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Dobro znano dejstvo je, da za nekatere elementarne funkcije ne obstajajo nedoloceni
integrali, ki bi se lahko zopet izrazali samo s pomo¢jo elementarnih funkecij. Primer takega
integrala je fe”zdx. V ¢lanku predstavimo, kaj je v ozadju te teorije, in pokaZzemo nekaj
primerov elementarnih funkcij, ki nimajo elementarnih integralov.

INTEGRALS OF ELEMENTARY FUNCTIONS

It is a well known fact that certain integrals of elementary functions cannot be expres-
sed in elementary terms. An example of such an integral is fez2dx. In this paper we
show what is behind this theory and give some examples of elementary functions that do
not have elementary integrals.

1. Uvod

Iz osnovnega izreka integralskega racuna vemo, da sta si rac¢unanje ne-
dolocenega integrala in racunanje odvoda bolj ali manj inverzni operaciji.
Ceprav je racunanje odvoda elementarne funkcije preprosto, pa to ne velja
za racunanje nedolocenega integrala. Med drugim je problem v tem, da se
nedoloceni integral bolj nerodno obnasa na produktu funkcij. Metoda per
partes nam, razen v izjemnih primerih, ne da prav veliko. Zato verjetno
vsak, ki se je kdaj mucil z integracijo, sluti, da so elementarne funkcije, ki
imajo elementarne nedolocene integrale, morda bolj izjema kot pravilo. V
nadaljevanju ¢lanka bomo videli, da je ta slutnja seveda upravi¢ena, vendar
pa dokaz tega ni tako preprost.

Za zacCetek si poglejmo preprost primer integrala racionalne funkcije
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Pri ra¢unanju integrala smo si pomagali z razcepom racionalne funkcije na

parcialne ulomke [6, str. 237-239]. Ta metoda integracije racionalnih funk-
cij se v¢asih imenuje tudi metoda nedoloc¢enih koeficientov in nam omogoca
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integracijo poljubne racionalne funkcije pod pogojem, da znamo imenova-
lec faktorizirati na nerazcepne faktorje. Ti so bodisi linearni bodisi kva-
dratni nerazcepni faktorji. V rezultatu integracije bodo v sploSnem nasto-
pale racionalne funkcije, logaritmi racionalnih funkcij in funkcije arctg, ki
so posledica nerazcepnih kvadrati¢nih faktorjev. Slednjih se lahko znebimo,
¢e smo pripravljeni v metodo vpeljati kompleksna Stevila, saj iz razcepa
2241 = (z+14)(x — i) sledi

/da: _i/dx_z’/dx
2+1 2)az+i 2)x—i’

Integrala na desni strani sta seveda integrala kompleksnih funkcij. S pomocjo
kompleksnega logaritma (log z = log|z| + iArg z), ima sedaj rezultat obliko

+C.

ottt —1 2+ 1 x 1 T+
/ z3(x? + 1) do = +logx2+1+§log$_i
V splognem lahko vsak polinom v kompleksnem razcepimo na same line-
arne faktorje. Vsako racionalno funkcijo tako lahko razcepimo na parcialne
ulomke, ki bodo v imenovalcih imeli samo potence linearnih faktorjev. Tem
sumandom lahko pois¢emo nedolocene integrale, ki bodo bodisi zopet cele
potence linearnih faktorjev ali pa kompleksni logaritmi linearnih faktorjev.
Zato imamo izrek

Izrek 1 (Laplace, 1812). Nedoloceni integral racionalne funkcije je vedno
elementarna funkcija. Le-ta je ali racionalna funkcija ali pa vsota racionalne
funkcije in logaritmov racionalnih funkcij, pomnoZenih s konstantams.

