

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 16 (2019) 377–401

https://doi.org/10.26493/1855-3974.1765.d73

(Also available at http://amc-journal.eu)

The Möbius function of $PSU(3, 2^{2^n})$

Giovanni Zini *

Department of Mathematics and Applications, University of Milano-Bicocca, via Cozzi 55, 50125 Milano, Italy

Received 25 July 2018, accepted 10 November 2018, published online 29 January 2019

Abstract

Let G be the simple group $\mathrm{PSU}(3,2^{2^n}), n>0$. For any subgroup H of G, we compute the Möbius function $\mu_L(H,G)$ of H in the subgroup lattice L of G, and the Möbius function $\mu_{\bar{L}}([H],[G])$ of [H] in the poset \bar{L} of conjugacy classes of subgroups of G. For any prime p, we provide the Euler characteristic of the order complex of the poset of non-trivial p-subgroups of G.

Keywords: Unitary groups, Möbius function, subgroup lattice.

Math. Subj. Class.: 20G40, 20D30, 05E15, 06A07

1 Introduction

The Möbius function $\mu(H,G)$ on the subgroups of a finite group G is defined recursively by $\mu(G,G)=1$ and $\sum_{K\geq H}\mu(K,G)=0$ if H< G. This function was used in 1936 by Hall [12] to enumerate k-tuples of elements of G which generate G, for a given K.

The combinatorial and group-theoretic properties of the Möbius function were investigated by many authors; see the paper [14] by Hawkes, Isaacs, and Özaydin. The Möbius function is defined more generally on a locally finite poset (\mathcal{P},\leq) by the recursive definition $\mu(x,x)=1,$ $\mu(x,y)=0$ if $x\not\leq y,$ and $\sum_{x\leq z\leq y}\mu(z,y)=0$ if $x\leq y;$ for instance, the poset taken into consideration may be the subgroup lattice L of a finite group G ordered by inclusion. Mann [19, 20] studied $\mu(H,G)$ in the broader context of profinite groups G and defined a probabilistic zeta function P(G,s) associated to G, related to the probability of generating G with s elements when G is positively finitely generated.

The Möbius function on a poset \mathcal{P} also appears in the context of topological invariants of the order simplicial complex $\Delta(\mathcal{P})$ associated to \mathcal{P} , see the works of Brown [2] and

E-mail address: giovanni.zini@unimib.it (Giovanni Zini)

^{*}This research was partially supported by Ministry for Education, University and Research of Italy (MIUR) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM). The author would like to thank Francesca Dalla Volta and Martino Borello for their useful comments and suggestions, and Emilio Pierro for pointing out a mistake in a previous version of this paper.

Quillen [25]; if \mathcal{P} is the subgroup lattice of a finite group G, then the reduced Euler characteristic of $\Delta(\mathcal{P})$ is equal to $\mu(\{1\},G)$. This motivates the search for $\mu(\{1\},G)$ independently of the knowledge of $\mu(H,G)$ for other subgroups H of G, see for instance [26, 27] and the references therein; $\mu(\{1\},G)$ is often called the M"obius number of G. Shareshian provided a formula in [26] for $\mu(\{1\},\operatorname{Sym}(n))$, and computed $\mu(\{1\},G)$ in [27] when $G \in \{\operatorname{PGL}(2,q),\operatorname{PSL}(2,q),\operatorname{PGL}(3,q),\operatorname{PSL}(3,q),\operatorname{PGU}(3,q),\operatorname{PSU}(3,q)\}$ with q odd or G is a Suzuki group $\operatorname{Sz}(2^{2h+1})$.

Consider the poset \bar{L} of conjugacy classes [H] of subgroups H of a finite group G, ordered as follows: $[H] \leq [K]$ if and only if H is contained in some conjugate of K in G. After Hawkes, Isaacs, and Özaydin [14], we denote by $\lambda(H,G)$ the Möbius function $\mu([H],[G])$ in \bar{L} , while $\mu(H,G)$ is the Möbius function in L. Some attempt was done to search relations between the Möbius functions $\mu(H,G)$ and $\lambda(H,G)$; Hawkes, Isaacs, and Özaydin [14] proved that, if G is solvable, then

$$\mu(\{1\}, G) = |G'| \cdot \lambda(\{1\}, G). \tag{1.1}$$

The property (1.1), which we call (μ, λ) -property, does not hold in general for non-solvable groups; see [1]. Pahlings [23] proved that, if G is solvable, then

$$\mu(H,G) = [N_{G'}(H) : H \cap G'] \cdot \lambda(H,G)$$
(1.2)

for any subgroup H of G. The analysis of the generalized (μ, λ) -property (1.2), although false in general for non-solvable groups, is of interest since it relates the Möbius functions $\mu(H,G)$ and $\lambda(H,G)$.

A lot of work was done by several authors about probabilistic functions for groups; see for instance [6, 10, 19, 20]. In particular, Mann posed in [19] a conjecture, the validity of which would imply that the sum

$$\sum_{H} \frac{\mu(H,G)}{[G:H]^s}$$

over all subgroups H < G of finite index of a positively finitely generated profinite group G is absolutely convergent for s in some right complex half-plane and, for $s \in \mathbb{N}$ large enough, represents the probability of generating G with s elements. Lucchini [18] showed that this problem can be reduced so that Mann's conjecture is reformulated as follows: there exist two constants $c_1, c_2 \in \mathbb{N}$ such that, for any finite monolithic group G with non-abelian socle,

- 1. $|\mu(H,G)| \leq [G:H]^{c_1}$ for any H < G such that $G = H \operatorname{soc}(G)$, and
- 2. the number of subgroups H < G of index n in G such that $H \operatorname{soc}(G) = G$ and $\mu(H,G) \neq 0$ is upper bounded by n^{c_2} , for any $n \in \mathbb{N}$.

It seems natural to investigate this conjecture on finite monolithic groups starting by almost simple groups. Mann's conjecture has been shown to be satisfied by the alternating and symmetric groups [3], as well as by those families of groups G for which $\mu(H,G)$ has been computed for any subgroup H; namely, $\mathrm{PSL}(2,q)$ [8, 12], $\mathrm{PGL}(2,q)$ [8], the Suzuki groups $\mathrm{Sz}(2^{2h+1})$ [9], and the Ree groups $R(3^{2h+1})$ [24].

In this paper, we take into consideration the three dimensional projective special unitary group $G = \mathrm{PSU}(3,q)$ over the field with $q = 2^{2^n}$ elements, for any positive n (note that $\mathrm{PSU}(3,q) = \mathrm{PGU}(3,q)$ as $3 \nmid (q+1)$). In particular, the following results are obtained.

- (i) We compute $\mu(H, G)$ for any subgroup H of G, as summarized in Table 1. This shows that the groups $PSU(3, 2^{2^n})$ satisfy Mann's conjecture.
- (ii) We compute $\lambda(H,G)$ for any subgroup H of G, as summarized in Table 1. This shows that the groups $\mathrm{PSU}(3,2^{2^n})$ satisfy the (μ,λ) -property, but do not satisfy the generalized (μ,λ) -property.
- (iii) We compute the Euler characteristic $\chi(\Delta(L_p \setminus \{1\}))$ of the order complex of the poset $L_p \setminus \{1\}$ of non-trivial p-subgroups of G, for any prime p, as summarized in Table 2.

For the subgroups listed in Table 1, the isomorphism type determines a unique conjugacy class in G.

0 1	(, 1, 1	, , , ,	`	′ ′
Isomorphism type of H	H	$N_G(H)$	$\mu(H,G)$	$\lambda(H,G)$
\overline{G}	$q^3(q^3+1)(q^2-1)$	H	1	1
$(E_q \cdot E_{q^2}) \rtimes C_{q^2-1}$	$q^3(q^2-1)$	H	-1	-1
$PSL(2,q) \times C_{q+1}$	$q(q^2-1)(q+1)$	H	-1	-1
$(C_{q+1} \times C_{q+1}) \rtimes \operatorname{Sym}(3)$	$6(q+1)^2$	H	-1	-1
$C_{q^2-q+1} \rtimes C_3$	$3(q^2 - q + 1)$	H	-1	-1
$E_q \rtimes C_{q^2-1}$	$q(q^2-1)$	H	1	1
$(C_{q+1} \times C_{q+1}) \rtimes C_2$	$2(q+1)^2$	H	1	1
$\operatorname{Sym}(3)$	6	$Sym(3) \times C_{q+1}$	q+1	1
C_3	3	$C_{q^2-1} \rtimes C_2$	$\frac{2(q^2-1)}{3}$	1
C_2	2	$(E_a . E_{a^2}) \rtimes C_{a+1}$	$-\frac{q^{3}(q+1)}{2}$	-1

Table 1: Subgroups H of G = PSU(3, q), $q = 2^{2^n}$, with $\mu(H) \neq 0$ or $\lambda(H) \neq 0$.

Table 2: Euler characteristic of the order complex of the poset of proper p-subgroups of G.

$$\frac{\text{Prime }p}{\chi(\Delta(L_p\setminus\{1\}))} \left\| \begin{array}{c|cccc} p\nmid |G| & p=2 & p\mid (q+1) & p\mid (q-1) & p\mid (q^2-q+1) \\ \hline 0 & q^3+1 & -\frac{q^6-2q^5-q^4+2q^3-3q^2}{3} & \frac{q^6+q^3}{2} & -\frac{q^6+q^5-q^4-q^3}{3} \\ \end{array} \right.$$

The paper is organized as follows. Section 2 contains preliminary results on the Möbius functions $\mu(H,G)$ and $\lambda(H,G)$ and the relation between the Möbius function and the Euler characteristic of the order complex; this section contains also preliminary results on the groups $G = \mathrm{PSU}(3,2^{2^n})$, whose elements are described geometrically in their action on the Hermitian curve associated to G. Sections 3 and 4 are devoted to the determination of $\mu(H,G)$ and $\lambda(H,G)$, respectively, for any subgroup H of G. Section 5 provides the Euler characteristic of the order complex of the poset of proper p-subgroups of G, for any prime p.

2 Preliminary results

Let (\mathcal{P}, \leq) be a finite poset. The Möbius function $\mu_{\mathcal{P}} \colon \mathcal{P} \times \mathcal{P} \to \mathbb{Z}$ is defined recursively as follows:

$$\mu_{\mathcal{P}}(x,y) = 0$$
 if $x \not\leq y$; $\mu_{\mathcal{P}}(x,x) = 1$; $\sum_{x \leq z \leq y} \mu_{\mathcal{P}}(z,y) = 0$ if $x < y$.

If x < y, then $\mu_{\mathcal{P}}(x, y)$ can be equivalently defined by

$$\sum_{x \le z \le y} \mu_{\mathcal{P}}(x, z) = 0.$$

To the poset \mathcal{P} we can associate a simplicial complex $\Delta(\mathcal{P})$ whose vertices are the elements of \mathcal{P} and whose *i*-dimensional faces are the chains $a_0 < \cdots < a_i$ of length i in \mathcal{P} ; $\Delta(\mathcal{P})$ is called the *order complex* of \mathcal{P} . Provided that \mathcal{P} has a least element 0, the Euler characteristic of the order complex of $\mathcal{P} \setminus \{0\}$ is computed as follows (see [28, Proposition 3.8.6]):

$$\chi(\Delta(\mathcal{P}\setminus\{0\})) = -\sum_{x\in\mathcal{P}\setminus\{0\}} \mu_{\mathcal{P}}(0,x).$$

Given a finite group G, we will consider the following two Möbius functions associated to G.

- (i) The Möbius function on the subgroup lattice L of G, ordered by inclusion. We will denote $\mu_L(H,G)$ simply by $\mu(H)$.
- (ii) The Möbius function on the poset \bar{L} of conjugacy classes [H] of subgroups H of G, ordered as follows: $[H] \leq [K]$ if and only if H is contained in the conjugate gKg^{-1} for some $g \in G$. We will denote $\mu_{\bar{L}}([H], [G])$ simply by $\lambda(H)$.

Two facts will be used to compute $\mu(H)$. The first easy fact is that, if H and K are conjugate in G, then $\mu(H) = \mu(K)$. The second fact is due to Hall [12, Theorem 2.3], and is stated in the following lemma.

Lemma 2.1. If H < G satisfies $\mu(H) \neq 0$, then H is the intersection of maximal subgroups of G.

For any prime p, let L_p be the subposet of L given by all p-subgroups of G, so that

$$\chi(\Delta(L_p \setminus \{1\})) = -\sum_{H \in L_p \setminus \{1\}} \mu_{L_p}(\{1\}, H).$$
 (2.1)

By a result of Brown [2], $\chi(\Delta(L_p \setminus \{1\}))$ is congruent to 1 modulo the order $|G|_p$ of a Sylow p-subgroup of G. In order to compute explicitly $\chi(\Delta(L_p \setminus \{1\}))$ we will use the following result of Hall [12, Equation (2.7)]:

Lemma 2.2. Let H be a p-group of order p^r . If H is not elementary abelian, then $\mu_{L_p}(\{1\}, H) = 0$. If H is elementary abelian, then $\mu_{L_p}(\{1\}, H) = (-1)^r p^{\binom{r}{2}}$.

