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Ab stract
The accuracy of the activity coefficient expression (Hansen-Vieillefosse-Belloni (HVB) equation), valid within the
hypernetted-chain (HNC) approximation, was tested in a wide concentration range against newly obtained grand cano-
nical Monte Carlo data for the size and charge asymmetric primitive model electrolytes. In some cases, uncharged hard
sphere component was also present. The HVB expression enables a direct calculation of the excess chemical potential,
without invoking the time consuming calculation via the Gibbs-Duhem relation. We found the Ornstein-Zernike
(OZ)/HNC results for the mean activity coefficient, as well as for the reduced excess internal energy and osmotic coef-
ficient, to be in good agreement with the machine calculations performed for the same model. The accuracy of the re-
sults was found to be dependent on the packing fraction of the solutions. The mean spherical approximation calculations
were also used to describe the thermodynamics of these systems and compared with the OZ/HNC and simulation re-
sults.

Keywords: Primitive model electrolyte, hypernetted-chain approximation, mean spherical approximation, Hansen-Vi-
eillefosse-Belloni equation, mean activity coefficient, osmotic coefficient, Monte Carlo simulation

1. In tro duc tion
Electrolyte solutions play an important role in a

number of different areas of chemistry, biology, and their
related fields. Knowledge of ionic equilibria is of great
significance in a variety of processes, ranging from ele-
mentary cases to technologically demanding operations.
To be able to describe chemical equilibria of electrolyte
solutions under different conditions (concentration, tem-
perature etc.), it is necessary to know the mean activity
coefficients under these conditions. It is therefore not sur-
prising that the topic has been extensively studied; the ad-
vances in modelling, together with the review of experi-
mental data for electrolyte solutions, are summarized in
books and thematic papers (see, for example, references
1–7). Since it has been established that by a proper choice
of the ion size parameters, the thermodynamic properties
of electrolyte solutions can be adequately described even
by simple models based on the McMillan-Mayer level of
description,8,9 i.e. the solvent is treated implicitly, we will
here restrict ourselves to this case.

The most famous attempt to describe the thermody-
namics of electrolyte solutions resulted in the Debye-
Hückel theory (DH).10 The theory is based on a linearized
Poisson-Boltzmann equation and yields important in-
sights into dilute electrolyte solutions. Unfortunately, this
approach can only be used to quantitatively describe very
dilute solutions of size symmetric +1:–1 electrolytes.11

The deficiencies of the Debye-Hückel theory were analy-
zed in many contributions and various improvements we-
re suggested to extend the range of applicability (for re-
view see references 1,3,12).

Theoretical extension, correcting for the deficiency
of the DH theory, is provided by the modified Poisson-
Boltzmann approach.13–17 For example, the individual ac-
tivity coefficients of pure electrolytes were calculated by
Molero et al. (cf. reference 18) and for ternary systems
containing uncharged hard spheres recently by Outhwaite
et al.19 This theory yields excellent agreement with com-
puter simulations.

Another approach to calculate the properties of solu-
tions involves a class of integral equation theories based
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on the Ornstein-Zernike (OZ) integral equation20 and ap-
proximate closures. The so-called mean spherical appro-
ximation (MSA) was, for primitive model electrolytes,
solved analytically, with the thermodynamic quantities
written in a closed form.21–28 Through the energy route,
one obtains the osmotic and mean activity coefficients
that are in good agreement with Monte Carlo computer si-
mulations for +1:–1 electrolytes.11 A more recent approxi-
mate closure of the Ornstein-Zernike theory was proposed
by Kovalenko and Hirata (KH).29–30

Another approximation that is widely used for des-
cribing the thermodynamics of symmetric, as well as of
highly asymmetric electrolytes, is the so-called hypernet-
ted-chain (HNC) closure.11,20,31–32 Solving the OZ equa-
tion within the HNC approximation provides the pair-di-
stribution functions33 which contain all the information
about the fluid’s structure. Once this information is
known, the standard statistical-mechanical equations con-
necting the pair-distribution functions with thermodyna-
mic properties (i.e. reduced excess internal energy and os-
motic coefficient) can be applied.20,33 The mean activity
coefficient can be, in general, calculated from the concen-
tration dependence of the osmotic coefficient, by integra-
ting the Gibbs-Duhem equation.34 Although the numerical
procedure is straightforward, it may be time consuming.2