Nabor funkcij, ki jih dobimo v integralih racionalnih funkcij, se je z vpeljavo
kompleksnih $tevil zmanjsal, poenostavila pa se je tudi sama metoda inte-
gracije racionalnih funkcij. Seveda pa je slaba stran, da bodo povsem realne
funkcije dobile nedolocene integrale, ki bodo (navidezno) kompleksni, zato
smo za zdaj seveda lahko skepti¢ni glede smiselnosti vpeljave kompleksnih
Stevil. Bolj prepri¢ljive razloge bomo videli v nadaljevanju. Izkazalo se bo
namre¢, da se integrali elementarnih funkcij, ¢e so seveda elementarni, v
splognem izrazajo kot vsota funkcij ,iste vrste” in logaritmov le-teh.
Ceprav se kar nekaj tipov nedolocéenih integralov lahko s primerno sub-
stitucijo prevede na integral racionalne funkcije, pa v splosnem zgodba ni
tako preprosta. Medtem ko je odvod elementarne funkcije zopet elementarna
funkcija, pa za integral to vsekakor ni res. Tako se na primer integrali

o/e‘””de ./ dz ./sinzndx . dx
log z x Vad +1
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ne morejo zapisati samo z elementarnimi funkcijami. Naj omenimo, da je
prvi integral tesno povezan z distribucijo normalnih spremenljivk v verjetno-
sti, drugi z distribucijo praStevil, zadnji pa spada med elipti¢ne integrale.

Prav tako je vcasih tezko oceniti, kdaj je integral funkcije elementa-
ren in kdaj ne. Integrala fﬂj‘x dz in f:r"”” log z dx nista elementarna, med-
tem ko je [(2% + 2" logz)dx = 2% 4+ C elementaren. Podobno je integral
f(;—z + %) dzx elementaren pri konstanti a = — (n_ll)! (per partes), drugace
pa je neelementaren.

2. Elementarne funkcije

V tem razdelku bomo natan¢no opisali, kaj si predstavljamo pod poj-
mom elementarne funkcije. Pod pojmom elementarne funkcije si obic¢ajno
predstavljamo kakrsnekoli funkcije, ki jih dobimo iz funkcije f(z) = x le s
pomocjo znanih operacij in funkcij: sestevanja, ods$tevanja, deljenja, mnoze-
nja, korenjenja, potenciranja, trigonometri¢nih funkcij in njihovih inverzov,
eksponentne in logaritemske funkcije, ter poljubnih kompozitumov le-teh.
Na primer

ex® — Txlogx

Ve~ —sin(x /(25 + 6)) '

Nabor funkcij, ki sestavljajo elementarne funkcije, se znatno zmanjsa, ¢e pri
rac¢unanju dovolimo Se kompleksna Stevila. V kompleksnem namre¢ velja

. ezz _ e*lw . e’L.’L’ + e*lz
sing = ———— in cosx = ——. (1)
21 2

S pomodjo teh formul lahko dobimo na primer

. . . . 1 1+x
arcsinz = —ilog (za; +v1- x2> in arctg x = — log — .
21 1 -z
Vse trigonometri¢ne in inverzne trigonometri¢ne funkcije se zato lahko za-
piSejo le s pomoco logaritemske in eksponentne funkcije, kar ra¢unanje in
kasnejse definicije precej olaj3a.

Spomnimo se, da je funkcija f analiticna na odprtem intervalu I C R, Ce
jo v vsaki tocki iz I lahko razvijemo v Taylorjevo vrsto, ki bo na neki okolici
te tocke tudi konvergirala proti funkciji. Kompleksna funkcija f = u + iv
je analiti¢na, Ce sta analiticna tako njen realni del w kot njen imaginarni
del v. Analiti¢nost se seveda ohranja pri seStevanju, odstevanju, mnozenju
funkcij in tudi pri odvajanju ter integriranju. Kvocient analiti¢nih funkcij
bo analiti¢en na komplementu nicel funkcije v imenovalcu. Naj bo f kom-
pleksna analiti¢na funkcija na odprtem intervalu I in naj tam nima nicel.
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Tocka zg naj bo poljubna toc¢ka na intervalu I. Logaritem funkcije f de-
x

finiramo s predpisom (log f)(z) = [ f'(t)/f(t)d¢, kjer nam izraz pomeni
o

obic¢ajen Riemannov integral. Sprememba referen¢ne tocke zg spremeni lo-
garitem funkcije do aditivne konstante, kar pa nas ne bo motilo. Ce zelimo,
lahko konstanto vedno dolo¢imo tako, da bo veljalo €8/ = f. Funkcija
log f je analiti¢na funkcija, saj je integral analiti¢ne funkcije. Analogno bi
lahko dejali, da je log f katerakoli (analiti¢na) funkcija g, za katero velja
f'/f = ¢. Ce pa je kdo bolj doma v kompleksni analizi, lahko za log f
vzame tudi katerokoli vejo kompleksne logaritemske funkcije. Za poljubno
analiti¢no funkcijo f na intervalu I bomo rekli funkciji e/ eksponentna funk-
cija funkcije f. Le-ta je na I zopet analiti¢na.