We describe now the group G which will be considered in the following sections. Let n be a positive integer, $q=2^{2^n}$, \mathbb{F}_q be the finite field with q element, and $\overline{\mathbb{F}}_q$ be the algebraic

closure of \mathbb{F}_q . Let \mathcal{U} be a non-degenerate unitary polarity of the plane $\mathrm{PG}(2,q^2)$ over \mathbb{F}_{q^2} , and $\mathcal{H}_q \subset \mathrm{PG}(2,\bar{\mathbb{F}}_q)$ be the Hermitian curve defined by \mathcal{U} . The following homogeneous equations define models for \mathcal{H}_q which are projectively equivalent over \mathbb{F}_{q^2} :

$$X^{q+1} + Y^{q+1} + Z^{q+1} = 0; (2.2)$$

$$X^{q}Z + XZ^{q} - Y^{q+1} = 0. (2.3)$$

The models (2.2) and (2.3) are called the Fermat and the Norm-Trace model of \mathcal{H}_q , respectively. The set of \mathbb{F}_{q^2} -rational points of \mathcal{H}_q is denoted by $\mathcal{H}_q(\mathbb{F}_{q^2})$, and consists of the q^3+1 isotropic points of \mathcal{U} . The full automorphism group $\operatorname{Aut}(\mathcal{H}_q)$ of \mathcal{H}_q is defined over \mathbb{F}_{q^2} , and coincides with the unitary subgroup $\operatorname{PGU}(3,q)$ of $\operatorname{PGL}(3,q^2)$ stabilizing $\mathcal{H}_q(\mathbb{F}_{q^2})$, of order $|\operatorname{PGU}(3,q)| = q^3(q^3+1)(q^2-1)$.

The combinatorial properties of $\mathcal{H}_q(\mathbb{F}_{q^2})$ can be found in [16]. In particular, any line ℓ of $\mathrm{PG}(2,q^2)$ has either 1 or q+1 common points with $\mathcal{H}_q(\mathbb{F}_{q^2})$, that is, ℓ is either a tangent line or a chord of $\mathcal{H}_q(\mathbb{F}_{q^2})$; in the former case ℓ contains its pole with respect to \mathcal{U} , in the latter case ℓ doesn't. Also, $\mathrm{PGU}(3,q)$ acts 2-transitively on $\mathcal{H}_q(\mathbb{F}_{q^2})$ and transitively on $\mathrm{PG}(2,q^2)\setminus\mathcal{H}_q$; $\mathrm{PGU}(3,q)$ acts transitively also on the non-degenerate self-polar triangles $T=\{P_1,P_2,P_3\}\subset\mathrm{PG}(2,q^2)\setminus\mathcal{H}_q$ with respect to \mathcal{U} . Recall that, if $\sigma\in\mathrm{PGU}(3,q)$ stabilizes a point $P\in\mathrm{PG}(2,q^2)$, then σ stabilizes also the polar line of P with respect to \mathcal{U} , and vice versa.

The curve \mathcal{H}_q is non-singular and \mathbb{F}_{q^2} -maximal of genus $g=\frac{q(q-1)}{2}$, that is, the size of $\mathcal{H}_q(\mathbb{F}_{q^2})$ attains the Hasse-Weil upper bound $q^2+1+2gq$. This implies that \mathcal{H}_q is \mathbb{F}_{q^4} -minimal and \mathbb{F}_{q^6} -maximal, so that $\mathcal{H}_q(\mathbb{F}_{q^4})\setminus\mathcal{H}_q(\mathbb{F}_{q^2})=\emptyset$ and $|\mathcal{H}_q(\mathbb{F}_{q^6})\setminus\mathcal{H}_q(\mathbb{F}_{q^2})|=q^6+q^5-q^4-q^3$. Let Φ_{q^2} be the Frobenius map $(X,Y,Z)\mapsto (X^{q^2},Y^{q^2},Z^{q^2})$ over $\mathrm{PG}(2,\bar{\mathbb{F}}_{q^2})$; then the $\mathbb{F}_{q^6}\setminus\mathbb{F}_{q^2}$ -rational points of \mathcal{H}_q split into $\frac{q^6+q^5-q^4-q^3}{3}$ non-degenerate triangles $\{P,\Phi_{q^2}(P),\Phi_{q^2}^2(P)\}$. The group $\mathrm{PGU}(3,q)$ is transitive on such triangles.

Since $3 \nmid (q+1)$, we have $\mathrm{PGU}(3,q) = \mathrm{PSU}(3,q)$; henceforth, we denote by G the simple group $\mathrm{PSU}(3,q)$. The following classification of subgroups of G goes back to Hartley [13]; here we use that $\log_2(q)$ has no odd divisors different from 1. The notation S_2 stands for a Sylow 2-subgroup of G, which is a non-split extension E_q . E_{q^2} of its elementary abelian center of order q by an elementary abelian group of order q^2 .

Theorem 2.3. Let n > 0, $q = 2^{2^n}$, and G = PSU(3, q). Up the conjugation, the maximal subgroups of G are the following.

- (i) The stabilizer $M_1(P) \cong S_2 \rtimes C_{q^2-1}$ of a point $P \in \mathcal{H}_q(\mathbb{F}_{q^2})$, of order $q^3(q^2-1)$.
- (ii) The stabilizer $M_2(P) \cong \mathrm{PSL}(2,q) \times C_{q+1}$ of a point $P \in \mathrm{PG}(2,q^2) \setminus \mathcal{H}_q(\mathbb{F}_{q^2})$, of order $q(q^2-1)(q+1)$.
- (iii) The stabilizer $M_3(T) \cong (C_{q+1} \times C_{q+1}) \rtimes \operatorname{Sym}(3)$ of a non-degenerate self-polar triangle $T = \{P, Q, R\} \subset \operatorname{PG}(2, q^2) \setminus \mathcal{H}_q$ with respect to \mathcal{U} , of order $6(q+1)^2$.
- (iv) The stabilizer $M_4(T) \cong C_{q^2-q+1} \rtimes C_3$ of a triangle $T = \{P, \Phi_{q^2}(P), \Phi_{q^2}^2(P)\} \subset \mathcal{H}_q(\mathbb{F}_{q^2}) \setminus \mathcal{H}_q(\mathbb{F}_{q^2})$, of order $3(q^2-q+1)$.

For a detailed description of the maximal subgroups of G, both from an algebraic and a geometric point of view, we refer to [11, 21, 22].

In our investigation it is useful to know the geometry of the elements of $\operatorname{PGU}(3,q)$ on $\operatorname{PG}(2,\overline{\mathbb{F}}_q)$, and in particular on $\mathcal{H}_q(\mathbb{F}_{q^2})$. This can be obtained as a corollary of Theorem 2.3, and is stated in Lemma 2.2 with the usual terminology of collineations of projective planes; see [16]. In particular, a linear collineation σ of $\operatorname{PG}(2,\overline{\mathbb{F}}_q)$ is a (P,ℓ) -perspectivity, if σ preserves each line through the point P (the center of σ), and fixes each point on the line ℓ (the axis of σ). A (P,ℓ) -perspectivity is either an elation or a homology according to $P \in \ell$ or $P \notin \ell$. Lemma 2.4 was obtained in [21] in a more general form (i.e., for any prime power q).

Lemma 2.4. For a nontrivial element $\sigma \in G = \mathrm{PSU}(3,q)$, $q = 2^{2^n}$, one of the following cases holds.

- (A) $\operatorname{ord}(\sigma) \mid (q+1)$ and σ is a homology, with center $P \in \operatorname{PG}(2,q^2) \setminus \mathcal{H}_q$ and axis ℓ_P which is a chord of $\mathcal{H}_q(\mathbb{F}_{q^2})$; (P,ℓ_P) is a pole-polar pair with respect to \mathcal{U} .
- (B) $2 \nmid \operatorname{ord}(\sigma)$ and σ fixes the vertices P_1, P_2, P_3 of a non-degenerate triangle $T \subset \operatorname{PG}(2, q^6)$.
 - (B1) $\operatorname{ord}(\sigma) \mid (q+1), P_1, P_2, P_3 \in \operatorname{PG}(2, q^2) \setminus \mathcal{H}_q$, and the triangle T is self-polar with respect to \mathcal{U} .
 - (B2) $\operatorname{ord}(\sigma) \mid (q^2 1)$ and $\operatorname{ord}(\sigma) \nmid (q + 1)$; $P_1 \in \operatorname{PG}(2, q^2) \setminus \mathcal{H}_q$ and $P_2, P_3 \in \mathcal{H}_q(\mathbb{F}_{q^2})$.
 - (B3) $\operatorname{ord}(\sigma) \mid (q^2 q + 1) \text{ and } P_1, P_2, P_3 \in \mathcal{H}_q(\mathbb{F}_{q^6}) \setminus \mathcal{H}_q(\mathbb{F}_{q^2}).$
- (C) $\operatorname{ord}(\sigma) = 2$; σ is an elation with center $P \in \mathcal{H}_q(\mathbb{F}_{q^2})$ and axis ℓ_P which is tangent to \mathcal{H}_q at P, such that (P, ℓ_P) is a pole-polar pair with respect to \mathcal{U} .
- (D) $\operatorname{ord}(\sigma) = 4$; σ fixes a point $P \in \mathcal{H}_q(\mathbb{F}_{q^2})$ and a line ℓ_P which is tangent to \mathcal{H}_q at P, such that (P, ℓ_P) is a pole-polar pair with respect to \mathcal{U} .
- (E) $\operatorname{ord}(\sigma) = 2d$ where d is a nontrivial divisor of q+1; σ fixes two points $P \in \mathcal{H}_q(\mathbb{F}_{q^2})$ and $Q \in \operatorname{PG}(2,q^2) \setminus \mathcal{H}_q$, the polar line PQ of P, and the polar line of Q which passes through P.

For a detailed description of the elements and subgroups of G, both from an algebraic and a geometric point of view, we refer to [11, 21, 22], on which our geometric arguments are based.

Throughout the paper, a nontrivial element of G is said to be of type (A), (B), (B1), (B2), (B3), (C), (D), or (E), as given in Lemma 2.4. Also, the polar line to \mathcal{H}_q at $P \in \mathrm{PG}(2,q^2)$ is denoted by ℓ_P . Note that, under our assumptions, any element of order 3 in G is of type (B2). We will denote a cyclic group of order d by C_d and an elementary abelian group of order d by E_d . The center $Z(S_2)$ of S_2 is elementary abelian of order q, and any element in $S_2 \setminus Z(S_2)$ has order 4; see [11, Section 3].

3 Determination of $\mu(H)$ for any subgroup H of G

Let n > 0, $q = 2^{2^n}$, G = PSU(3, q). This section is devoted to the proof of the following theorem.

Theorem 3.1. Let H be a proper subgroup of G. Then H is the intersection of maximal subgroups of G if and only if H is one of the following groups:

$$\begin{array}{lll} S_2 \rtimes C_{q^2-1}, & \mathrm{PSL}(2,q) \times C_{q+1}, & C_{q^2-q+1} \rtimes C_3, \\ (C_{q+1} \times C_{q+1}) \rtimes \mathrm{Sym}(3), & E_q \rtimes C_{q^2-1}, & (C_{q+1} \times C_{q+1}) \rtimes C_2, \\ C_{q+1} \times C_{q+1}, & C_{q^2-1}, & C_{2(q+1)}, & (3.1) \\ C_{q+1} = Z(M_2(P)) \ \textit{for some } P, & E_q, & \mathrm{Sym}(3), \\ C_3, & C_2, & \{1\}. \end{array}$$

Given a type of groups in Equation (3.1), there is just one conjugacy class of subgroups of G of that isomorphism type.

The normalizer $N_G(H)$ of H in G for the groups H in Equation (3.1) are, respectively:

$$\begin{array}{lll} H, & H, & H, \\ H, & H, & H, \\ H \rtimes \mathrm{Sym}(3), & H \rtimes C_2, & E_q \times C_{q+1}, \\ \mathrm{PSL}(2,q) \times H, & S_2 \rtimes C_{q^2-1}, & H \times C_{q+1}, \\ C_{q^2-1} \rtimes C_2, & S_2 \rtimes C_{q+1}, & G. \end{array} \tag{3.2}$$

The values $\mu(H)$ for the groups H in Equation (3.1) are, respectively:

The proof of Theorem 3.1 is divided into several propositions.

Proposition 3.2. The group G contains exactly one conjugacy class for any group in Equation (3.1).

Proof. Case 1: The first four groups in Equation (3.1), i.e.,

$$S_2 \rtimes C_{q^2-1}, \ \mathrm{PSL}(2,q) \times C_{q+1}, \ C_{q^2-q+1} \rtimes C_3, \ \ \mathrm{and} \ \ (C_{q+1} \times C_{q+1}) \rtimes \mathrm{Sym}(3),$$

are the maximal subgroups of G, for which there is just one conjugacy class by Theorem 2.3.

Case 2: Let $\alpha_1, \alpha_2 \in G$ have order 3, so that they are of type (B2) and α_i fixes two distinct points $P_i, Q_i \in \mathcal{H}_q(\mathbb{F}_{q^2})$. The group G is 2-transitive on $\mathcal{H}_q(\mathbb{F}_{q^2})$, and the pointwise stabilizer of $\{P_i, Q_i\}$ is cyclic of order $q^2 - 1$. Hence, $\langle \alpha_1 \rangle$ and $\langle \alpha_2 \rangle$ are conjugated in G.

