213 Key words: Botanical exploration, Diploid Hieracium, Endemism, Plant conservation, Plant geography, Species Distribution Modelling. Ključne besede: botanične raziskave, diploidni Hieracium, endemizem, varstvo rastlin, rastlinska geografija, model razširjenosti vrst. Corresponding author: Gristina A. S E-mail: alessandrosilvestre.gristina@unipa.it Received: 2. 1. 2024 Accepted: 14. 4. 2024 Discovering hidden treasures: unveiling a new population of the narrow endemic Hieracium lucidum Guss. (Asteraceae) on the Mounts of Palermo (NW Sicily, Italy) Abstract The authors discovered a new population of Hieracium lucidum Guss., a species hitherto considered strictly endemic to Monte Gallo. Useful elements for the ecological characterisation of the new population are provided. The stretch of car- bonate coastline between the Egadi Islands and the western portion of the Province of Palermo displays a very high wealth of valuable floristic elements and represents an unicum in terms of both phytogeography and ecology. Considering the extreme fragmentation of the distribution pattern of many endemic and exclusive species that characterise this district, as in the case of H. lucidum, the authors suggest upgrading the strategies to protect the local botanical heritage, going beyond the species approach and thinking on a wider territorial scale. Izvleček Avtorji so odkrili novo populacijo vrste Hieracium lucidum Guss., ki so jo dosedaj za območje Monte Gallo obravnavali kot ozko endemično. Za ekološki opis nove populacije so prikazali pomembne značilnosti. Odsek karbonatne obale med Egadskimi otoki in zahodnim delom province Palermo kaže zelo veliko bogastvo dragocenih florističnih elementov in predstavlja posebnost tako v fitogeografskem kot ekološkem smislu. Glede na izjemno razdrobljenost razširjenosti številnih endemičnih in posebnih vrst, ki so značilne za to območje, kot v primeru H. lucidum, avtorji predlagajo nadgradnjo strategij za zaščito lokalne botanične dediščine, ki presegajo vrstni pristop in upoštevajo širši teritorialni obseg. Pasta S.1, Gristina A. S.2, Marcenò C.3, de Simone L.4, Garfì G.1, Gi- acalone G.5, Ilardi V.5., Kozlowski G.6,7,8, Scuderi L.9, Guarino R.5 DOI: 10.2478/hacq-2023-001123/2 • 2024, 213–219 1 Institute of Biosciences and BioResources (IBBR); National Research Council (CNR), Palermo, Italy 2 Department DISTEM, University of Palermo, Palermo, Italy 3 Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy 4 Department of Life Sciences, University of Siena, Siena Italy 5 Department STEBICEF, University of Palermo, Palermo, Italy 6 Botanic Garden and Department of Biology, University of Fribourg, Fribourg, Switzerland 7 Natural History Museum Fribourg, Fribourg, Switzerland 8 Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China 9 Trapani, Italy 23/2 • 2024, 213–219 214 Pasta et al. Discovery of a new population of Hieracium lucidum Guss. and implications for conservation strategies Introduction The few so far known populations of diploid (2n=18) Hieracium species have long captivated the attention of evolutionary biologists, due to their central role in the evolution of polyploid complexes that are currently wide- spread throughout Europe and beyond (Pignatti, 1979; Mráz & Zdvořák, 2019). These complexes, usually re- producing by apomixis to various degrees, consist of nu- merous more or less isolated populations with distinctive morphological variation, whose taxonomic interpretation does not always lead to satisfactory results (Fehrer, 2009). Consequently, the molecular study of species relation- ships within such groups faces significant challenges, and diploid populations play a crucial role in reconstructing the evolutionary history of these complexes (Mráz et al., 2019; Chrtek et al., 2020). Sexually reproducing diploid Hieracium species are very rare and occur mainly in refu- gial areas of southern Europe, especially on the Balkan and Iberian Peninsulas (Merxmüller, 1975). In Sicily, the hitherto known diploid