Za kompleksno funkcijo h re¢emo, da je meromorfna na intervalu I C R,
Ce je kvocient dveh funkcij f in g (g # 0), ki sta obe analiti¢ni na I. Prostor
meromorfnih funkcij na I C R oznadimo z M(I) in je ofitno obseg. Obseg
M(I) bo za nas pomenil osnovni razred funkcij, s katerimi bomo racunali.

Naj bo F poljuben obseg. Z F[z] ozna¢imo kolobar polinomov nad obse-
gom F' v nedolo¢enki x in z F'(x) obseg racionalnih funkcij nad F' v eni spre-
menljivki. Analogno imamo v ve¢ spremenljivkah kolobar F[z1,z2,. .., xy]
polinomov v n spremenljivkah in F(z1,z2,...,x,) obseg racionalnih funk-
cij v n spremenljivkah. Ce je G D F razsiritev obsega F in a € G, je o
algebraicen element nad F, ¢e je p(a) = 0 za kakSen polinom p € Flx]. V
nasprotnem primeru je « transcendenten element nad F. Za o € G, tran-
scendenten nad F', nam preslikava a — x poda izomorfizem tako kolobarjev
Fla] in Flz] kot tudi obsegov F(«) in F(x). Ve¢ in bolj natan¢no lahko o
raz8iritvah obsegov najdemo v [5].

Definicija 1. Naj bodo fi, fa,..., fn meromorfne funkcije na intervalu I.
Potem je C(f1, f2,..., fn) obseg funkcij oblike

h = p(flvaa'--afn)
q(fl’f%'--,fn)’

kjer sta p,q € Clx1, 9, ...,2,] polinoma in g # 0.

Definicija 2. Elementaren obseg funkcij je vsak obseg oblike
C(z, f1,..., fn), kjer so fi,..., fn, meromorfne funkcije na nekem intervalu
I C R, in je fi ali algebrai¢na nad C(z, fi,..., fx—1), ali je logaritem funk-
cije iz C(z, f1,..., fr—1), ali pa je eksponentna funkcija neke funkcije iz
C(z, f1,.-., fk—1). Meromorfna funkcija f je elementarna, ¢e je vsebovana
v kaksnem elementarnem obsegu funkcij.
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Ceprav je interval I, na katerem so funkcije meromorfne, formalno del defi-
nicije, pa se s tem ne bomo preve¢ obremenjevali. Princip enoli¢nosti nam
namre¢ pove, da je meromorfna funkcija natanko doloCena zZe, ko poznamo
njene vrednosti na katerikoli mnozici s stekalis¢em. Za interval lahko tako
vzamemo katerikoli interval, na katerem so vse funkcije dobro definirane. V
nadaljevanju bomo na interval I zato preprosto pozabili.

Primer 1. Funkcija f(x) = 2°, s € R, je elementarna funkcija, saj je f €
C(x,logx,e®'8?). Ce je s € Q, je f tudi algebrai¢na nad C(z), in je zato f
ze v elementarnem obsegu C(z, f), ¢e pa je s celo element Z, je f 7e v C(x).

Primer 2. Iz formul (1) sledi, da so trigonometri¢ne funkcije sinz, cosx
in tanx v elementarnem obsegu C(z, €'*), funkcija arcsinz pa se nahaja v

elementarnem obsegu C(z, v1 — 22,log (iz + V1 — 2?)).

Primer 3. Funkcija
mad — Telnx

Ve~ —sin(z /(25 + 6))

je v elementarnem obsegu (C(x,lnm, e’, eiw%%, Ve * —sin(x/ (25 + 6)))

Pomembna lastnost obsegov elementarnih funkcij je, da so zaprti za odva-
janje.
Izrek 2. Naj bo funkcija f v elementarnem obsequ K. Potem je f' € K.