Case 3: Let $\alpha_1, \alpha_2 \in G$ have order 2, so that they are of type (C) and α_i fixes exactly one point P_i on $\mathcal{H}_q(\mathbb{F}_{q^2})$. Up to conjugation $P_1 = P_2$, as G is transitive on $\mathcal{H}_q(\mathbb{F}_{q^2})$. The involutions fixing P_1 in G, together with the identity, form an elementary abelian group E_q , which is normalized by a cyclic group C_{q-1} ; no nontrivial element of C_{q-1} commutes

- with any nontrivial element of E_q (see [11, Section 4]). Hence, α_1 and α_2 are conjugated under an element of C_{q-1} .
- Case 4: Let $\alpha_1, \alpha_2, \beta_1, \beta_2 \in G$ satisfy $o(\alpha_i) = 3$, $o(\beta_i) = 2$, and $H_i := \langle \alpha_i, \beta_i \rangle \cong \operatorname{Sym}(3)$. As shown in the previous point, we can assume $\alpha_1 = \alpha_2$ up to conjugation. Let $P, Q \in \mathcal{H}_q(\mathbb{F}_{q^2})$ and $R \in \operatorname{PG}(2, q^2) \setminus \mathcal{H}_q$ be the fixed points of α_1 . Since $\beta_i \alpha_1 \beta_i^{-1} = \alpha_1^{-1}$, we have that β_i fixes R and interchanges P and Q; β is then uniquely determined from the \mathbb{F}_{q^2} -rational point of PQ fixed by β (namely, the intersection between PQ and the axis of β). Since the pointwise stabilizer C_{q^2-1} of $\{P,Q\}$ acts transitively on $PQ(\mathbb{F}_{q^2}) \setminus \mathcal{H}_q$, β_1 and β_2 are conjugated, and the same holds for H_1 and H_2 .
- **Case 5:** Any two groups isomorphic to C_{q^2-1} are conjugated in G, because they are generated by elements of type (B2) and G is 2-transitive on $\mathcal{H}_q(\mathbb{F}_{q^2})$.
- **Case 6:** Any two groups isomorphic to E_q are conjugated in G, because any such group fixes exactly one point $P \in \mathcal{H}_q(\mathbb{F}_{q^2})$, G is transitive on $\mathcal{H}_q(\mathbb{F}_{q^2})$, and the stabilizer $G_P = M_1(P)$ contains just one subgroup E_q .
- Case 7: Any two groups $H_1, H_2 \cong E_q \rtimes C_{q^2-1}$ are conjugated in G. In fact, their Sylow 2-subgroups E_q coincide up to conjugation, as shown in the previous point. The normalizer $N_G(E_q)$ fixes the fixed point $P \in \mathcal{H}_q(\mathbb{F}_{q^2})$ of E_q , and hence $N_G(E_q) = M_1(P) = S_2 \rtimes C_{q^2-1}$. The complements C_{q^2-1} are conjugated by Schur-Zassenhaus Theorem; hence, H_1 and H_2 are conjugated.
- Case 8: Any two groups isomorphic to $C_{2(q+1)}$ are conjugated in G, because they are generated by elements of type (E) and two elements α_1,α_2 of type (E) of the same order are conjugated in G. In fact, α_i is uniquely determined by its fixed points $P_i \in \mathcal{H}_q(\mathbb{F}_{q^2})$ and $Q_i \in \ell_{P_i}(\mathbb{F}_{q^2}) \setminus \mathcal{H}_q$; here, ℓ_{P_i} is the polar line of P_i . Up to conjugation $P_1 = P_2$, from the transitivity of G on $\mathcal{H}_q(\mathbb{F}_{q^2})$. Also, S_2 has order q^3 and acts on the q^2 points of $\ell_{P_i}(\mathbb{F}_{q^2}) \setminus \mathcal{H}_q$ with kernel E_q , hence transitively. We can then assume $Q_1 = Q_2$.
- Case 9: Let Z_{P_i} be the center of $M_2(P_i)$, i=1,2. As shown in [5, Section 4], $Z_{P_i} \cong C_{q+1}$ and Z_{P_i} is made by the homologies with center P_i , together with the identity. Since G is transitive on $\operatorname{PG}(2,q^2) \setminus \mathcal{H}_q$, we have up to conjugation that $M_2(P_1) = M_2(P_2)$ and $Z_{P_1} = Z_{P_2}$.
- **Case 10:** Any two groups $H_1, H_2 \cong C_{q+1} \times C_{q+1}$ are conjugated in G. In fact, H_i is the pointwise stabilizer of a self-polar triangle $T_i = \{P_i, Q_i, R_i\} \subset \operatorname{PG}(2, q^2) \setminus \mathcal{H}_q$ (see [5, Section 3]), and the stabilizers of T_1 and T_2 are conjugated by Theorem 2.3.
- Case 11: Any two groups $H_1, H_2 \cong (C_{q+1} \times C_{q+1}) \rtimes C_2$ are conjugated in G. In fact, their subgroups $C_{q+1} \times C_{q+1}$ coincide up to conjugation as shown above, and fix pointwise a self-polar triangle $T = \{P, Q, R\} \subset \operatorname{PG}(2, q^2) \setminus \mathcal{H}_q$. Let $\beta_i \in H_i$ have order 2, i = 1, 2. Then β_i fixes one vertex of T and interchanges the other two vertexes. Up to conjugation in $M_3(T)$ we have $\beta_1(P) = \beta_2(P) = P$. Then $H_1 = H_2$, as they coincide with the stabilizer of P in $M_3(T)$.
- **Proposition 3.3.** The normalizers $N_G(H)$ of the groups H in Equation (3.1) are given in Equation (3.2).
- *Proof.* Case 1: Clearly $N_G(H) = H$ for any H from the first four groups of Equation (3.1) as H is maximal in G.

Case 2: Let $H=E_q \rtimes C_{q^2-1}$. Then $H\leq M_2(P)$, where P is the unique fixed point of C_{q^2-1} in $\operatorname{PG}(2,q^2) \setminus \mathcal{H}_q$. The group H has a unique cyclic subgroup C_{q+1} of order q+1; namely, C_{q+1} is the center of $M_2(P)$ and is made by the homologies with center P; since q is even, H is a split extension $C_{q+1} \times (E_q \rtimes C_{q-1})$. Hence, $N_G(H) \leq N_G(C_{q+1}) = M_2(P)$. The group $H/C_{q+1} \cong E_q \rtimes C_{q-1}$ is maximal and hence self-normalizing in $M_2(P)/C_{q+1} = \operatorname{PSL}(2,q)$; thus, $N_G(E_q \rtimes C_{q-1}) = H$ and $N_G(H) = H$.

Case 3: Let $H = C_{q+1} \times C_{q+1}$. Then $N_G(H) \leq M_3(T)$, where T is the self-polar triangle fixed pointwise by H. Since H is the kernel of $M_3(T)$ in its action on T, we have $N_G(H) = M_3(T)$ and $|N_G(H)| = 6|H|$.

Case 4: Let $H=(C_{q+1}\times C_{q+1})\rtimes C_2$. Then $C_{q+1}\times C_{q+1}$ is normal in $N_G(H)$, being the unique subgroup of index 2 in H. Hence $N_G(H)\leq M_3(T)$, where T is the self-polar triangle fixed pointwise by H. Also, $N_G(H)$ fixes the vertex P of T fixed by H, so that $N_G(H)\neq M_3(T)$. This implies $N_G(H)=H$.

Case 5: Let $H = C_{q^2-1}$. Then H is generated by an element α of type (B2) with fixed points $P,Q \in \mathcal{H}_q(\mathbb{F}_{q^2})$ and $R \in \mathrm{PG}(2,q^2) \setminus \mathcal{H}_q$. Let β be an involution satisfying $\beta(R) = R$, $\beta(P) = Q$, and $\beta(Q) = P$; then $\beta \in N_G(H)$, because H coincides with the pointwise stabilizer of $\{P,Q\}$ in G. An explicit description is the following: given \mathcal{H}_q with equation (2.3), we can assume up to conjugation that $\alpha = \mathrm{diag}(a^{q+1}, a, 1)$ where a is a generator if $\mathbb{F}_{q^2}^*$ (see [11]); then take

$$\beta = \begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix}. \tag{3.4}$$

Since $N_G(H)$ acts on $\{P,Q\}$ and $\beta \in N_G(H)$, the pointwise stabilizer H of $\{P,Q\}$ has index 2 in $N_G(H)$. This implies $N_G(H) = C_{q^2-1} \rtimes C_2$ and $|N_G(H)| = 2|H|$.

Case 6: Let $H=C_{2(q+1)}$, so that H is generated by an element α of type (E) fixing exactly two points $P\in\mathcal{H}_q(\mathbb{F}_{q^2})$ and $Q\in\ell_P(\mathbb{F}_{q^2})\setminus\mathcal{H}_q$. Then $N_G(H)$ fixes P and Q. The subgroup E_q of $M_1(P)$ commutes with H elementwise, while any 2-element in $M_1(P)\setminus E_q$ has order 4 and does not fix Q; hence, the Sylow 2-subgroup of $N_G(H)$ is E_q . Also, $N_G(H)=E_q\rtimes C_d$, where C_d is a subgroup of C_{q^2-1} containing the subgroup C_{q+1} of H. Let C_2 be the subgroup of H of order 2; the quotient group $(C_2\rtimes C_d)/C_{q+1}\cong C_2\rtimes C_{\frac{d}{q+1}}$ acts faithfully as a subgroup of PGL(2,q) on the q+1 points of $\ell_Q\cap\mathcal{H}_q$. By the classification of subgroups of PGL(2,q) ([7]; see [17, Hauptsatz 8.27]), this implies d=1; that is, $N_G(H)=E_q\rtimes C_{q+1}$ and $|N_G(H)|=\frac{q}{2}|H|$.

Case 7: Let $H=C_{q+1}=Z(M_2(P))$. Since H is the center of $M_2(P)$, $M_2(P)\leq N_G(H)$. Conversely, H is made by homologies with center P, and hence $N_G(H)$ fixes P. Thus, $N_G(H)=M_2(P)$ and $|N_G(H)|=q(q^2-1)|H|$.

Case 8: Let $H=E_q$. Since E_q has a unique fixed point P on $\mathcal{H}_q(\mathbb{F}_{q^2})$ and $E_q=Z(M_1(P))$, we have $N_G(H)\leq M_1(P)$ and $M_1(P)\leq N_G(H)$, so that $N_G(H)=M_1(P)$ and $|N_G(H)|=q^2(q^2-1)|H|$.

Case 9: Let $H = \operatorname{Sym}(3) = \langle \alpha, \beta \rangle$, with $o(\alpha) = 3$ and $o(\beta) = 2$. Let $P, Q \in \mathcal{H}_q(\mathbb{F}_{q^2})$ and $R \in \operatorname{PG}(2, q^2) \setminus \mathcal{H}_q$ be the fixed points of α ; β fixes R, interchanges P and Q, and fixes another point A_β on $\ell_R \cap \mathcal{H}_q$. The group $N_G(H)$ acts on $\{P, Q\}$ and on $\{A_\beta, A_{\alpha\beta}, A_{\alpha^2\beta}\}$.

The pointwise stabilizer C_{q^2-1} has a subgroup C_{q+1} which is the center of $M_2(P)$ and fixes PQ pointwise, while any element in $C_{q^2-1}\setminus C_{q+1}$ acts semiregularly on $PQ\setminus \{P,Q\}$; hence, $C_{q^2-1}\cap N_G(H)=C_{3(q+1)}$. If an element $\gamma\in N_G(H)$ fixes $\{P,Q\}$ pointwise, then γ fixes a point in $\{A_\beta,A_{\alpha\beta},A_{\alpha^2\beta}\}$, and hence $\gamma\in \{\beta,\alpha\beta,\alpha^2\beta\}$. Therefore, $N_G(H)=C_{3(q+1)}\rtimes C_2=H\times C_{q+1}$ and $|N_G(H)|=(q+1)|H|$.

Case 10: Let $H=C_3$ and α be a generator of H, with fixed points $P,Q\in\mathcal{H}_q(\mathbb{F}_{q^2})$ and $R\in\mathrm{PG}(2,q^2)\setminus\mathcal{H}_q$. The normalizer $N_G(H)$ fixes R and acts on $\{P,Q\}$. There exists an involution $\beta\in G$ normalizing H and interchanging P and Q (see Equation (3.4)). Then the pointwise stabilizer of $\{P,Q\}$ has index 2 in $N_G(H)$. Also, the pointwise stabilizer of $\{P,Q\}$ in G is cyclic of order q^2-1 . Then $N_G(H)=C_{q^2-1}\rtimes C_2$ and $|N_G(H)|=\frac{2(q^2-1)}{3}|H|$.

Case 11: Let $H=C_2$ and α be a generator of H, with fixed point $P\in\mathcal{H}_q(\mathbb{F}_{q^2})$. Then $N_G(H)$ fixes P, i.e. $N_G(H)\leq M_1(P)=S_2\rtimes C_{q^2-1}$. Since any involution of $M_1(P)$ is in the center of S_2 , the Sylow 2-subgroup of $N_G(H)$ has order q^3 . Let $\beta\in C_{q^2-1}$. If $o(\beta)\mid (q+1)$, then β commutes with any involution of S_2 . If $o(\beta)\nmid (q+1)$, then β does not commute with any element of S_2 . This implies that $N_G(H)=S_2\rtimes C_{q+1}$, and $|N_G(H)|=\frac{q^3(q+1)}{2}|H|$.

Lemma 3.4. Let $\alpha \in G$ be an involution, and hence an elation, with center P and axis ℓ_P . Then there exist exactly $q^3/2$ self-polar triangles $T_{i,j} = \{P_i, Q_{i,j}, R_{i,j}\}$, $i = 1, \ldots, q^2$, $j = 1, \ldots, \frac{q}{2}$, such that α stabilizes $T_{i,j}$. Also, $P_i \in \ell_P$ and $P \in Q_{i,j}R_{i,j}$ for any i and j.