An alternative way of calculating the activity coefficients,
although valid only within the HNC approximation, was
proposed by Verlet and Levesque.35 The equation was
written in the current form by Hansen and Vieillefosse36

and successfully applied to asymmetric electrolytes by
Belloni.37 It is therefore referred as the Hansen-Vieillefos-
se-Belloni (HVB) equation:12

(1)

Here γi is the individual activity coefficient of spe-
cies i, ρj is the number density of j-th species, h and c de-
note the total and the direct correlation functions, respecti-
vely, while c(s) stands for the short-range part of c. The di-
stance between particles i and j is given by r, and the volu-
me element dr equals 4πr2 dr due to spherical symmetry.

In this work, we were primarily concerned with two
issues: First, what is the validity of the OZ/HNC theory
for asymmetric primitive model electrolytes. We conside-
red the cases of different asymmetric electrolytes and
compared the values of the reduced excess internal ener-
gies and osmotic coefficients predicted by the OZ/HNC
theory with the data obtained from Monte Carlo computer
simulations. The latter data represent the exact values for
a given model. Second, we wanted to check the validity of
the HVB equation for the above mentioned cases of elec-
trolytes. Both issues were recently considered in our labo-

ratory for the cases of size symmetric and asymmetric
+1:–1, and size symmetric +2:–2 electrolytes.12

In the last part of this work, we extended our study
of electrolyte solutions also to the case of a mixture of the
electrolyte with a neutral (uncharged) component (the so-
called solvent primitive model for electrolyte solutions). It
has been established earlier19,38 that the HNC approxima-
tion adequately describes such systems only for low volu-
me fractions of added neutral component. We considered
the case of a restricted primitive model electrolyte (i.e. a
size symmetric +1:–1 electrolyte) in a mixture with unc-
harged hard spheres of the same size as ions, and exami-
ned the behaviour of the OZ/HNC theory for different
concentrations of the electrolyte and the uncharged com-
ponent.

The paper is organized as follows: proceeding the
brief introduction, the model and methods are presented,
followed by the results and discussion section. Numerical
results are presented in a form of tables and figures. Conc-
lusions are given at the end. Appendix summarizes the re-
levant equations used for the MSA approximation
(OZ/MSA theory).

2. Mo del and Met hods
2. 1. Pri mi ti ve Model Elec troly te

The so-called primitive model for electrolyte solu-
tions considered in this work is widely used for it is very
simple but still able to capture many experimental obser-
vations of single electrolyte solutions8,39 and of their mix-
tures.9,39 The ions in this model are represented as charged
hard spheres while the medium (solvent) is assumed to be
a dielectric continuum with relative permittivity of a true
solvent at a given temperature and pressure.20 The pair in-
teraction potential uij is composed of a hard-sphere part
and an electrostatic (Coulomb) part, and for ions i and j
with nominal charges zi and zj, and diameters ai and aj,
respectively, separated by a distance r it reads:

formula (2)

Here aij = 1/2(ai + aj) and λB is the Bjerrum length
defined as:

Formula
(3)

where e0 is the fundamental unit of charge, ε0 is the per-
mittivity of the vacuum and εr is the relative permittivity
of a medium. β = 1/kBT, where kB is the Boltzmann con-
stant and T the absolute temperature. The Bjerrum length
at the temperature of 25 °C has the value of 7.14 Å for
aqueous solutions (εr = 78.5).
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For the ionic diameters of size asymmetric +2:–1,
+3:–1 and +4:–1 electrolytes we took the semi-empirical
values as determined by J. P. Simonin et al.8 The values
correspond to ionic sizes at infinite dilution. Since we
compared only the theory and the computer simulations,
there was no need to take experimentally fitted ionic sizes
(they are actually changing with the concentration of the
solution).

To complete our study, we also examined the case of
a size symmetric +2:–1 electrolyte and the case of a high-
ly size and charge asymmetric +10:–1, and +10:–2 elec-
trolyte. Modelled electrolytes and their ionic diameters
are summarized in Table 1. In each case we surveyed the
concentration range from 10–4 mol dm–3 up to 1.5 mol
dm–3 (except when the upper concentration was limited by
the occupation of space).

