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Abstract

LetG be the simple group PSU(3, 22n

), n > 0. For any subgroupH ofG, we compute
the Möbius function µL(H,G) of H in the subgroup lattice L of G, and the Möbius func-
tion µL̄([H], [G]) of [H] in the poset L̄ of conjugacy classes of subgroups of G. For any
prime p, we provide the Euler characteristic of the order complex of the poset of non-trivial
p-subgroups of G.
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1 Introduction
The Möbius function µ(H,G) on the subgroups of a finite group G is defined recursively
by µ(G,G) = 1 and

∑
K≥H µ(K,G) = 0 if H < G. This function was used in 1936 by

Hall [12] to enumerate k-tuples of elements of G which generate G, for a given k.
The combinatorial and group-theoretic properties of the Möbius function were investi-

gated by many authors; see the paper [14] by Hawkes, Isaacs, and Özaydin. The Möbius
function is defined more generally on a locally finite poset (P,≤) by the recursive defini-
tion µ(x, x) = 1, µ(x, y) = 0 if x 6≤ y, and

∑
x≤z≤y µ(z, y) = 0 if x ≤ y; for instance,

the poset taken into consideration may be the subgroup lattice L of a finite groupG ordered
by inclusion. Mann [19, 20] studied µ(H,G) in the broader context of profinite groups G
and defined a probabilistic zeta function P (G, s) associated to G, related to the probability
of generating G with s elements when G is positively finitely generated.

The Möbius function on a poset P also appears in the context of topological invariants
of the order simplicial complex ∆(P) associated to P , see the works of Brown [2] and
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Quillen [25]; if P is the subgroup lattice of a finite group G, then the reduced Euler char-
acteristic of ∆(P) is equal to µ({1}, G). This motivates the search for µ({1}, G) indepen-
dently of the knowledge of µ(H,G) for other subgroups H of G, see for instance [26, 27]
and the references therein; µ({1}, G) is often called the Möbius number of G. Shareshian
provided a formula in [26] for µ({1},Sym(n)), and computed µ({1}, G) in [27] when
G ∈ {PGL(2, q),PSL(2, q),PGL(3, q),PSL(3, q),PGU(3, q),PSU(3, q)} with q odd or
G is a Suzuki group Sz(22h+1).

Consider the poset L̄ of conjugacy classes [H] of subgroups H of a finite group G,
ordered as follows: [H] ≤ [K] if and only if H is contained in some conjugate of K in
G. After Hawkes, Isaacs, and Özaydin [14], we denote by λ(H,G) the Möbius function
µ([H], [G]) in L̄, while µ(H,G) is the Möbius function in L. Some attempt was done to
search relations between the Möbius functions µ(H,G) and λ(H,G); Hawkes, Isaacs, and
Özaydin [14] proved that, if G is solvable, then

µ({1}, G) = |G′| · λ({1}, G). (1.1)

The property (1.1), which we call (µ, λ)-property, does not hold in general for non-solvable
groups; see [1]. Pahlings [23] proved that, if G is solvable, then

µ(H,G) = [NG′(H) : H ∩G′] · λ(H,G) (1.2)

for any subgroup H of G. The analysis of the generalized (µ, λ)-property (1.2), although
false in general for non-solvable groups, is of interest since it relates the Möbius functions
µ(H,G) and λ(H,G).

A lot of work was done by several authors about probabilistic functions for groups; see
for instance [6, 10, 19, 20]. In particular, Mann posed in [19] a conjecture, the validity of
which would imply that the sum ∑

H

µ(H,G)

[G : H]s

over all subgroups H < G of finite index of a positively finitely generated profinite group
G is absolutely convergent for s in some right complex half-plane and, for s ∈ N large
enough, represents the probability of generating G with s elements. Lucchini [18] showed
that this problem can be reduced so that Mann’s conjecture is reformulated as follows: there
exist two constants c1, c2 ∈ N such that, for any finite monolithic groupGwith non-abelian
socle,

1. |µ(H,G)| ≤ [G : H]c1 for any H < G such that G = H soc(G), and

2. the number of subgroups H < G of index n in G such that H soc(G) = G and
µ(H,G) 6= 0 is upper bounded by nc2 , for any n ∈ N.

It seems natural to investigate this conjecture on finite monolithic groups starting by almost
simple groups. Mann’s conjecture has been shown to be satisfied by the alternating and
symmetric groups [3], as well as by those families of groups G for which µ(H,G) has
been computed for any subgroup H; namely, PSL(2, q) [8, 12], PGL(2, q) [8], the Suzuki
groups Sz(22h+1) [9], and the Ree groups R(32h+1) [24].

In this paper, we take into consideration the three dimensional projective special unitary
group G = PSU(3, q) over the field with q = 22n

elements, for any positive n (note that
PSU(3, q) = PGU(3, q) as 3 - (q + 1)). In particular, the following results are obtained.
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(i) We compute µ(H,G) for any subgroup H of G, as summarized in Table 1. This
shows that the groups PSU(3, 22n

) satisfy Mann’s conjecture.

(ii) We compute λ(H,G) for any subgroup H of G, as summarized in Table 1. This
shows that the groups PSU(3, 22n

) satisfy the (µ, λ)-property, but do not satisfy the
generalized (µ, λ)-property.

(iii) We compute the Euler characteristic χ(∆(Lp \ {1})) of the order complex of the
poset Lp \ {1} of non-trivial p-subgroups of G, for any prime p, as summarized in
Table 2.

For the subgroups listed in Table 1, the isomorphism type determines a unique conjugacy
class in G.

Table 1: Subgroups H of G = PSU(3, q), q = 22n

, with µ(H) 6= 0 or λ(H) 6= 0.

Isomorphism type of H |H| NG(H) µ(H,G) λ(H,G)

G q3(q3 + 1)(q2 − 1) H 1 1

(Eq . Eq2) o Cq2−1 q3(q2 − 1) H −1 −1

PSL(2, q)× Cq+1 q(q2 − 1)(q + 1) H −1 −1

(Cq+1 × Cq+1) o Sym(3) 6(q + 1)2 H −1 −1

Cq2−q+1 o C3 3(q2 − q + 1) H −1 −1

Eq o Cq2−1 q(q2 − 1) H 1 1

(Cq+1 × Cq+1) o C2 2(q + 1)2 H 1 1

Sym(3) 6 Sym(3)× Cq+1 q + 1 1

C3 3 Cq2−1 o C2
2(q2−1)

3 1

C2 2 (Eq . Eq2) o Cq+1 − q
3(q+1)

2 −1

Table 2: Euler characteristic of the order complex of the poset of proper p-subgroups of G.

Prime p p - |G| p = 2 p | (q + 1) p | (q − 1) p | (q2 − q + 1)

χ(∆(Lp \ {1})) 0 q3 + 1 − q
6−2q5−q4+2q3−3q2

3
q6+q3

2 − q
6+q5−q4−q3

3

The paper is organized as follows. Section 2 contains preliminary results on the Möbius
functions µ(H,G) and λ(H,G) and the relation between the Möbius function and the Euler
characteristic of the order complex; this section contains also preliminary results on the
groups G = PSU(3, 22n

), whose elements are described geometrically in their action on
the Hermitian curve associated to G. Sections 3 and 4 are devoted to the determination
of µ(H,G) and λ(H,G), respectively, for any subgroup H of G. Section 5 provides the
Euler characteristic of the order complex of the poset of proper p-subgroups of G, for any
prime p.
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2 Preliminary results
Let (P,≤) be a finite poset. The Möbius function µP : P × P → Z is defined recursively
as follows:

µP(x, y) = 0 if x 6≤ y; µP(x, x) = 1;
∑

x≤z≤y

µP(z, y) = 0 if x < y.

If x < y, then µP(x, y) can be equivalently defined by∑
x≤z≤y

µP(x, z) = 0.

To the poset P we can associate a simplicial complex ∆(P) whose vertices are the
elements of P and whose i-dimensional faces are the chains a0 < · · · < ai of length
i in P; ∆(P) is called the order complex of P . Provided that P has a least element 0,
the Euler characteristic of the order complex of P \ {0} is computed as follows (see [28,
Proposition 3.8.6]):

χ(∆(P \ {0})) = −
∑

x∈P\{0}

µP(0, x).

Given a finite groupG, we will consider the following two Möbius functions associated
to G.

(i) The Möbius function on the subgroup lattice L of G, ordered by inclusion. We will
denote µL(H,G) simply by µ(H).

(ii) The Möbius function on the poset L̄ of conjugacy classes [H] of subgroups H of G,
ordered as follows: [H] ≤ [K] if and only if H is contained in the conjugate gKg−1

for some g ∈ G. We will denote µL̄([H], [G]) simply by λ(H).

Two facts will be used to compute µ(H). The first easy fact is that, if H and K are
conjugate in G, then µ(H) = µ(K). The second fact is due to Hall [12, Theorem 2.3], and
is stated in the following lemma.

Lemma 2.1. If H < G satisfies µ(H) 6= 0, then H is the intersection of maximal sub-
groups of G.

For any prime p, let Lp be the subposet of L given by all p-subgroups of G, so that

χ(∆(Lp \ {1})) = −
∑

H∈Lp\{1}

µLp({1}, H). (2.1)

By a result of Brown [2], χ(∆(Lp \ {1})) is congruent to 1 modulo the order |G|p of a
Sylow p-subgroup of G. In order to compute explicitly χ(∆(Lp \ {1})) we will use the
following result of Hall [12, Equation (2.7)]:

Lemma 2.2. Let H be a p-group of order pr. If H is not elementary abelian, then
µLp({1}, H) = 0. If H is elementary abelian, then µLp({1}, H) = (−1)rp(

r
2).