Proof. The number of involutions in G is $(q^3+1)(q-1)$, since for any of the q^3+1 \mathbb{F}_{q^2} -rational points P of \mathcal{H}_q the involutions fixing P form a group E_q . The number of self-polar triangles $T \subset \mathrm{PG}(2,q^2) \setminus \mathcal{H}_q$ is $[G:M_3(T)] = \frac{(q^3+1)q^3(q^2-1)}{6(q+1)^2}$. For any self-polar triangle $T = \{A_1,A_2,A_3\} \subset \mathrm{PG}(2,q^2) \setminus \mathcal{H}_q$, the number of involutions in G stabilizing T is 3(q+1). In fact, for any of the 3 vertexes of T there are exactly q+1 involutions $\alpha_1,\ldots,\alpha_{q+1}$ fixing that vertex, say A_1 , and interchanging A_2 and A_3 ; α_i is uniquely determined by its center $A_2A_3 \cap \mathcal{H}_q$. Then, by double counting the size of

$$\{(\beta,T) \mid \beta \in G, \ o(\beta) = 2, \ T \subset \mathrm{PG}(2,q^2) \setminus \mathcal{H}_q \text{ is a self-polar triangle,}$$
 $\beta \text{ stabilizes } T\},$

 α stabilizes exactly $\frac{q^3}{2}$ self-polar triangles T. For any such T, one vertex P_i of T lies on the axis of α , because α is an elation, and the other two vertexes $\{Q_{i,j}, R_{i,j}\}$ of T lie on the polar line ℓ_{P_i} of P_i . Since $M_1(P)$ is transitive on the q^2 points P_1, \ldots, P_{q^2} of $\ell_P(\mathbb{F}_{q^2})\setminus\{P\}$, any point P_i is contained in the same number $\frac{q}{2}$ of self-polar triangles $T_{i,j}$ stabilized by α .

Lemma 3.5. Let $\alpha \in G$ have order 3. Then there are exactly $\frac{q^2-1}{3}$ self-polar triangles

$$T_i \subset PG(2, q^2) \setminus \mathcal{H}_q, \quad i = 1, \dots, \frac{q^2 - 1}{3},$$

which are stabilized by α . Also, there are exactly $\frac{2(q^2-1)}{3}$ triangles

$$\tilde{T}_j = \{P_j, \Phi_{q^2}(P_j), \Phi_{q^2}^2(P_j)\} \subset \mathcal{H}_q(\mathbb{F}_{q^6}) \setminus \mathcal{H}_q(\mathbb{F}_{q^2}), \quad j = 1, \dots, \frac{2(q^2 - 1)}{3}, \dots$$

which are stabilized by α .

Proof. By Proposition 3.2, any two subgroups of G of order 3 are conjugated in G. Also, any element of order 3 is conjugated to its inverse by an involution of G. Hence, any two element of order 3 are conjugated in G.

Now the claim follows by double counting the size of

$$\{(\beta,T)\mid \beta\in G,\ o(\beta)=3,\ T\subset \mathrm{PG}(2,q^2)\setminus \mathcal{H}_q\ \text{is a self-polar triangle},\ \beta\ \text{stabilizes}\ T\},$$

and

$$\{(\beta,\tilde{T})\mid \beta\in G,\, o(\beta)=3,\, \tilde{T}=\{P,\Phi_{q^2}(P),\Phi_{q^2}^2(P)\} \text{ with } \\ P\in\mathcal{H}_q(\mathbb{F}_{q^6})\setminus\mathcal{H}_q(\mathbb{F}_{q^2}),\, \beta \text{ stabilizes } \tilde{T}\},$$

using the following facts. The number of elements of order 3 in G is $\binom{q^3+1}{2} \cdot 2$. The number of self-polar triangles $T \subset \mathrm{PG}(2,q^2) \setminus \mathcal{H}_q$ is $[G:M_3(T)]$. The number of elements of order 3 stabilizing a fixed self-polar triangle T is $2(q+1)^2$, because any element acting as a 3-cycle on the vertexes of T has order 3 (see [5, Section 3]). The number of triangles $\tilde{T} = \{P, \Phi_{q^2}(P), \Phi_{q^2}^2(P)\} \subset \mathcal{H}_q(\mathbb{F}_{q^6}) \setminus \mathcal{H}_q(\mathbb{F}_{q^2})$ is $[G:M_4(\tilde{T})]$. The number of elements of order 3 stabilizing a fixed triangle \tilde{T} is $2(q^2-q+1)$, because any element in $M_4(\tilde{T}) \setminus C_{q^2-q+1}$ has order 3 (see [4, Section 4]).

Lemma 3.6. Let H < G be isomorphic to $\operatorname{Sym}(3)$, $H = \langle \alpha \rangle \rtimes \langle \beta \rangle$. Then there are exactly q+1 self-polar triangles

$$T_i = \{P_i, Q_i, R_i\} \subset \operatorname{PG}(2, q^2) \setminus \mathcal{H}_q, \quad i = 1, \dots, q+1,$$

which are stabilized by H. Up to relabeling the vertexes, we have that P_1, \ldots, P_{q+1} lie on the axis of the elation $\beta, Q_1, \ldots, Q_{q+1}$ lie on the axis of the elation $\alpha\beta$, and R_1, \ldots, R_{q+1} lie on the axis of the elation $\alpha^2\beta$.

Proof. By Proposition 3.2, any two subgroups $K_1, K_2 < G$ with $K_i \cong \operatorname{Sym}(3)$ are conjugated, and $|N_G(K_i)| = 6(q+1)$; hence, the number of subgroups of G isomorphic to $\operatorname{Sym}(3)$ is $[G:N_G(K_i)] = \frac{(q^3+1)q^3(q-1)}{6}$. The number of self-polar triangles T is $[G:M_3(T)] = \frac{(q^2-q+1)q^3(q-1)}{6}$. Then the claim on the number of self-polar triangles follows by double counting the size of

$$\{(K,T) \mid K < G, \ K \cong \operatorname{Sym}(3), \ T \subset \operatorname{PG}(2,q^2) \setminus \mathcal{H}_q \text{ is a self-polar triangle,} K \text{ stabilizes } T\},$$

once we show that, for any self-polar triangle $T = \{A, B, C\}$, there are in G exactly $(q+1)^2$ subgroups isomorphic to $\operatorname{Sym}(3)$ which stabilize T.

Let $K < M_3(T)$, $K \cong \operatorname{Sym}(3)$, $K = \langle \alpha, \beta \rangle$ with $o(\alpha) = 3$, $o(\beta) = 2$. Let P,Q,R be the fixed points of α , with $P \in \operatorname{PG}(2,q^2) \setminus \mathcal{H}_q$, $Q,R \in \mathcal{H}_q(\mathbb{F}_{q^2})$. By Proposition 3.3, $N_G(K) = K \times C_{q+1}$ where C_{q+1} is made by homologies with center P; this implies $N_G(K) \cap M_3(T) = K$. Hence, there are at least $[M_3(T) : \operatorname{Sym}(3)] = (q+1)^2$ distinct groups $\operatorname{Sym}(3)$ stabilizing T, namely the conjugates of K through elements of $M_3(T)$. On the other side, $M_3(T)$ contains exactly $(q+1)^2$ subgroups K of order 3, with fixed points $P \in \operatorname{PG}(2,q^2) \setminus \mathcal{H}_q$, $Q,R \in \mathcal{H}_q(\mathbb{F}_{q^2})$. Any involution β of $M_3(T)$ normalizing

K is uniquely determined by the vertex of T that β fixes, because $\beta(P) = P$, $\beta(Q) = R$, and $\beta(R) = Q$. Thus, K is contained in exactly one subgroup of $M_3(T)$ isomorphic to Sym(3). Therefore the number of subgroups isomorphic to Sym(3) which stabilize T is $(q+1)^2$.

Finally, the configuration of the vertexes of T_1, \ldots, T_{q+1} on the axes of the involutions of H follows from Lemma 2.4 and the fact that every involution fixes a different vertex of T_i .

Proposition 3.7. Any group H in Equation (3.1) is the intersection of maximal subgroups of G.

Proof. Case 1: The first four groups of Equation (3.1) are exactly the maximal subgroups of G.

Case 2: Let $H=E_q \rtimes C_{q^2-1}$. Let $P\in \mathcal{H}_q(\mathbb{F}_{q^2})$ be the unique point of \mathcal{H}_q fixed by E_q ; E_q fixes ℓ_P pointwise. Also, the fixed points of C_{q^2-1} are $P,Q\in \mathcal{H}_q(\mathbb{F}_{q^2})$ and $R\in \mathrm{PG}(2,q^2)\setminus \mathcal{H}_q$, where $R\in \ell_P$ and $PQ=\ell_R$. Then $H\leq M_1(P)\cap M_2(R)$. Conversely, from $M_1(P)\cap M_2(R)\leq M_1(P)$ follows $M_1(P)\cap M_2(R)=K\rtimes C_d$ with $K\leq S_2$ and $C_d\leq C_{q^2-1}$. From $M_1(P)\cap M_2(R)\leq M_2(R)$ follows that K does not contain any element of type (D), so that $K\leq E_q$. Thus, $M_1(P)\cap M_2(R)\leq H$, and $H=M_1(P)\cap M_2(R)$.

Case 3: Let $H = (C_{q+1} \times C_{q+1}) \rtimes C_2$. Let $T = \{P,Q,R\} \subset \operatorname{PG}(2,q^2) \setminus \mathcal{H}_q$ be the self-polar triangle fixed pointwise by $C_{q+1} \times C_{q+1}$, and let P be the vertex of T fixed by C_2 . Then $H \leq M_3(T) \cap M_2(P)$. Conversely, since $M_3(T) \cap M_2(P)$ fixes P and acts on $\{Q,R\}$, the pointwise stabilizer $C_{q+1} \times C_{q+1}$ of T has index at most 2 in $M_3(T) \cap M_2(P)$, so that $M_3(T) \cap M_2(P) \leq H$. Thus, $H = M_3(T) \cap M_2(P)$.

Case 4: Let $H = C_{q+1} \times C_{q+1}$. Let $T = \{P, Q, R\} \subset \operatorname{PG}(2, q^2) \setminus \mathcal{H}_q$ be the self-polar triangle fixed pointwise by $C_{q+1} \times C_{q+1}$. Since H is the whole pointwise stabilizer of T in G, we have $H = M_2(P) \cap M_2(Q) \cap M_2(R)$.

Case 5: Let $H = C_{q^2-1}$ and let α be a generator of H, with fixed points $P, Q \in \mathcal{H}_q(\mathbb{F}_{q^2})$ and $R \in \mathrm{PG}(2,q^2) \setminus \mathcal{H}_q$. The pointwise stabilizer of $\{P,Q\}$ in G is exactly H; thus, $H = M_1(P) \cap M_2(Q)$.

Case 6: Let $H=C_{2(q+1)}$ and let α be a generator of H, of type (E), with fixed points $P\in\mathcal{H}_q(\mathbb{F}_{q^2})$ and $Q\in\ell_P(\mathbb{F}_{q^2})\setminus\mathcal{H}_q$. By Lemma 3.4 there are $\frac{q}{2}$ self-polar triangles stabilized by the involution α^{q+1} having one vertex in Q and two vertexes on ℓ_Q ; let $T=\{Q,R_1,R_2\}$ be one of these triangles. Then $H\leq M_1(P)\cap M_2(Q)\cap M_3(T)$.

Conversely, let $\sigma \in (M_1(P) \cap M_2(Q) \cap M_3(T)) \setminus \{1\}$. If σ fixes $\{R_1, R_2\}$ pointwise, then from $\sigma \in M_1(P)$ follows that σ is in the kernel $C_{q+1} \leq H$ of the action of $M_2(Q)$ on ℓ_Q . The quotient $(M_1(P) \cap M_2(Q) \cap M_3(T))/C_{q+1}$ acts on ℓ_Q as a subgroup of $\mathrm{PSL}(2,q)$ fixing P and interchanging R_1 and R_2 . From [17, Hauptsatz 8.27] follows $(M_1(P) \cap M_2(Q) \cap M_3(T))/C_{q+1} \cong C_2$, and hence $H = M_1(P) \cap M_2(Q) \cap M_3(T)$.

Case 7: Let $H=C_{q+1}=Z(M_2(P))$. Then H is made by the homologies of G with center P, together with the identity. Thus, $H=M_1(P_1)\cap M_1(P_2)\cap M_1(P_3)$, where P_1,P_2,P_3 are distinct point in $\ell_P\cap\mathcal{H}_q$.

Case 8: Let $H = E_q$ and let P be the unique point of $\mathcal{H}_q(\mathbb{F}_{q^2})$ fixed by any element in H. Then $H = M_2(P_1) \cap M_2(P_2) \cap M_2(P_3)$, where P_1, P_2, P_3 are distinct points in $\ell_P(\mathbb{F}_{q^2}) \setminus \{P\}$.

Case 9: Let $H=C_2$, α be a generator of H with fixed point $P\in\mathcal{H}_q(\mathbb{F}_{q^2})$, and $P_1,P_2,P_3\in\ell_P(\mathbb{F}_{q^2})\setminus\{P\}$. Let $T=\{P_1,Q_{1,1},R_{1,1}\}$ be a self-polar triangle stabilized by α . Then $H\leq M_2(P_1)\cap M_2(P_2)\cap M_2(P_3)\cap M_3(T)$. Since the elation α is uniquely determined by the image of one point not on its axis $\ell_P, H\leq M_3(T)$ implies $H=M_2(P_1)\cap M_2(P_2)\cap M_2(P_3)\cap M_3(T)$.

Case 10: Let $H=C_3$. By Lemma 3.5, H stabilizes $\frac{2(q^2-1)}{3}$ triangles $\tilde{T}\subset\mathcal{H}_q(\mathbb{F}_{q^6})\setminus\mathcal{H}_q(\mathbb{F}_{q^2})$; let \tilde{T}_1 and \tilde{T}_2 be two of them. Then $H\leq M_4(\tilde{T}_1)\cap M_4(\tilde{T}_2)$. If $H< M_4(\tilde{T}_1)\cap M_4(\tilde{T}_2)$, then there exist a nontrivial $\sigma\in G$ stabilizing pointwise both \tilde{T}_1 and \tilde{T}_2 , a contradiction to Lemma 2.4. Thus, $H=M_4(\tilde{T}_1)\cap M_4(\tilde{T}_2)$.