Table 1. Modelled electrolytes, corresponding ionic diameters, and
approximate concentration ranges studied.

Electrolyte a+ a– Conc. range 
[Å] [Å] [mol dm–3]

+2:–1 4.25 4.25 10–4 – 1.5
+2:–1 (MgCl2) 6.71 3.62 10–4 – 1.5
+3:–1 (LaCl3) 7.75 3.62 10–4 – 1.5
+4:–1 (ThCl4) 12.1 3.62 10–4 – 0.5
+10:–1 20.0 4.25 5 · 10–3 – 5 · 10–2

+10:–2 20.0 4.25 2.5 · 10–2 – 0.1

In the cases of mixtures of an electrolyte with an
uncharged component we kept the primitive model des-
cription for the +1:–1 electrolyte. The uncharged compo-
nent consisted of uncharged hard spheres. All particles
(charged and uncharged) were of the same size (a+ = a– =
aN = 4.25 Å). The pair interaction potential between ions
remained the same as given above (equation 2). The ex-
pression for the pair interaction potential between the unc-
harged particle and any other particle is:

formula
(4)

We set the concentration of the electrolyte constant
and were changing the concentration of the uncharged
component. Concentration range studied was limited with
the convergence of the computer simulations.

2. 2. Mon te Car lo Com pu ter Simu la tion

We performed the Monte Carlo computer simula-
tions in the grand canonical ensemble (GCMC), using the
standard Metropolis sampling algorithm40 and the perio-
dic boundary conditions.40 To take into account the long
range nature of electrostatic forces we applied the Ewald
summation technique.40 The methodology of the method

for electrolytes, as well as for the electrolytes in a mixture
with a neutral component, is well established and extensi-
vely described in several previous papers, and is therefore
not repeated here.41–43 The details of the simulations are as
follows: The total number of particles in the simulations
varied between 200 and 1200, depending on the electroly-
te. For each concentration studied, the simulation consi-
sted of an equilibration run plus four independent produc-
tion runs. Each run consisted of 107 attempted configura-
tions, where a new configuration was formed by either
changing the position of a randomly chosen particle (ca-
nonical step), or insertion or annihilation of a neutral com-
bination of particles (grand canonical step). The ratio bet-
ween canonical and grand canonical steps in the simula-
tion depended on the system studied. Averages of the ther-
modynamic properties obtained from the production runs
are collected in Tables 2–9. The errors given in parenthe-
ses were calculated as the maximum difference between
the run’s value in the series and the average of that series.

2. 3. Hyper net ted-chain (HNC) 
Appro xi ma tion
Modern fluid theories are based on the Ornstein-

Zernike equation that, for an isotropic multicomponent
system, reads:20,33

formula
(5)

As in equation 1, h denotes the total correlation
function and c the direct correlation function, ρk is the
number density of a component k, and the sum goes over
all the components in the mixture. The correlation func-
tions h and c are both unknown. The general closure rela-
tion that represents the connection between the two
reads:33

(6)

where β = 1/kBT, uij is the pair potential energy between
particles i and j separated by a distance r, and Bij is a set of
integrals known as the “bridge graphs”. Since Bij cannot
be written as a closed form function of h and c, we are for-
ced to use some approximation in order to solve the sys-
tem of equations 5 and 6. The hypernetted chain approxi-
mation sets the Bij term equal to zero.31–32

Due to the long range nature of electrostatic forces
equations 5 and 6 need to be re-normalized, i.e. split into
the long- and short-range part, before solved iteratively.13

The re-normalized form of the integral equation was in
our case solved by the direct iteration using the fast Fou-
rier transform routine on a linear grid with 218 division
points separated by the distance of Δr = 0.005 Å. Results
depend strongly on these two parameters. The criteria of
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the smallest zeroth (electroneutrality condition) and se-
cond moment (in theory both moments should be equal to
zero44–45) were used to determine the parameters.

The numerical solution provides the h (and c) corre-
lation functions from which the pair distribution functions
g, can be obtained as g = h + 1. Thermodynamic proper-
ties (like reduced excess internal energy and osmotic coef-
ficient) can be expressed in terms of these pair-distribu-
tion functions. The expression for the reduced excess in-
ternal energy per particle (N) of the system in terms of
pair-distribution functions reads:33

(7)

where ρi and ρj are the number densities of components i
and j, ρ is the total number density of the system, and uij is
the pair interaction potential.