populations of Hieracium are recorded from the limestone cliffs of the NW sector of the island (Di Gristina et al., 2015). In his original description Gussone (1825) did not mention the exact location of Hieracium lucidum. He later (Gus- sone, 1844) reported its occurrence at “Monte Gallo”, a promontory located in the northern sector of the Paler- mo Mountains (Basilone & Di Maggio, 2016), where it grows on N- to W-facing cliffs between 180 and 500 m a.s.l. (Brullo & Brullo, 2021), and “Vallone di Sferracav- allo”. The exact location" of this valley remains unclear, and even assuming that it represents a distinct (second) location separated from Monte Gallo, it seems unlikely that it coincides with Vallone Cala, which currently falls within the municipality of Torretta. A third locality, Monte Cofano, i.e. 58 km further west of Monte Gallo, was mentioned by Gussone (1844) and ascribed to the same species. This population was subsequently referred to a closely related taxon, described as H. cophanense by Lojacono-Pojero (1903), based on slight morphological differences: while H. lucidum is glabrous, H. cophanense has eglandular trichomes along the edge and the midrib of the leaf. Later on, a second population of H. cophan- ense was discovered by Ottonello & Catanzaro (1986) at about 700 m a.s.l. on Monte Passo del Lupo, 9 km away from Monte Cofano. In recent literature, the taxonomic treatment of these two species has been rather controversial. Some authors, including Geraci et al. (2007), Greuter in Greuter & Raab-Straube (2007), Aghababyan et al. (2008), and Di Gristina et al. (2015), propose treating them at the sub- species level, while others, such as Gottschlich (2018) and Brullo & Brullo (2021), prefer to treat them as distinct species. Molecular analyses, carried out by Mráz et al. (2019), demonstrated that these two taxa have two ETS variants in strongly unequal amounts, but the dominant variant in H. cophanense corresponds to the underrepre- sented variant in H. lucidum and vice versa. However, the same authors deem more appropriate to treat all the aforementioned populations as belonging to one single species, believing that sexually reproducing diploid taxa within the genus Hieracium deserve the application of a broader species concept, because the gene flow (either current or very recent) maintains intraspecific cohesion and hampers morphological and ecological divergence of closely related sexual lineages (Mráz et al., 2019). In this short note, we report the discovery of a new population of Hieracium lucidum Guss., located approxi- mately 3.5 km away from the population of Monte Gallo, a finding that points out the importance of the calcare- ous-dolomitic mountain systems of north-western Sicily for the conservation of many endemic and/or exclusive plant species with an extremely fragmented distribution. We discuss the consequences of our discovery on the as- sessment of the species risk level, as well as the need to extend conservation strategies from single biotopes to the level of large landscape units. Results The new population of H. lucidum was discovered in the municipality of Torretta (Palermo), within the Natura 2000 site ITA020023 “Raffo Rosso, Monte Cuccio e Val- lone Sagana” and includes two nuclei. A first subpopulation, counting five individuals, was found in December 2023 at 220 m a.s.l. in a canyon called Vallone Cala. Four of these individuals, including the only flowering one (Figure 1) grow on a large block of rock that is part of a rockfall deposit on the canyon floor, partly spared by the fire. Here, H. lucidum forms a very discontinuous herbaceous assemblage, together with other Asteraceae such as Hypochaeris laevigata (L.) Ces., Pass. & Gibelli, Hyoseris baetica Sch. Bip. ex Nyman and Reichardia picroides (L.) Roth. The fifth individual grows instead in a cliff-dwelling community co-occurring with many rupicolous species typical of the Palermo Moun- tains, such as Seseli bocconei Guss. subsp. bocconei, Silene