Case 11: Let $H = \operatorname{Sym}(3)$. By Lemma 3.6, H stabilizes q+1 self-polar triangles T_1, \ldots, T_{q+1} , so that $H \leq M_3(T_1) \cap \cdots \cap M_3(T_{q+1})$. Suppose by contradiction that $H \neq M_3(T_1) \cap \cdots \cap M_3(T_{q+1})$. Then $M_3(T_1) \cap \cdots \cap M_3(T_{q+1})$ contains a nontrivial element σ fixing every triangle T_i pointwise. Since the triangles T_i 's do not have vertexes in common, this is a contradiction to Lemma 2.4. Thus, $H = M_3(T_1) \cap \cdots \cap M_3(T_{q+1})$.

Case 12: Let $H = \{1\}$. Since G is simple, H is the Frattini subgroup of G.

Proposition 3.8. If H < G is the intersection of maximal subgroups, then H is one of the groups in Equation (3.1).

Proof. We proceed as follows: we take every subgroup K < G in Equation (3.1), starting from the maximal subgroups M_i of G; we consider the intersections $H = K \cap M_i$ of K with the maximal subgroups of G; here, we assume that $K \not \leq M_i$. We show that H is again one of the groups in Equation (3.1).

Case 1: Let $K = S_2 \rtimes C_{q^2-1} = M_1(P)$ for some $P \in \mathcal{H}_q(\mathbb{F}_{q^2})$.

Let $H = K \cap M_1(Q)$, $Q \neq P$. Then H is the pointwise stabilizer of $\{P, Q\} \subset \mathcal{H}_q(\mathbb{F}_{q^2})$, which is cyclic of order $q^2 - 1$, i.e. $H = C_{q^2 - 1}$.

Let $H=K\cap M_2(Q)$. Suppose $Q\in\ell_P$. Then $H=E_{q^2}\rtimes C_{q^2-1}$, where E_{q^2} is made by the elations with axis PQ and C_{q^2-1} is generated by an element of type (B2) with fixed points Q,P, and another point $R\in\ell_Q$. Now suppose $Q\notin\ell_P$. Then H stabilizes ℓ_Q and hence also the point $R=\ell_P\cap\ell_Q$. Then H stabilizes QR and hence also the pole A of QR; by reciprocity, $A\in PQ$. Thus, H fixes three collinear point A,P,Q, and hence every point on AP. Then $H=C_{q+1}=Z(M_2(R))$.

Let $H = K \cap M_3(T)$, $T = \{A, B, C\}$, with P on a side of T, say $P \in AB$. Then H fixes C and acts on $\{A, B\}$. Thus, H is generated by an element of type (E) with fixed points P, C and fixed lines PC, AB; hence, $H = C_{2(q+1)}$.

Let $H = K \cap M_3(T)$, $T = \{A, B, C\}$, with P out of the sides of T. By reciprocity, no vertex of T lies on ℓ_P . This implies that no elation acts on T, so that $2 \nmid |H|$; this also implies that no homology in $M_3(T)$ fixes P, so that H has no nontrivial elements fixing T pointwise. Thus $H \leq C_3$.

Let $H = K \cap M_4(T)$. By Lagrange's theorem, $H \leq C_3$.

Case 2: Let $K = PSL(2,q) \times C_{q+1} = M_2(P)$ for some $P \in PG(2,q^2) \setminus \mathcal{H}_q$.

Let $H = K \cap M_2(Q)$, $Q \neq P$, and R be the pole of PQ. If $R \in PQ$, then H is the pointwise stabilizer of PQ and is made by the elations with center R; thus, $H = E_q$. If $R \notin PQ$, then H is the pointwise stabilizer of $T = \{P, Q, R\}$; thus, $H = C_{q+1} \times C_{q+1}$.

Let $H = K \cap M_3(T)$ with $T = \{A, B, C\}$. If P is a vertex of T, then $H = (C_{q+1} \times C_{q+1}) \rtimes C_2$. If P is on a side of T but is not a vertex, say $P \in AB$, then H fixes the pole $D \in AB$ of C. Then H fixes pointwise $T' = \{P, C, D\}$ and acts on $\{A, B\}$. This implies that H fixes AB pointwise and $H = C_{q+1} = Z(M_2(C))$. If P is out of the sides of T, then no nontrivial element of H fixes T pointwise; thus, $H \leq \operatorname{Sym}(3)$.

Let $H = K \cap M_4(T)$. By Lagrange's theorem, $H \leq C_3$.

Case 3: Let $K = (C_{q+1} \times C_{q+1}) \times \operatorname{Sym}(3) = M_3(T)$ for some self-polar triangle $T = \{A, B, C\}$.

Let $H=K\cap M_3(T')$ with $T'=\{A',B',C'\}\neq T$. If T and T' have one vertex A=A' in common, then $H=C_{2(q+1)}$ is generated by an element of type (E) fixing A and a point $D\in BC=B'C'$. If $A'\in AC\setminus\{A,C\}$, then H stabilizes B'C', because B'C' is the only line containing 4 points of $\{A,B,C,A',B',C'\}$. Then H fixes A', A, and C; hence also B. Since H acts on $\{B',C'\}$, H cannot be made by nontrivial homologies of center B; thus, $H=\{1\}$.

Let $H = K \cap M_4(T')$. By Lagrange's theorem, $H \leq C_3$.

Case 4: Let $K = C_{q^2-q+1} \rtimes C_3 = M_4(T)$ for some $T \subset \mathcal{H}_q(\mathbb{F}_{q^6})$. Let $H = K \cap M_4(T')$ with $T' \neq T$. Since 3 does not divide the order of the pointwise stabilized C_{q^2-q+1} of T, H contains no nontrivial elements fixing T or T' pointwise. Thus, $H \leq C_3$.

Case 5: Let $K = E_q \rtimes C_{q^2-1}$ and $P \in \mathcal{H}_q(\mathbb{F}_{q^2}), Q \in \ell_P \setminus \{P\}$ be the fixed points of K. Let $H = K \cap M_1(R)$ with $R \neq P$. If $R \in \ell_Q$, then $H = C_{q^2-1}$. If $R \notin \ell_Q$, then H fixes the pole S of PR; by reciprocity $S \in PQ$, so that H fixes PQ pointwise and also $R \notin PQ$. Thus, $H = \{1\}$.

Let $H=K\cap M_2(R)$ with $R\neq Q$. If $R\in \ell_P$, then H is the pointwise stabilizer E_q of PQ. If $R\notin \ell_P$, then H fixes pointwise the self-polar triangle $\{Q,R,S\}$ where S is the pole of QR. Hence, either $H=C_{q+1}=Z(M_2(Q))$ or $H=\{1\}$ according to $P\in RS$ or $P\notin RS$, respectively.

Let $H = K \cap M_3(T)$ with $T = \{A, B, C\}$. If P is on a side of T, say $P \in BC$, then either $H = \{1\}$ or $H = C_{q+1} = Z(M_2(A))$. If P is out of the sides of T, then no nontrivial element of H can fix T pointwise; thus, $H \leq \operatorname{Sym}(3)$.

Let $H = K \cap M_4(T)$. By Lagrange's theorem, $H \leq C_3$.

Case 6: Let $K = (C_{q+1} \times C_{q+1}) \rtimes C_2 = M_3(T) \cap M_2(A)$, where $T = \{A, B, C\}$.

Let $H = K \cap M_1(P)$. If $P \in BC$, then $H = C_{2(q+1)}$ is generated by an element of type (E). If $P \notin BC$, then $H = \{1\}$.

Let $H=K\cap M_2(P), P\neq A$. If $P\in\{B,C\}$, then H is the pointwise stabilizer $C_{q+1}\times C_{q+1}$ of T. If $P\in AB\setminus\{A,B\}$ or $P\in AC\setminus\{A,C\}$, then $H=C_{q+1}=Z(M_2(C))$ or $H=C_{q+1}=Z(M_2(B))$, respectively. If $P\in BC\setminus\{B,C\}$, then H fixes A,P, the pole of AP, and acts on $\{B,C\}$; thus, $H=C_{q+1}=Z(M_2(A))$. If P is not on the sides of T, then no nontrivial element of H can fix T pointwise; thus, $H\leq C_2$.

Let $H=K\cap M_3(T')$ with $T'=\{A',B',C'\}\neq T$. Since $3\nmid |H|$, H fixes a vertex of T', say A'. If A'=A, then $H=C_{2(q+1)}$. If $A'\in \{B,C\}$, then H fixes T pointwise and acts on $\{B',C'\}$; thus, $H=C_{q+1}=Z(M_2(A'))$. If $A'\in (AB\cup AC)\setminus \{A,B,C\}$, then H fixes AB or AC pointwise and acts on $\{B',C'\}$; thus, $H=\{1\}$. If $A'\in BC$, then H

fixes A, A', and the pole D of AA'; as H acts on $\{B,C\}$, this implies $H=\{1\}$. If A' is not on the sides of T, then no nontrivial element of H fixes T pointwise and $H \leq C_2$.

Let $H = K \cap M_4(T')$. By Lagrange's theorem, $H \leq C_3$.

Case 7: Let $K = C_{q+1} \times C_{q+1} = M_3(T) \cap M_2(A) \cap M_2(B) \cap M_2(C)$ with $T = \{A, B, C\}$.

Let $H = K \cap M_1(P)$ or $H = K \cap M_2(P)$. If P is not on the sides of T, then $H = \{1\}$; if P is on a side of T, say $P \in BC$, then $H = C_{q+1} = Z(M_2(A))$.

Let $H = K \cap M_3(T')$ with $T' = \{A', B', C'\}$. Since K is not divisible by 2 or $3, H \neq \{1\}$ only if H fixes T' pointwise. Up to relabeling, this implies A' = A, $B', C' \in BC$, and $H = C_{q+1} = Z(M_2(A))$.

Let $H = K \cap M_4(T')$. By Lagrange's theorem, $H = \{1\}$.

Case 8: Let $K = C_{q^2-1} = \langle \alpha \rangle$, with α of type (B2) fixing the points $P \in PG(2, q^2) \setminus \mathcal{H}_q$ and $Q, R \in \mathcal{H}_q(\mathbb{F}_{q^2})$.

Let $H = K \cap M_1(A)$ or $H = K \cap M_2(A)$. Since the nontrivial elements of H are either of type (B2) or of type (A) with axis QR, we have $H = \{1\}$ unless $A \in QR$; in this case, $H = C_{q+1} = Z(M_2(P))$.

Let $H = K \cap M_3(T)$ or $H = K \cap M_4(T)$. By Lagrange's theorem, $H \leq C_3$.

Case 9: Let $K = C_{2(q+1)} = \langle \alpha \rangle$ with α of type (E) fixing the points $P \in \mathcal{H}_q(\mathbb{F}_{q^2})$ and $Q \in \mathrm{PG}(2,q^2) \setminus \mathcal{H}_q$.

Let $H=K\cap M_1(R)$ or $H=K\cap M_2(R)$. If $R\in \ell_Q$, then $H=C_{q+1}=Z(M_2(Q))$. If $R\notin \ell_Q$, then $H=\{1\}$.

Let $H=K\cap M_3(T)$; recall that H<K. If Q is a vertex of T, then $H=C_{q+1}=Z(M_2(Q))$. If Q is not a vertex of T, then no homology in K acts on T; hence, $H\leq C_2$. Let $H=K\cap M_4(T)$. By Lagrange's theorem, $H=\{1\}$.

Case 10: Let $K = C_{q+1} = Z(M_2(P))$ for some $P \in \mathrm{PG}(2,q^2) \setminus \mathcal{H}_q$ and $\sigma \in K \setminus \{1\}$. Then σ fixes no points out of $\{P\} \cup \ell_P$; also, the triangles fixed by σ have one vertex in P and two vertexes on ℓ_P . Thus, $K \cap M_i = \{1\}$ for any maximal subgroup M_i of G not containing K.

Case 11: Let $K=E_q$ and $\sigma\in E_q\setminus\{1\}$. Recall that K fixes one point $P\in\mathcal{H}_q(\mathbb{F}_{q^2})$ and the line ℓ_P pointwise. Also, σ fixes no points out of ℓ_P . If σ fixes a triangle $T=\{A,B,C\}$, then one vertex of T lies on $\ell_P(\mathbb{F}_{q^2})$, say A, and σ is uniquely determined by $\sigma(B)=C$. Thus, $K\cap M_1(Q)=K\cap M_2(Q)=K\cap M_4(T')=\{1\}$ and $K\cap M_3(T)\leq C_2$.

Case 12: Let $K \in \{\text{Sym}(3), C_3, C_2, \{1\}\}$. Then every subgroup of K is in Equation (3.1).

Proposition 3.9. The values $\mu(H)$ for the groups in Equation (3.1) are given in Equation (3.3).

Proof. Let H be one of the groups in Equation (3.1). By Lemma 2.1 and Proposition 3.8, $\mu(H)$ only depends on the subgroups K of G such that H < K and K is in Equation (3.1).

Case 1: If H is one of the first four groups in Equation (3.1), then H is maximal in G, and hence $\mu(H) = -1$.

Case 2: Let $H = E_q \rtimes C_{q^2-1}$. Let $P \in \mathcal{H}_q(\mathbb{F}_{q^2})$ and $Q \in \mathrm{PG}(2,q^2) \setminus \mathcal{H}_q$ be the fixed points of H. Then $H = M_1(P) \cap M_2(Q)$ and H is not contained in any other maximal

subgroup of G. Thus, $\mu(H) = -\{\mu(G) + \mu(M_1(P)) + \mu(M_2(Q))\} = 1$.

Case 3: Let $H=(C_{q+1}\times C_{q+1})\rtimes C_2$. Let $T=\{P,Q,R\}$ be the self-polar triangle stabilized by H, with H(P)=P. No point different from P is fixed by H. Also, if a triangle $T'=\{P',Q'\}\neq T$ is fixed by H, then P is a vertex of T', say P=P', and $\{Q',R'\}\subset QR$; but $C_{q+1}\times C_{q+1}$ has orbits of length $q+1>|\{Q',R'\}|$, so that H cannot fix T'. Then $H=M_2(P)\cap M_3(T)$ and H is not contained in any other maximal subgroup of G. Thus, $\mu(H)=1$.