The osmotic coefficient, corresponding to the pair
interaction potential given by equations (2) and (4), can be
calculated via the virial route:20

(8)

where aij is the distance of closest approach of two partic-
les i and j, and uC

ij is the Coulomb part of the pair interac-
tion potential (see equation 2).

For a general Aν+ Bν– electrolyte, the individual acti-
vity coefficients are calculated via equation 1 while the
mean activity coefficient of the electrolyte solution is de-
fined as γ±

ν++ν– = γ+
ν+γ–

ν–, where ν+ and ν– are stechiometric
factors in the formula of the electrolyte.

3. Re sults and Dis cus sion
Thermodynamic properties – reduced excess inter-

nal energies per particle, reduced excess chemical poten-
tials (βμEX = lnγ±), and the osmotic coefficients – are for
various systems studied here presented in Tables 2–9 and
Figures 1–5 (only lnγ± and 1–Φ), as a function of the elec-
trolyte concentration. Note that the molar concentration of
species ci is related to its number density in the following
way: ρi = ciNA, where NA is the Avogadro number. The re-
sults are grouped into four subsections (a–d) with respect
to the size and charge asymmetry of the electrolyte, and
regarding the presence of the uncharged (neutral) compo-
nent. The last subsection (e) discusses the overall trends in
OZ/HNC performance.

(a) Size symmetric but charge asymmetric electrolytes (z+
= +2, z– = –1, a+ = a– = 4.25 Å).

The reduced excess internal energy per particle, 
βEEX/N, the excess chemical potential, lnγ±, and the osmo-
tic coefficient, Φ, at different concentrations of a size
symmetric +2:–1 electrolyte, c, are presented in Table 2
and in Figure 1 (lnγ± and 1–Φ). In Figure 1, lnγ± (panel
(a)) and 1–Φ (panel (b)) are shown for different theoreti-
cal methods as a function of the square root of the concen-
tration: symbols represent the GCMC data, the continuous
line corresponds to the OZ/HNC results while the dashed
line shows the results of the OZ/MSA. The error bars in
GCMC values roughly correspond to the size of the sym-
bols and are therefore not shown explicitly.

Figure 1. lnγ± (panel (a)) and 1–Φ (panel (b)) as a function of c1/2

for a +2:–1 primitive model electrolyte, a+ = a– = 4.25 Å. Symbols
denote the grand canonical Monte Carlo data, and theoretical va-
lues are given by lines (continuous: OZ/HNC, dashed: OZ/MSA).
Results apply to λB = 7.14 Å.

It is clear from Table 2, that the MSA and HNC ap-
proximations are equally good in describing the reduced
excess internal energy, as well as the osmotic coefficient
(see also Figure 1) of this electrolyte in the whole concen-
tration range. Only at concentrations higher than 1 mol
dm–3, the OZ/HNC performs slightly better. This confirms
the previous observations that OZ/HNC describes the be-
haviour of simple electrolytes extremely well.11,20,31–32
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Figure 2. Same as in Figure 1, but for size and charge asymmetric
electrolytes. Symbols denote the grand canonical Monte Carlo data
(+2:–1 (�), +3:–1 (�), and +4:–1 (×) electrolyte).

The results of the HVB equation for the excess che-
mical potential of the electrolyte, i.e. lnγ±, are also in ex-
cellent agreement with the computer simulations, and su-
perior to the MSA results in the whole concentration ran-
ge studied here (cf. Table 2 and panel (a) of Figure 1).

(b) Size and charge asymmetric electrolytes (z+ = +2 (a+ =
6.71 Å), +3 (a+ = 7.75 Å), and +4 (a+ = 12.10 Å), z– = –1
(a– = 3.62 Å)).