Dokaz. Naj bo K = C(xz, f1,...,fn). Izrek bomo dokazali z indukcijo
pon. Cejen =0,je K =C(z). Ker je odvod racionalne funkcije ra-
cionalna funkcija, je K zaprt za odvajanje. Predpostavimo torej, da je
L = C(z, f1,..., fan—1) zaprt za odvajanje in je K = L(f,), pri ¢emer je
fn ali logaritem, ali eksponent funkcije iz L, ali pa algebrai¢en nad L. Do-
volj je, ¢e pokazemo, da je f/ € K. Ceje f, = €9, g € L, potem je f/, = ge,
in ker je ¢’ € L po predpostavki, je f/ € K. Podobno naj bo f, = logg
in f/ = ¢ /g € L C K. Naj bo sedaj f, algebrai¢en nad L. Predposta-
vimo, da je p(f,) = 0 za polinom p(t) = t™ + @y 1™ + -+ + ag, kjer
je stopnja polinoma p najmanj$a mozna. Zato velja ¢(f,) # 0 za polinom
q(t) = mt™ '+ ay_1(m —1)t"™"2 4 ... + a;. Po drugi strani pa velja

0= (p(fn)) = q(f)fh +ab 1 fm 4 al, of ™24 -+ aj.
Torej je

£ = _a;nflfqgn_l +tap, o ff P4+ ag
" q(fn)

Ker so odvodi aj, € L po indukcijski predpostavki, je desna stran v K. S tem
je dokaz koncan. m
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3. Liouvillov izrek

V prejsnjem razdelku smo pokazali, da je odvod vsake elementarne funk-
cije prav tako elementarna funkcija. Se vet, izrek, ki smo ga pokazali zgoraj,
nam pove, da odvod ni ni¢ bolj kompliciran kot sama funkcija, v smislu, da
se nahaja v istem elementarnem obsegu. Kot bomo videli, za integral ne
velja enako. Integral elementarne funkcije je pogosto neelementaren. Ce pa
je integral elementarne funkcije elementaren, lahko precej natancéno povemo,
kaksno obliko bo imel. To je vsebina Liouvillovega izreka iz leta 1835, ki je
osnova tako za algoritmi¢no racunanje nedolocenih integralov [2] kot tudi
za dokazovanje, da dolo¢ena elementarna funkcija nima elementarnega in-
tegrala. Izreka tukaj ne bomo pokazali, za dokaz pa se bralec lahko obrne
na [3].

Izrek 3 (Liouville, 1835). Naj bo f € K = C(x, fi1,..., fn). Potem ima
f elementaren integral natanko takrat, ko velja

m /
fzzakgfkﬂLh',
=1 Ik
kjer so a1, ...,am € Cin gy ...,gx, h € K. Takrat velja

/f(:c)da::Zakloggk+h.

k=1

Naj bo K kot v formulaciji izreka in oznacimo s
m g/
Ko={f € K;f:§ :akg—k—}-h/, kjer 80 g1,...,9m,h € K, ay,...,am € Ch.
k
k=1

Liouvillov izrek nam pove, da ima elementarna funkcija f, ki se nahaja v
elementarnem obsegu K, elementaren integral natanko tedaj, ko se nahaja
v podmnozici Ky. Ker za dva elementarna obsega L C K seveda velja
Ly C Ky, je vseeno, kateri elementarni obseg izberemo za preverjanje ele-
mentarnosti integrala funkcije f. Vsekakor pa je bolje vzeti ¢im ,manjsi“
obseg, saj bo tako preverjanje lazje. V primeru, ko je K = C(x) obseg
racionalnih funkcij, nam Laplaceov izrek pove, da je Ky = K, in ima tako
vsaka racionalna funkcija elementaren integral. Prav tako je K = K za ele-
mentarne obsege tipa C(z, {/(ax + b)/(cx + d)) ali C(x, Vax? + bx + c), saj
znamo integrale funkcij iz teh obsegov s primernimi substitucijami prevesti
na integrale racionalnih funkcij. V splognem pa bomo videli, da K\ Ky # 0,
in s tem pokazali obstoj elementarnih funkcij, ki nimajo elementarnih inte-
gralov. Prva taka preprosta elementarna obsega sta C(x,e9) in C(z,logg),
kjer je g poljubna nekonstantna racionalna funkcija.
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Opomba 1. Ko integriramo povsem realno funkcijo, obi¢ajno Zelimo tudi
kon¢ni rezultat predstaviti samo z realnimi funkcijami. To seveda lahko ve-
dno storimo s pomocjo primernih formul, ki nam bodo kompleksne funkcije
zamenjale z realnimi. Vendar pa je pri Liouvillovem izreku klju¢no, da raz-
girimo razred funkcij na kompleksne. Primer je [(1/(1 + 2?))dz = arctg ,
ki ga ne moremo zapisati kot vsoto realne racionalne funkcije in z realnimi
konstantami pomnozenih logaritmov realnih racionalnih funkcij. To dejstvo
sicer ni povsem ocitno in je lepa vaja.