Case 4: Let $H=C_{q+1}\times C_{q+1}$ and $T=\{P,Q,R\}$ be the self-polar triangle fixed pointwise by H. The vertexes of T are the unique fixed points of the elements of type (B1) in H. Also, any triangle $T'\neq T$ fixed by an element of type (A) in H has two vertexes on a side ℓ of T; but H has orbits of length q+1>2 on ℓ , so that H does not fix T'. Then $H=M_3(T)\cap M_2(P)\cap M_2(Q)\cap M_2(R)$ and H is not contained in any other maximal subgroup of G.

If K is one of the groups $M_3(T)\cap M_2(P)$, $M_3(T)\cap M_2(P)$, $M_3(T)\cap M_2(P)$, then K contains H properly, and $\mu(K)=1$ as shown in the previous point. The intersection of three groups between $M_3(T)$, $M_2(P)$, $M_2(Q)$, and $M_2(R)$ is equal to H. Thus, by direct computation, $\mu(H)=0$.

Case 5: Let $H=C_{q^2-1}$ with fixed points $P\in \mathrm{PG}(2,q^2)\setminus \mathcal{H}_q$ and $Q,R\in \mathcal{H}_q(\mathbb{F}_{q^2})$. Then $H=M_1(Q)\cap M_1(R)=M_1(Q)\cap M_1(R)\cap M_2(P)$. We already know $\mu(M_1(Q)\cap M_2(P))=\mu(M_1(R)\cap M_2(P))=1$. Moreover, C_{q^2-1} has no fixed triangles, by Lagrange's theorem, and no other fixed points. Thus, by direct computation, $\mu(H)=0$.

Case 6: Let $H=C_{2(q+1)}=\langle\alpha\rangle$; α is of type (E), fixes the points $P\in\mathcal{H}_q(\mathbb{F}_{q^2})$ and $Q\in PG(2,q^2)\setminus\mathcal{H}_q$, and fixes the lines ℓ_P and ℓ_Q . Since α^2 is a homology with center Q, the orbits on ℓ_Q of H coincide with the orbits on ℓ_Q of the elation α^{q+1} . By Lemma 3.4, the self-polar triangles T_i stabilized by H have a vertex in Q and two vertexes on ℓ_Q ; there are exactly $\frac{q}{2}$ such triangles $T_1,\ldots,T_{\frac{q}{2}}$. No other triangle and no other point different from P and Q is fixed by H, so that $H=M_1(P)\cap M_2(Q)\cap M_3(T_1)\cap\cdots\cap M_3(T_{\frac{q}{2}})$ and H is not contained in any other maximal subgroup of G.

If K is the intersection of $M_2(Q)$ with one of the groups $M_1(P), M_3(T_1), \ldots, M_3(T_{\frac{q}{2}})$, then $K = E_q \rtimes C_{q^2-1}$ or $K = (C_{q+1} \times C_{q+1}) \rtimes C_2$; hence, K contains H properly and $\mu(K) = 1$ as shown above. The intersection of K with a third maximal subgroup of G containing H coincides with H. Finally, the intersection of any two groups in $\{M_1(P), M_3(T_1), \ldots, M_3(T_{\frac{q}{2}})\}$ coincides with H. Thus, by direct computation, $\mu(H) = 0$.

Case 7: Let $H=C_{q+1}=Z(M_2(P))$. Denote $\ell_P\cap\mathcal{H}_q=\{P_1,\ldots,P_{q+1}\}$ and $\ell(\mathbb{F}_{q^2})\setminus\mathcal{H}_q=\{Q_1,\ldots,Q_{q^2-q}\}$ such that, for $i=1,\ldots,\frac{q^2-q}{2},\,T_i=\{P,Q_i,Q_{i+\frac{q^2-q}{2}}\}$ are the self-polar triangles with a vertex in P. Then

$$H = \bigcap_{i=1}^{q+1} M_1(P_i) \cap M_2(P) \cap \bigcap_{i=1}^{q^2 - q} M_2(Q_i) \cap \bigcap_{i=1}^{(q^2 - q)/2} M_3(T_i)$$

and H is not contained in any other maximal subgroup of G. By direct inspection, the intersections K of some (at least two) maximal subgroups of G such that H < K < G are exactly the following.

- (i) $K=M_1(P_i)\cap M_1(P_j)$ for some $i\neq j$; in this case, $K=C_{q^2-1}$ and $\mu(K)=0$.
- (ii) $K=M_1(P_i)\cap M_2(P)$ with $i\in\{1,\ldots,q+1\}$; in this case, $K=E_q\rtimes C_{q^2-1}$ and $\mu(K)=1$. These q+1 groups are pairwise distinct.
- (iii) $K = M_1(P_i) \cap M_3(T_j)$ for some i, j; in this case, $K = C_{2(q+1)}$ and $\mu(K) = 0$.
- (iv) $K = M_2(P) \cap M_2(Q_i)$ for some i; in this case, $K = C_{q+1} \times C_{q+1}$ and $\mu(K) = 0$.
- (v) $K=M_2(P)\cap M_3(T_i)$ with $i\in\{1,\ldots,\frac{q^2-q}{2}\}$; in this case, $K=(C_{q+1}\times C_{q+1})\rtimes C_2$ and $\mu(K)=1$. These $\frac{q^2-q}{2}$ groups are pairwise distinct.
- (vi) $K=M_2(Q_i)\cap M_3(T_i)$ or $K=M_2(Q_{i+\frac{q^2-q}{2}})\cap M_3(T_i)$, with $i\in\{1,\ldots,\frac{q^2-q}{2}\}$; in this case, $K=(C_{q+1}\times C_{q+1})\rtimes C_2$ and $\mu(K)=0$. These q^2-q groups are pairwise distinct.

To sum up, the only subgroups K with H < K < G and $\mu(K) \neq 0$ are the maximal subgroups, q+1 distinct groups of type $E_q \rtimes C_{q^2-1}$, and $\frac{3(q^2-q)}{2}$ distinct groups of type $(C_{q+1} \times C_{q+1}) \rtimes C_2$. Thus, $\mu(H) = 0$.

Case 8: Let $H=E_q$. Let P be the point of $\mathcal{H}_q(\mathbb{F}_{q^2})$ fixed by H; H fixes ℓ_P pointwise. We have $H=M_1(P)\cap M_2(Q_1)\cap \cdots \cap M_2(Q_{q^2})$, where Q_1,\ldots,Q_{q^2} are the \mathbb{F}_{q^2} -rational points of $\ell_P\setminus\{P\}$; H is not contained in any other maximal subgroup of G. The intersections K of at least two maximal subgroups of G such that H< K< G are exactly the q^2 groups $M_1(P)\cap M_2(Q_i)=E_q\rtimes C_{q^2-1}$, with $\mu(K)=1$. Thus, by direct computation, $\mu(H)=0$.

Case 9: Let $H = \operatorname{Sym}(3) = \langle \alpha, \beta \rangle$ with $o(\alpha) = 3$ and $o(\beta) = 2$. Let $P \in \operatorname{PG}(2, q^2) \setminus \mathcal{H}_q$ and $Q, R \in \mathcal{H}_q$ be the fixed points of α , and $A \in QR$ be the fixed point of β on \mathcal{H}_q , so that β fixes $\ell_A = AP$. By Lemma 3.6 and its proof, $H = M_2(P) \cap M_3(T_1) \cap \cdots \cap M_3(T_{q+1})$, where T_i has one vertex on $\ell_A \setminus \{P, A\}$ and the other two vertexes are collinear with A; H is not contained in any other maximal subgroup of G.

For any $i,j \in \{1,\ldots,q+1\}$ with $i \neq j$, no vertex of T_j is on a side of T_i ; hence, no nontrivial element of $M_3(T_i) \cap M_3(T_j)$ fixes T_i pointwise. This implies $M_3(T_i) \cap M_3(T_j) = H$. Analogously, no nontrivial element in $M_3(T_i) \cap M_2(P)$ fixes T_i pointwise, and this implies $M_3(T_i) \cap M_2(P) = H$. Thus, by direct computation, $\mu(H) = q + 1$.

Case 10: Let $H = C_3 = \langle \alpha \rangle$ with fixed points $P \in PG(2, q^2) \setminus \mathcal{H}_q$ and $Q, R \in \mathcal{H}_q$. By Lemma 3.5,

$$H = M_1(Q) \cap M_1(R) \cap M_2(P) \cap \bigcap_{i=1}^{(q^2-1)/3} M_3(T_i) \cap \bigcap_{i=1}^{2(q^2-1)/3} M_4(\tilde{T}_i)$$

and H is not contained in any other maximal subgroup of G. By direct inspection, the intersections K of at least two maximal subgroups of G such that H < K < G are exactly the following.

- (i) $K=M_1(Q)\cap M_2(P)$ or $K=M_1(R)\cap M_2(P)$; in this case, $K=E_q\rtimes C_{q^2-1}$ and $\mu(K)=1$.
- (ii) $K = M_1(Q) \cap M_1(R)$; in this case, $K = C_{q^2-1}$ and $\mu(K) = 0$.

(iii) There are exactly $\frac{q-1}{3}$ groups K containing H with $K \cong \operatorname{Sym}(3)$, and hence $\mu(K) = q+1$. In fact, any involution $\beta \in G$ satisfying $\langle H, \beta \rangle \cong \operatorname{Sym}(3)$ interchanges Q and R and fixes a point of $(QR \cap \mathcal{H}_q) \setminus \{P,Q\}$; conversely, any of the q-1 points A_1, \ldots, A_{q-1} of $(QR \cap \mathcal{H}_q) \setminus \{P,Q\}$ determines uniquely the involution $\beta_i \in G$ such that $\beta(A_i), \beta_i(Q) = R, \beta_i(R) = Q$, and hence $\langle H, \beta_i \rangle \cong \operatorname{Sym}(3)$. The involutions $\beta_i, \alpha\beta_i$, and $\alpha^2\beta_i$, together with H, generate the same group; thus, there are exactly $\frac{q-1}{3}$ groups $\operatorname{Sym}(3)$ containing H.

Thus, by direct computation, $\mu(H) = \frac{2(q^2-1)}{3}$.

Case 11: Let $H=C_2=\langle \alpha \rangle$, where α has center P. Let $\ell_P(\mathbb{F}_{q^2})\setminus \{P\}=\{P_1,\ldots,P_{q^2}\}$. By Lemma 3.4,

$$H = M_1(P) \cap \bigcap_{i=1}^{q^2} M_2(P_i) \cap \bigcap_{i=1}^{q^2} \bigcap_{j=1}^{q/2} M_3(T_{i,j}),$$

where the triangles $T_{i,j}$ are described in Lemma 3.4; H is not contained in any other maximal subgroup of G. By direct inspection, the intersections K of at least two maximal subgroups of G such that H < K < G are exactly the following.

- (i) $K=M_1(P)\cap M_2(P_i)$ for $i=1,\ldots,q^2$; in this case, $K=E_q\rtimes C_{q^2-1}$ and $\mu(K)=0.$
- (ii) $K = M_2(P_i) \cap M_2(P_j)$ with $i \neq j$; in this case, $K = E_q$ and $\mu(K) = 0$.
- (iii) $K=M_1(P)\cap M_3(T_{i,j});$ in this case, $K=E_q\rtimes C_{2(q+1)}$ and $\mu(K)=0.$
- (iv) $K=M_2(Q_i)\cap M_3(T_{i,j})$ with $i\in\{1,\ldots,q^2\}$ and $j\in\{1,\ldots,\frac{q}{2}\}$; these $\frac{q^3}{2}$ distinct groups are of type $(C_{q+1}\times C_{q+1})\rtimes C_2$, so that $\mu(K)=1$.
- (v) There are exactly $N = \frac{q^3}{2}$ groups K containing H such that $K \cong \operatorname{Sym}(3)$, and hence $\mu(K) = q + 1$. This follows by double counting the size of

$$I = \{(H, K) \mid H, K < G, H \cong C_2, K \cong \text{Sym}(3), H < K\}.$$

Arguing as in the proof of Lemma 3.4, $|I|=(q^3+1)(q-1)N$; arguing as in the proof of Lemma 3.6, $|I|=\frac{q^3(q^3+1)(q-1)}{6}\cdot 3$. Hence, $N=\frac{q^3}{2}$.

Thus, by direct computation, $\mu(H) = -\frac{q^3(q+1)}{2}$.

Case 12: Let $H=\{1\}$. Then $\mu(H)=-\sum_{\{1\}< K\leq G}\mu(K,G)$. By the values $\mu(K)$ computed in the previous cases, Propositions 3.2, and Proposition 3.3, only the following groups K have to be considered:

- (i) 1 group G;
- (ii) $q^3 + 1$ groups $S_2 \times C_{q^2-1}$;
- (iii) $q^2(q^2-q+1)$ groups $PSL(2,q) \times C_{q+1}$;
- (iv) $\frac{q^3(q-1)(q^2-q+1)}{6}$ groups $(C_{q+1} \times C_{q+1}) \rtimes \operatorname{Sym}(3)$;
- $\text{(v)} \ \ \tfrac{q^3(q+1)^2(q-1)}{3} \ \text{groups} \ C_{q^2-q+1} \rtimes C_3;$
- (vi) $(q^3+1)q^2$ groups $E_q \rtimes C_{q^2-1}$;

(vii)
$$\frac{q^3(q-1)(q^2-q+1)}{2}$$
 groups $(C_{q+1}\times C_{q+1})\rtimes C_2;$

(viii)
$$\frac{q^3(q^3+1)(q-1)}{6}$$
 groups Sym(3);

(ix)
$$\frac{q^3(q^3+1)}{2}$$
 groups C_3 ;

(x)
$$(q^3+1)(q-1)$$
 groups C_2 .

