24

for all q > 3.
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Proof. For q > 3 let SL be a semi-resolving set for lines of size 12q − 22 constructed
in Theorem 2.17. Let L1 be a regular line spread of PG(3, q) which contains two skew
(non-intersecting) elements of SL. Such spread exists, because the collineation group of
PG(3, q) acts transitively on the pairs of skew lines. Create a semi-resolving set for points
SP which contains L1 as we did it in Corollary 2.7. Then S = SL ∪ SP is a resolving set
in Γ3,q and its size is 2q2 + 12q − 24. This proves the inequality.

By combining Theorem 2.16, with s = 0, and Theorem 2.19, we get the following
bounds.

Corollary 2.20. Let n ≥ 3 and q > 3. Then the metric dimension of Γn,q satisfies the
inequality

µ(Γn,q) ≤


2qn−1 + 14qn−2 + hn,2(q), if n ≡ 0 or n ≡ 1 (mod 4),

2qn−1 + 16qn−2 + hn,3(q), if n ≡ 2 (mod 4),

2qn−1 + 12qn−2 + hn,1(q), if n ≡ 3 (mod 4),

where hn,i (i = 1, 2, 3) is a polynomial of degree at most n− 3 whose coefficients depend
only on n.

The metric dimension of Γ2,q for q ≥ 23 was determined by Héger and Takáts [12].
For higher dimensions we do not know the exact value, but Theorems 2.1, 2.19, and Corol-
lary 2.20 imply the following result.

Corollary 2.21. For all n > 2 and q > 3

|µ(Γn,q)− 2qn−1| = O(qn−2).

This means that µ(Γn,q) is asymptotically 2qn−1. The number of vertices in Γn,q is

v = qn+1−1
q−1 + (qn+1−1)(qn−1)

(q+1)(q−1)2 , so its metric dimension is roughly 2
√
v. The automorphism

group of PG(n, q) is PΓL(n + 1, q) and it is well-known that its base size is n + 1 if q
is a prime, and it is n + 2 if q = ph with h > 1. Hence the dimension jump of Γn,q is
roughly 2

√
v.

3 Bounds for q = ph, h ≥ 2

In this section we consider the case q = ph, h > 1. In the case h even, we will present a
better bound on the size of a semi-resolving set for points in Γ3,q using small dual double
blocking sets in PG(2, q). When h > 2, then we will show that a particular type of spread
of lines in PG(3, q) can be used to resolve the lines. In fact, for a regular spread, there exist
many pairs of lines of the spaces intersecting the same set of elements of the spread. We
now investigate a different type of spread, called aregular, and we determine all the lines of
the space intersecting the same set of elements of the spread; see Theorem 3.6. The main
goal is to construct a set of lines of PG(3, q) which resolves all the lines of the spaces; see
Theorem 3.7.

Theorem 3.1. If q is a square, then the metric dimension of Γ3,q satisfies the inequality

µ(Γ3,q) ≤ 2q2 + 8q + 8
√
q − 8.
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Proof. The union of the sets of lines of two disjoint Baer subplanes is a dual double block-
ing set in PG(2, q) and its size is 2q + 2

√
q + 2. This set is the disjoint union of two dual

blocking sets. Hence, by a result of Héger and Takáts [12, Proposition 22], we can delete
two of its lines so that the remaining set is still a semi-resolving set for points in PG(2, q);
see also Remark 2.18.

Thus we can construct a semi-resolving set for lines SL of size 8q + 8
√
q − 6 by the

method applied in the proof of Theorem 2.17. Finally, we can extend it to a resolving set
of size 2q2 + 8q + 8

√
q − 8 in the same way as we did in the proof of Theorem 2.19.

By combining Theorem 2.16, with s = 0, and Theorem 2.19, we get the following
bounds.