The ionic radii for the model electrolytes studied in
this subsection were taken from reference 8 to capture the
behaviour of MgCl2 (+2:–1), LaCl3 (+3:–1), and ThCl4
(+4:–1) in aqueous solutions. The results for the reduced
excess internal energy per particle, βEEX/N, the excess
chemical potential, lnγ±, and the osmotic coefficient, Φ, at
different concentrations of a size and charge asymmetric
electrolytes (with the charge and size parameters given
above) are presented in Tables 3–5 and Figure 2. Similar
as in Figure 1, lnγ±, (panel (a)) and 1–Φ (panel (b)) are
shown for different theoretical methods as a function of
square root of the concentration: symbols represent the
GCMC data, the continuous lines correspond to the
OZ/HNC results while the dashed lines show the results
of the OZ/MSA.
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It can be seen from Tables 3–5 and from Figure 2
that the agreement between HNC approximation results
(including the HVB equation) and computer simulation
results for charge and size asymmetric electrolytes studied
here is excellent at low and moderate concentration, and
becomes worse at large concentration (the discrepancies
between the two methods depend on the volume fraction
of the ions in the solution, as shown further below). While
the OZ/MSA method represents a slight improvement
over the OZ/HNC theory in some cases (for example, os-
motic coefficient for +3:–1, and +4:–1 electrolyte at high
concentrations), in the majority of the examples studied
here the HNC presents a better approximation.

(c) Highly size and charge asymmetric electrolyte (z+ =
+10, z– = –1 or –2, a+ = 20.00 Å, a– = 4.25 Å).

For the sake of completeness of the study, we exami-
ned a case of highly asymmetric electrolyte where the pol-
yion had 10 positive charges, while the counterions had a
charge –1 or –2. To be consistent with previous studies,46

the diameter of the polyion was taken to be 20.00 Å, whi-
le the diameter of the counterion was 4.25 Å. Note that the
GCMC simulations for these systems represent a particu-
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Figure 3. Same as Figure 1, but for a +10:–1 and +10:–2 size asym-
metric electrolytes. Symbols are grand canonical Monte Carlo data
(+10:–1 electrolyte (�) and +10:–2 electrolyte (�))
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lar challenge since a neutral combination of ions to be in-
serted or deleted becomes 11 (6) in this particular case,
and the probability for such an insertion is, depending on
the polyelectrolyte concentration, extremely small (less
than 1%). However, the convergence of the presented re-
sults was tested by repeating the same simulation with an
increased number of attempted insertions. The results in
both cases differed no more than different blocks of the
same run. At very low concentrations (≤ 0.005 mol dm–3

for +10:–1, and ≤ 0.01 mol dm–3 for +10:–2 electrolyte)
the OZ/HNC did not provide a convergent solution for
these systems, while at high concentrations (≥ 0.075 mol
dm–3 for +10:–1, and ≥ 0.0115 mol dm–3 for +10:–2 elec-
trolyte) the ergodic condition was not satisfied for the si-
mulation method used. The results are collected in Tables
6 and 7, and presented in graphical form in Figure 3.
Again, symbols are used to present GCMC data: filled
symbols correspond to the +10:–1 electrolyte, and empty
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Figure 4. lnγ± (panel (a)) and 1–Φ (panel (b)) in the case of a mix-
ture of a +1:–1 electrolyte with uncharged hard sphere component
as a function of the concentration of uncharged component, cN (aN
= 4.23 Å) The concentration of a +1:–1 electrolyte present in the
systems (a+ = a– = 4.23 Å, λB = 7.14 Å) was approximately 1.0 mol
dm–3 in all cases. Symbols are grand canonical Monte Carlo data,
and theoretical values are given by lines (continuous: OZ/HNC,
dashed: OZ/MSA).
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ones to the +10:–2 case. In most cases the estimated error
in GCMC data lies within the size of the symbols used.
Where this is not the case, error bars are shown.

Comparing the data in Tables 6 and 7 for the redu-
ced excess internal energies per particle, βEEX/N, we see
that OZ/HNC theory is in an excellent agreement with the
simulation data, while OZ/MSA deviates slightly for the
+10:–1 electrolyte and even more for the +10:–2 elec-
trolyte. Similar conclusions can be made when conside-
ring the activity coefficient data (Table 6 and 7 and panel
(a) of the Figure 3). When considering the osmotic coeffi-
cient data (Tables 6 and 7, and panel (b) of the Figure 3),
one finds that OZ/HNC performs in both cases markedly
better than OZ/MSA. Unfortunately in the case of highest
concentration of the +10:–2 electrolyte both theories de-
viate rather strongly from the GCMC data. A possible rea-
son is the evaluation procedure for the contact value of the
pair-distribution functions (gij(aij), see equation 8) obtai-
ned by the GCMC, which represents ≥ 230% of the Φ va-
lue while for simple electrolytes only up to 50%.