4. Elementarna obsega C(x, e9) in C(x,logg)

Lema 4. Ce je g racionalna funkcija, ki ni konstanta, je €9 transcenden-
tna nad C(z).

Dokaz. Predpostavimo, da je €9 algebrai¢na nad C(x). Potem obstaja mo-
ni¢ni polinom p € C(x)[y] minimalne stopnje n, da velja

p(e9) = e 4+ ap_1e™ VI 4. 40 =0.
Odvajamo zgornjo enakost in dobimo novo polinomsko enacho
a(e?) =ng'e™ + (a1 + (0 = 1)g'an-1)e" ™+ 4+ a5 = 0.

Ker je bil polinom p minimalen, mora p deliti polinom ¢. Posebej mora
veljati a, = ng’ap oziroma ,

a

X =ng .

ao
Ce enacbo integriramo, dobimo logag = ng + C oziroma ag = De™ | kjer
sta C' in D kompleksni konstanti. Funkcija e9, razumljena kot funkcija,
definirana na kompleksnih §tevilih, ima v polih racionalne funkcije g bistveno
singularnost. Ce je g polinom, pa ima bistveno singularnost v neskonc¢nosti.
Ker pa ima vsaka racionalna funkcija v singularnostih kveéjemu pol, dobimo

protislovje. m

Opomba 2. Zelo podobno vidimo, da je logg transcendenten nad C(z),
¢e je g nekonstantna racionalna funkcija. V tem primeru zopet vzamemo
moni¢ni polinom p € C(z)[y] minimalne stopnje, za katerega naj bi veljalo

p(logg) = (logg)" + an—1(log )" ' + - 4+a9 = 0.

Ce to enakost odvajamo, dobimo polinomsko enac¢bo
g(logn) = (aj,_y +n(g'/9))(log 9)" ™" + -+ + (ag +ai(g'/g9)) = 0.
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Ker je stopnja ¢ manjsa kot stopnja p in je bil p po predpostavki minimalne
stopnje, mora biti ¢ = 0. Posebej mora zato veljati a],_; = —ng’/g oziroma
e“~1 = D/g". Ce a,_1 ni konstanten, je e®~! transcendenten nad C(x) po
lemi 4 in pridemo v protislovje, ¢e pa je a,_1 konstanten, je tak tudi g, kar
pa smo izkljucili.

Lema 5. Naj bo g € C(x) nekonstantna racionalna funkcija in p € C(x)[e9]
poljuben polinom pozitivne stopnje n s koeficienti v C(x). Potem je (p(e9))’
zopet polinom stopnge n v C(x)[e9] in p(e?) deli (p(e9)) v C(zx)[e?] natanko
teday, ko je p monom.

Opomba 3. Preden dokaZzemo lemo, pokomentirajmo izraz (p(e?))’. Kot
smo 7e omenili, iz transcendentnosti e/ nad C(z) sledi, da sta kolobarja
C(x)[e9] in C(z)[y] izomorfna, in sicer s kanoni¢nim izomorfizmom, ki pre-
slika 9 v nedoloGenko y. Ce je p € C(x)[eY] polinom p(e9) = a,e™ +
an—1e"V9 4 4 ag, kjer so a; € C(z), izraz (p(e9))’ ne pomeni nié
drugega kot odvajanje funkcije p(eg(“)) po spremenljivki z. Ker je prostor
C(z)[e9] zaprt za odvajanje, saj je (p(e9))" = (a), + na,g')e™ + (al,_; + (n—
Dan_19")e™ 9 4 ...+ a) € C(z)[e9], je vprasanje, ali p(e?) deli (p(e?)),
smiselno. Ce s pomocjo izomorfizma €9 — y razumemo polinom p kot po-
linom v C(x)[y], se ta odvod prenese na operator 9: C(z)[y] — C(x)[y],
podan z dp = (al, + nang' )y + (al,_; + (n—)an—1¢)y"* +---+af. Ope-
rator 0 seveda zadogCa Leibnizovemu pravilu d(pq) = pdq + qOp. V povsem
algebrai¢nem jeziku nam zgornja lema pove, da p € C(z)[y| deli dp v C(z)]y]
natanko tedaj, ko je p = ay™ za neki a € C(z).