We describe now the groupG which will be considered in the following sections. Let n
be a positive integer, q = 22n

, Fq be the finite field with q element, and F̄q be the algebraic
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closure of Fq . Let U be a non-degenerate unitary polarity of the plane PG(2, q2) over Fq2 ,
and Hq ⊂ PG(2, F̄q) be the Hermitian curve defined by U . The following homogeneous
equations define models forHq which are projectively equivalent over Fq2 :

Xq+1 + Y q+1 + Zq+1 = 0; (2.2)

XqZ +XZq − Y q+1 = 0. (2.3)

The models (2.2) and (2.3) are called the Fermat and the Norm-Trace model of Hq , re-
spectively. The set of Fq2 -rational points of Hq is denoted by Hq(Fq2), and consists of
the q3 + 1 isotropic points of U . The full automorphism group Aut(Hq) of Hq is defined
over Fq2 , and coincides with the unitary subgroup PGU(3, q) of PGL(3, q2) stabilizing
Hq(Fq2), of order |PGU(3, q)| = q3(q3 + 1)(q2 − 1).

The combinatorial properties ofHq(Fq2) can be found in [16]. In particular, any line `
of PG(2, q2) has either 1 or q+1 common points withHq(Fq2), that is, ` is either a tangent
line or a chord of Hq(Fq2); in the former case ` contains its pole with respect to U , in the
latter case ` doesn’t. Also, PGU(3, q) acts 2-transitively on Hq(Fq2) and transitively on
PG(2, q2)\Hq; PGU(3, q) acts transitively also on the non-degenerate self-polar triangles
T = {P1, P2, P3} ⊂ PG(2, q2) \ Hq with respect to U . Recall that, if σ ∈ PGU(3, q)
stabilizes a point P ∈ PG(2, q2), then σ stabilizes also the polar line of P with respect to
U , and vice versa.

The curve Hq is non-singular and Fq2 -maximal of genus g = q(q−1)
2 , that is, the size

ofHq(Fq2) attains the Hasse-Weil upper bound q2 + 1 + 2gq. This implies thatHq is Fq4 -
minimal and Fq6 -maximal, so that Hq(Fq4) \ Hq(Fq2) = ∅ and |Hq(Fq6) \ Hq(Fq2)| =

q6 + q5 − q4 − q3. Let Φq2 be the Frobenius map (X,Y, Z) 7→ (Xq2 , Y q
2

, Zq
2

) over
PG(2, F̄q2); then the Fq6 \Fq2 -rational points ofHq split into q6+q5−q4−q3

3 non-degenerate
triangles {P,Φq2(P ),Φ2

q2(P )}. The group PGU(3, q) is transitive on such triangles.
Since 3 - (q + 1), we have PGU(3, q) = PSU(3, q); henceforth, we denote by G

the simple group PSU(3, q). The following classification of subgroups of G goes back to
Hartley [13]; here we use that log2(q) has no odd divisors different from 1. The notation
S2 stands for a Sylow 2-subgroup of G, which is a non-split extension Eq . Eq2 of its
elementary abelian center of order q by an elementary abelian group of order q2.

Theorem 2.3. Let n > 0, q = 22n

, and G = PSU(3, q). Up the conjugation, the maximal
subgroups of G are the following.

(i) The stabilizer M1(P ) ∼= S2 o Cq2−1 of a point P ∈ Hq(Fq2), of order q3(q2 − 1).

(ii) The stabilizer M2(P ) ∼= PSL(2, q)× Cq+1 of a point P ∈ PG(2, q2) \ Hq(Fq2), of
order q(q2 − 1)(q + 1).

(iii) The stabilizer M3(T ) ∼= (Cq+1 × Cq+1) o Sym(3) of a non-degenerate self-polar
triangle T = {P,Q,R} ⊂ PG(2, q2) \ Hq with respect to U , of order 6(q + 1)2.

(iv) The stabilizer M4(T ) ∼= Cq2−q+1 o C3 of a triangle T = {P,Φq2(P ),Φ2
q2(P )} ⊂

Hq(Fq6) \ Hq(Fq2), of order 3(q2 − q + 1).

For a detailed description of the maximal subgroups of G, both from an algebraic and
a geometric point of view, we refer to [11, 21, 22].
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In our investigation it is useful to know the geometry of the elements of PGU(3, q)
on PG(2, F̄q), and in particular on Hq(Fq2). This can be obtained as a corollary of The-
orem 2.3, and is stated in Lemma 2.2 with the usual terminology of collineations of pro-
jective planes; see [16]. In particular, a linear collineation σ of PG(2, F̄q) is a (P, `)-
perspectivity, if σ preserves each line through the point P (the center of σ), and fixes each
point on the line ` (the axis of σ). A (P, `)-perspectivity is either an elation or a homology
according to P ∈ ` or P /∈ `. Lemma 2.4 was obtained in [21] in a more general form (i.e.,
for any prime power q).

Lemma 2.4. For a nontrivial element σ ∈ G = PSU(3, q), q = 22n

, one of the following
cases holds.

(A) ord(σ) | (q + 1) and σ is a homology, with center P ∈ PG(2, q2) \ Hq and axis `P
which is a chord ofHq(Fq2); (P, `P ) is a pole-polar pair with respect to U .

(B) 2 - ord(σ) and σ fixes the vertices P1, P2, P3 of a non-degenerate triangle T ⊂
PG(2, q6).

(B1) ord(σ) | (q+ 1), P1, P2, P3 ∈ PG(2, q2) \Hq , and the triangle T is self-polar
with respect to U .

(B2) ord(σ) | (q2 − 1) and ord(σ) - (q + 1); P1 ∈ PG(2, q2) \ Hq and P2, P3 ∈
Hq(Fq2).

(B3) ord(σ) | (q2 − q + 1) and P1, P2, P3 ∈ Hq(Fq6) \ Hq(Fq2).

(C) ord(σ) = 2; σ is an elation with center P ∈ Hq(Fq2) and axis `P which is tangent
toHq at P , such that (P, `P ) is a pole-polar pair with respect to U .

(D) ord(σ) = 4; σ fixes a point P ∈ Hq(Fq2) and a line `P which is tangent to Hq at
P , such that (P, `P ) is a pole-polar pair with respect to U .

(E) ord(σ) = 2d where d is a nontrivial divisor of q+1; σ fixes two points P ∈ Hq(Fq2)
and Q ∈ PG(2, q2) \ Hq , the polar line PQ of P , and the polar line of Q which
passes through P .

For a detailed description of the elements and subgroups of G, both from an algebraic
and a geometric point of view, we refer to [11, 21, 22], on which our geometric arguments
are based.

Throughout the paper, a nontrivial element of G is said to be of type (A), (B), (B1),
(B2), (B3), (C), (D), or (E), as given in Lemma 2.4. Also, the polar line to Hq at P ∈
PG(2, q2) is denoted by `P . Note that, under our assumptions, any element of order 3 in G
is of type (B2). We will denote a cyclic group of order d by Cd and an elementary abelian
group of order d by Ed. The center Z(S2) of S2 is elementary abelian of order q, and any
element in S2 \ Z(S2) has order 4; see [11, Section 3].

3 Determination of µ(H) for any subgroupH ofG
Let n > 0, q = 22n

, G = PSU(3, q). This section is devoted to the proof of the following
theorem.
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Theorem 3.1. Let H be a proper subgroup of G. Then H is the intersection of maximal
subgroups of G if and only if H is one of the following groups:

S2 o Cq2−1, PSL(2, q)× Cq+1, Cq2−q+1 o C3,

(Cq+1 × Cq+1) o Sym(3), Eq o Cq2−1, (Cq+1 × Cq+1) o C2,

Cq+1 × Cq+1, Cq2−1, C2(q+1),

Cq+1 = Z(M2(P )) for some P, Eq, Sym(3),

C3, C2, {1}.

(3.1)

Given a type of groups in Equation (3.1), there is just one conjugacy class of subgroups of
G of that isomorphism type.

The normalizerNG(H) ofH inG for the groupsH in Equation (3.1) are, respectively:

H, H, H,

H, H, H,

H o Sym(3), H o C2, Eq × Cq+1,

PSL(2, q)×H, S2 o Cq2−1, H × Cq+1,

Cq2−1 o C2, S2 o Cq+1, G.

(3.2)

The values µ(H) for the groups H in Equation (3.1) are, respectively:

−1, −1, −1,

−1, 1, 1,

0, 0, 0,

0, 0, q + 1,

2(q2 − 1)

3
, −q

3(q + 1)

2
, 0.

(3.3)

The proof of Theorem 3.1 is divided into several propositions.

Proposition 3.2. The groupG contains exactly one conjugacy class for any group in Equa-
tion (3.1).

Proof. Case 1: The first four groups in Equation (3.1), i.e.,

S2 o Cq2−1, PSL(2, q)× Cq+1, Cq2−q+1 o C3, and (Cq+1 × Cq+1) o Sym(3),

are the maximal subgroups of G, for which there is just one conjugacy class by Theo-
rem 2.3.