(d) Electrolyte in a mixture with uncharged component,
i.e. the solvent primitive model (z+ = –z– = +1, a+ = a– =
4.25 Å, zN = 0, aN = 4.25 Å)

In the last case studied, we tested the performance of
the HNC approximation for the system where a neutral
(uncharged) component was added to a size symmetric
+1:–1 electrolyte of the approximate concentration cEL =
1.0 mol dm–3. (Note that due to the use of the GCMC met-
hod, the concentration of the electrolyte fluctuated around
the value of 1.00 mol dm–3 for ± 0.07 mol dm–3.) The same
thermodynamic properties of the solution as given in pre-
vious subsections were calculated at different concentra-
tions of the added neutral component, cN, modelled as
hard spheres with diameter aN = 4.25 Å. The results are
presented in Tables 8 and 9, and in Figure 4.

Ta
bl

e 
8.

Sa
m

e 
as

 in
 T

ab
le

 2
, b

ut
 f

or
 a

 m
od

el
 +

1:
–1

 e
le

ct
ro

ly
te

 in
 a

 m
ix

tu
re

 w
ith

 u
nc

ha
rg

ed
 c

om
po

ne
nt

(a
+

=
 a

–
=

 a
N

=
 4

.2
5

Å
).

 T
he

 c
on

ce
nt

ra
tio

n 
of

 th
e 

el
ec

tr
ol

yt
e 

va
ri

ed
 w

ith
in

 th
e 

ra
ng

e 
of

 1
.0

0 
±

0.
07

m
ol

 d
m

–3
.

G
C

M
C

H
N

C
M

SA
c N

[m
ol

 d
m

–3
]

βE
E

X
/N

Φ
ln

γ ±
βE

E
X
/N

Φ
ln

γ ±
βE

E
X
/N

Φ
ln

γ ±

0.
10

00
(2

)
–0

.5
22

7(
2)

1.
10

9(
1)

–0
.1

02
(1

)
–0

.5
22

3
1.

11
1

–0
.1

01
9

–0
.5

14
5

1.
11

5
–9

.1
38

 · 
10

–2

0.
24

72
(3

)
–0

.4
93

3(
6)

1.
14

0(
2)

–5
.8

4(
9)

 · 
10

–2
–0

.4
93

2
1.

14
3

–5
.8

49
 · 

10
–2

–0
.4

80
8

1.
14

2
–5

.6
46

 · 
10

–2

0.
50

1(
1)

–0
.4

39
3(

8)
1.

17
9(

1)
–6

(1
) 

· 1
0–3

–0
.4

39
6

1.
18

2
–6

.1
29

 · 
10

–3
–0

.4
32

0
1.

18
6

4.
91

9 
· 1

0–3

0.
75

2(
1)

–0
.4

00
2(

5)
1.

22
2(

1)
5.

6(
1)

 · 
10

–2
–0

.4
00

2
1.

22
5

5.
64

0 
· 1

0–2
–0

.3
92

6
1.

22
8

6.
71

3 
· 1

0–2

1.
00

4(
3)

–0
.3

66
 (

1)
1.

26
4(

1)
0.

12
1(

2)
–0

.3
66

9
1.

26
8

0.
12

03
–0

.3
59

7
1.

27
0

0.
13

11
1.

25
5(

2)
–0

.3
38

2(
5)

1.
30

7(
3)

0.
18

6(
1)

–0
.3

39
2

1.
31

1
0.

18
63

–0
.3

31
9

1.
31

2
0.

19
65

1.
50

6(
2)

–0
.3

15
(1

)
1.

35
0(

1)
0.

25
2(

4)
–0

.3
15

8
1.

35
5

0.
25

48
–0

.3
08

2
1.

35
4

0.
26

35
2.

51
6(

4)
–0

.2
46

8(
3)

1.
52

8(
1)

0.
53

9(
1)

–0
.2

47
4

1.
54

0
0.

55
01

–0
.2

39
2

1.
53

1
0.

55
08

5.
11

(1
)

–0
.1

61
(1

)
2.

08
4(

6)
1.

43
2(

6)
–0

.1
61

5
2.

13
7

1.
50

3
–0

.1
52

0
2.