Dokaz. Ce je p monom, je dokaz preprost. Naj bo f, € C(z) vodilni koefi-
cient polinoma p. Velja

(fne")' = (fn + nfng’) €.

Seveda je f] 4+ nfng € C(x) neniceln, saj bi bila drugace funkcija f,e™
konstantna. Pokazimo sedaj, da p(e9) ne more deliti (p(e?))’, ¢e ima p
pozitivno stopnjo in ni monom. Naj bosta f,e™ in f,,e™9 dva razli¢na
neni¢elna sumanda v p(e9). Ker je €9 transcendenten nad C(x), je C(x)[eY]
izomorfen C(z)[y], kjer je y nedolocenka. Zato je deljivost v C'(x)[e?] povsem
enaka deljivosti v C(z)[y] in mora po zgornjem izradunu veljati

fotnfng ot mfmg
fn fm

fne™ ' _
(fmemg> a
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Ta enakost narekuje obstoj konstante C, da velja (f,,/fm) = Cel™ ™9 Ker
je funkcija e(™~™9 transcendentna nad C(z), to ni mogoce. m

Izrek 6 (Liouville, 1835). Naj bosta f,g € C(x) in g ni konstanina.
Funkcija fed ima elementaren integral natanko tedaj, ko obstaja racionalna
funkcija R, da velja

f=R +Rg.

Preden se spustimo v dokaz izreka, na dveh primerih poglejmo njegovo upo-
rabo.

Primer 4. Pokazimo, da funkcija e®" nima elementarnega integrala. Seveda
od tod sledi, da Gaussov integral iz uvoda prav tako ni elementaren. Po
izreku 6 ima funkcija e*" elementaren integral natanko tedaj, ko obstaja
taka racionalna funkcija R, da velja

1=R +2zR.

Takoj lahko opazimo, da R ne more biti polinom, ker bi potem desna stran
enakosti morala biti polinom stopnje vsaj 1. Torej ima R vsaj en pol na
kompleksni ravnini, denimo v toc¢ki a. Naj bo stopnja pola v tocki a enaka k.
Lokalno okoli toc¢ke a lahko R zapisemo kot

¢(2)

R(z) = ma

kjer je ¢ holomorfna in nenic¢elna v okolici tocke a. Za spremembo imena
spremenljivke iz = v z smo se odlocili samo zaradi poudarka, da R sedaj
razumemo kot holomorfno funkcijo. Odvod je tedaj v okolici a oblike

R(z) = (z—a)d'(z) —ké(z) _ ¥(2)

(z —a)kt! (2 —a)ktl?

kjer je v holomorfna in nenicelna v okolici a. Tako ima

P(z) +22(2 — a)9(2)

R'(2) +22R(z) = )

v tocki a zopet pol stopnje natanko k + 1 in ne more biti konstanta.

Primer 5. Integral f% lahko s substitucijo logx = u prevedemo v inte-

gral
u
/e du.
U
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Pokazimo, da ta integral ne more biti elementaren. Ce bi bil, bi morala
obstajati racionalna funkcija R, za katero bi veljalo

l:R’+R. (2)
U
R ocitno ne more biti polinom, zato ima R pol v vsaj eni tocki a € C, ki naj
bo pozitivne stopnje k. Desna stran (2) ima tedaj v a pol stopnje k+1 > 2.
Ker ima leva stran pol samo v tocki 0, ki pa je stopnje 1, (2) ne more biti
izpolnjena. 7 veckratno uporabo formule per partes lahko pokazemo, da je

integral
€T

e
—dz

mn

prav tako neelementaren za vsako naravno Stevilo n.