Thus, by direct computation, $\mu(H) = 0$.

4 Determination of $\lambda(H)$ for any subgroup H of G

Let n > 0, $q = 2^{2^n}$, G = PSU(3, q). This section is devoted to the proof of the following theorem.

Theorem 4.1. Let H be a proper subgroup of G. Then $\lambda(H) \neq 0$ if and only H is one of the following groups:

$$E_{q} \rtimes C_{q^{2}-1},$$
 $(C_{q+1} \times C_{q+1}) \rtimes C_{2},$ Sym(3),
 $C_{3},$ $S_{2} \rtimes C_{q^{2}-1},$ PSL(2, q) $\times C_{q+1},$ (4.1)
 $(C_{q+1} \times C_{q+1}) \rtimes \text{Sym}(3),$ $C_{q^{2}-q+1} \rtimes C_{3},$ $C_{2}.$

For any isomorphism type in Equation (4.1) there is just one conjugacy class of subgroups of G.

If H is in the first row of Equation (4.1), then $\lambda(H) = -1$; if H is in the second row of Equation (4.1), then $\lambda(H) = 1$.

Proof. By Proposition 3.2, for any isomorphism type in Equation (4.1) there is just one conjugacy class of subgroups of G of that type. Hence, we can use the notation $[M_1]$, $[M_2]$, $[M_3]$ and $[M_4]$ for the conjugacy classes of $M_1(P)$, $M_2(P)$, $M_3(T)$ and $M_4(T)$, respectively. If H = G, then $\lambda(H) = 1$; if H is one of the groups in the second row of Equation (4.1) and $H \neq C_2$, then $\lambda(H) = -1$ as H is maximal in G.

Case 1: Firstly, we assume that H is not a subgroup of $\mathrm{Sym}(3)$, and that H is not a group of homologies, i.e. $H \not \leq C_{q+1} = Z(M_2(Q))$ for any point Q.

- (i) Let $H < M_4(T)$ for some T. From $H \neq C_3$ follows that some nontrivial element in H fixes T pointwise; hence, H is not contained in any maximal subgroup of G other than $M_4(T)$. Thus, inductively, $\lambda(H) = -\{\lambda(G) + \lambda(M_4(T))\} = 0$.
- (ii) Let $H < M_1(P)$ for some P; we assume in addition that $\gcd(|H|, q-1) > 1$. Here, the assumption $H \not \leq \operatorname{Sym}(3)$ reads $H \notin \{\{1\}, C_2, C_3\}$. If H contains an element of order 4, then H is not contained in any maximal subgroup of G other than $M_1(P)$. Thus, inductively, $\lambda(H) = 0$.

We can then assume that the 2-elements of H are involutions, so that $H = E_{2^r} \rtimes C_d$ with $0 \le r \le 2^n$ and $d \mid (q^2 - 1)$ (see [15, Theorem 11.49]). This implies that $H \le M_1(P) \cap M_2(Q)$ for some $Q \in \ell_P$; the eventual nontrivial elements in H whose order divides q+1 are homologies with center Q. Then we have $[H] \le [M_1]$, $[H] \le [M_2]$; by Lagrange's theorem, $[H] \ne [M_4]$. From the assumptions $\gcd(|H|, q-1) > 1$ and $H \ne \operatorname{Sym}(3)$ follows $[H] \ne [M_3]$.

If $H = E_q \rtimes C_{q^2-1}$, then no proper subgroup of $M_1(P)$ or $M_2(Q)$ contains H properly; thus, $\lambda(H) = 1$. If $H \neq E_q \rtimes C_{q^2-1}$, then $H < E_q \rtimes C_{q^2-1} = M_1(P) \cap$

- $M_2(Q)$ up to conjugation. Thus, inductively, the only classes [K] with $[H] \leq [K]$ and $\lambda(K) \neq 0$ are $[K] \in \{[G], [M_1], [M_2], [E_q \rtimes C_{q^2-1}]\}$. This implies $\lambda(H) = 0$.
- (iii) Let $H < M_2(Q)$ for some Q, and assume also $H \not\leq M_1(P)$ for any P. As $H \not\leq C_3$, we have $[H] \not\leq [M_4]$. The group $\bar{H} := H/(H \cap Z(M_2(Q)))$ acts as a subgroup of $\mathrm{PSL}(2,q)$ on $\ell_Q \cap \mathcal{H}_q$; we assume in this point that H is one of the following groups (see [17, Hauptsatz 8.27]): $\mathrm{PSL}(2,2^{2^h})$ with $0 < h \leq n$; a dihedral group of order 2d where d is a divisor of q-1 greater than 3; $\mathrm{Alt}(5)$. Then, by Lagrange's theorem, $[H] \not\leq [M_3]$. Thus, inductively, G and $M_2(Q)$ are the only groups K with H < K and $\lambda(K) \neq 0$, so that $\lambda(H) = 0$.
 - Note that, since we are under the assumptions $H \not\leq M_1(P)$ for any $P, H \not\leq \operatorname{Sym}(3)$, and $H \not\leq C_{q+1} = Z(M_2(Q))$, we have that the only subgroups \bar{H} of $\operatorname{PSL}(2,q)$ for which $\lambda(H)$ still has not been computed are the cyclic or dihedral groups of order d or 2d (respectively), where d is a nontrivial divisor of q+1.
- (iv) Let $H < M_3(T)$ for some T, and assume also $H \not \leq M_1(P)$ for any P. As $H \not \leq C_3$, we have $[H] \not \leq [M_4]$. Here, the assumption $H \not \leq \operatorname{Sym}(3)$ means that some nontrivial element of H fixes T pointwise. Hence, the assumption $H \not \leq C_{q+1} = Z(M_2(Q))$ for any vertex Q of T, together with $H \not \leq M_1(P)$, implies that H contains some element of type (B1). Write $H = L \rtimes K$, with $K \leq \operatorname{Sym}(3)$ and $L < C_{q+1} \rtimes C_{q+1}$. If $K = C_3$ or $K = \operatorname{Sym}(3)$, then $[H] \not \leq [M_2]$; thus, inductively, G and G are the only groups G with G and G and G and G are the only groups G with G and G and G and G are the only groups G with G and G and G and G and G are the only groups G with G and G and G and G and G are the only groups G with G and G and G and G and G are the only groups G with G and G and G and G and G and G are the only groups G with G and G and G and G are the only groups G with G and G and G and G and G and G are the only groups G with G and G and G and G are the only groups G with G and G and G are the only groups G with G and G and G are the only groups G with G and G and G and G are the only groups G with G and G and G are the only groups G and G are the only groups G and G and G are the only groups G and G are the only groups G and G are the only groups G and G and G are the only groups G and G are the only G and G are t
 - If $K = C_2$ and $L = C_{q+1} \times C_{q+1}$, then $H \leq M_2(Q)$ for some vertex Q of T. Since $\bar{H} := H/(H \cap Z(M_2(Q)))$ is dihedral of order 2(q+1), [17, Haptsatz 8.27] implies the non-existence of groups K with $H < K < M_2(Q)$ (except for q=4 and $\bar{K} = \mathrm{Alt}(5)$; in this case, $\lambda(K) = 0$ by the previous point). Thus, $\lambda(H) = -\{\lambda(G) + \lambda(M_2(Q)) + \lambda(M_3(T))\} = 1$.
 - If $K=C_2$ and $L < C_{q+1} \times C_{q+1}$, then again $H \leq M_2(Q)$ with Q vertex of T. The group \bar{H} is dihedral of order 2d, where $d \mid (q+1); d>1$ because L contains elements of type (B1). By the previous point and [17, Hauptsatz 8.27], the only groups K with $H < K < M_2(Q)$ are such that \bar{K} is dihedral of order dividing q+1. Thus, inductively, $\lambda(H)=0$.
 - If $K=\{1\}$, then $H\in M_2(Q)$ for any vertex Q of T. The group $\bar{H}<\mathrm{PSL}(2,q)$ on the line $\ell_Q\cap\mathcal{H}_q$ is cyclic of order $d\mid (q+1); d>1$ because H has elements of type (B1). By [17, Hauptsatz 8.27], the groups K with $H< K< M_2(Q)$ are such that either \bar{K} is cyclic of order dividing q+1, or we have already proved that $\lambda(K)=0$. Thus, inductively, $\lambda(K)=0$.
- (v) Let $H < M_2(Q)$ for some Q. Let $\bar{H} \neq \{1\}$ be the induced subgroup of $\mathrm{PSL}(2,q)$ acting on $\ell_Q \cap \mathcal{H}_q$. If \bar{H} is cyclic or dihedral of order d or 2d (respectively) with $d \mid (q+1)$, then $H \leq M_3(T)$ for some T. Hence, $\lambda(H) = 0$, as already computed in the previous point in the case $K = \{1\}$ if \bar{H} is cyclic, or in the case $K = C_2$ if H is dihedral.
- (vi) Under the assumptions that $H \not \leq \operatorname{Sym}(3)$ and H is not a group of homologies, the only remaining case is $H < M_1(P)$ for some P with $\gcd(|H|, q-1) = 1$. In this case $H = E_{2^r} \times C_d$, where C_d is cyclic of order $d \mid (q+1)$ and made by homologies, whose axis passes through P and whose center Q lies on ℓ_P . We have r > 0, because $H \not \leq Z(M_2(Q))$.

If r=1, then H is cyclic of order 2d generated by an element of type (E). By Lemma 3.4, $H \leq M_3(T)$, where T has a vertex in Q and two vertexes on ℓ_Q . Hence, $[H] \leq [M_1], [H] \leq [M_2], [H] \leq [M_3],$ and $[H] \not \leq [M_4].$ Let K be such that $H < K \leq G$ and K is not of the same type of H, i.e. K is not cyclic of order 2d' with $d' \mid (q+1)$. As shown in the previous points, $\lambda(K) \neq 0$ if and only if $[K] \in \{[G], [M_1], [M_2], [M_3], [E_q \rtimes C_{q^2-1}], [(C_{q+1} \times C_{q+1}) \rtimes C_2]\}$. Thus, inductively, $\lambda(H) = 0$.

Case 2: Let $H \leq C_{q+1} = Z(M_2(Q))$ for some Q and K be a subgroup of G properly containing H. As shown above, $\lambda(K) \neq 0$ if and only if

$$[K] \in \{[G], [M_1], [M_2], [M_3], [E_q \rtimes C_{q^2-1}], [(C_{q+1} \times C_{q+1}) \rtimes C_2]\}.$$

Thus $\lambda(Z(M_2(Q))) = 0$ and, inductively, $\lambda(H) = 0$.

Case 3: Let $H = \operatorname{Sym}(3) = \langle \alpha \rangle \rtimes \langle \beta \rangle$ with $o(\alpha) = 3$ and $o(\beta) = 2$. Let $P \in \operatorname{PG}(2, q^2) \setminus \mathcal{H}_q$ and $Q, R \in \mathcal{H}_q(\mathbb{F}_{q^2})$ be the fixed point of α , so that β fixes P and interchanges Q and R. This implies $[H] \leq [M_2]$. By Lemma 3.6, $[H] \leq [M_3]$. From the computations above and Lagrange's theorem, no class [K] with $K \leq G$ other than [G], $[M_2]$ and $[M_3]$ satisfies $[H] \leq [K]$ and $\lambda(H) \neq 0$. Thus, $\lambda(H) = 1$.

Case 4: Let $H = C_3$. By Lagrange's theorem and Proposition 3.2, $H < K \le G$ and $\lambda(K) \ne 0$ if and only if

$$[K] \in \{[G], [M_1], [M_2], [M_3], [M_4], [E_q \bowtie C_{q^2-1}], [Sym(3)]\}.$$

Thus, $\lambda(H) = 1$.

Case 5: Let $H=C_2$. By Lagrange's theorem and Proposition 3.2, $H< K\leq G$ and $\lambda(K)\neq 0$ if and only if

$$[K] \in \{[G], [M_1], [M_2], [M_3], [E_q \rtimes C_{q^2-1}], [(C_{q+1} \times C_{q+1}) \rtimes C_2], [\operatorname{Sym}(3)]\}.$$

Thus, $\lambda(H) = -1$.

Case 6: Let $H = \{1\}$. Collecting all the classes [K] with $\lambda(K) \neq 0$, we have by direct computation $\lambda(H) = 0$.

5 Determination of $\chi(\Delta(L_p \setminus \{1\}))$ for any prime p

Let n>0, $q=2^{2^n}$, $G=\mathrm{PSU}(3,q)$. If p is a prime number, we denote by L_p the poset of p-subgroups of G ordered by inclusion, by $L_p\setminus\{1\}$ its subposet of proper p-subgroups of G, and by $\Delta(L_p\setminus\{1\})$ the order complex of $L_p\setminus\{1\}$. In this section we determine the Euler characteristic $\chi(\Delta(L_p\setminus\{1\}))$ of $\Delta(L_p\setminus\{1\})$ for any prime p, using Equation (2.1) and Lemma 2.2. The results are stated in Theorem 5.1 and in Table 2.

Theorem 5.1. For any prime number p one of the following cases holds:

- (i) $p \nmid |G|$ and $\chi(\Delta(L_p \setminus \{1\})) = 0$;
- (ii) p = 2 and $\chi(\Delta(L_2 \setminus \{1\})) = q^3 + 1$;
- (iii) $p \mid (q+1) \text{ and } \chi(\Delta(L_p \setminus \{1\})) = -\frac{q^6 2q^5 q^4 + 2q^3 3q^2}{3};$

(iv)
$$p \mid (q-1)$$
 and $\chi(\Delta(L_p \setminus \{1\})) = -\frac{q^6 + q^3}{2}$;
(v) $p \mid (q^2 - q + 1)$ and $\chi(\Delta(L_p \setminus \{1\})) = -\frac{q^6 + q^5 - q^4 - q^3}{2}$.