Case 2: Let α1, α2 ∈ G have order 3, so that they are of type (B2) and αi fixes two distinct
points Pi, Qi ∈ Hq(Fq2). The group G is 2-transitive on Hq(Fq2), and the pointwise
stabilizer of {Pi, Qi} is cyclic of order q2 − 1. Hence, 〈α1〉 and 〈α2〉 are conjugated in G.

Case 3: Let α1, α2 ∈ G have order 2, so that they are of type (C) and αi fixes exactly
one point Pi on Hq(Fq2). Up to conjugation P1 = P2, as G is transitive on Hq(Fq2). The
involutions fixing P1 in G, together with the identity, form an elementary abelian group
Eq , which is normalized by a cyclic group Cq−1; no nontrivial element of Cq−1 commutes
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with any nontrivial element of Eq (see [11, Section 4]). Hence, α1 and α2 are conjugated
under an element of Cq−1.

Case 4: Let α1, α2, β1, β2 ∈ G satisfy o(αi) = 3, o(βi) = 2, and Hi := 〈αi, βi〉 ∼=
Sym(3). As shown in the previous point, we can assume α1 = α2 up to conjugation. Let
P,Q ∈ Hq(Fq2) andR ∈ PG(2, q2)\Hq be the fixed points of α1. Since βiα1β

−1
i = α−1

1 ,
we have that βi fixes R and interchanges P and Q; β is then uniquely determined from the
Fq2 -rational point of PQ fixed by β (namely, the intersection between PQ and the axis of
β). Since the pointwise stabilizer Cq2−1 of {P,Q} acts transitively on PQ(Fq2) \ Hq , β1

and β2 are conjugated, and the same holds for H1 and H2.

Case 5: Any two groups isomorphic to Cq2−1 are conjugated in G, because they are gen-
erated by elements of type (B2) and G is 2-transitive onHq(Fq2).

Case 6: Any two groups isomorphic to Eq are conjugated in G, because any such group
fixes exactly one point P ∈ Hq(Fq2), G is transitive on Hq(Fq2), and the stabilizer GP =
M1(P ) contains just one subgroup Eq .

Case 7: Any two groups H1, H2
∼= Eq o Cq2−1 are conjugated in G. In fact, their

Sylow 2-subgroups Eq coincide up to conjugation, as shown in the previous point. The
normalizer NG(Eq) fixes the fixed point P ∈ Hq(Fq2) of Eq , and hence NG(Eq) =
M1(P ) = S2 o Cq2−1. The complements Cq2−1 are conjugated by Schur-Zassenhaus
Theorem; hence, H1 and H2 are conjugated.

Case 8: Any two groups isomorphic to C2(q+1) are conjugated in G, because they are
generated by elements of type (E) and two elements α1, α2 of type (E) of the same order
are conjugated in G. In fact, αi is uniquely determined by its fixed points Pi ∈ Hq(Fq2)
and Qi ∈ `Pi(Fq2) \ Hq; here, `Pi is the polar line of Pi. Up to conjugation P1 = P2,
from the transitivity of G on Hq(Fq2). Also, S2 has order q3 and acts on the q2 points of
`Pi

(Fq2) \ Hq with kernel Eq , hence transitively. We can then assume Q1 = Q2.

Case 9: LetZPi be the center ofM2(Pi), i = 1, 2. As shown in [5, Section 4], ZPi
∼= Cq+1

and ZPi
is made by the homologies with center Pi, together with the identity. Since G is

transitive on PG(2, q2) \ Hq , we have up to conjugation that M2(P1) = M2(P2) and
ZP1

= ZP2
.

Case 10: Any two groups H1, H2
∼= Cq+1 × Cq+1 are conjugated in G. In fact, Hi is the

pointwise stabilizer of a self-polar triangle Ti = {Pi, Qi, Ri} ⊂ PG(2, q2) \ Hq (see [5,
Section 3]), and the stabilizers of T1 and T2 are conjugated by Theorem 2.3.

Case 11: Any two groups H1, H2
∼= (Cq+1 × Cq+1) o C2 are conjugated in G. In fact,

their subgroups Cq+1×Cq+1 coincide up to conjugation as shown above, and fix pointwise
a self-polar triangle T = {P,Q,R} ⊂ PG(2, q2)\Hq . Let βi ∈ Hi have order 2, i = 1, 2.
Then βi fixes one vertex of T and interchanges the other two vertexes. Up to conjugation in
M3(T ) we have β1(P ) = β2(P ) = P . ThenH1 = H2, as they coincide with the stabilizer
of P in M3(T ).

Proposition 3.3. The normalizers NG(H) of the groups H in Equation (3.1) are given in
Equation (3.2).

Proof. Case 1: ClearlyNG(H) = H for anyH from the first four groups of Equation (3.1)
as H is maximal in G.
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Case 2: Let H = Eq o Cq2−1. Then H ≤ M2(P ), where P is the unique fixed point of
Cq2−1 in PG(2, q2) \Hq . The group H has a unique cyclic subgroup Cq+1 of order q+ 1;
namely, Cq+1 is the center of M2(P ) and is made by the homologies with center P ; since
q is even, H is a split extension Cq+1 × (Eq o Cq−1). Hence, NG(H) ≤ NG(Cq+1) =
M2(P ). The group H/Cq+1

∼= Eq o Cq−1 is maximal and hence self-normalizing in
M2(P )/Cq+1 = PSL(2, q); thus, NG(Eq o Cq−1) = H and NG(H) = H .

Case 3: Let H = Cq+1 × Cq+1. Then NG(H) ≤ M3(T ), where T is the self-polar
triangle fixed pointwise by H . Since H is the kernel of M3(T ) in its action on T , we have
NG(H) = M3(T ) and |NG(H)| = 6|H|.

Case 4: Let H = (Cq+1 × Cq+1) o C2. Then Cq+1 × Cq+1 is normal in NG(H), being
the unique subgroup of index 2 in H . Hence NG(H) ≤ M3(T ), where T is the self-polar
triangle fixed pointwise by H . Also, NG(H) fixes the vertex P of T fixed by H , so that
NG(H) 6= M3(T ). This implies NG(H) = H .

Case 5: Let H = Cq2−1. Then H is generated by an element α of type (B2) with fixed
points P,Q ∈ Hq(Fq2) and R ∈ PG(2, q2) \ Hq . Let β be an involution satisfying
β(R) = R, β(P ) = Q, and β(Q) = P ; then β ∈ NG(H), because H coincides with
the pointwise stabilizer of {P,Q} in G. An explicit description is the following: givenHq
with equation (2.3), we can assume up to conjugation that α = diag(aq+1, a, 1) where a is
a generator if F∗q2 (see [11]); then take

β =

0 0 1
0 1 0
1 0 0

 . (3.4)

Since NG(H) acts on {P,Q} and β ∈ NG(H), the pointwise stabilizer H of {P,Q} has
index 2 in NG(H). This implies NG(H) = Cq2−1 o C2 and |NG(H)| = 2|H|.

Case 6: Let H = C2(q+1), so that H is generated by an element α of type (E) fixing
exactly two points P ∈ Hq(Fq2) and Q ∈ `P (Fq2) \ Hq . Then NG(H) fixes P and
Q. The subgroup Eq of M1(P ) commutes with H elementwise, while any 2-element in
M1(P )\Eq has order 4 and does not fixQ; hence, the Sylow 2-subgroup ofNG(H) is Eq .
Also, NG(H) = EqoCd, where Cd is a subgroup of Cq2−1 containing the subgroup Cq+1

of H . Let C2 be the subgroup of H of order 2; the quotient group (C2 o Cd)/Cq+1
∼=

C2 o C d
q+1

acts faithfully as a subgroup of PGL(2, q) on the q + 1 points of `Q ∩Hq . By
the classification of subgroups of PGL(2, q) ([7]; see [17, Hauptsatz 8.27]), this implies
d = 1; that is, NG(H) = Eq o Cq+1 and |NG(H)| = q

2 |H|.

Case 7: Let H = Cq+1 = Z(M2(P )). Since H is the center of M2(P ), M2(P ) ≤
NG(H). Conversely, H is made by homologies with center P , and hence NG(H) fixes P .
Thus, NG(H) = M2(P ) and |NG(H)| = q(q2 − 1)|H|.

Case 8: Let H = Eq . Since Eq has a unique fixed point P on Hq(Fq2) and Eq =
Z(M1(P )), we have NG(H) ≤M1(P ) and M1(P ) ≤ NG(H), so that NG(H) = M1(P )
and |NG(H)| = q2(q2 − 1)|H|.

Case 9: Let H = Sym(3) = 〈α, β〉, with o(α) = 3 and o(β) = 2. Let P,Q ∈ Hq(Fq2)
andR ∈ PG(2, q2)\Hq be the fixed points of α; β fixesR, interchanges P andQ, and fixes
another pointAβ on `R∩Hq . The groupNG(H) acts on {P,Q} and on {Aβ , Aαβ , Aα2β}.
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The pointwise stabilizerCq2−1 has a subgroupCq+1 which is the center ofM2(P ) and fixes
PQ pointwise, while any element in Cq2−1 \ Cq+1 acts semiregularly on PQ \ {P,Q};
hence,Cq2−1∩NG(H) = C3(q+1). If an element γ ∈ NG(H) fixes {P,Q} pointwise, then
γ fixes a point in {Aβ , Aαβ , Aα2β}, and hence γ ∈ {β, αβ, α2β}. Therefore, NG(H) =
C3(q+1) o C2 = H × Cq+1 and |NG(H)| = (q + 1)|H|.