Dokaz (izreka 6). Pogoj je vsekakor zadosten, saj je v primeru, ko je f =
R’ + Ry, funkcija ReY integral fed. Poglejmo, da je pogoj tudi potreben.
Funkcija F(z) = f(2)e?®) je elementarna in se nahaja v elementarnem
obsegu C(z,e9®)). Po 17reku 3 ima F elementaren integral natanko tedaj,
ko jo lahko zapiSemo kot

x 9@\ /
Z% e )))) + ()Y,

kjer so r1,...,mn, 7 € C(x,y) racionalne funkcije v dveh spremenljivkah in
ai,...,a, kompleksne konstante. Seveda lahko vsako racionalno funkcijo
rj, j € {1,...,n} zapiSemo kot r; = p;/q;, kjer sta p;,q; € C(z)[y]. Enako
lahko zapisemo r = p/q, p,q € C(x)[y] in predpostavimo, da sta si p in ¢ tuja
v C(z)[y], kar pomeni, da ne obstaja polinom v C(x)[y] pozitivne stopnje,
ki bi delil tako p kot ¢. Zgornja enacba tako dobi obliko

Z a] z,e9@))’ _zn:aj(qi(“W + (3)

x ed 33)) = qj (113,69(13))

(p(x, 9@ )))’ q(% eg(m)) _ p(x, eg(x)) (q(m’ 69(93)))/
) '
Vsak p; lahko v C(z)[y] razcepimo na produkt p; = pj1---pjk, kjer so

Pj1, -, Pjk bodisi nerazcepni moni¢ni polinomi (vodilni koeficient je 1) v
C(z)[y] ali pa so elementi C(z). Podobno lahko razcepimo tudi polinome g;.
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(st)’

_ s t . - ROT .
~~ = = + 7 postane izraz (3) Se preprostejsi, in sicer

x 6g(ﬂﬁ)))

z)ed® :z:: —m (o, e7@) (4)

o e9) afr, 9) — pla, ) (a5 )
(a(e, e

pri Cemer so p; vsi bodisi moni¢ni nerazcepni polinomi iz C(z)[y] bodisi
elementi C(z). Predpostavimo lahko tudi, da so vsi p; razli¢ni med seboj,
saj v primeru ponavljanja ustrezne cClene seStejemo.

Ker je po lemi 4 e9 transcendenten nad C(z), je preslikava, podana z e9 +—
y, izomorfizem tako med obsegoma C(z,y) in C(z, e?) kot tudi kolobarjema
C(x)[y] in C(x)[e9]. Zato je izraz (4) ekvivalenten enacbi

Z uporabo enakosti

)

- 0 0
Z 1 990 p0g 5)
= q

v obsegu C(z,y). Operator 0: C(x)[y] — C(z)[y] je definiran v opombi 3.
Leva stran enacbe (5) je element C(x)[y], medtem ko je desna stran
v splognem racionalna funkcija v dveh spremenljivkah. Poskrbeti moramo
torej, da se vsi nerazcepni polinomi na desni strani kraj$ajo iz imenovalca.
Naj bo pg eden od nerazcepnih moni¢nih polinomov v (5). Po lemi 5 py ne
more deliti Jpg, razen Ce je pp = y (potenca pri y je nujno 1, saj so faktorji
nerazcepni). Predpostavimo sedaj, da pj ni enak y. Ker so vsi p; med seboj
razliéni in so vsi nerazcepni, se pr ne more pokrajsati iz imenovalca v (5)

m
znotraj izraza ) a;0pj/p;. Da se bo pokrajsal s pomocjo izraza (qdp —

J
pdq)/q?, mora nastopiti kot nerazcepni faktor v razcepu polinoma q. Naj
bo ¢ neki nerazcepen moni¢ni polinom iz C(z)[y], ki nastopa v razcepu
polinoma ¢ in ni enak 3. Torej je ¢ = §q! 7a neko pozitivno naravno potenco
in ¢q; ne deli ¢. Dobimo

q9p —pdq _ @_p o9 » Iq
¢ aqt P4 T ggt

Zopet uporabimo lemo 5 in ugotovimo, da je stopnja ¢; v imenovalcu (¢dp—
m

pdq)/q? nujno enaka [+1 > 1. Ker pa je stopnja py v imenovalcu Z a;0p;/p;
j

enaka 1, se ne more pokrajsati. Prav tako vidimo, da polinom ¢ ne more
imeti v razcepu nerazcepnih faktorjev razliénih od y, saj bi tudi ti prispevali
v imenovalec izraza (5).
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Ce povzamemo zgornje, dobimo, da lahko samo eden izmed p; vsebuje
tudi spremenljivko y in je enak y, preostali pa morajo biti elementi C(x).
Prav tako mora biti ¢ enak y' za neki | € NU {0}. Zato mora biti izraz (5)
oblike l .