07
4

1.
44

3
7.

76
(5

)
–0

.1
22

(5
)

2.
88

7(
3)

2.
66

(2
)

–0
.1

22
8

3.
05

2
2.

90
1

–0
.1

10
7

2.
84

6
2.

66
3

10
.5

3(
7)

–0
.1

01
(6

)
4.

11
(2

)
4.

42
(5

)
–0

.1
00

5
4.

55
5

5.
08

3
–8

.6
23

 · 
10

–2
4.

02
4

4.
43

4

Table 9. The reduced excess chemical potential of the uncharged
component, lnγN, as obtained from GCMC, OZ/HNC, and
OZ/MSA theory for a model +1:–1 electrolyte in a mixture with
uncharged component (a+ = a– = aN = 4.25 Å). λB = 7.14 Å. The
concentration of the electrolyte varied within the range of 1.00 ±
0.07 mol dm–3.

GCMC HNC MSA
cN [mol dm–3] lnγN lnγ N lnγN

0.1000(2) 0.445(2) 0.4447 0.4488
0.2472(3) 0.492(1) 0.4924 0.4837
0.501(1) 0.540(2) 0.5417 0.5451
0.752(1) 0.603(2) 0.6052 0.6073
1.004(3) 0.666(2) 0.6698 0.6713
1.255(2) 0.732(1) 0.7367 0.7367
1.506(2) 0.800(1) 0.8063 0.8037
2.516(4) 1.092(2) 1.106 1.091
5.11(1) 1.989(3) 2.069 1.983
7.76(5) 3.239(6) 3.480 3.204
10.53(7) 5.018(6) 5.675 4.974
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It is clear from Tables 8 and 9 and Figure 4 that as
the concentration of the neutral component in the system
increases, the discrepancy of the HNC approximation re-
sults with respect to the GCMC data increases. This is
consistent with previous observations19,38,43 that the HNC
approximation adequately describes such systems only for
low volume fractions of the added neutral component. The
MSA approximation is superior to the HNC in the regions
of high volume fraction of the neutral component and per-
forms very well in the whole concentration region studied
here. The contribution of the neglected “bridge graphs” in
the HNC approximation becomes important under these
conditions.

It is worth mentioning that the calculations with the
added neutral component were repeated also for a diffe-
rent electrolyte concentrations (approximately 0.01 mol
dm–3) but since the trends in the thermodynamic functions
hardly differ from the ones presented here we did not inc-
lude them in this paper.

In Figure 5, we present the dependence of the excess
chemical potential of the uncharged component, lnγN, on
the concentration of the uncharged species, cN. It is clear
that the results of the OZ/MSA theory are in an excellent
agreement with GCMC data in the whole concentration
range studied, while OZ/HNC describes the lnγN rather
poorly at high concentrations of the neutral component.
However, at low concentrations of the uncharged compo-
nent (cN < 5 mol dm–3) OZ/HNC predicts the lnγN very
close to the simulation data.

(e) The analysis of the performance of the HVB equation
in the primitive model asymmetric electrolyte systems.

From the results given above, it is clear that in diffe-
rent systems the range of the validity of the HNC approxi-
mation, as well as the range of applicability of the HVB
equation, is different for each electrolyte studied, as well

as it depends on the concentration of the neutral compo-
nent added to the system. In attempt to determine the pa-
rameter that is decisive in the applicability of the method,
the relative error in the osmotic coefficient and mean acti-
vity coefficient was calculated as a function of the pac-
king fraction of the solution, . Here the sum runs
over all the species in the solution, ai, as before, is the dia-
meter of the species i, and ρi is its number density. The er-
ror was calculated with respect to the GCMC simulation
results and is shown in Figure 6.

Figure 5. lnγN as a function of cN (aN = 4.25 Å). The concentration
of a +1:–1 electrolyte present in the systems (a+ = a– = 4.25 Å, λB =
7.14 Å) was approximately 1.0 mol dm–3 in all cases. Symbols are
grand canonical Monte Carlo data, and theoretical values are given
by lines (continuous: OZ/HNC, dashed: OZ/MSA).