fruticosa L., Asperula rupestris Tineo, Dianthus rupicola Biv. subsp. rupicola, Iberis semperflorens L., Euphorbia bivonae Steud., Brassica rupestris Raf., Centaurea panormi- tana Lojac., etc. (see Brullo & Marcenò, 1979), and sev- eral more trivial and generalist chasmophilous plants such as Centranthus ruber (L.) DC., Polypodium cambricum L., Capparis spinosa L. subsp. rupestris (Sm.) Nyman, etc. 23/2 • 2024, 213–219 215 Pasta et al. Discovery of a new population of Hieracium lucidum Guss. and implications for conservation strategies Figure 2: Location of the narrow endemic plant taxa (see Table1) occurring in the north-western coastal sector of the Drepano-Panormitano district. MAR = Marettimo Island; FAV = Favignana Island; LEV = Levanzo Island; MSG = Mt. San Giuliano (= Erice) and rocky shores near Trapani and Bonagia; COF = Mt. Cofano; SVI = Capo San Vito; ZIN = Zingaro; INI = Mt. Inici; MLO = Montagna Longa- Mt. Pecoraro-Mt. Palmeto; RAR = Raffo Rosso and Pizzo Manolfo; MGA = Mt. Gallo, MPE = Mt. Pellegrino; SMG = foothills of Mt. Grifone: Santa Maria di Gesù, Pizzo Sferrovecchio, Pizzo Crocchiola, Chiarandà; CAT = Mt. Catalfano, Capo Zafferano and Mongerbino. In brackets: local extinctions. Slika 2: Lokacije ozko endemičnih rastlinskih taksonov, ki jih najdemo na severozahodnem obalnem sektorju Dre- pano-Panormitanskega distrikta. MAR = otok Marettimo; FAV = otok Favignana; LEV = otok Levanzo; MSG = Mt. San Giuliano (= Erice) in skalnate obale pri mestih Trapani in Bonagia; COF = Mt. Cofano; SVI = Capo San Vito; ZIN = Zingaro; INI = Mt. Inici; MLO = Montagna Longa-Mt. Pecoraro-Mt. Palmeto; RAR = Raffo Rosso in Pizzo Manolfo; MGA = Mt. Gallo; MPE = Mt. Pellegrino; SMG = vznožja Mt. Grifone: Santa Maria di Gesù, Pizzo Sferrovecchio, Pizzo Crocchiola, Chiarandà; CAT = Mt. Catalfano, Capo Zafferano in Mongerbino. V oklepajih: lokalna izumrtja. After this finding, a systematic exploration of the cliffs and ledges of the surrounding area was launched in order to assess the overall size of the new population. Although a vast portion of the site appeared suitable for hosting the species, the whole area was severely damaged by a devas- tating fire that broke out during the night of 24–25 July 2023. This may explain why the field surveys carried out during the following weeks and until the end of December 2023 allowed us to observe one single living adult (yet not flowering) plant growing at c. 350 m a.s.l. on the huge ver- Figure 1: Three individuals of the new population of Hieracium lucidum (left); view of Vallone Cala with Monte Gallo in the background (right). Slika 1: Trije osebki iz nove populacije vrste Hieracium lucidum (levo); pogled na Vallone Cala z Monte Gallo v ozadju (desno). tical cliff hanging over the first nucleus. Nevertheless, we managed to find a second subpopulation, probably located in the uppermost suitable site of Raffo Rosso at 440 m a.s.l. Here H. lucidum grows on almost vertical (80–90°) N-fac- ing cliffs together with other chasmophytes like Iberis sem- perflorens, Asperula rupestris, Glandora rosmarinifolia (Ten.) D.C. Thomas, Dianthus rupicola subsp. rupicola and Hy- pochoeris laevigata. This group of individuals occupied a very restricted area (c. 100 m2) and counted 5 adult and 2 young individuals. Our discovery happened in winter, i.e. 23/2 • 2024, 213–219 216 Pasta et al. Discovery of a new population of Hieracium lucidum Guss. and implications for conservation strategies not the best season to perform vegetation surveys. Howev- er, a preliminary check on the structure, composition and ecology of the plant community hosting the new popula- tion of H. lucidum lead us to refer it to the same association described for the population of Monte Gallo, i.e. Scabioso creticae-Centauretum ucriae (Brullo & Marcenò, 1979). An updated distribution map of Hieracium lucidum s.l. is provided in Figure 2. Discussion Drone-assisted field surveys are needed for less accessible areas looking suitable for hosting the species