Ip; Oy | yIp—pdy
y=>» aj—+a—+ "—5——, (6)
Z J Dj y y2
kjer so p1,...,pm € C(z), p € C(x)[y], l e NU{0} in a,aq,...,a, € C. Ko
nadalje polinom p razpiSemo po potencah y, dobimo obliko

f(@)y = S(z) + ag (= +ZR’ "()jR;j(x))y’,

kjer indeks j tee po neki kon¢ni mnozici celih Stevil in so R; € C(z).
m
S S € C(x) smo oznadili vsoto Zajp;/pj. Seveda se morata izraza na levi
J
in desni ujemati pri vsaki potenci y. Konkretno pri j = 1 dobimo
flz) =Ry + 4R
S tem je dokaz koncan. m

Primer 6. Z majhno modifikacijo zgornjega dokaza lahko obravnavamo
tudi integral funkcije sinz/x. Ker velja

/sin:v du :/eix —'e_ix de — l et —e ¥ du,
x 2ix 21 u

bo integral elementaren natanko tedaj, ko bo elementaren integral funkcije
F(z) = (¢ —e™™)/x € C(x,e”). Od tu naprej ravnamo povsem enako
kot v dokazu izreka 6. Hitro se lahko prepricamo, da so vse manipulacije v
dokazu 6 do formule (5) pravzaprav samo posledica dejstev, da operiramo
znotraj obsega C(z,y) = C(x,eY) in da izraz f(x)y € C(z,y) v imenovalcu
nima nerazcepnih polinomov iz C(x)[y], razli¢nih od y. Tako je tudi v nagem
primeru z g(z) = z in y = e®. Integral F'(z) bo zato elementaren natanko
tedaj, ko bomo lahko zapisali

+a
p; y y2

bl

1 " Op, 0 Lop — poy!
_1:Zajﬁ 7y+y D — poy
J

kjer so p1,...,pm € C(z), p € C(x)[y], I € NU {0} in a,aq,...,a,, € C
oziroma

1 171_ /
et el +G+ZR )+ jR;(x))y’
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kjer indeks j tece po neki kon¢ni mnozici celih §tevil in so R; € C(z) in
m

S = > a;p;/p;. Posebej mora veljati B} + Ry = 1/z. Podobno, kot smo
J

videli v zgornjih dveh primerih, bo imela pri vsaki racionalni funkciji Ry, ki
ni polinom, vsota R} + Ry pol stopnje ve¢ kot 1 v vsaj eni tocki, kar pa ne
velja za 1/z. Ker seveda Ry ne more biti polinom, dobimo protislovje.

Zelo podobno, kot smo zgradili teorijo za funkcije oblike e9, bi lahko
poiskali kriterij za elementarnost integralov funkcij oblike flog g, kjer sta f
in g racionalni funkciji:

Izrek 7. Naj bosta f,g € C(x) in g ni konstantna. Funkcija flogg ima

elementaren integral natanko tedaj, ko obstajata racionalna funkcija R in
kompleksna konstanta C, da velja

f:R’+C—g/
9

Pokazimo samo, da je pogoj zadosten

/ C /
[10890s :/(R’+c~‘;) logg s = (logg)? + Rlogg — [ R ac.

Zadnji integral je integral racionalne funkcije in zato elementaren po Lapla-
ceovem izreku.

Primer 7. Za vsak kompleksen a # 0 je integral

1
/ogwdx
T —a

neelementaren, saj bi moral biti R, ki zados¢a pogoju iz izreka, oblike
R(z) = log(x — a) — C'logz + D za neki konstanti C;, D € C. Funkcija
take oblike pa ni racionalna funkcija. To lahko vidimo na razli¢ne nacine.
Med drugim opazimo, da mora imeti R(x) v a singularnost, vendar pa mora

biti R(x) |x — a|1/2 omejena v okolici tocke a.
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