Corollary 3.2. If q is a square and n ≥ 3, then the metric dimension of Γn,q satisfies the
inequality

µ(Γn,q) ≤


2qn−1 + 10qn−2 + hn,2(q), if n ≡ 0 or 1 (mod 4),

2qn−1 + 12qn−2 + hn,3(q), if n ≡ 2 (mod 4),

2qn−1 + 8qn−2 + hn,1(q), if n ≡ 3 (mod 4),

where hn,i (i = 1, 2, 3) is a polynomial of degree at most n− 3 whose coefficients depend
only on n.

Theorem 3.3 ([13, Theorem 17.3.3]). Let q = ph, h > 1, and choose b, c ∈ F∗q such that
the polynomial tp+1 − tb+ c has no roots in Fq . Let

Ab,c = {tα,β : α, β ∈ Fq} ∪ {Z = T = 0},

where tα,β is the line through the points (α : β : 1 : 0) and (cβp : αp + bβp : 0 : 1). Then
Ab,c is a spread, called the aregular spread.

In what follows, we will associate to each line r of the space an algebraic curve
Cr : Fr(X,Y, T ) = 0 such that tα,β intersects r if and only if Fr(α, β, 1) = 0. We distin-
guish four types of lines.

1. Lines rx,y,`,m through the points (x : y : 0 : 1) and (` : m : 1 : 0). Note that if
x = cmp and y = `p + bmp then rx,y,`,m coincides with t`,m ∈ Ab,c. From now
on we consider (x, y) 6= (cmp, `p + bmp). A line tα,β intersects r = rx,y,`,m if and
only if for some λ ∈ Fq the points

(x+ λ` : y + λm : λ : 1), (α : β : 1 : 0), (cβp : αp + bβp : 0 : 1)

are collinear, that is

x+ λ`− cβp = λα, y + λm− (αp + bβp) = λβ.

This implies

λ(`− α) = cβp − x, λ(m− β) = αp + bβp − y,

and therefore
(cβp − x)(m− β) = (αp + bβp − y)(`− α).

In this case, Fr(X,Y, T ) = (cY p−xT p)(mT −Y )− (Xp+ bY p−yT p)(`T −X).
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2. Lines s = sx,y,z,` through the points (x : y : z : 1) and (` : 1 : 0 : 0). A line tα,β
intersects sx,y,z,` if and only if for some λ ∈ Fq the points

(x+ λ` : y + λ : z : 1), (α : β : 1 : 0), (cβp : αp + bβp : 0 : 1)

are collinear, that is

x+ λ`− cβp = zα, y + λ− (αp + bβp) = zβ.

This implies

λ` = −x+ cβp + zα, λ = −y + zβ + αp + bβp

and therefore
−x+ cβp + zα = `(−y + zβ + αp + bβp).

So, Fs(X,Y, T ) = −`Xp + (c− `b)Y p + zXT p−1 − `zY T p−1 + (`y − x)T p.

3. Lines u = ux,y,z through the points (x : y : z : 1) and (1 : 0 : 0 : 0). In this case,
Fu(X,Y, T ) = Xp + bY p + zY T p−1 − yT p.

4. Lines v = vx,y,z contained in the planes T = 0 and xX + yY + zZ = 0. Then,
Fv(X,Y, T ) = xX + yY + zT .

Such a curve is absolutely irreducible if z 6= 0, otherwise it collapses into a single line.

Proposition 3.4. Consider the curves Cr, Cs, Cu, and Cv . Then

1. Cr is absolutely irreducible;

2. Cs is either absolutely irreducible or a line repeated p times;

3. Cu is either absolutely irreducible or a line repeated p times.

Proof.

1. Now we prove that Cr is absolutely irreducible. Let ϕ(X,Y, T ) = (X + x0T, Y +
y0T, T ) with xp0 = y − bx/c, yp0 = x/c. Then

Fr(ϕ(X,Y, T ))

= (c(Y + y0T )p − xT p)(mT − Y − y0T )

− ((X + x0T )p + b(Y + y0T )p − yT p)(`T −X − x0T )

= (cY p + cyp0T
p − xT p)(mT − Y − y0T )

− (Xp + xp0T
p + bY p + yp0T

p − yT p)(`T −X − x0T )

= (cY p + xT p − xT p)(mT − Y − y0T )

− (Xp + yT p − bx/cT p + bY p + bx/cT p − yT p)(`T −X − x0T )

= cY p(mT − Y − y0T )− (Xp + bY p)(`T −X − x0T )

= Gr(X,Y, T ).