and may al- low a better assessment of the distribution and size of the local population of H. lucidum and an update of the con- cerned risk assessment. On this purpose, during the last two decades H. lucidum has been evaluated as CR (Criti- cally Endangered) by Gianguzzi & La Mantia (2006) and by Di Gristina et al. (2015), based on the IUCN criteria B1ab(i,ii,iii,v)+2ab(i,ii,iii,v) and B1a+2a and C2a(ii), re- spectively. Then its risk level has been downgraded to EN (Endangered) by Gianguzzi & La Mantia (2017). Howev- er, to go beyond a simple update of the EOO and AOO, reproductive fitness surveys should also be conducted. The karyological investigations carried out on H. luci- dum (Merxmüller, 1975; Brullo & Pavone, 1979; Brul- lo et al., 2004) and H. cophanense (Geraci et al., 2007) pointed out that both taxa are diploid with 2n = 18, so it is most likely that the new population, indistinguish- able from H. lucidum s.str., is also diploid with 2n = 18. Further investigations should be carried out to analyse the genetic homogeneity within and between the four known populations and test whether or not, given the remark- able genetic and morphological affinity, the intrapopula- tion distribution of some allelic variants suggests ongoing microevolutionary processes, due to the current isolation, genetic drift and possibly founder effect. The finding of the new population of H. lucidum is a fortunate but not entirely random event. In fact, the area of Vallone Cala was identified by a species distribution model (SDM) aimed at pinpointing the most suitable sites for the translocation of Ptilostemon greuteri (Gris- tina et al., 2023), another narrow endemic species known from two populations in NW Sicily (Pasta et al., 2022). It is not surprising that a model based on occurrences of P. greuteri has led to the discovery of another narrow en- demic species, as most of these species are often associated with microtopographic conditions that maintain a suffi- cient level of humidity, enabling them to withstand the harsh conditions of the Mediterranean summer (Marcenò et al., 2022). As a matter of fact, the idiosyncratic distri- bution pattern of these narrow endemic plant taxa, scat- tered on the coastal mountains of NW Sicily (see Table 1 and Figure 2), could be linked more to the scattered oc- currence of stable climatic refugia (e.g., Harrison & Noss, 2017; Keppel et al., 2018; Garfì et al., 2021; Finocchiaro et al., 2023) than to palaeogeographic causes. Conclusions The discovery of a second population of H. lucidum high- lights once more the “puzzling puzzle” represented by the calcareous-dolomitic mountain system of north-western Sicily, including the Egadi Islands, the coastal mountain ranges of the Trapani province and those of the western- most portion of Palermo province (Brullo et al., 1995; Raimondo et al., 2002; Guarino & Pasta, 2017, 2018). This new record confirms the ecological and phytogeo- graphical unity of this area, whose promontories host a conspicuous number of endemic and/or exclusive species characterised by an extremely fragmented distribution, such as Erica sicula Guss. subsp. sicula (Pasta et al., 2023), Pseudoscabiosa limonifolia (Vahl) Devesa (Romano et al., 1994; de Simone, 2020), Ptilostemon greuteri (Pasta et al., 2022), Euphorbia papillaris (Boiss.) Raffaelli et Ricceri (Bajona & Spadaro, 2022), plus several closely related populations treated by taxonomists as vicariant species issuing from ongoing microevolutionary processes, as in the already mentioned case of Hieracium lucidum and H. cophanense or in the case of Limonium todaroanum Rai- mondo & Pignatti and L. poimenum Ilardi et al. ( Ilardi et al., 2014), Anthemis spp. (Cusimano et al., 2017; Raimondo et al., 2021), Brassica spp. (Raimondo et al., 1991; Geraci et al., 2001; 2004), Centaurea spp. (Scu- deri, 2006; Domina et al., 2017), Helichrysum panormi- tanum s.l. (Iamonico et al., 2016; Maggio et al., 2016). This prompts further research into these cliff habitats