Figure 6. Relative error in the OZ/HNC results (with respect to the
GCMC data) for the mean activity coefficient, γ± (panel (a)), and
osmotic coefficient, Φ (panel (b)), as a function of the packing frac-
tion of the solution, η. Different symbols correspond to different
cases studied: +1:–1 model electrolyte in a mixture with uncharged
component (+), size symmetric +2:–1 (×), MgCl2 (�), LaCl3 (�),
ThCl4 (�), +10:–1 (�), and +10:–2 (�) model electrolyte.

The relative error in the OZ/HNC results for the
mean activity coefficient (obtained through the HVB equa-
tion (equation 1)) and for the osmotic coefficient (equation
8) depends, regardless of the nature of the electrolyte or
the presence of the neutral component, uniquely on the
packing fraction of the solution. This trend in the error, dis-
played in Figure 6, suggests that the packing fraction must
have a major impact on the performance of the HNC ap-
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proximation. These figures could also be used to estimate
the relative error of OZ/HNC calculations under given
conditions. Somehow large difference between OZ/HNC
and GCMC value for the osmotic coefficient for the
+10:–1 and +10:–2 electrolyte solutions is a consequence
of a poorly determined osmotic coefficient in the GCMC,
and not the inaccuracy of OZ/HNC. This issue can be sol-
ved by calculating the exact contact values of the pair di-
stribution functions using the Widom technique.48

4. Conc lu sions
The validity of the HNC approximation, and the

Hansen-Vieillefosse-Belloni (HVB) equation for the ex-
cess chemical potential, valid within this approximation,
was systematically tested for primitive model electrolyte
systems with asymmetry in size and charge against new
Monte Carlo simulation data. The main conclusion of this
work is that, regardless of the composition of the primiti-
ve model electrolyte, the performance of the OZ/HNC, as
well as of the HVB equation, shows a unique dependence
on the volume packing fraction of the solution in question.
In cases where the latter is smaller than 25%, the error of
the OZ/HNC is within 10% which is in many cases the er-
ror of the computer simulation itself.

5. Ap pen dix
Mean Spherical Approximation (MSA)

Within the MSA approximation, the reduced excess
internal energy is calculated by:25

(9)

where α2 = 4πλB,    Δ = 1 – π/6Σ
i  

ρia
a
i  and

formula (10)

formula
(11)

formula (12)

The electrostatic contribution to the osmotic coeffi-
cient is given by:25

formula
(13)

where ρ = Σ
i
ρi is the total density of the system.

The electrostatic contribution to the individual acti-
vity coefficient of the species i reads:25,28

formula (14)

where

formula
(15)

formula (16)

The hard sphere contribution to the osmotic and ac-
tivity coefficients follows from the equation of state of a
mixture of hard spheres. Here we use the Mansoori-Car-
nahan-Starling-Leland equation of state.47 In this case, the
osmotic coefficient has the following form:47

formula
(17)

while the hard sphere contribution to the activity coeffi-
cient of the species i reads:24

(18)

Notations in equations 17 and 18 denote the follo-
wing:
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and as usual

The osmotic and activity coefficients of the primiti-
ve electrolyte solutions are the summations of electrosta-
tic and hard sphere contributions:

Generally for the electrolyte, one calculates the
mean activity coefficient of the solutions from the defini-
tion γ±

ν++ν– = γ+
ν+γ–

ν –.
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Povzetek
Za {tudij termodinami~nih lastnosti elektrolitov, asimetri~nih po velikosti in naboju, smo uporabili pribli`ek HNC. Po-
leg prese`ne notranje energije in osmoznega koeficienta smo v {irokem obmo~ju koncentracij z uporabo Hansen-Vieil-
lefosse-Bellonijeve ena~be (HVB) izra~unali tudi srednji koeficient aktivnosti elektrolita in se na ta na~in izognili dol-
gotrajnemu ra~unanju preko Gibbs-Duhemove zveze. Izra~une smo primerjali z novimi rezultati velekanonskih simula-
cij Monte Carlo. Rezultati ka`ejo, da se srednji koeficienti aktivnosti ter osmozni koeficienti elektrolitov, kot jih napo-
ve pribli`ek HNC, dobro ujemajo z rezultati ra~unalni{kih simulacij. To~nost rezultatov je odvisna predvsem od zasede-
nosti prostora v raztopini. Izka`e se, da pri vi{ji zasedenosti prostora, dobimo nekoliko bolj{e rezultate s pribli`kom
MSA.