Finally

Gr(X, 1, Y ) = c(mY − 1− y0Y )− (Xp + b)(`Y −X − x0Y ),
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that is the curve Cr is Fq-isomorphic to

C′ : Y =
c−X(Xp + b)

cm− cy0 + (x0 − `)(Xp + b)
,

which is an irreducible rational curve with q+1 Fq-rational points (note that (x, y) 6=
(cmp, `p+bmp) yieldsm 6= y0 or ` 6= x0). This means that the curve Cr is absolutely
irreducible.

2. First, note that the homogeneous term −`Xp + (c− `b)Y p cannot vanish otherwise
c = 0, a contradiction.

• If (`, z) = (0, 0), Cs is a line of type b0Y + c0T = 0 repeated p times.
• If ` = 0 and z 6= 0, then Fs(X,Y, T ) reads cY p + zXT p−1 − xT p and Cs is

absolutely irreducible.
• If ` 6= 0 and z = 0 then Cs is a (repeated) line a0X + b0Y + c0T = 0, where
ap0 = −`, bp0 = (c− `b), cp0 = (`y − x).

• If ` 6= 0 and z 6= 0 then consider ϕ(X,Y, T ) = (X + p
√

(c− `b)/` Y, Y, T )
and so

Gs(X,Y, T ) = Fs(ϕ(X,Y, T )) =

− `Xp + zXT p−1 + z( p
√

(c− `b)/`− `)Y T p−1 + (`y − x)T p.

By our assumption of b, c, there is no ` ∈ Fq such that p
√

(c− `b)/` − ` = 0.
The curve Gs(X,Y, T ) = 0 is rational and irreducible and it is Fq-isomorphic
to Cs.

3. Clear.

Proposition 3.5. Let q = ph, h > 2. Two lines of the same type (r, s, u, v) do not intersect
the same set of lines of the aregular spread Ab,c.

Proof. The assumption h > 2 implies q + 1 > (p + 1)2. The curves Cr, Cs, Cu, Cv have
degree at most p and they have q + 1 Fq-rational points (corresponding to the lines of the
spread intersecting them). By Proposition 3.4, such curves are either absolutely irreducible
or they consist of a repeated line. Thus, if two curves attached to the lines w1 and w2

of the same type share q + 1 Fq-rational points, the corresponding polynomials must be
proportional. By direct computations, this yields w1 = w2.

Theorem 3.6. Let q = ph, h > 2. If two lines in PG(3, q) intersect the same set of lines of
the spreadAb,c then one of them lies on the plane Z = 0 and the other on the plane T = 0.

Proof. The reduced (absolutely irreducible) curves associated with the different types of
lines (r, s, u, v) have degree p+ 1, degree p or 1, degree p or 1, and degree 1, respectively.
They can share q + 1 Fq-rational points only in the following cases:

• both Cs and Cu have degree p;

• both Cs and Cu have degree 1;

• both Cs and Cv have degree 1;
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• both Cu and Cv have degree 1.

The first case is not possible. The second case would imply c = 0, a contradiction. Recall
that the lines v = vx,y,z are contained in the plane T = 0 of PG(3, q). The claim follows
observing that if Cs or Cu have degree 1, then s = sx,y,0,` or u = ux,y,0. So, both s and u
are contained in the plane Z = 0.

Theorem 3.7. Let q = ph, h > 2. Then there exists a set of q2 + 3 lines resolving all the
lines of PG(3, q).