and suggests to consider this district as a continuum (Brul- lo et al., 1995), a fact that makes it not only ecologically plausible but also biologically sound and even desirable to create new metapopulations of the most endangered species in suitable sites within the same district. Such a strategy would increase the chances of dispersal and sur- vival of plants that often have a very narrow distribution range, exhibit a low reproductive fitness and are increas- ingly threatened by climate change and the intensification of disturbance factors like summer fires frequency. Acknowledgements We thank Audemars Piguet Foundation for funding the project aimed at the conservation of Ptilostemon greuteri that allowed us to develop the Species Distribution Mod- el and to address our exploration activities. 23/2 • 2024, 213–219 217 Pasta et al. Discovery of a new population of Hieracium lucidum Guss. and implications for conservation strategies Taxon M A R FA V LE V M SG C O F SV I Z IN IN I M LO R A R M AG M PE SM G C AT Allium franciniae Brullo & Pavone X Allium panormitanum Brullo, Pavone & Salmeri X X Anthemis ismelia Lojac. X X Anthemis parlatoreana Raimondo, Bajona, Spadaro & Di Grist. X Asperula rupestris Tineo X X X X X X X X X Brassica villosa Biv. subsp. drepanensis (Caruel) Raimondo & Mazzola X X X Brassica macrocarpa Guss. X X Brassica rupestris Raf. subsp. rupestris X X X X X X X X Brassica villosa Biv. subsp. brevisiliqua (Raimondo & Mazzola) Raimondo & Geraci X Bupleurum dianthifolium Guss. X Calendula maritima Guss. X X (X) (X) Centaurea aegusae Domina, Greuter & Raimondo X Centaurea erycina Raimondo & Bancheva X X1 Centaurea panormitana Lojac. (X) (X) X X X X X X X Centaurea todaroi Lacaita X X Centaurea tyrrhena C. Brullo, Brullo & Giusso X X1 X X X X X Erica sicula Guss. subsp. sicula (X) (X) X Euphorbia papillaris (Boiss.) Raffaelli & Ricceri X X X X X Genista gasparrinii (Guss.) C. Presl X Helichrysum panormitanum Tineo ex Guss. s.l. X X X X X X X X X X X X X X Hieracium cophanense Lojac. X X Hieracium lucidum Guss.. X X Limonium aegusae Brullo X Limonium bocconei (Lojac.) Litard. X X X X X X X X X X Limonium cophanense C. Brullo, Brullo, Cambria, Giusso & Ilardi X Limonium flagellare (Lojac.) Brullo X X Limonium lojaconoi Brullo X X X Limonium panormitanum (Tod.) Pign. X Limonium poimenum Ilardi, Brullo, D. Cusimano & Giusso X Limonium ponzoi (Fiori & Bég.) Brullo X X X Limonium tenuiculum (Guss.) Pign. X Limonium todaroanum Raimondo & Pignatti X Oncostema ughii (Tineo) Speta X Phagnalon metlesicsii Pignatti X Prospero hierae Brullo, C. Brullo, Giusso, Pavone & Salmeri X X Pseudoscabiosa limonifolia (Vahl) Devesa X X X X Ptilostemon greuteri Raimondo & Domina X Ranunculus rupestris Guss. X X X X X Thymus nitidus Guss. X Table 1: Location of the narrow endemic plant taxa occurring in the north-western coastal sector of the Drepano-Panormitano district. MAR = Marettimo Island; FAV = Favignana Island; LEV = Levanzo Island; MSG = Mt. San Giuliano (= Erice) and rocky shores near Trapani and Bonagia; COF = Mt. Cofano; SVI = Capo San Vito; ZIN = Zingaro; INI = Mt. Inici; MLO = Montagna Longa-Mt. Pecoraro-Mt. Palmeto; RAR = Raffo Rosso and Pizzo Manolfo; MGA = Mt. Gallo; MPE = Mt. Pellegrino; SMG = foothills of Mt. Grifone: Santa Maria di Gesù, Pizzo Sferrovecchio, Pizzo Crocchiola, Chiarandà; CAT = Mt. Catalfano, Capo Zafferano and Mongerbino. In brackets: local extinctions. 1 = data from Scuderi (2006). Tabela 1: Lokacije ozko endemičnih rastlinskih taksonov, ki jih najdemo na severozahodnem obalnem sektorju Drepano- Panormitanskega distrikta. MAR = otok Marettimo; FAV = otok Favignana; LEV = otok Levanzo; MSG = Mt. San Giuliano (= Erice) in skalnate obale pri mestih Trapani in Bonagia; COF = Mt. Cofano; SVI = Capo San Vito; ZIN = Zingaro; INI = Mt. Inici; MLO = Montagna Longa-Mt. Pecoraro-Mt. Palmeto; RAR = Raffo Rosso in Pizzo Manolfo; MGA = Mt. Gallo; MPE = Mt. Pellegrino; SMG = vznožja Mt. Grifone: Santa Maria di Gesù, Pizzo Sferrovecchio, Pizzo Crocchiola, Chiarandà; CAT = Mt. Catalfano, Capo Zafferano in Mongerbino. V oklepajih: lokalna izumrtja. 