Case 10: Let H = C3 and α be a generator of H , with fixed points P,Q ∈ Hq(Fq2) and
R ∈ PG(2, q2) \ Hq . The normalizer NG(H) fixes R and acts on {P,Q}. There exists an
involution β ∈ G normalizing H and interchanging P and Q (see Equation (3.4)). Then
the pointwise stabilizer of {P,Q} has index 2 in NG(H). Also, the pointwise stabilizer
of {P,Q} in G is cyclic of order q2 − 1. Then NG(H) = Cq2−1 o C2 and |NG(H)| =
2(q2−1)

3 |H|.

Case 11: Let H = C2 and α be a generator of H , with fixed point P ∈ Hq(Fq2). Then
NG(H) fixes P , i.e. NG(H) ≤ M1(P ) = S2 o Cq2−1. Since any involution of M1(P )
is in the center of S2, the Sylow 2-subgroup of NG(H) has order q3. Let β ∈ Cq2−1. If
o(β) | (q + 1), then β commutes with any involution of S2. If o(β) - (q + 1), then β
does not commute with any element of S2. This implies that NG(H) = S2 o Cq+1, and
|NG(H)| = q3(q+1)

2 |H|.

Lemma 3.4. Let α ∈ G be an involution, and hence an elation, with center P and axis `P .
Then there exist exactly q3/2 self-polar triangles Ti,j = {Pi, Qi,j , Ri,j}, i = 1, . . . , q2,
j = 1, . . . , q2 , such that α stabilizes Ti,j . Also, Pi ∈ `P and P ∈ Qi,jRi,j for any i and j.

Proof. The number of involutions in G is (q3 + 1)(q − 1), since for any of the q3 + 1
Fq2 -rational points P ofHq the involutions fixing P form a group Eq . The number of self-

polar triangles T ⊂ PG(2, q2) \ Hq is [G : M3(T )] = (q3+1)q3(q2−1)
6(q+1)2 . For any self-polar

triangle T = {A1, A2, A3} ⊂ PG(2, q2) \ Hq , the number of involutions in G stabilizing
T is 3(q + 1). In fact, for any of the 3 vertexes of T there are exactly q + 1 involutions
α1, . . . , αq+1 fixing that vertex, say A1, and interchanging A2 and A3; αi is uniquely
determined by its center A2A3 ∩Hq . Then, by double counting the size of

{(β, T ) | β ∈ G, o(β) = 2, T ⊂ PG(2, q2) \ Hq is a self-polar triangle,
β stabilizes T},

α stabilizes exactly q3

2 self-polar triangles T . For any such T , one vertex Pi of T lies
on the axis of α, because α is an elation, and the other two vertexes {Qi,j , Ri,j} of T
lie on the polar line `Pi of Pi. Since M1(P ) is transitive on the q2 points P1, . . . , Pq2 of
`P (Fq2) \ {P}, any point Pi is contained in the same number q2 of self-polar triangles Ti,j
stabilized by α.

Lemma 3.5. Let α ∈ G have order 3. Then there are exactly q2−1
3 self-polar triangles

Ti ⊂ PG(2, q2) \ Hq, i = 1, . . . , q
2−1
3 ,

which are stabilized by α. Also, there are exactly 2(q2−1)
3 triangles

T̃j = {Pj ,Φq2(Pj),Φ
2
q2(Pj)} ⊂ Hq(Fq6) \ Hq(Fq2), j = 1, . . . , 2(q2−1)

3 ,

which are stabilized by α.
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Proof. By Proposition 3.2, any two subgroups of G of order 3 are conjugated in G. Also,
any element of order 3 is conjugated to its inverse by an involution of G. Hence, any two
element of order 3 are conjugated in G.

Now the claim follows by double counting the size of

{(β, T ) | β ∈ G, o(β) = 3, T ⊂ PG(2, q2) \ Hq is a self-polar triangle,
β stabilizes T},

and

{(β, T̃ ) | β ∈ G, o(β) = 3, T̃ = {P,Φq2(P ),Φ2
q2(P )} with

P ∈ Hq(Fq6) \ Hq(Fq2), β stabilizes T̃},

using the following facts. The number of elements of order 3 in G is
(
q3+1

2

)
· 2. The

number of self-polar triangles T ⊂ PG(2, q2) \ Hq is [G : M3(T )]. The number of
elements of order 3 stabilizing a fixed self-polar triangle T is 2(q+1)2, because any element
acting as a 3-cycle on the vertexes of T has order 3 (see [5, Section 3]). The number of
triangles T̃ = {P,Φq2(P ),Φ2

q2(P )} ⊂ Hq(Fq6) \ Hq(Fq2) is [G : M4(T̃ )]. The number
of elements of order 3 stabilizing a fixed triangle T̃ is 2(q2 − q + 1), because any element
in M4(T̃ ) \ Cq2−q+1 has order 3 (see [4, Section 4]).

Lemma 3.6. LetH < G be isomorphic to Sym(3), H = 〈α〉o〈β〉. Then there are exactly
q + 1 self-polar triangles

Ti = {Pi, Qi, Ri} ⊂ PG(2, q2) \ Hq, i = 1, . . . , q + 1,

which are stabilized by H . Up to relabeling the vertexes, we have that P1, . . . , Pq+1 lie on
the axis of the elation β, Q1, . . . , Qq+1 lie on the axis of the elation αβ, and R1, . . . , Rq+1

lie on the axis of the elation α2β.

Proof. By Proposition 3.2, any two subgroups K1,K2 < G with Ki
∼= Sym(3) are con-

jugated, and |NG(Ki)| = 6(q + 1); hence, the number of subgroups of G isomorphic
to Sym(3) is [G : NG(Ki)] = (q3+1)q3(q−1)

6 . The number of self-polar triangles T is

[G : M3(T )] = (q2−q+1)q3(q−1)
6 . Then the claim on the number of self-polar triangles

follows by double counting the size of

{(K,T ) | K < G, K ∼= Sym(3), T ⊂ PG(2, q2) \ Hq is a self-polar triangle,
K stabilizes T},

once we show that, for any self-polar triangle T = {A,B,C}, there are in G exactly
(q + 1)2 subgroups isomorphic to Sym(3) which stabilize T .

Let K < M3(T ), K ∼= Sym(3), K = 〈α, β〉 with o(α) = 3, o(β) = 2. Let P,Q,R
be the fixed points of α, with P ∈ PG(2, q2) \ Hq , Q,R ∈ Hq(Fq2). By Proposition 3.3,
NG(K) = K × Cq+1 where Cq+1 is made by homologies with center P ; this implies
NG(K) ∩M3(T ) = K. Hence, there are at least [M3(T ) : Sym(3)] = (q + 1)2 distinct
groups Sym(3) stabilizing T , namely the conjugates of K through elements of M3(T ).
On the other side, M3(T ) contains exactly (q + 1)2 subgroups K of order 3, with fixed
points P ∈ PG(2, q2) \ Hq , Q,R ∈ Hq(Fq2). Any involution β of M3(T ) normalizing
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K is uniquely determined by the vertex of T that β fixes, because β(P ) = P , β(Q) = R,
and β(R) = Q. Thus, K is contained in exactly one subgroup of M3(T ) isomorphic
to Sym(3). Therefore the number of subgroups isomorphic to Sym(3) which stabilize T
is (q + 1)2.

Finally, the configuration of the vertexes of T1, . . . , Tq+1 on the axes of the involutions
of H follows from Lemma 2.4 and the fact that every involution fixes a different vertex
of Ti.

Proposition 3.7. Any group H in Equation (3.1) is the intersection of maximal subgroups
of G.

Proof. Case 1: The first four groups of Equation (3.1) are exactly the maximal subgroups
of G.

Case 2: Let H = Eq o Cq2−1. Let P ∈ Hq(Fq2) be the unique point of Hq fixed by
Eq; Eq fixes `P pointwise. Also, the fixed points of Cq2−1 are P,Q ∈ Hq(Fq2) and
R ∈ PG(2, q2) \ Hq , where R ∈ `P and PQ = `R. Then H ≤ M1(P ) ∩ M2(R).
Conversely, from M1(P ) ∩M2(R) ≤ M1(P ) follows M1(P ) ∩M2(R) = K o Cd with
K ≤ S2 and Cd ≤ Cq2−1. From M1(P ) ∩M2(R) ≤ M2(R) follows that K does not
contain any element of type (D), so that K ≤ Eq . Thus, M1(P ) ∩ M2(R) ≤ H , and
H = M1(P ) ∩M2(R).

Case 3: Let H = (Cq+1 × Cq+1) o C2. Let T = {P,Q,R} ⊂ PG(2, q2) \ Hq be the
self-polar triangle fixed pointwise by Cq+1 × Cq+1, and let P be the vertex of T fixed by
C2. Then H ≤M3(T ) ∩M2(P ). Conversely, since M3(T ) ∩M2(P ) fixes P and acts on
{Q,R}, the pointwise stabilizerCq+1×Cq+1 of T has index at most 2 inM3(T )∩M2(P ),
so that M3(T ) ∩M2(P ) ≤ H . Thus, H = M3(T ) ∩M2(P ).

Case 4: Let H = Cq+1 × Cq+1. Let T = {P,Q,R} ⊂ PG(2, q2) \ Hq be the self-polar
triangle fixed pointwise by Cq+1 × Cq+1. Since H is the whole pointwise stabilizer of T
in G, we have H = M2(P ) ∩M2(Q) ∩M2(R).