Proof. Consider the aregular spread Ab,c with b, c ∈ F∗q and such that the polynomial
tp+1 − tb+ c has no roots in Fq . We already know by Theorem 3.6 that lines of PG(3, q)
intersecting the same set of elements of Ab,c are contained in the planes Z = 0 or T = 0.
Note that two lines in a fixed plane cannot intersect the same elements of Ab,c. Consider
two distinct extra lines w1 and w2 contained in Z = 0 intersecting the line Z = T = 0 at
two distinct points. It is readily seen thatAb,c∪{w1, w2} resolves all the lines of PG(3, q).

Corollary 3.8. If q = ph, h > 2, then there exists a resolving set in Γ3,q of size 2q2 + 2.

Proof. Consider the set of q2 + 3 lines from Theorem 3.7 and use the argument of Theo-
rem 2.9. One of the two extra lines could be an element of the other spread. Finally, delete
one line from the modified regular spread.

Finally, the following bounds are obtained combining again Theorem 2.16, with s = 0,
and Theorem 2.19.

Corollary 3.9. If q = ph, h > 2, then the metric dimension of Γn,q satisfies the inequality

µ(Γn,q) ≤


2qn−1 + 2qn−2 + hn,2(q), if n ≡ 0 or 1 (mod 4),

2qn−1 + 4qn−2 + hn,3(q), if n ≡ 2 (mod 4),

2qn−1 + hn,1(q), if n ≡ 3 (mod 4),

where hn,i (i = 1, 2, 3) is a polynomial of degree at most n− 3 whose coefficients depend
only on n.

4 Resolving sets for small q
We performed a computer search to obtain sets of lines that are semi-resolving sets for
lines in PG(3, q) for small q. We used MAGMA, a computer algebra system for symbolic
computation developed at the University of Sydney; see [6]. We started classifying all set
of lines of a certain size k. Then we extended the non-equivalent sets of size k using a
backtracking algorithm.

In PG(3, 2) there are 35 lines, so a semi-resolving set for lines must contain at least six
elements. We found that there are 165 non-equivalent sets of lines of size six. Forty-eight
of them are semi-resolving sets for lines in PG(3, 2). An example is the following set of
six lines:

{〈(1 : 0 : 0 : 0), (0 : 1 : 0 : 0)〉, 〈(0 : 1 : 0 : 0), (0 : 0 : 0 : 1)〉,
〈(0 : 0 : 1 : 0), (0 : 0 : 0 : 1)〉, 〈(0 : 0 : 0 : 1), (1 : 1 : 0 : 0)〉,
〈(0 : 1 : 0 : 0), (1 : 1 : 1 : 1)〉, 〈(1 : 1 : 0 : 0), (0 : 0 : 1 : 1)〉}.
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In PG(3, 3) there are 130 lines, so a semi-resolving set for lines must contain at least
eight elements. We found that there are 10681 non-equivalent sets of lines of size seven.
An exhaustive search by backtracking has proved that no set of lines of size eight or nine is
a semi-resolving set for lines in PG(3, 3). There exist semi-resolving sets for lines of size
ten. An example is the following set of ten lines:

{〈(1 : 0 : 0 : 0), (0 : 1 : 0 : 0)〉, 〈(1 : 0 : 0 : 0), (0 : 0 : 0 : 1)〉,
〈(0 : 1 : 0 : 0), (0 : 0 : 1 : 0)〉, 〈(0 : 1 : 0 : 0), (1 : 0 : 0 : 1)〉,
〈(1 : 0 : 1 : 2), (0 : 1 : 1 : 0)〉, 〈(1 : 0 : 0 : 2), (0 : 0 : 1 : 1)〉,
〈(1 : 0 : 0 : 0), (0 : 1 : 1 : 2)〉, 〈(1 : 0 : 0 : 0), (0 : 1 : 1 : 0)〉,
〈(0 : 1 : 1 : 1), (1 : 2 : 0 : 0)〉, 〈(1 : 1 : 1 : 0), (0 : 1 : 2 : 0)〉}.
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