1 = podatki iz Scuderi (2006). 23/2 • 2024, 213–219 218 Pasta et al. Discovery of a new population of Hieracium lucidum Guss. and implications for conservation strategies Pasta S.  https://orcid.org/0000-0002-4841-2560 Gristina A. S.  https://orcid.org/0000-0001-8674-5051 Marcenò C.  https://orcid.org/0000-0003-4361-5200 de Simone L.  https://orcid.org/0000-0002-3055-136X Garfì G.  https://orcid.org/0000-0003-0466-4288 Giacalone G.  https://orcid.org/0009-0002-7347-6221 Ilardi V.  https://orcid.org/0000-0002-5754-2711 Kozlowski G.  https://orcid.org/0000-0003-4856-2005 Scuderi L.  https://orcid.org/0000-0003-4344-5491 Guarino R.  https://orcid.org/0000-0003-0106-9416 References Aghababyan, M., Greuter, W., Mazzola, P., & Raimondo, F.M. (2008). Typification of the names of Compositae taxa described from Sicily by Michele Lojacono-Pojero. Flora Mediterranea, 18, 513–528. https:// www.herbmedit.org/flora/18-513.pdf Bajona, E., & Spadaro, V. (2022). Chorological notes on the Sicilian endemic Euphorbia papillaris (Euphorbiaceae). Flora Mediterranea, 31 (Special Issue): 463–468. https://doi.org/10.7320/FlMedit31SI.463 Basilone, L., & Di Maggio, C. (2016). Geology of Monte Gallo (Palermo Mts., NW Sicily). Journal of Maps, 12(5), 1072–1083. https://doi.org/10.1080/17445647.2015.1124716 Brullo, C., & Brullo, S. (2021). Flora endemica illustrata della Sicilia. Reggio Calabria, Laruffa Editore, 427 pp. Brullo, S., Campo, G., & Romano, S. (2004). Indagini citotassonomiche sul genere Hieracium L. (Asteraceae) in Sicilia. Informatore Botanico Italiano, 36(2), 481–485. Brullo, S., & Marcenò, C. (1979). Dianthion rupicolae nouvelle alliance sud-tyrrhénienne des Asplenietalia glandulosi. Documents Phytosociologiques, n. s., 4, 131–146. Brullo, S., Minissale, P., & Spampinato, G. (1995). Considerazioni fitogeografiche sulla flora della Sicilia. Ecol. Medit., 21(1-2), 99–117. https://www.persee.fr/doc/ecmed_0153-8756_1995_num_21_1_1759 Brullo, S., & Pavone, P. (1978). Numeri Cromosomici per la Flora Italiana: 464–483. Informatore Botanico Italiano, 10(2), 248–264. Chrtek, J., Mráz, P., Belyayev, A., Paštová, L., Mrázová, V., Caklová, P., [...], & Fehrer J. (2020). Evolutionary history and genetic diversity of apomictic allopolyploids in Hieracium s. str.: morphological versus genomic features. American Journal of Botany, 107(1), 66–90. https:// doi.org/10.1002/ajb2.1413 Cusimano, D., Guarino, R., & Ilardi, V. (2017). Discovery of a second locality for the narrow endemic Anthemis ismelia (Asteraceae) in NW Sicily. Flora Mediterranea, 27, 151–158. https://doi.org/10.7320/ FlMedit27.151 de Simone, L. (2020). Ecological aspects of plants inhabiting Mediterranean cliffs. Challenges and prospects of life in vertical environments. PhD thesis, Universitat Politècnica de València and Università degli Studi di Palermo, 247 pp. Di Gristina, E., Raimondo, F.M., & Mazzola, P. (2015). Diversity in the genus Hieracium Linnaeus s. str. (Asteraceae) in Sicily. Biodiversity Journal, 6(1), 205–214. https://www.biodiversityjournal. com/images/pubblicazioni/biodiversity-journal-2015/biodiversity- journal-2015-06-01/biodiversity-journal-2015-06-01_205-214.pdf Domina, G., Greuter, W., & Raimondo, F.M. (2017). A taxonomic reassessment of the Centaurea busambarensis complex (Compositae, Cardueae), with description of a new species from the Egadi Islands (W Sicily). Israel Journal of Plant Sciences, 64(1-2), 48–56. https://doi. org/10.1080/07929978.2016.1257146 Finocchiaro, M., Médail, F., Saatkamp, A., Diadema, K., Pavon, D., & Meineri E. (2023). Bridging the gap between microclimate and microrefugia: A bottom-up approach reveals strong climatic and biological offsets. Global Change Biology, 29(4), 1024–1036. https:// doi.org/10.1111/gcb.16526. Garfì, G., Carimi, F., Fazan, L., Gristina, A.S., Kozlowski, G., Livreri Console, S., Motisi, A., & Pasta, S. (2021). From