Case 5: Let H = Cq2−1 and let α be a generator of H , with fixed points P,Q ∈ Hq(Fq2)
and R ∈ PG(2, q2) \ Hq . The pointwise stabilizer of {P,Q} in G is exactly H; thus,
H = M1(P ) ∩M2(Q).

Case 6: Let H = C2(q+1) and let α be a generator of H , of type (E), with fixed points
P ∈ Hq(Fq2) and Q ∈ `P (Fq2) \ Hq . By Lemma 3.4 there are q

2 self-polar triangles
stabilized by the involution αq+1 having one vertex in Q and two vertexes on `Q; let T =
{Q,R1, R2} be one of these triangles. Then H ≤M1(P ) ∩M2(Q) ∩M3(T ).

Conversely, let σ ∈ (M1(P )∩M2(Q)∩M3(T )) \ {1}. If σ fixes {R1, R2} pointwise,
then from σ ∈ M1(P ) follows that σ is in the kernel Cq+1 ≤ H of the action of M2(Q)
on `Q. The quotient (M1(P ) ∩ M2(Q) ∩ M3(T ))/Cq+1 acts on `Q as a subgroup of
PSL(2, q) fixing P and interchanging R1 and R2. From [17, Hauptsatz 8.27] follows
(M1(P ) ∩M2(Q) ∩M3(T ))/Cq+1

∼= C2, and hence H = M1(P ) ∩M2(Q) ∩M3(T ).

Case 7: Let H = Cq+1 = Z(M2(P )). Then H is made by the homologies of G with
center P , together with the identity. Thus, H = M1(P1) ∩ M1(P2) ∩ M1(P3), where
P1, P2, P3 are distinct point in `P ∩Hq .
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Case 8: Let H = Eq and let P be the unique point of Hq(Fq2) fixed by any element
in H . Then H = M2(P1) ∩M2(P2) ∩M2(P3), where P1, P2, P3 are distinct points in
`P (Fq2) \ {P}.

Case 9: Let H = C2, α be a generator of H with fixed point P ∈ Hq(Fq2), and
P1, P2, P3 ∈ `P (Fq2) \ {P}. Let T = {P1, Q1,1, R1,1} be a self-polar triangle stabi-
lized by α. Then H ≤ M2(P1) ∩M2(P2) ∩M2(P3) ∩M3(T ). Since the elation α is
uniquely determined by the image of one point not on its axis `P , H ≤ M3(T ) implies
H = M2(P1) ∩M2(P2) ∩M2(P3) ∩M3(T ).

Case 10: Let H = C3. By Lemma 3.5, H stabilizes 2(q2−1)
3 triangles T̃ ⊂ Hq(Fq6) \

Hq(Fq2); let T̃1 and T̃2 be two of them. Then H ≤ M4(T̃1) ∩ M4(T̃2). If H <

M4(T̃1) ∩M4(T̃2), then there exist a nontrivial σ ∈ G stabilizing pointwise both T̃1 and
T̃2, a contradiction to Lemma 2.4. Thus, H = M4(T̃1) ∩M4(T̃2).

Case 11: Let H = Sym(3). By Lemma 3.6, H stabilizes q + 1 self-polar triangles
T1, . . . , Tq+1, so that H ≤ M3(T1) ∩ · · · ∩ M3(Tq+1). Suppose by contradiction that
H 6= M3(T1) ∩ · · · ∩M3(Tq+1). Then M3(T1) ∩ · · · ∩M3(Tq+1) contains a nontrivial
element σ fixing every triangle Ti pointwise. Since the triangles Ti’s do not have vertexes
in common, this is a contradiction to Lemma 2.4. Thus, H = M3(T1) ∩ · · · ∩M3(Tq+1).

Case 12: Let H = {1}. Since G is simple, H is the Frattini subgroup of G.

Proposition 3.8. If H < G is the intersection of maximal subgroups, then H is one of the
groups in Equation (3.1).

Proof. We proceed as follows: we take every subgroup K < G in Equation (3.1), starting
from the maximal subgroups Mi of G; we consider the intersections H = K ∩Mi of K
with the maximal subgroups ofG; here, we assume thatK 6≤Mi. We show thatH is again
one of the groups in Equation (3.1).

Case 1: Let K = S2 o Cq2−1 = M1(P ) for some P ∈ Hq(Fq2).
Let H = K ∩ M1(Q), Q 6= P . Then H is the pointwise stabilizer of {P,Q} ⊂

Hq(Fq2), which is cyclic of order q2 − 1, i.e. H = Cq2−1.
Let H = K ∩M2(Q). Suppose Q ∈ `P . Then H = Eq2 oCq2−1, where Eq2 is made

by the elations with axis PQ and Cq2−1 is generated by an element of type (B2) with fixed
points Q, P , and another point R ∈ `Q. Now suppose Q /∈ `P . Then H stabilizes `Q and
hence also the point R = `P ∩ `Q. Then H stabilizes QR and hence also the pole A of
QR; by reciprocity, A ∈ PQ. Thus, H fixes three collinear point A,P,Q, and hence every
point on AP . Then H = Cq+1 = Z(M2(R)).

Let H = K ∩M3(T ), T = {A,B,C}, with P on a side of T , say P ∈ AB. Then
H fixes C and acts on {A,B}. Thus, H is generated by an element of type (E) with fixed
points P,C and fixed lines PC,AB; hence, H = C2(q+1).

Let H = K ∩M3(T ), T = {A,B,C}, with P out of the sides of T . By reciprocity,
no vertex of T lies on `P . This implies that no elation acts on T , so that 2 - |H|; this also
implies that no homology in M3(T ) fixes P , so that H has no nontrivial elements fixing T
pointwise. Thus H ≤ C3.

Let H = K ∩M4(T ). By Lagrange’s theorem, H ≤ C3.

Case 2: Let K = PSL(2, q)× Cq+1 = M2(P ) for some P ∈ PG(2, q2) \ Hq .
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Let H = K ∩M2(Q), Q 6= P , and R be the pole of PQ. If R ∈ PQ, then H is the
pointwise stabilizer of PQ and is made by the elations with center R; thus, H = Eq . If
R /∈ PQ, then H is the pointwise stabilizer of T = {P,Q,R}; thus, H = Cq+1 × Cq+1.

Let H = K ∩M3(T ) with T = {A,B,C}. If P is a vertex of T , then H = (Cq+1 ×
Cq+1) o C2. If P is on a side of T but is not a vertex, say P ∈ AB, then H fixes the pole
D ∈ AB of C. Then H fixes pointwise T ′ = {P,C,D} and acts on {A,B}. This implies
that H fixes AB pointwise and H = Cq+1 = Z(M2(C)). If P is out of the sides of T ,
then no nontrivial element of H fixes T pointwise; thus, H ≤ Sym(3).

Let H = K ∩M4(T ). By Lagrange’s theorem, H ≤ C3.

Case 3: Let K = (Cq+1 × Cq+1) o Sym(3) = M3(T ) for some self-polar triangle
T = {A,B,C}.

Let H = K ∩M3(T ′) with T ′ = {A′, B′, C ′} 6= T . If T and T ′ have one vertex
A = A′ in common, thenH = C2(q+1) is generated by an element of type (E) fixingA and
a point D ∈ BC = B′C ′. If A′ ∈ AC \ {A,C}, then H stabilizes B′C ′, because B′C ′

is the only line containing 4 points of {A,B,C,A′, B′, C ′}. Then H fixes A′, A, and C;
hence also B. Since H acts on {B′, C ′}, H cannot be made by nontrivial homologies of
center B; thus, H = {1}.

Let H = K ∩M4(T ′). By Lagrange’s theorem, H ≤ C3.

Case 4: LetK = Cq2−q+1oC3 = M4(T ) for some T ⊂ Hq(Fq6). LetH = K∩M4(T ′)
with T ′ 6= T . Since 3 does not divide the order of the pointwise stabilized Cq2−q+1 of T ,
H contains no nontrivial elements fixing T or T ′ pointwise. Thus, H ≤ C3.

Case 5: Let K = Eq o Cq2−1 and P ∈ Hq(Fq2), Q ∈ `P \ {P} be the fixed points of K.
Let H = K ∩M1(R) with R 6= P . If R ∈ `Q, then H = Cq2−1. If R /∈ `Q, then

H fixes the pole S of PR; by reciprocity S ∈ PQ, so that H fixes PQ pointwise and also
R /∈ PQ. Thus, H = {1}.

Let H = K ∩M2(R) with R 6= Q. If R ∈ `P , then H is the pointwise stabilizer Eq
of PQ. If R /∈ `P , then H fixes pointwise the self-polar triangle {Q,R, S} where S is the
pole of QR. Hence, either H = Cq+1 = Z(M2(Q)) or H = {1} according to P ∈ RS or
P /∈ RS, respectively.

Let H = K ∩M3(T ) with T = {A,B,C}. If P is on a side of T , say P ∈ BC,
then either H = {1} or H = Cq+1 = Z(M2(A)). If P is out of the sides of T , then no
nontrivial element of H can fix T pointwise; thus, H ≤ Sym(3).

Let H = K ∩M4(T ). By Lagrange’s theorem, H ≤ C3.