Proof. Since $|G| = q^3(q+1)^2(q-1)(q^2-q+1)$, q is even, and $3 \mid (q-1)$, the cases $p \nmid |G|$, p=2, $p \mid (q+1)$, $p \mid (q-1)$, and $p \mid (q^2-q+1)$ are exhaustive and pairwise incompatible. We denote by S_p a Sylow p-subgroup of G.

Case 1: Let $p \nmid |G|$. Then $\Delta(L_p \setminus \{1\}) = \emptyset$, and hence $\chi(\Delta(L_p \setminus \{1\})) = \chi(\emptyset) = 0$.

Case 2: Let p=2. The group G has q^3+1 Sylow 2-subgroups, and any two of them intersect trivially; see [15, Theorem 11.133]. Any nontrivial element σ of S_2 fixes exactly one point P on $\mathcal{H}_q(\mathbb{F}_{q^2})$ which is the same for any $\sigma \in S_2$; S_2 is uniquely determined among the Sylow 2-subgroups of G by G. Hence, Equation (2.1) reads

$$\chi(\Delta(L_2 \setminus \{1\})) = -(q^3 + 1) \sum_{H \in L_2 \setminus \{1\}, \ H(P) = P} \mu_{L_2}(\{1\}, H),$$

where P is a given point of $\mathcal{H}_q(\mathbb{F}_{q^2})$. By Lemma 2.2, we only consider those 2-groups in $M_1(P)$ which are elementary abelian. Then we consider all nontrivial subgroups H of an elementary abelian 2-group E_q of order q. For any such group $H=E_{2^r}$ of order 2^r , with $1 \leq r \leq 2^n$, we have $\mu_{L_2}(\{1\}, H) = (-1)^r \cdot 2^{\binom{r}{2}}$ by Lemma 2.2. Thus,

$$\chi(\Delta(L_2 \setminus \{1\})) = -(q^3 + 1) \sum_{r=1}^{2^n} (-1)^r 2^{\binom{r}{2}} {\binom{2^n}{r}}_2$$

where the Gaussian coefficient $\binom{2^n}{r}_2$ counts the subgroups of E_q of order 2^r . Using the property

$$\binom{2^n}{r}_2 = \binom{2^n - 1}{r - 1}_2 + 2^r \binom{2^n - 1}{r}_2$$

we obtain

$$\begin{split} \sum_{r=1}^{2^{n}} (-1)^{r} \, 2^{\binom{r}{2}} \begin{pmatrix} 2^{n} \\ r \end{pmatrix}_{2} \\ &= \sum_{r=1}^{2^{n}} (-1)^{r} \, 2^{\binom{r}{2}} \begin{pmatrix} 2^{n} - 1 \\ r - 1 \end{pmatrix}_{2} + \sum_{r=1}^{2^{n}} (-1)^{r} \, 2^{\binom{r}{2} + r} \begin{pmatrix} 2^{n} - 1 \\ r \end{pmatrix}_{2} \\ &= \sum_{r=0}^{2^{n} - 1} (-1)^{r+1} \, 2^{\binom{r+1}{2}} \begin{pmatrix} 2^{n} - 1 \\ r \end{pmatrix}_{2} + \sum_{r=1}^{2^{n}} (-1)^{r} \, 2^{\binom{r+1}{2}} \begin{pmatrix} 2^{n} - 1 \\ r \end{pmatrix}_{2} \\ &= (-1)^{0} \, 2^{\binom{1}{2}} \begin{pmatrix} 2^{n} - 1 \\ 0 \end{pmatrix}_{2} + (-1)^{2^{n}} \, 2^{\binom{2^{n} + 1}{2}} \begin{pmatrix} 2^{n} - 1 \\ 2^{n} \end{pmatrix}_{2} = -1. \end{split}$$

Thus, $\chi(\Delta(L_2 \setminus \{1\})) = q^3 + 1$.

Case 3: Let $p \mid (q+1)$. Then $S_p \leq C_{q+1} \times C_{q+1}$, and hence $S_p \cong C_{p^s} \times C_{p^s}$, where $p^s \mid (q+1)$ and $p^{s+1} \nmid (q+1)$. Let H be a subgroup of S_p . By Lemma 2.2, $\mu_{L_p}(\{1\}, H) \neq 0$ only if H is elementary abelian of order p or p^2 ; in this cases, $\mu_{L_p}(\{1\}, C_p) = -1$ and $\mu_{L_p}(\{1\}, C_p \times C_p) = r$. Now we count the number of elementary abelian subgroups of order p or p^2 in G.

- (i) A subgroup E_{p^2} of G of type $C_p \times C_p$ is uniquely determined by the maximal subgroup $M_3(T)$ such that E_{p^2} is the Sylow p-subgroup of $M_3(T)$. Hence, G contains exactly $[G:N_G(M_3(T))]=\frac{q^3(q^2-q+1)(q-1)}{6}$ elementary abelian subgroups of order p^2 .
- (ii) A subgroup C_p made by homologies is uniquely determined by its center $P \in \mathrm{PG}(2,q^2) \setminus \mathcal{H}_q$ of homology, because the group of homologies with center P is cyclic. Hence, G contains exactly $|\mathrm{PG}(2,q^2) \setminus \mathcal{H}_q| = q^2(q^2-q+1)$ cyclic subgroups of order p made by homologies.
- (iii) A subgroup C_p which is not made by homologies is made by elements of type (B1), and fixes pointwise a unique self-polar triangle T. The Sylow p-subgroup $C_p \times C_p$ of $M_3(T)$ contains exactly 3 subgroups C_p made by homologies, namely the groups of homologies with center one of the vertexes of T. Since $C_p \times C_p$ contains p+1 subgroups C_p altogether, $C_p \times C_p$ contains exactly p-2 subgroups C_p not made by homologies. Thus, the number of subgroups C_p of G not made by homologies is $(p-2) \cdot [G:N_G(M_3(T))] = \frac{q^3(q^2-q+1)(q-1)(p-2)}{6}$.

Thus, by direct computation,

$$\begin{split} \chi(\Delta(L_p \setminus \{1\})) \\ &= -\left\{\frac{q^3(q^2 - q + 1)(q - 1)(p - 2)}{6} \cdot r \right. \\ &\left. + \left[q^2(q^2 - q + 1) + \frac{q^3(q^2 - q + 1)(q - 1)(p - 2)}{6}\right] \cdot (-1)\right\} \\ &= -\frac{q^6 - 2q^5 - q^4 + 2q^3 - 3q^2}{3}. \end{split}$$

Case 4: Let $p \mid (q-1)$. By Lemma 2.4, S_p is a subgroup of the cyclic group C_{q^2-1} fixing two points P,Q on $\mathcal{H}_q(\mathbb{F}_{q^2})$; then a proper p-subgroup H of G satisfies $\mu_{L_p}(\{1\}) \neq 0$ if and only if H has order p; in this case, $\mu_{L_p}(\{1\},H)=-1$. Also, by Lemma 2.4, any two Sylow p-subgroups of G have trivial intersection. Then the number of subgroups C_p of G is equal to the number $\binom{q^3+1}{1}$ of couples of points in $\mathcal{H}_q(\mathbb{F}_{q^2})$; equivalently, this number is equal to $[G:N_G(C_{q^2})]$, where $|N_G(C_{q^2-1})|=2(q^2-1)$ by Proposition 3.3. Thus, $\chi(\Delta(L_p\setminus\{1\}))=-\frac{q^6+q^3}{2}$.

Case 5: Let $p \mid (q^2-q+1)$. Then $S_p \leq C_{q^2-q+1}$, and hence a proper p-subgroup H of G satisfies $\mu_{L_p}(\{1\},H) \neq 0$ if and only if H has order p; in this case, $\mu_{L_p}(\{1\},H) = -1$. The number of subgroups C_p of G is equal to the number of subgroups C_{q^2-q+1} , and hence to the number $[G:N_G(M_4(\tilde{T}))]=\frac{q^3(q+1)^2(q-1)}{3}$ of maximal subgroups of type $M_4(\tilde{T})$ in G. Thus, $\chi(\Delta(L_p\setminus\{1\}))=-\frac{q^3(q+1)^2(q-1)}{3}=-\frac{q^6+q^5-q^4-q^3}{3}$.

References

- [1] M. Bianchi, A. Gillio Berta Mauri and L. Verardi, On Hawkes-Isaacs-Özaydin's conjecture, *Istit. Lombardo Accad. Sci. Lett. Rend. A* **124** (1990), 99–117.
- [2] K. S. Brown, Euler characteristics of groups: the *p*-fractional part, *Invent. Math.* **29** (1975), 1–5, doi:10.1007/bf01405170.

- [3] V. Colombo and A. Lucchini, On subgroups with non-zero Möbius numbers in the alternating and symmetric groups, *J. Algebra* **324** (2010), 2464–2474, doi:10.1016/j.jalgebra.2010.07.040.
- [4] A. Cossidente, G. Korchmáros and F. Torres, Curves of large genus covered by the Hermitian curve, *Comm. Algebra* **28** (2000), 4707–4728, doi:10.1080/00927870008827115.
- [5] F. Dalla Volta, M. Montanucci and G. Zini, On the classification problem for the genera of quotients of the Hermitian curve, 2018, arXiv:1805.09118 [math.AG].
- [6] E. Damian and A. Lucchini, The probabilistic zeta function of finite simple groups, *J. Algebra* **313** (2007), 957–971, doi:10.1016/j.jalgebra.2007.02.055.
- [7] L. E. Dickson, *Linear Groups with an Exposition of the Galois Field Theory*, B. G. Teubner, Leipzig, 1901.
- [8] M. Downs, The Möbius function of $PSL_2(q)$, with application to the maximal normal subgroups of the modular group, *J. London Math. Soc.* **43** (1991), 61–75, doi:10.1112/jlms/s2-43. 1.61.
- [9] M. Downs and G. A. Jones, Möbius inversion in Suzuki groups and enumeration of regular objects, in: J. Širáň and R. Jajcay (eds.), Symmetries in Graphs, Maps, and Polytopes, Springer, Cham, volume 159 of Springer Proceedings in Mathematics & Statistics, pp. 97–127, 2016, doi:10.1007/978-3-319-30451-9_5, papers from the 5th SIGMAP Workshop held in West Malvern, July 7–11, 2014.
- [10] D. H. Dung and A. Lucchini, Rationality of the probabilistic zeta functions of finitely generated profinite groups, J. Group Theory 17 (2014), 317–335, doi:10.1515/jgt-2013-0037.
- [11] A. Garcia, H. Stichtenoth and C.-P. Xing, On subfields of the Hermitian function field, *Compositio Math.* 120 (2000), 137–170, doi:10.1023/a:1001736016924.
- [12] P. Hall, The Eulerian functions of a group, Q. J. Math. (Oxford Series) 7 (1936), 134–151, doi:10.1093/qmath/os-7.1.134.
- [13] R. W. Hartley, Determination of the ternary collineation groups whose coefficients lie in the $GF(2^n)$, *Ann. Math.* **27** (1925), 140–158, doi:10.2307/1967970.
- [14] T. Hawkes, I. M. Isaacs and M. Özaydin, On the Möbius function of a finite group, *Rocky Mountain J. Math.* 19 (1989), 1003–1034, doi:10.1216/rmj-1989-19-4-1003.
- [15] J. W. P. Hirschfeld, G. Korchmáros and F. Torres, Algebraic Curves over a Finite Field, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2008.
- [16] D. R. Hughes and F. C. Piper, Projective Planes, volume 6 of Graduate Texts in Mathematics, Springer-Verlag, Berlin, 1973.
- [17] B. Huppert, Endliche Gruppen I, volume 134 of Die Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1967, doi:10.1007/978-3-642-64981-3.
- [18] A. Lucchini, On the subgroups with non-trivial Möbius number, J. Group Theory 13 (2010), 589–600, doi:10.1515/jgt.2010.009.
- [19] A. Mann, Positively finitely generated groups, Forum Math. 8 (1996), 429–459, doi:10.1515/ form.1996.8.429.
- [20] A. Mann, A probabilistic zeta function for arithmetic groups, *Internat. J. Algebra Comput.* 15 (2005), 1053–1059, doi:10.1142/s0218196705002633.
- [21] M. Montanucci and G. Zini, Some Ree and Suzuki curves are not Galois covered by the Hermitian curve, Finite Fields Appl. 48 (2017), 175–195, doi:10.1016/j.ffa.2017.07.007.
- [22] M. Montanucci and G. Zini, Quotients of the Hermitian curve from subgroups of PGU(3, q) without fixed points or triangles, 2018, arXiv:1804.03398 [math.AG].

- [23] H. Pahlings, On the Möbius function of a finite group, Arch. Math. (Basel) 60 (1993), 7–14, doi:10.1007/bf01194232.
- [24] E. Pierro, The Möbius function of the small Ree groups, *Australas. J. Combin.* **66** (2016), 142–176, https://ajc.maths.uq.edu.au/pdf/66/ajc_v66_p142.pdf.
- [25] D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. Math. 28 (1978), 101–128, doi:10.1016/0001-8708(78)90058-0.
- [26] J. Shareshian, On the Möbius number of the subgroup lattice of the symmetric group, J. Combin. Theory Ser. A 78 (1997), 236–267, doi:10.1006/jcta.1997.2762.
- [27] J. W. Shareshian, Combinatorial Properties of Subgroup Lattices of Finite Groups, Ph.D. thesis, Rutgers, The State University of New Jersey, New Brunswick, 1996, https://search. proquest.com/docview/304280477.
- [28] R. P. Stanley, *Enumerative Combinatorics, Volume 1*, volume 49 of *Cambridge Studies in Advanced Mathematics*, Cambridge University Press, Cambridge, 2nd edition, 2012.