glacial refugia to hydrological microrefugia: factors and processes driving the persistence of the relict tree Zelkova sicula. Ecology and Evolution, 11(6), 2919–2936. https://doi.org/10.1002/ece3.7253 Geraci, A., Chèvre, A.M., Divaret, I., Eber, F., & Raimondo, F.M. (2004). Isozyme analysis of genetic diversity in wild Sicilian populations of Brassica sect. Brassica in view of genetic resources management. Genetic Resource and Crop Evolution, 51(2), 137–146. https://doi.org/10.1023/b:gres.0000020855.61542.ef Geraci, A., Di Gristina, E., & Schicchi, R. (2007). Hieracium, Hypochoeris, Jacobaea from Sicily. In G. Kamari, F. Felber & F. Garbari (Eds.), Mediterranean Chromosome Number Reports 17, 1640–1644. Flora Mediterranea, 17, 314–319. https://www.herbmedit.org/ flora/17-291.pdf Geraci, A., Divaret, I., Raimondo, F.M., & Chèvre, A.M. (2001). Genetic relationships between Sicilian wild populations of Brassica analysed with RAPD markers. Plant Breeding, 120(3), 193–196. https://doi.org/10.1046/j.1439-0523.2001.00589.x Gianguzzi, L., & La Mantia, A. (2017). Hieracium lucidum. In: S. Pasta, A. Perez-Graber, L. Fazan, & B. Montmollin (de) (eds.), The Top 50 Mediterranean Island Plants, Update 2017. Neuchâtel (Switzerland): IUCN/SSC/Mediterranean Plant Specialist Group. http://top50.iucn-mpsg.org/species/35. Gianguzzi, L., & La Mantia, A. (2006). Hieracium lucidum. The IUCN Red List of Threatened Species 2006: e. T61624A12525812. http://dx.doi.org/10.2305/IUCN.UK.2006.RLTS.T61624A12525812.en. Gottschlich, G. (2018). Hieracium L. In: S. Pignatti, R. Guarino, & M. La Rosa (eds.). Flora d’Italia 2nd edition. Edagricole-New Business Media, Bologna-Milano, vol. 3, pp. 1138–1195 Greuter, W., & Raab-Straube, E. (Eds.) (2007). Notulae ad floram euro-mediterranean pertinentes No. 25. Euro+Med Notulae, 3Ce. Willdenowia, 37(1), 139–189. http://dx.doi.org/10.3372/wi.44.442 Gristina, A.S., Marcenò, C., Guarino, R., Pasta, S., Scuderi, L., Fazan, L., Perraudin, V., Kozlowski, G., & Garfì, G. (2023). Species distribution modelling to identify habitat islands suitable for narrow endemic climate relicts. In: S. Fattorini (Ed.), Book of Abstracts of the 4th Conference of the Society of Island Biology 2023 “Ecological and evolutionary processes on real and habitat islands” (2–7 July 2023, Lipari, Italy), p. 44 (https://islandbiology.com/fotos/ noticias/01455645188.pdf ) Guarino, R., & Pasta, S. (2017). Botanical Excursions in Central and Western Sicily. Field Guide for the 60th IAVS Symposium (Palermo, 20–24 June 2017). Palermo: Palermo University Press (pp. 606). Guarino, R., & Pasta, S. (2018). Sicily: the island that didn’t know to be an archipelago. Berichte der Reinhold-Tüxen-Gesellschaft, 30, 133–148. 23/2 • 2024, 213–219 219 Pasta et al. Discovery of a new population of Hieracium lucidum Guss. and implications for conservation strategies Gussone, G. (1825). Index Seminum anni 1825 quae ab Horto Regio in Boccadifalco pro mutua commutatione exhibentur. Neapoli, ex Regia Typografia, 3 pp. Gussone, G. (1844). Florae Siculae Synopsis exhibens plantas vasculares in Sicilia insulisque adjacentibus hucusque detectas secundum systema Linneanum dispositas. Neapoli, Typ. Tramater, Vol. 2(1),: pp. 1–526 + iii. Harrison, S., & Noss, R. (2017). Endemism hotspots are linked to stable climatic refugia. Annals of Botany, 119(2). 207–214. https://doi. org/10.1093/aob/mcw248 Iamonico, D., Guarino, R., Ilardi, V., & Pignatti, S. (2016). A revision of Helichrysum panormitanum s.l. (Asteraceae) in the Italian and Maltese floras. Phytotaxa, 286(3), 207–210. https://doi.org/10.11646/ phytotaxa.286.3.10 Ilardi, V., Brullo, S., Cusimano, D., & Giusso del Galdo, G. (2014). Limonium poimenum (Plumbaginaceae), a new chasmophyte species from Sicily. Phytotaxa, 188(5), 268–274. https://doi.org/10.11646/ phytotaxa.188.5.4 Keppel, G., Ottaviani, G., Harrison, S., Wardell-Johnson, G., Marcantonio, M., & Mucina, L. (2018). Towards an eco-evolutionary understanding of endemism hotspots and refugia. Annals