Case 6: Let K = (Cq+1 × Cq+1) o C2 = M3(T ) ∩M2(A), where T = {A,B,C}.
Let H = K ∩M1(P ). If P ∈ BC, then H = C2(q+1) is generated by an element of

type (E). If P /∈ BC, then H = {1}.
Let H = K ∩M2(P ), P 6= A. If P ∈ {B,C}, then H is the pointwise stabilizer

Cq+1 × Cq+1 of T . If P ∈ AB \ {A,B} or P ∈ AC \ {A,C}, then H = Cq+1 =
Z(M2(C)) or H = Cq+1 = Z(M2(B)), respectively. If P ∈ BC \ {B,C}, then H fixes
A, P , the pole of AP , and acts on {B,C}; thus, H = Cq+1 = Z(M2(A)). If P is not on
the sides of T , then no nontrivial element of H can fix T pointwise; thus, H ≤ C2.

Let H = K ∩M3(T ′) with T ′ = {A′, B′, C ′} 6= T . Since 3 - |H|, H fixes a vertex of
T ′, say A′. If A′ = A, then H = C2(q+1). If A′ ∈ {B,C}, then H fixes T pointwise and
acts on {B′, C ′}; thus, H = Cq+1 = Z(M2(A′)). If A′ ∈ (AB ∪ AC) \ {A,B,C}, then
H fixes AB or AC pointwise and acts on {B′, C ′}; thus, H = {1}. If A′ ∈ BC, then H
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fixes A, A′, and the pole D of AA′; as H acts on {B,C}, this implies H = {1}. If A′ is
not on the sides of T , then no nontrivial element of H fixes T pointwise and H ≤ C2.

Let H = K ∩M4(T ′). By Lagrange’s theorem, H ≤ C3.

Case 7: Let K = Cq+1 × Cq+1 = M3(T ) ∩ M2(A) ∩ M2(B) ∩ M2(C) with T =
{A,B,C}.

LetH = K∩M1(P ) orH = K∩M2(P ). If P is not on the sides of T , thenH = {1};
if P is on a side of T , say P ∈ BC, then H = Cq+1 = Z(M2(A)).

LetH = K ∩M3(T ′) with T ′ = {A′, B′, C ′}. SinceK is not divisible by 2 or 3, H 6=
{1} only if H fixes T ′ pointwise. Up to relabeling, this implies A′ = A, B′, C ′ ∈ BC,
and H = Cq+1 = Z(M2(A)).

Let H = K ∩M4(T ′). By Lagrange’s theorem, H = {1}.

Case 8: Let K = Cq2−1 = 〈α〉, with α of type (B2) fixing the points P ∈ PG(2, q2) \Hq
and Q,R ∈ Hq(Fq2).

Let H = K ∩M1(A) or H = K ∩M2(A). Since the nontrivial elements of H are
either of type (B2) or of type (A) with axis QR, we have H = {1} unless A ∈ QR; in this
case, H = Cq+1 = Z(M2(P )).

Let H = K ∩M3(T ) or H = K ∩M4(T ). By Lagrange’s theorem, H ≤ C3.

Case 9: Let K = C2(q+1) = 〈α〉 with α of type (E) fixing the points P ∈ Hq(Fq2) and
Q ∈ PG(2, q2) \ Hq .

Let H = K ∩M1(R) or H = K ∩M2(R). If R ∈ `Q, then H = Cq+1 = Z(M2(Q)).
If R /∈ `Q, then H = {1}.

Let H = K ∩M3(T ); recall that H < K. If Q is a vertex of T , then H = Cq+1 =
Z(M2(Q)). If Q is not a vertex of T , then no homology in K acts on T ; hence, H ≤ C2.

Let H = K ∩M4(T ). By Lagrange’s theorem, H = {1}.

Case 10: Let K = Cq+1 = Z(M2(P )) for some P ∈ PG(2, q2) \ Hq and σ ∈ K \ {1}.
Then σ fixes no points out of {P} ∪ `P ; also, the triangles fixed by σ have one vertex in
P and two vertexes on `P . Thus, K ∩Mi = {1} for any maximal subgroup Mi of G not
containing K.

Case 11: Let K = Eq and σ ∈ Eq \ {1}. Recall that K fixes one point P ∈ Hq(Fq2) and
the line `P pointwise. Also, σ fixes no points out of `P . If σ fixes a triangle T = {A,B,C},
then one vertex of T lies on `P (Fq2), say A, and σ is uniquely determined by σ(B) = C.
Thus, K ∩M1(Q) = K ∩M2(Q) = K ∩M4(T ′) = {1} and K ∩M3(T ) ≤ C2.

Case 12: LetK ∈ {Sym(3), C3, C2, {1}}. Then every subgroup ofK is in Equation (3.1).

Proposition 3.9. The values µ(H) for the groups in Equation (3.1) are given in Equa-
tion (3.3).

Proof. Let H be one of the groups in Equation (3.1). By Lemma 2.1 and Proposition 3.8,
µ(H) only depends on the subgroupsK ofG such thatH < K andK is in Equation (3.1).

Case 1: If H is one of the first four groups in Equation (3.1), then H is maximal in G, and
hence µ(H) = −1.

Case 2: Let H = Eq o Cq2−1. Let P ∈ Hq(Fq2) and Q ∈ PG(2, q2) \ Hq be the fixed
points of H . Then H = M1(P ) ∩M2(Q) and H is not contained in any other maximal
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subgroup of G. Thus, µ(H) = −{µ(G) + µ(M1(P )) + µ(M2(Q))} = 1.

Case 3: Let H = (Cq+1 × Cq+1) o C2. Let T = {P,Q,R} be the self-polar triangle
stabilized by H , with H(P ) = P . No point different from P is fixed by H . Also, if a
triangle T ′ = {P ′, Q′} 6= T is fixed by H , then P is a vertex of T ′, say P = P ′, and
{Q′, R′} ⊂ QR; but Cq+1 × Cq+1 has orbits of length q + 1 > |{Q′, R′}|, so that H
cannot fix T ′. Then H = M2(P ) ∩M3(T ) and H is not contained in any other maximal
subgroup of G. Thus, µ(H) = 1.

Case 4: Let H = Cq+1 × Cq+1 and T = {P,Q,R} be the self-polar triangle fixed
pointwise by H . The vertexes of T are the unique fixed points of the elements of type (B1)
in H . Also, any triangle T ′ 6= T fixed by an element of type (A) in H has two vertexes on
a side ` of T ; but H has orbits of length q + 1 > 2 on `, so that H does not fix T ′. Then
H = M3(T ) ∩M2(P ) ∩M2(Q) ∩M2(R) and H is not contained in any other maximal
subgroup of G.

If K is one of the groups M3(T ) ∩M2(P ), M3(T ) ∩M2(P ), M3(T ) ∩M2(P ), then
K contains H properly, and µ(K) = 1 as shown in the previous point. The intersection of
three groups between M3(T ), M2(P ), M2(Q), and M2(R) is equal to H . Thus, by direct
computation, µ(H) = 0.

Case 5: Let H = Cq2−1 with fixed points P ∈ PG(2, q2) \ Hq and Q,R ∈ Hq(Fq2).
Then H = M1(Q)∩M1(R) = M1(Q)∩M1(R)∩M2(P ). We already know µ(M1(Q)∩
M2(P )) = µ(M1(R) ∩M2(P )) = 1. Moreover, Cq2−1 has no fixed triangles, by La-
grange’s theorem, and no other fixed points. Thus, by direct computation, µ(H) = 0.

Case 6: Let H = C2(q+1) = 〈α〉; α is of type (E), fixes the points P ∈ Hq(Fq2) and
Q ∈ PG(2, q2)\Hq , and fixes the lines `P and `Q. Since α2 is a homology with center Q,
the orbits on `Q of H coincide with the orbits on `Q of the elation αq+1. By Lemma 3.4,
the self-polar triangles Ti stabilized by H have a vertex in Q and two vertexes on `Q; there
are exactly q

2 such triangles T1, . . . , T q
2

. No other triangle and no other point different from
P and Q is fixed by H , so that H = M1(P ) ∩M2(Q) ∩M3(T1) ∩ · · · ∩M3(T q

2
) and H

is not contained in any other maximal subgroup of G.
IfK is the intersection ofM2(Q) with one of the groupsM1(P ),M3(T1), . . . ,M3(T q

2
),

then K = Eq o Cq2−1 or K = (Cq+1 × Cq+1) o C2; hence, K contains H prop-
erly and µ(K) = 1 as shown above. The intersection of K with a third maximal sub-
group of G containing H coincides with H . Finally, the intersection of any two groups
in {M1(P ),M3(T1), . . . ,M3(T q

2
)} coincides with H . Thus, by direct computation,

µ(H) = 0.

Case 7: Let H = Cq+1 = Z(M2(P )). Denote `P ∩ Hq = {P1, . . . , Pq+1} and `(Fq2) \
Hq = {Q1, . . . , Qq2−q} such that, for i = 1, . . . , q

2−q
2 , Ti = {P,Qi, Qi+ q2−q

2

} are the
self-polar triangles with a vertex in P . Then

H =

q+1⋂
i=1

M1(Pi) ∩M2(P ) ∩
q2−q⋂
i=1

M2(Qi) ∩
(q2−q)/2⋂
i=1

M3(Ti)

and H is not contained in any other maximal subgroup of G. By direct inspection, the
intersections K of some (at least two) maximal subgroups of G such that H < K < G are
exactly the following.
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(i) K = M1(Pi) ∩M1(Pj) for some i 6= j; in this case, K = Cq2−1 and µ(K) = 0.

(ii) K = M1(Pi) ∩M2(P ) with i ∈ {1, . . . , q + 1}; in this case, K = Eq o Cq2−1 and
µ(K) = 1. These q + 1 groups are pairwise distinct.

(iii) K = M1(Pi) ∩M3(Tj) for some i, j; in this case, K = C2(q+1) and µ(K) = 0.

(iv) K = M2(P ) ∩M2(Qi) for some i; in this case, K = Cq+1 × Cq+1 and µ(K) = 0.

(v) K = M2(P )∩M3(Ti) with i ∈ {1, . . . , q
2−q
2 }; in this case, K = (Cq+1×Cq+1)o

C2 and µ(K) = 1. These q2−q
2 groups are pairwise distinct.

(vi) K = M2(Qi) ∩M3(Ti) or K = M2(Q
i+ q2−q

2

) ∩M3(Ti), with i ∈ {1, . . . , q
2−q
2 };

in this case, K = (Cq+1 × Cq+1) o C2 and µ(K) = 0. These q2 − q groups are
pairwise distinct.

To sum up, the only subgroups K with H < K < G and µ(K) 6= 0 are the maximal
subgroups, q + 1 distinct groups of type Eq o Cq2−1, and 3(q2−q)

2 distinct groups of type
(Cq+1 × Cq+1) o C2. Thus, µ(H) = 0.

Case 8: Let H = Eq . Let P be the point of Hq(Fq2) fixed by H; H fixes `P pointwise.
We have H = M1(P ) ∩ M2(Q1) ∩ · · · ∩ M2(Qq2), where Q1, . . . , Qq2 are the Fq2 -
rational points of `P \ {P}; H is not contained in any other maximal subgroup of G.
The intersections K of at least two maximal subgroups of G such that H < K < G are
exactly the q2 groups M1(P ) ∩M2(Qi) = Eq o Cq2−1, with µ(K) = 1. Thus, by direct
computation, µ(H) = 0.

Case 9: Let H = Sym(3) = 〈α, β〉 with o(α) = 3 and o(β) = 2. Let P ∈ PG(2, q2)\Hq
and Q,R ∈ Hq be the fixed points of α, and A ∈ QR be the fixed point of β onHq , so that
β fixes `A = AP . By Lemma 3.6 and its proof, H = M2(P )∩M3(T1)∩ · · · ∩M3(Tq+1),
where Ti has one vertex on `A \ {P,A} and the other two vertexes are collinear with A; H
is not contained in any other maximal subgroup of G.

For any i, j ∈ {1, . . . , q + 1} with i 6= j, no vertex of Tj is on a side of Ti; hence,
no nontrivial element of M3(Ti) ∩ M3(Tj) fixes Ti pointwise. This implies M3(Ti) ∩
M3(Tj) = H . Analogously, no nontrivial element in M3(Ti)∩M2(P ) fixes Ti pointwise,
and this implies M3(Ti) ∩M2(P ) = H . Thus, by direct computation, µ(H) = q + 1.

Case 10: Let H = C3 = 〈α〉 with fixed points P ∈ PG(2, q2) \ Hq and Q,R ∈ Hq . By
Lemma 3.5,

H = M1(Q) ∩M1(R) ∩M2(P ) ∩
(q2−1)/3⋂
i=1

M3(Ti) ∩
2(q2−1)/3⋂

i=1

M4(T̃i)

and H is not contained in any other maximal subgroup of G. By direct inspection, the
intersections K of at least two maximal subgroups of G such that H < K < G are exactly
the following.

(i) K = M1(Q) ∩M2(P ) or K = M1(R) ∩M2(P ); in this case, K = Eq o Cq2−1

and µ(K) = 1.

(ii) K = M1(Q) ∩M1(R); in this case, K = Cq2−1 and µ(K) = 0.
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(iii) There are exactly q−1
3 groups K containing H with K ∼= Sym(3), and hence

µ(K) = q + 1. In fact, any involution β ∈ G satisfying 〈H,β〉 ∼= Sym(3) in-
terchanges Q and R and fixes a point of (QR∩Hq) \ {P,Q}; conversely, any of the
q−1 pointsA1, . . . , Aq−1 of (QR∩Hq)\{P,Q} determines uniquely the involution
βi ∈ G such that β(Ai), βi(Q) = R, βi(R) = Q, and hence 〈H,βi〉 ∼= Sym(3).
The involutions βi, αβi, and α2βi, together with H , generate the same group; thus,
there are exactly q−1

3 groups Sym(3) containing H .

Thus, by direct computation, µ(H) = 2(q2−1)
3 .

Case 11: Let H = C2 = 〈α〉, where α has center P . Let `P (Fq2) \ {P} = {P1, . . . , Pq2}.
By Lemma 3.4,

H = M1(P ) ∩
q2⋂
i=1

M2(Pi) ∩
q2⋂
i=1

q/2⋂
j=1

M3(Ti,j),

where the triangles Ti,j are described in Lemma 3.4; H is not contained in any other
maximal subgroup of G. By direct inspection, the intersections K of at least two maximal
subgroups of G such that H < K < G are exactly the following.

(i) K = M1(P ) ∩ M2(Pi) for i = 1, . . . , q2; in this case, K = Eq o Cq2−1 and
µ(K) = 0.

(ii) K = M2(Pi) ∩M2(Pj) with i 6= j; in this case, K = Eq and µ(K) = 0.

(iii) K = M1(P ) ∩M3(Ti,j); in this case, K = Eq o C2(q+1) and µ(K) = 0.

(iv) K = M2(Qi)∩M3(Ti,j) with i ∈ {1, . . . , q2} and j ∈ {1, . . . , q2}; these q3

2 distinct
groups are of type (Cq+1 × Cq+1) o C2, so that µ(K) = 1.

(v) There are exactly N = q3

2 groups K containing H such that K ∼= Sym(3), and
hence µ(K) = q + 1. This follows by double counting the size of

I = {(H,K) | H,K < G, H ∼= C2, K ∼= Sym(3), H < K}.

Arguing as in the proof of Lemma 3.4, |I| = (q3 + 1)(q − 1)N ; arguing as in the
proof of Lemma 3.6, |I| = q3(q3+1)(q−1)

6 · 3. Hence, N = q3

2 .

Thus, by direct computation, µ(H) = − q
3(q+1)

2 .

Case 12: Let H = {1}. Then µ(H) = −
∑
{1}<K≤G µ(K,G). By the values µ(K)

computed in the previous cases, Propositions 3.2, and Proposition 3.3, only the following
groups K have to be considered:

(i) 1 group G;

(ii) q3 + 1 groups S2 o Cq2−1;

(iii) q2(q2 − q + 1) groups PSL(2, q)× Cq+1;

(iv) q3(q−1)(q2−q+1)
6 groups (Cq+1 × Cq+1) o Sym(3);

(v) q3(q+1)2(q−1)
3 groups Cq2−q+1 o C3;

(vi) (q3 + 1)q2 groups Eq o Cq2−1;
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(vii) q3(q−1)(q2−q+1)
2 groups (Cq+1 × Cq+1) o C2;

(viii) q3(q3+1)(q−1)
6 groups Sym(3);

(ix) q3(q3+1)
2 groups C3;

(x) (q3 + 1)(q − 1) groups C2.

Thus, by direct computation, µ(H) = 0.

4 Determination of λ(H) for any subgroupH ofG
Let n > 0, q = 22n

, G = PSU(3, q). This section is devoted to the proof of the following
theorem.

Theorem 4.1. Let H be a proper subgroup of G. Then λ(H) 6= 0 if and only H is one of
the following groups:

Eq o Cq2−1, (Cq+1 × Cq+1) o C2, Sym(3),

C3, S2 o Cq2−1, PSL(2, q)× Cq+1,

(Cq+1 × Cq+1) o Sym(3), Cq2−q+1 o C3, C2.

(4.1)

For any isomorphism type in Equation (4.1) there is just one conjugacy class of subgroups
of G.

If H is in the first row of Equation (4.1), then λ(H) = −1; if H is in the second row of
Equation (4.1), then λ(H) = 1.

Proof. By Proposition 3.2, for any isomorphism type in Equation (4.1) there is just one
conjugacy class of subgroups of G of that type. Hence, we can use the notation [M1],
[M2], [M3] and [M4] for the conjugacy classes of M1(P ), M2(P ), M3(T ) and M4(T ),
respectively. If H = G, then λ(H) = 1; if H is one of the groups in the second row of
Equation (4.1) and H 6= C2, then λ(H) = −1 as H is maximal in G.

Case 1: Firstly, we assume that H is not a subgroup of Sym(3), and that H is not a group
of homologies, i.e. H 6≤ Cq+1 = Z(M2(Q)) for any point Q.

(i) Let H < M4(T ) for some T . From H 6= C3 follows that some nontrivial element in
H fixes T pointwise; hence, H is not contained in any maximal subgroup of G other
than M4(T ). Thus, inductively, λ(H) = −{λ(G) + λ(M4(T ))} = 0.

(ii) Let H < M1(P ) for some P ; we assume in addition that gcd(|H|, q−1) > 1. Here,
the assumption H 6≤ Sym(3) reads H /∈ {{1}, C2, C3}. If H contains an element of
order 4, then H is not contained in any maximal subgroup of G other than M1(P ).
Thus, inductively, λ(H) = 0.

We can then assume that the 2-elements of H are involutions, so that H = E2r oCd
with 0 ≤ r ≤ 2n and d | (q2 − 1) (see [15, Theorem 11.49]). This implies that
H ≤ M1(P ) ∩ M2(Q) for some Q ∈ `P ; the eventual nontrivial elements in H
whose order divides q + 1 are homologies with center Q. Then we have [H] ≤
[M1], [H] ≤ [M2]; by Lagrange’s theorem, [H] 6≤ [M4]. From the assumptions
gcd(|H|, q − 1) > 1 and H 6≤ Sym(3) follows [H] 6≤ [M3].

If H = Eq o Cq2−1, then no proper subgroup of M1(P ) or M2(Q) contains H
properly; thus, λ(H) = 1. If H 6= Eq oCq2−1, then H < Eq oCq2−1 = M1(P )∩
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M2(Q) up to conjugation. Thus, inductively, the only classes [K] with [H] ≤ [K]
and λ(K) 6= 0 are [K] ∈ {[G], [M1], [M2], [Eq o Cq2−1]}. This implies λ(H) = 0.

(iii) Let H < M2(Q) for some Q, and assume also H 6≤M1(P ) for any P . As H 6≤ C3,
we have [H] 6≤ [M4]. The group H̄ := H/(H ∩ Z(M2(Q))) acts as a subgroup of
PSL(2, q) on `Q∩Hq; we assume in this point that H is one of the following groups
(see [17, Hauptsatz 8.27]): PSL(2, 22h

) with 0 < h ≤ n; a dihedral group of order
2d where d is a divisor of q−1 greater than 3; Alt(5). Then, by Lagrange’s theorem,
[H] 6≤ [M3]. Thus, inductively, G and M2(Q) are the only groups K with H < K
and λ(K) 6= 0, so that λ(H) = 0.

Note that, since we are under the assumptionsH 6≤M1(P ) for any P ,H 6≤ Sym(3),
and H 6≤ Cq+1 = Z(M2(Q)), we have that the only subgroups H̄ of PSL(2, q) for
which λ(H) still has not been computed are the cyclic or dihedral groups of order d
or 2d (respectively), where d is a nontrivial divisor of q + 1.

(iv) Let H < M3(T ) for some T , and assume also H 6≤M1(P ) for any P . As H 6≤ C3,
we have [H] 6≤ [M4]. Here, the assumptionH 6≤ Sym(3) means that some nontrivial
element of H fixes T pointwise. Hence, the assumption H 6≤ Cq+1 = Z(M2(Q))
for any vertex Q of T , together with H 6≤ M1(P ), implies that H contains some
element of type (B1). WriteH = LoK, withK ≤ Sym(3) and L < Cq+1×Cq+1.

If K = C3 or K = Sym(3), then [H] 6≤ [M2]; thus, inductively, G and M3(T ) are
the only groups K with H < K and λ(K) 6= 0, so that λ(H) = 0.

If K = C2 and L = Cq+1 × Cq+1, then H ≤ M2(Q) for some vertex Q of T .
Since H̄ := H/(H ∩ Z(M2(Q))) is dihedral of order 2(q + 1), [17, Haptsatz 8.27]
implies the non-existence of groups K with H < K < M2(Q) (except for q = 4
and K̄ = Alt(5); in this case, λ(K) = 0 by the previous point). Thus, λ(H) =
−{λ(G) + λ(M2(Q)) + λ(M3(T ))} = 1.

If K = C2 and L < Cq+1 × Cq+1, then again H ≤ M2(Q) with Q vertex of T .
The group H̄ is dihedral of order 2d, where d | (q + 1); d > 1 because L contains
elements of type (B1). By the previous point and [17, Hauptsatz 8.27], the only
groups K with H < K < M2(Q) are such that K̄ is dihedral of order dividing
q + 1. Thus, inductively, λ(H) = 0.

If K = {1}, then H ∈M2(Q) for any vertex Q of T . The group H̄ < PSL(2, q) on
the line `Q ∩Hq is cyclic of order d | (q+ 1); d > 1 because H has elements of type
(B1). By [17, Hauptsatz 8.27], the groups K with H < K < M2(Q) are such that
either K̄ is cyclic of order dividing q+ 1, or we have already proved that λ(K) = 0.
Thus, inductively, λ(K) = 0.

(v) Let H < M2(Q) for some Q. Let H̄ 6= {1} be the induced subgroup of PSL(2, q)
acting on `Q ∩ Hq . If H̄ is cyclic or dihedral of order d or 2d (respectively) with
d | (q + 1), then H ≤ M3(T ) for some T . Hence, λ(H) = 0, as already computed
in the previous point in the case K = {1} if H̄ is cyclic, or in the case K = C2 if H
is dihedral.

(vi) Under the assumptions that H 6≤ Sym(3) and H is not a group of homologies, the
only remaining case is H < M1(P ) for some P with gcd(|H|, q − 1) = 1. In this
caseH = E2r×Cd, whereCd is cyclic of order d | (q+1) and made by homologies,
whose axis passes through P and whose centerQ lies on `P . We have r > 0, because
H 6≤ Z(M2(Q)).
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If r = 1, then H is cyclic of order 2d generated by an element of type (E). By
Lemma 3.4, H ≤ M3(T ), where T has a vertex in Q and two vertexes on `Q.
Hence, [H] ≤ [M1], [H] ≤ [M2], [H] ≤ [M3], and [H] 6≤ [M4]. Let K be such
that H < K ≤ G and K is not of the same type of H , i.e. K is not cyclic of
order 2d′ with d′ | (q + 1). As shown in the previous points, λ(K) 6= 0 if and
only if [K] ∈ {[G], [M1], [M2], [M3], [Eq oCq2−1], [(Cq+1 ×Cq+1) oC2]}. Thus,
inductively, λ(H) = 0.

Case 2: Let H ≤ Cq+1 = Z(M2(Q)) for some Q and K be a subgroup of G properly
containing H . As shown above, λ(K) 6= 0 if and only if

[K] ∈ {[G], [M1], [M2], [M3], [Eq o Cq2−1], [(Cq+1 × Cq+1) o C2]}.

Thus λ(Z(M2(Q))) = 0 and, inductively, λ(H) = 0.

Case 3: Let H = Sym(3) = 〈α〉o 〈β〉 with o(α) = 3 and o(β) = 2. Let P ∈ PG(2, q2)\
Hq and Q,R ∈ Hq(Fq2) be the fixed point of α, so that β fixes P and interchanges Q and
R. This implies [H] ≤ [M2]. By Lemma 3.6, [H] ≤ [M3]. From the computations above
and Lagrange’s theorem, no class [K] with K ≤ G other than [G], [M2] and [M3] satisfies
[H] ≤ [K] and λ(H) 6= 0. Thus, λ(H) = 1.

Case 4: Let H = C3. By Lagrange’s theorem and Proposition 3.2, H < K ≤ G and
λ(K) 6= 0 if and only if

[K] ∈ {[G], [M1], [M2], [M3], [M4], [Eq o Cq2−1], [Sym(3)]}.

Thus, λ(H) = 1.

Case 5: Let H = C2. By Lagrange’s theorem and Proposition 3.2, H < K ≤ G and
λ(K) 6= 0 if and only if

[K] ∈ {[G], [M1], [M2], [M3], [Eq o Cq2−1], [(Cq+1 × Cq+1) o C2], [Sym(3)]}.

Thus, λ(H) = −1.

Case 6: Let H = {1}. Collecting all the classes [K] with λ(K) 6= 0, we have by direct
computation λ(H) = 0.

5 Determination of χ(∆(Lp \ {1})) for any prime p
Let n > 0, q = 22n

, G = PSU(3, q). If p is a prime number, we denote by Lp the poset
of p-subgroups of G ordered by inclusion, by Lp \ {1} its subposet of proper p-subgroups
of G, and by ∆(Lp \ {1}) the order complex of Lp \ {1}. In this section we determine the
Euler characteristic χ(∆(Lp \ {1})) of ∆(Lp \ {1}) for any prime p, using Equation (2.1)
and Lemma 2.2. The results are stated in Theorem 5.1 and in Table 2.

Theorem 5.1. For any prime number p one of the following cases holds:

(i) p - |G| and χ(∆(Lp \ {1})) = 0;

(ii) p = 2 and χ(∆(L2 \ {1})) = q3 + 1;

(iii) p | (q + 1) and χ(∆(Lp \ {1})) = − q
6−2q5−q4+2q3−3q2

3 ;
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(iv) p | (q − 1) and χ(∆(Lp \ {1})) = − q
6+q3

2 ;

(v) p | (q2 − q + 1) and χ(∆(Lp \ {1})) = − q
6+q5−q4−q3

3 .

Proof. Since |G| = q3(q + 1)2(q − 1)(q2 − q + 1), q is even, and 3 | (q − 1), the cases
p - |G|, p = 2, p | (q + 1), p | (q − 1), and p | (q2 − q + 1) are exhaustive and pairwise
incompatible. We denote by Sp a Sylow p-subgroup of G.

Case 1: Let p - |G|. Then ∆(Lp \ {1}) = ∅, and hence χ(∆(Lp \ {1})) = χ(∅) = 0.

Case 2: Let p = 2. The group G has q3 + 1 Sylow 2-subgroups, and any two of them
intersect trivially; see [15, Theorem 11.133]. Any nontrivial element σ of S2 fixes exactly
one point P on Hq(Fq2) which is the same for any σ ∈ S2; S2 is uniquely determined
among the Sylow 2-subgroups of G by P . