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INTEGRALI ELEMENTARNIH FUNKCIJMARKO SLAPARIn²titut za matematiko, �ziko in mehanikoLjubljanaMath. Subj. Class. (2000): 12H05Dobro znano dejstvo je, da za nekatere elementarne funk
ije ne obstajajo nedolo£eniintegrali, ki bi se lahko zopet izraºali samo s pomo£jo elementarnih funk
ij. Primer takegaintegrala je R
e

x
2

dx. V £lanku predstavimo, kaj je v ozadju te teorije, in pokaºemo nekajprimerov elementarnih funk
ij, ki nimajo elementarnih integralov.INTEGRALS OF ELEMENTARY FUNCTIONSIt is a well known fa
t that 
ertain integrals of elementary fun
tions 
annot be expres-sed in elementary terms. An example of su
h an integral is R
e

x
2

dx. In this paper weshow what is behind this theory and give some examples of elementary fun
tions that donot have elementary integrals. 1. UvodIz osnovnega izreka integralskega ra£una vemo, da sta si ra£unanje ne-dolo£enega integrala in ra£unanje odvoda bolj ali manj inverzni opera
iji.�eprav je ra£unanje odvoda elementarne funk
ije preprosto, pa to ne veljaza ra£unanje nedolo£enega integrala. Med drugim je problem v tem, da senedolo£eni integral bolj nerodno obna²a na produktu funk
ij. Metoda perpartes nam, razen v izjemnih primerih, ne da prav veliko. Zato verjetnovsak, ki se je kdaj mu£il z integra
ijo, sluti, da so elementarne funk
ije, kiimajo elementarne nedolo£ene integrale, morda bolj izjema kot pravilo. Vnadaljevanju £lanka bomo videli, da je ta slutnja seveda upravi£ena, vendarpa dokaz tega ni tako preprost.Za za£etek si poglejmo preprost primer integrala ra
ionalne funk
ije
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+ arctg x+ C .Pri ra£unanju integrala smo si pomagali z raz
epom ra
ionalne funk
ije napar
ialne ulomke [6, str. 237�239℄. Ta metoda integra
ije ra
ionalnih funk-
ij se v£asih imenuje tudi metoda nedolo£enih koe�
ientov in nam omogo£a
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Marko Slaparintegra
ijo poljubne ra
ionalne funk
ije pod pogojem, da znamo imenova-le
 faktorizirati na neraz
epne faktorje. Ti so bodisi linearni bodisi kva-dratni neraz
epni faktorji. V rezultatu integra
ije bodo v splo²nem nasto-pale ra
ionalne funk
ije, logaritmi ra
ionalnih funk
ij in funk
ije ar
tg, kiso posledi
a neraz
epnih kvadrati£nih faktorjev. Slednjih se lahko znebimo,£e smo pripravljeni v metodo vpeljati kompleksna ²tevila, saj iz raz
epa

x2 + 1 = (x+ i)(x− i) sledi
∫

dx

x2 + 1
=
i

2

∫

dx

x+ i
−
i

2

∫

dx

x− i
.Integrala na desni strani sta seveda integrala kompleksnih funk
ij. S pomo£jokompleksnega logaritma (log z = log |z|+ iArg z), ima sedaj rezultat obliko

∫

x4 − x3 + x2 + x− 1

x3(x2 + 1)
dx =

x2 + 1

x
+ log

x

x2 + 1
+
i

2
log

x+ i

x− i
+ C .V splo²nem lahko vsak polinom v kompleksnem raz
epimo na same line-arne faktorje. Vsako ra
ionalno funk
ijo tako lahko raz
epimo na par
ialneulomke, ki bodo v imenoval
ih imeli samo poten
e linearnih faktorjev. Temsumandom lahko poi²£emo nedolo£ene integrale, ki bodo bodisi zopet 
elepoten
e linearnih faktorjev ali pa kompleksni logaritmi linearnih faktorjev.Zato imamo izrekIzrek 1 (Lapla
e, 1812). Nedolo£eni integral ra
ionalne funk
ije je vednoelementarna funk
ija. Le-ta je ali ra
ionalna funk
ija ali pa vsota ra
ionalnefunk
ije in logaritmov ra
ionalnih funk
ij, pomnoºenih s konstantami.Nabor funk
ij, ki jih dobimo v integralih ra
ionalnih funk
ij, se je z vpeljavokompleksnih ²tevil zmanj²al, poenostavila pa se je tudi sama metoda inte-gra
ije ra
ionalnih funk
ij. Seveda pa je slaba stran, da bodo povsem realnefunk
ije dobile nedolo£ene integrale, ki bodo (navidezno) kompleksni, zatosmo za zdaj seveda lahko skepti£ni glede smiselnosti vpeljave kompleksnih²tevil. Bolj prepri£ljive razloge bomo videli v nadaljevanju. Izkazalo se bonamre£, da se integrali elementarnih funk
ij, £e so seveda elementarni, vsplo²nem izraºajo kot vsota funk
ij �iste vrste� in logaritmov le-teh.�eprav se kar nekaj tipov nedolo£enih integralov lahko s primerno sub-stitu
ijo prevede na integral ra
ionalne funk
ije, pa v splo²nem zgodba nitako preprosta. Medtem ko je odvod elementarne funk
ije zopet elementarnafunk
ija, pa za integral to vsekakor ni res. Tako se na primer integrali

•

∫
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Integrali elementarnih funkcijne morejo zapisati samo z elementarnimi funk
ijami. Naj omenimo, da jeprvi integral tesno povezan z distribu
ijo normalnih spremenljivk v verjetno-sti, drugi z distribu
ijo pra²tevil, zadnji pa spada med elipti£ne integrale.Prav tako je v£asih teºko o
eniti, kdaj je integral funk
ije elementa-ren in kdaj ne. Integrala ∫

xx dx in ∫

xx log xdx nista elementarna, med-tem ko je ∫

(xx + xx log x) dx = xx + C elementaren. Podobno je integral
∫ (

ex

xn
+ aex

x

)

dx elementaren pri konstanti a = − 1

(n−1)!
(per partes), druga£epa je neelementaren. 2. Elementarne funk
ijeV tem razdelku bomo natan£no opisali, kaj si predstavljamo pod poj-mom elementarne funk
ije. Pod pojmom elementarne funk
ije si obi£ajnopredstavljamo kakr²nekoli funk
ije, ki jih dobimo iz funk
ije f(x) = x le spomo£jo znanih opera
ij in funk
ij: se²tevanja, od²tevanja, deljenja, mnoºe-nja, korenjenja, poten
iranja, trigonometri£nih funk
ij in njihovih inverzov,eksponentne in logaritemske funk
ije, ter poljubnih kompozitumov le-teh.Na primer

ex3 − 7x log x
6

√

e−x − sin(x/(x5 + 6))
.Nabor funk
ij, ki sestavljajo elementarne funk
ije, se znatno zmanj²a, £e prira£unanju dovolimo ²e kompleksna ²tevila. V kompleksnem namre£ velja

sinx =
eix − e−ix

2i
in cosx =

eix + e−ix

2
. (1)S pomo£jo teh formul lahko dobimo na primer

arcsinx = −i log
(

ix+
√

1 − x2

) in arctg x =
1

2i
log

1 + ix

1 − ix
.Vse trigonometri£ne in inverzne trigonometri£ne funk
ije se zato lahko za-pi²ejo le s pomo£o logaritemske in eksponentne funk
ije, kar ra£unanje inkasnej²e de�ni
ije pre
ej olaj²a.Spomnimo se, da je funk
ija f analiti£na na odprtem intervalu I ⊂ R, £ejo v vsaki to£ki iz I lahko razvijemo v Taylorjevo vrsto, ki bo na neki okoli
ite to£ke tudi konvergirala proti funk
iji. Kompleksna funk
ija f = u + ivje analiti£na, £e sta analiti£na tako njen realni del u kot njen imaginarnidel v. Analiti£nost se seveda ohranja pri se²tevanju, od²tevanju, mnoºenjufunk
ij in tudi pri odvajanju ter integriranju. Kvo
ient analiti£nih funk
ijbo analiti£en na komplementu ni£el funk
ije v imenoval
u. Naj bo f kom-pleksna analiti£na funk
ija na odprtem intervalu I in naj tam nima ni£el.
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Marko SlaparTo£ka x0 naj bo poljubna to£ka na intervalu I. Logaritem funk
ije f de-�niramo s predpisom (log f)(x) =

x
∫

x0

f ′(t)/f(t) dt, kjer nam izraz pomeniobi£ajen Riemannov integral. Sprememba referen£ne to£ke x0 spremeni lo-garitem funk
ije do aditivne konstante, kar pa nas ne bo motilo. �e ºelimo,lahko konstanto vedno dolo£imo tako, da bo veljalo elog f = f . Funk
ija
log f je analiti£na funk
ija, saj je integral analiti£ne funk
ije. Analogno bilahko dejali, da je log f katerakoli (analiti£na) funk
ija g, za katero velja
f ′/f = g′. �e pa je kdo bolj doma v kompleksni analizi, lahko za log fvzame tudi katerokoli vejo kompleksne logaritemske funk
ije. Za poljubnoanaliti£no funk
ijo f na intervalu I bomo rekli funk
iji ef eksponentna funk-
ija funk
ije f . Le-ta je na I zopet analiti£na.Za kompleksno funk
ijo h re£emo, da je meromorfna na intervalu I ⊂ R,£e je kvo
ient dveh funk
ij f in g (g 6≡ 0), ki sta obe analiti£ni na I. Prostormeromorfnih funk
ij na I ⊂ R ozna£imo z M(I) in je o£itno obseg. Obseg
M(I) bo za nas pomenil osnovni razred funk
ij, s katerimi bomo ra£unali.Naj bo F poljuben obseg. Z F [x] ozna£imo kolobar polinomov nad obse-gom F v nedolo£enki x in z F (x) obseg ra
ionalnih funk
ij nad F v eni spre-menljivki. Analogno imamo v ve£ spremenljivkah kolobar F [x1, x2, . . . , xn]polinomov v n spremenljivkah in F (x1, x2, . . . , xn) obseg ra
ionalnih funk-
ij v n spremenljivkah. �e je G ⊃ F raz²iritev obsega F in α ∈ G, je αalgebrai£en element nad F , £e je p(α) = 0 za kak²en polinom p ∈ F [x]. Vnasprotnem primeru je α trans
endenten element nad F . Za α ∈ G, tran-s
endenten nad F , nam preslikava α 7→ x poda izomor�zem tako kolobarjev
F [α] in F [x] kot tudi obsegov F (α) in F (x). Ve£ in bolj natan£no lahko oraz²iritvah obsegov najdemo v [5℄.De�ni
ija 1. Naj bodo f1, f2, . . . , fn meromorfne funk
ije na intervalu I.Potem je C(f1, f2, . . . , fn) obseg funk
ij oblike

h =
p(f1, f2, . . . , fn)

q(f1, f2, . . . , fn)
,kjer sta p, q ∈ C[x1, x2, . . . , xn] polinoma in q 6= 0.De�ni
ija 2. Elementaren obseg funk
ij je vsak obseg oblike

C(x, f1, . . . , fn), kjer so f1, . . . , fn meromorfne funk
ije na nekem intervalu
I ⊂ R, in je fk ali algebrai£na nad C(x, f1, . . . , fk−1), ali je logaritem funk-
ije iz C(x, f1, . . . , fk−1), ali pa je eksponentna funk
ija neke funk
ije iz
C(x, f1, . . . , fk−1). Meromorfna funk
ija f je elementarna, £e je vsebovanav kak²nem elementarnem obsegu funk
ij.44 Obzornik mat. fiz. 55 (2008) 2
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Integrali elementarnih funkcij�eprav je interval I, na katerem so funk
ije meromorfne, formalno del de�-ni
ije, pa se s tem ne bomo preve£ obremenjevali. Prin
ip enoli£nosti namnamre£ pove, da je meromorfna funk
ija natanko dolo£ena ºe, ko poznamonjene vrednosti na katerikoli mnoºi
i s stekali²£em. Za interval lahko takovzamemo katerikoli interval, na katerem so vse funk
ije dobro de�nirane. Vnadaljevanju bomo na interval I zato preprosto pozabili.Primer 1. Funk
ija f(x) = xs, s ∈ R, je elementarna funk
ija, saj je f ∈

C(x, log x, es log x). �e je s ∈ Q, je f tudi algebrai£na nad C(x), in je zato fºe v elementarnem obsegu C(x, f), £e pa je s 
elo element Z, je f ºe v C(x).Primer 2. Iz formul (1) sledi, da so trigonometri£ne funk
ije sinx, cosxin tanx v elementarnem obsegu C(x, eix), funk
ija arcsinx pa se nahaja velementarnem obsegu C(x,
√

1 − x2, log (ix+
√

1 − x2)).Primer 3. Funk
ija
πx3 − 7x lnx

6

√

e−x − sin(x/(x5 + 6))je v elementarnem obsegu C

(

x, lnx, ex, e
i x

x
5+6 , 6

√

e−x − sin(x/(x5 + 6))
).Pomembna lastnost obsegov elementarnih funk
ij je, da so zaprti za odva-janje.Izrek 2. Naj bo funk
ija f v elementarnem obsegu K. Potem je f ′ ∈ K.Dokaz. Naj bo K = C(x, f1, . . . , fn). Izrek bomo dokazali z induk
ijopo n. �e je n = 0, je K = C(x). Ker je odvod ra
ionalne funk
ije ra-
ionalna funk
ija, je K zaprt za odvajanje. Predpostavimo torej, da je

L = C(x, f1, . . . , fn−1) zaprt za odvajanje in je K = L(fn), pri £emer je
fn ali logaritem, ali eksponent funk
ije iz L, ali pa algebrai£en nad L. Do-volj je, £e pokaºemo, da je f ′n ∈ K. �e je fn = eg, g ∈ L, potem je f ′n = g′eg,in ker je g′ ∈ L po predpostavki, je f ′n ∈ K. Podobno naj bo fn = log gin f ′n = g′/g ∈ L ⊂ K. Naj bo sedaj fn algebrai£en nad L. Predposta-vimo, da je p(fn) = 0 za polinom p(t) = tm + am−1t

m−1 + · · · + a0, kjerje stopnja polinoma p najmanj²a moºna. Zato velja q(fn) 6= 0 za polinom
q(t) = mtm−1 + am−1(m− 1)tm−2 + · · · + a1. Po drugi strani pa velja

0 = (p(fn))′ = q(fn)f ′n + a′m−1f
m−1

n + a′m−2f
m−2

n + · · · + a′0.Torej je
f ′n = −

a′m−1
fm−1

n + a′m−2
fm−2

n + · · · + a′
0

q(fn)
.Ker so odvodi a′k ∈ L po induk
ijski predpostavki, je desna stran vK. S temje dokaz kon£an.
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Marko Slapar3. Liouvillov izrekV prej²njem razdelku smo pokazali, da je odvod vsake elementarne funk-
ije prav tako elementarna funk
ija. �e ve£, izrek, ki smo ga pokazali zgoraj,nam pove, da odvod ni ni£ bolj kompli
iran kot sama funk
ija, v smislu, dase nahaja v istem elementarnem obsegu. Kot bomo videli, za integral nevelja enako. Integral elementarne funk
ije je pogosto neelementaren. �e paje integral elementarne funk
ije elementaren, lahko pre
ej natan£no povemo,kak²no obliko bo imel. To je vsebina Liouvillovega izreka iz leta 1835, ki jeosnova tako za algoritmi£no ra£unanje nedolo£enih integralov [2℄ kot tudiza dokazovanje, da dolo£ena elementarna funk
ija nima elementarnega in-tegrala. Izreka tukaj ne bomo pokazali, za dokaz pa se brale
 lahko obrnena [3℄.Izrek 3 (Liouville, 1835). Naj bo f ∈ K = C(x, f1, . . . , fn). Potem ima

f elementaren integral natanko takrat, ko velja
f =

m
∑

k=1

ak

g′k
gk

+ h′ ,kjer so a1, . . . , am ∈ C in g1 . . . , gk, h ∈ K. Takrat velja
∫

f(x) dx =
m

∑

k=1

ak log gk + h .Naj bo K kot v formula
iji izreka in ozna£imo s
K0 ={f ∈ K; f =

m
∑

k=1

ak

g′k
gk

+ h′, kjer so g1, . . . , gm, h ∈ K, a1, . . . , am ∈ C}.Liouvillov izrek nam pove, da ima elementarna funk
ija f , ki se nahaja velementarnem obsegu K, elementaren integral natanko tedaj, ko se nahajav podmnoºi
i K0. Ker za dva elementarna obsega L ⊂ K seveda velja
L0 ⊂ K0, je vseeno, kateri elementarni obseg izberemo za preverjanje ele-mentarnosti integrala funk
ije f . Vsekakor pa je bolje vzeti £im �manj²i�obseg, saj bo tako preverjanje laºje. V primeru, ko je K = C(x) obsegra
ionalnih funk
ij, nam Lapla
eov izrek pove, da je K0 = K, in ima takovsaka ra
ionalna funk
ija elementaren integral. Prav tako je K = K0 za ele-mentarne obsege tipa C(x, n

√

(ax+ b)/(cx+ d)) ali C(x,
√
ax2 + bx+ c), sajznamo integrale funk
ij iz teh obsegov s primernimi substitu
ijami prevestina integrale ra
ionalnih funk
ij. V splo²nem pa bomo videli, da K\K0 6= ∅,in s tem pokazali obstoj elementarnih funk
ij, ki nimajo elementarnih inte-gralov. Prva taka preprosta elementarna obsega sta C(x, eg) in C(x, log g),kjer je g poljubna nekonstantna ra
ionalna funk
ija.46 Obzornik mat. fiz. 55 (2008) 2



�Integra
ija� � 2008/4/15 � 8:29 � page 47 � #7
Integrali elementarnih funkcijOpomba 1. Ko integriramo povsem realno funk
ijo, obi£ajno ºelimo tudikon£ni rezultat predstaviti samo z realnimi funk
ijami. To seveda lahko ve-dno storimo s pomo£jo primernih formul, ki nam bodo kompleksne funk
ijezamenjale z realnimi. Vendar pa je pri Liouvillovem izreku klju£no, da raz-²irimo razred funk
ij na kompleksne. Primer je ∫

(1/(1 + x2)) dx = arctg x,ki ga ne moremo zapisati kot vsoto realne ra
ionalne funk
ije in z realnimikonstantami pomnoºenih logaritmov realnih ra
ionalnih funk
ij. To dejstvosi
er ni povsem o£itno in je lepa vaja.4. Elementarna obsega CCC(x, e
g
) in CCC(x, log g)Lema 4. �e je g ra
ionalna funk
ija, ki ni konstanta, je eg(x) trans
enden-tna nad C(x).Dokaz. Predpostavimo, da je eg algebrai£na nad C(x). Potem obstaja mo-ni£ni polinom p ∈ C(x)[y] minimalne stopnje n, da velja

p(eg) = eng + an−1e
(n−1)g + · · · + a0 = 0 .Odvajamo zgornjo enakost in dobimo novo polinomsko ena£bo

q(eg) = ng′eng + (a′n−1 + (n− 1)g′an−1)e
(n−1)g + · · · + a′0 = 0 .Ker je bil polinom p minimalen, mora p deliti polinom q. Posebej moraveljati a′

0
= ng′a0 oziroma

a′
0

a0

= ng′ .�e ena£bo integriramo, dobimo log a0 = ng + C oziroma a0 = Deng, kjersta C in D kompleksni konstanti. Funk
ija eg, razumljena kot funk
ija,de�nirana na kompleksnih ²tevilih, ima v polih ra
ionalne funk
ije g bistvenosingularnost. �e je g polinom, pa ima bistveno singularnost v neskon£nosti.Ker pa ima vsaka ra
ionalna funk
ija v singularnostih kve£jemu pol, dobimoprotislovje.Opomba 2. Zelo podobno vidimo, da je log g trans
endenten nad C(x),£e je g nekonstantna ra
ionalna funk
ija. V tem primeru zopet vzamemomoni£ni polinom p ∈ C(x)[y] minimalne stopnje, za katerega naj bi veljalo
p(log g) = (log g)n + an−1(log g)n−1 + · · · + a0 = 0 .�e to enakost odvajamo, dobimo polinomsko ena£bo

q(log n) = (a′n−1 + n(g′/g))(log g)n−1 + · · · + (a′0 + a1(g
′/g)) = 0 .
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Marko SlaparKer je stopnja q manj²a kot stopnja p in je bil p po predpostavki minimalnestopnje, mora biti q = 0. Posebej mora zato veljati a′n−1

= −ng′/g oziroma
ean−1 = D/gn. �e an−1 ni konstanten, je ean−1 trans
endenten nad C(x) polemi 4 in pridemo v protislovje, £e pa je an−1 konstanten, je tak tudi g, karpa smo izklju£ili.Lema 5. Naj bo g ∈ C(x) nekonstantna ra
ionalna funk
ija in p ∈ C(x)[eg]poljuben polinom pozitivne stopnje n s koe�
ienti v C(x). Potem je (p(eg))′zopet polinom stopnje n v C(x)[eg] in p(eg) deli (p(eg))′ v C(x)[eg] natankotedaj, ko je p monom.Opomba 3. Preden dokaºemo lemo, pokomentirajmo izraz (p(eg))′. Kotsmo ºe omenili, iz trans
endentnosti eg nad C(x) sledi, da sta kolobarja
C(x)[eg] in C(x)[y] izomorfna, in si
er s kanoni£nim izomor�zmom, ki pre-slika eg v nedolo£enko y. �e je p ∈ C(x)[eg] polinom p(eg) = ane

ng +
an−1e

(n−1)g + · · · + a0, kjer so aj ∈ C(x), izraz (p(eg))′ ne pomeni ni£drugega kot odvajanje funk
ije p(eg(x)) po spremenljivki x. Ker je prostor
C(x)[eg] zaprt za odvajanje, saj je (p(eg))′ = (a′n +nang

′)eng +(a′n−1
+(n−

1)an−1g
′)e(n−1)g + · · · + a′

0
∈ C(x)[eg], je vpra²anje, ali p(eg) deli (p(eg))′,smiselno. �e s pomo£jo izomor�zma eg 7→ y razumemo polinom p kot po-linom v C(x)[y], se ta odvod prenese na operator ∂ : C(x)[y] → C(x)[y],podan z ∂p = (a′n +nang

′)yn + (a′n−1
+ (n− 1)an−1g

′)yn−1 + · · ·+ a′
0
. Ope-rator ∂ seveda zado²£a Leibnizovemu pravilu ∂(pq) = p∂q+ q∂p. V povsemalgebrai£nem jeziku nam zgornja lema pove, da p ∈ C(x)[y] deli ∂p v C(x)[y]natanko tedaj, ko je p = ayn za neki a ∈ C(x).Dokaz. �e je p monom, je dokaz preprost. Naj bo fn ∈ C(x) vodilni koe�-
ient polinoma p. Velja

(fne
ng)′ =

(

f ′n + nfng
′
)

eng.Seveda je f ′n + nfng
′ ∈ C(x) neni£eln, saj bi bila druga£e funk
ija fne

ngkonstantna. Pokaºimo sedaj, da p(eg) ne more deliti (p(eg))′, £e ima ppozitivno stopnjo in ni monom. Naj bosta fne
ng in fme

mg dva razli£naneni£elna sumanda v p(eg). Ker je eg trans
endenten nad C(x), je C(x)[eg]izomorfen C(x)[y], kjer je y nedolo£enka. Zato je deljivost v C(x)[eg] povsemenaka deljivosti v C(x)[y] in mora po zgornjem izra£unu veljati
f ′n + nfng

′

fn

=
f ′m +mfmg

′

fmoziroma
(

fne
ng

fmemg

)′

= 0 .48 Obzornik mat. fiz. 55 (2008) 2
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Integrali elementarnih funkcijTa enakost narekuje obstoj konstante C, da velja (fn/fm) = Ce(m−n)g. Kerje funk
ija e(m−n)g trans
endentna nad C(x), to ni mogo£e.Izrek 6 (Liouville, 1835). Naj bosta f, g ∈ C(x) in g ni konstantna.Funk
ija feg ima elementaren integral natanko tedaj, ko obstaja ra
ionalnafunk
ija R, da velja

f = R′ +Rg′.Preden se spustimo v dokaz izreka, na dveh primerih poglejmo njegovo upo-rabo.Primer 4. Pokaºimo, da funk
ija ex2 nima elementarnega integrala. Sevedaod tod sledi, da Gaussov integral iz uvoda prav tako ni elementaren. Poizreku 6 ima funk
ija ex
2 elementaren integral natanko tedaj, ko obstajataka ra
ionalna funk
ija R, da velja

1 = R′ + 2xR .Takoj lahko opazimo, da R ne more biti polinom, ker bi potem desna stranenakosti morala biti polinom stopnje vsaj 1. Torej ima R vsaj en pol nakompleksni ravnini, denimo v to£ki a. Naj bo stopnja pola v to£ki a enaka k.Lokalno okoli to£ke a lahko R zapi²emo kot
R(z) =

φ(z)

(z − a)k
,kjer je φ holomorfna in neni£elna v okoli
i to£ke a. Za spremembo imenaspremenljivke iz x v z smo se odlo£ili samo zaradi poudarka, da R sedajrazumemo kot holomorfno funk
ijo. Odvod je tedaj v okoli
i a oblike

R′(z) =
(z − a)φ′(z) − kφ(z)

(z − a)k+1
=

ψ(z)

(z − a)k+1
,kjer je ψ holomorfna in neni£elna v okoli
i a. Tako ima

R′(z) + 2zR(z) =
ψ(z) + 2z(z − a)φ(z)

(z − a)k+1v to£ki a zopet pol stopnje natanko k + 1 in ne more biti konstanta.Primer 5. Integral ∫

dx
log x

lahko s substitu
ijo log x = u prevedemo v inte-gral
∫

eu

u
du .
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Marko SlaparPokaºimo, da ta integral ne more biti elementaren. �e bi bil, bi moralaobstajati ra
ionalna funk
ija R, za katero bi veljalo
1

u
= R′ +R . (2)

R o£itno ne more biti polinom, zato ima R pol v vsaj eni to£ki a ∈ C, ki najbo pozitivne stopnje k. Desna stran (2) ima tedaj v a pol stopnje k+1 ≥ 2.Ker ima leva stran pol samo v to£ki 0, ki pa je stopnje 1, (2) ne more bitiizpolnjena. Z ve£kratno uporabo formule per partes lahko pokaºemo, da jeintegral
∫

ex

xn
dxprav tako neelementaren za vsako naravno ²tevilo n.Dokaz (izreka 6). Pogoj je vsekakor zadosten, saj je v primeru, ko je f =

R′ + Rg′, funk
ija Reg integral feg. Poglejmo, da je pogoj tudi potreben.Funk
ija F (x) = f(x)eg(x) je elementarna in se nahaja v elementarnemobsegu C(x, eg(x)). Po izreku 3 ima F elementaren integral natanko tedaj,ko jo lahko zapi²emo kot
F (x) =

n
∑

j=1

aj

(

rj
(

x, eg(x)
))′

rj
(

x, eg(x)
) +

(

r
(

x, eg(x)

))′

,kjer so r1, . . . , rn, r ∈ C(x, y) ra
ionalne funk
ije v dveh spremenljivkah in
a1, . . . , an kompleksne konstante. Seveda lahko vsako ra
ionalno funk
ijo
rj , j ∈ {1, . . . , n} zapi²emo kot rj = pj/qj , kjer sta pj , qj ∈ C(x)[y]. Enakolahko zapi²emo r = p/q, p, q ∈ C(x)[y] in predpostavimo, da sta si p in q tujav C(x)[y], kar pomeni, da ne obstaja polinom v C(x)[y] pozitivne stopnje,ki bi delil tako p kot q. Zgornja ena£ba tako dobi obliko
f(x)eg(x) =

n
∑

j=1

aj

(

pj

(

x, eg(x)
))′

pj

(

x, eg(x)
) −

n
∑

j=1

aj

(

qj
(

x, eg(x)
))′

qj
(

x, eg(x)
) + (3)

+

(

p
(

x, eg(x)
))′

q
(

x, eg(x)
)

− p
(

x, eg(x)
)(

q
(

x, eg(x)
))′

(

q
(

x, eg(x)
))2

.Vsak pj lahko v C(x)[y] raz
epimo na produkt pj = pj,1 · · · pj,k, kjer so
pj,1, . . . , pj,k bodisi neraz
epni moni£ni polinomi (vodilni koe�
ient je 1) v
C(x)[y] ali pa so elementi C(x). Podobno lahko raz
epimo tudi polinome qj .50 Obzornik mat. fiz. 55 (2008) 2
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Integrali elementarnih funkcijZ uporabo enakosti (st)′

st
= s′

s
+ t′

t
postane izraz (3) ²e preprostej²i, in si
er

f(x)eg(x) =
m

∑

j=1

aj

(

pj

(

x, eg(x)
))′

pj

(

x, eg(x)
) + (4)

+

(

p
(

x, eg(x)
))′

q
(

x, eg(x)
)

− p
(

x, eg(x)
)(

q
(

x, eg(x)
))′

(

q
(

x, eg(x)
))2

,pri £emer so pj vsi bodisi moni£ni neraz
epni polinomi iz C(x)[y] bodisielementi C(x). Predpostavimo lahko tudi, da so vsi pj razli£ni med seboj,saj v primeru ponavljanja ustrezne £lene se²tejemo.Ker je po lemi 4 eg trans
endenten nad C(x), je preslikava, podana z eg 7→

y, izomor�zem tako med obsegoma C(x, y) in C(x, eg) kot tudi kolobarjema
C(x)[y] in C(x)[eg]. Zato je izraz (4) ekvivalenten ena£bi

f(x)y =
m

∑

j=1

aj

∂pj

pj

+
q∂p− p∂q

q2
(5)v obsegu C(x, y). Operator ∂ : C(x)[y] → C(x)[y] je de�niran v opombi 3.Leva stran ena£be (5) je element C(x)[y], medtem ko je desna stranv splo²nem ra
ionalna funk
ija v dveh spremenljivkah. Poskrbeti moramotorej, da se vsi neraz
epni polinomi na desni strani kraj²ajo iz imenoval
a.Naj bo pk eden od neraz
epnih moni£nih polinomov v (5). Po lemi 5 pk nemore deliti ∂pk, razen £e je pk = y (poten
a pri y je nujno 1, saj so faktorjineraz
epni). Predpostavimo sedaj, da pk ni enak y. Ker so vsi pj med sebojrazli£ni in so vsi neraz
epni, se pk ne more pokraj²ati iz imenoval
a v (5)znotraj izraza m

∑

j

aj∂pj/pj . Da se bo pokraj²al s pomo£jo izraza (q∂p −

p∂q)/q2, mora nastopiti kot neraz
epni faktor v raz
epu polinoma q. Najbo q1 neki neraz
epen moni£ni polinom iz C(x)[y], ki nastopa v raz
epupolinoma q in ni enak y. Torej je q = q̃ql
1
za neko pozitivno naravno poten
o lin q1 ne deli q̃. Dobimo

q∂p− p∂q

q2
=
∂p

q̃ql
1

− p
∂q̃

q̃2ql
1

− lp
∂q1

q̃ql+1

1

.Zopet uporabimo lemo 5 in ugotovimo, da je stopnja q1 v imenoval
u (q∂p−

p∂q)/q2 nujno enaka l+1 > 1. Ker pa je stopnja pk v imenoval
u m
∑

j

aj∂pj/pjenaka 1, se ne more pokraj²ati. Prav tako vidimo, da polinom q ne moreimeti v raz
epu neraz
epnih faktorjev razli£nih od y, saj bi tudi ti prispevaliv imenovale
 izraza (5).
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Marko Slapar�e povzamemo zgornje, dobimo, da lahko samo eden izmed pj vsebujetudi spremenljivko y in je enak y, preostali pa morajo biti elementi C(x).Prav tako mora biti q enak yl za neki l ∈ N ∪ {0}. Zato mora biti izraz (5)oblike

f(x)y =
∑

j

aj

∂pj

pj

+ a
∂y

y
+
yl∂p− p∂yl

y2l
, (6)kjer so p1, . . . , pm ∈ C(x), p ∈ C(x)[y], l ∈ N ∪ {0} in a, a1, . . . , am ∈ C. Konadalje polinom p razpi²emo po poten
ah y, dobimo obliko

f(x)y = S(x) + ag′(x) +
∑

j

(

R′
j(x) + g′(x)jRj(x)

)

yj ,kjer indeks j te£e po neki kon£ni mnoºi
i 
elih ²tevil in so Rj ∈ C(x).S S ∈ C(x) smo ozna£ili vsoto m
∑

j

ajp
′
j/pj . Seveda se morata izraza na leviin desni ujemati pri vsaki poten
i y. Konkretno pri j = 1 dobimo

f(x) = R′
1 + g′R1 .S tem je dokaz kon£an.Primer 6. Z majhno modi�ka
ijo zgornjega dokaza lahko obravnavamotudi integral funk
ije sinx/x. Ker velja

∫

sinx

x
dx =

∫

eix − e−ix

2ix
dx =

1

2i

∫

eu − e−u

u
du ,bo integral elementaren natanko tedaj, ko bo elementaren integral funk
ije

F (x) = (ex − e−x)/x ∈ C(x, ex). Od tu naprej ravnamo povsem enakokot v dokazu izreka 6. Hitro se lahko prepri£amo, da so vse manipula
ije vdokazu 6 do formule (5) pravzaprav samo posledi
a dejstev, da operiramoznotraj obsega C(x, y) ∼= C(x, eg) in da izraz f(x)y ∈ C(x, y) v imenoval
unima neraz
epnih polinomov iz C(x)[y], razli£nih od y. Tako je tudi v na²emprimeru z g(x) = x in y = ex. Integral F (x) bo zato elementaren natankotedaj, ko bomo lahko zapisali
1

x
y −

1

x
y−1 =

m
∑

j

aj

∂pj

pj

+ a
∂y

y
+
yl∂p− p∂yl

y2l
,kjer so p1, . . . , pm ∈ C(x), p ∈ C(x)[y], l ∈ N ∪ {0} in a, a1, . . . , am ∈ Coziroma

1

x
y −

1

x
y−1 = S(x) + a+

∑

j

(R′
j(x) + jRj(x))y

j ,52 Obzornik mat. fiz. 55 (2008) 2
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Integrali elementarnih funkcijkjer indeks j te£e po neki kon£ni mnoºi
i 
elih ²tevil in so Rj ∈ C(x) in

S =
m
∑

j

ajp
′
j/pj . Posebej mora veljati R′

1
+ R1 = 1/x. Podobno, kot smovideli v zgornjih dveh primerih, bo imela pri vsaki ra
ionalni funk
iji R1, kini polinom, vsota R′

1
+R1 pol stopnje ve£ kot 1 v vsaj eni to£ki, kar pa nevelja za 1/x. Ker seveda R1 ne more biti polinom, dobimo protislovje.Zelo podobno, kot smo zgradili teorijo za funk
ije oblike eg, bi lahkopoiskali kriterij za elementarnost integralov funk
ij oblike f log g, kjer sta fin g ra
ionalni funk
iji:Izrek 7. Naj bosta f, g ∈ C(x) in g ni konstantna. Funk
ija f log g imaelementaren integral natanko tedaj, ko obstajata ra
ionalna funk
ija R inkompleksna konstanta C, da velja

f = R′ +
Cg′

g
.Pokaºimo samo, da je pogoj zadosten

∫

f log g dx =

∫
(

R′ + C
g′

g

)

log g dx =
C

2
(log g)2 +R log g −

∫

R
g′

g
dx .Zadnji integral je integral ra
ionalne funk
ije in zato elementaren po Lapla-
eovem izreku.Primer 7. Za vsak kompleksen a 6= 0 je integral

∫

log x

x− a
dxneelementaren, saj bi moral biti R, ki zado²£a pogoju iz izreka, oblike

R(x) = log(x − a) − C log x + D za neki konstanti C,D ∈ C. Funk
ijatake oblike pa ni ra
ionalna funk
ija. To lahko vidimo na razli£ne na£ine.Med drugim opazimo, da mora imeti R(x) v a singularnost, vendar pa morabiti R(x) |x− a|1/2 omejena v okoli
i to£ke a.LITERATURA[1℄ B. Conrad, Impossibility theorems for elementary integration, preprint.[2℄ R. H. Ris
h, The problem of integration in �nite terms, Trans. Amer. Math. So
. 139(1970), str. 605�608.[3℄ M. Rosenli
ht, Integration in �nite terms, Amer. Math. Monthly 79 (1972), str. 963�972.[4℄ E. A. Mar
hisotto in G. Zakeri, An invitation to Integration in Finite Terms, CollegeMath. J. 25 (1994) 4, str. 295�308.[5℄ I. Vidav, Algebra, Matematika � �zika 4, Mladinska knjiga, Ljubljana, 1972.[6℄ I. Vidav, Vi²ja matematika I, Matematika � �zika 6, Drºavna zaloºba Slovenije, Lju-bljana, 1987.
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