of Botany, 122, 927–934. https://doi.org/10.1093/aob/mcy173. Lojacono-Pojero, M. (1903). Flora Sicula o descrizione delle piante spontanee o indigenate in Sicilia, Vol. 2(1) (Gamopetalae Calyciflorae): 240 + xiv pp., 21 tavv., Tipo-Litografia Salvatore Bizzarrilli, Palermo. Maggio, A., Bruno, M., Guarino, R., Senatore, F., & Ilardi, V. (2016). Contribution to a taxonomic revision of the Sicilian Helichrysum taxa by PCA analysis of their essential‐oil compositions. Chemistry & Biodiversity, 13(2): 151–159. https://doi.org/10.1002/cbdv.201500052 Marcenò, C., Gristina, A.S., Pasta, S., Garf ì, G., Scuderi, L., Fazan, L., ... & Guarino, R. (2022). A multifaceted field sampling approach for the management of extremely narrow endemic vascular plant species. Ecology and Evolution, 12(11), e9477. https://doi. org/10.1002/ece3.9477 Merxmüller, H. (1975). Diploide Hieracien. Anales Instituto Botánico Cavanilles, 32(2), 189–196. Ottonello, D., & Catanzaro, F. (1986). Contributo alla flora del Trapanese. Naturalista siciliano, 9(1-4), 89–99. http://www.sssn.it/ PDF/PDF_NS_9/ottonello%2085.pdf Mráz, P., Filipaş, L., Bărbos, M.I., Kadlecová, J., Paštová, L., Belyayev, A., & Fehrer, J. (2019). An unexpected new diploid Hieracium from Europe: Integrative taxonomic approach with a phylogeny of diploid Hieracium taxa. Taxon, 68(6), 1258–1277. https://doi.org/10.1002/tax.12149 Mráz, P., & Zdvořák, P., (2019). Reproductive pathways in Hieracium s. s. (Asteraceae): strict sexuality in diploids and apomixis in polyploids. Annals of Botany, 123(2), 391–403. https://doi. org/10.1093/aob/mcy137 Pasta, S., El-Zein, H., De Simone, L., Şentürk, O., Gücel, S., Christodoulou, C.S., Makhlouf, M.H., Abu-Hadra, M., Al-Zein, M.S., Bou Dagher Karrat, M., & Montmollin (de), B. (2023). Wide-ranged, highly disjunct, locally rare and severely endangered: the challenging risk assessment and the global conservation strategy of Erica sicula Guss. sensu lato (Ericaceae). In: E. Laguna, D. Arizpe, A. Cebrián, M. Seguí, A. Rubio (eds.), Book of Abstracts of the 4th Mediterranean Plant Conservation Week “Plant Conservation and Ecosystem Restoration in the Mediterranean” (Valencia, Valencian Community, Spain 23–27 October 2023), (p. 187) (https://drive.google.com/drive/folders/1F7EHlD510JYQANh8- LJHyH30b02xOIGF) Pasta, S., Gristina, A.S., Scuderi, L., Fazan, L., Marcenò, C., Guarino R., […], & Garfì, G. (2022). Conservation of Ptilostemon greuteri (Asteraceae), an endemic climate relict from Sicily (Italy): State of knowledge after the discovery of a second population. Global Ecology and. Conservation, 40, e02328. https://doi.org/10.1016/j.gecco.2022. e02328 Pignatti, S. (1979). Plant geographical and morphological evidences in the evolution of the Mediterranean flora (with particular reference to the Italian representatives). Webbia, 34, 243–255. Raimondo, F.M., Bajona, E., Spadaro, V., & Di Gristina, E. (2021). Recent and new taxonomic acquisitions in some native genera of Asteraceae from southern Italy and Sicily. Flora Mediterranea, 31, 109–122. https://doi.org/10.7320/FlMedit31.109 Raimondo, F.M., Mazzola, P., & Ottonello, D. (1991). On the taxonomy and distribution of Brassica sect. Brassica (Cruciferae) in Sicily. Flora Mediterranea, 1(1), 63–86. https://www.herbmedit.org/ flora/01-063.pdf Raimondo, F.M., Mazzola, P., & Schicchi, R. (2002). Rapporti fitogeografici fra i promontori carbonatici della costa tirrenica della Sicilia. Biogeographia, 22 (2001), 65–77. https://doi.org/10.21426/ B6110140 Romano, S., Ottonello, D., & Marcenò, C. (1994). Contributo alla floristica siciliana: nuovi rinvenimenti ed ulteriori dati distributivi di alcune entità indigene ed esotiche. Naturalista siciliano, ser. 4, 18(1-2), 3–14. http://www.sssn.it/PDF/PDF_NS_18/romano%2094.pdf Scuderi, L. (2006). Flora e vegetazione della provincia di Trapani (Sicilia). Tesi di Dottorato in Scienze Ambientali I ‘Fitogeografia dei Territori Mediterranei’ (XIX Ciclo)(pp. 541). Università degli Studi di Catania.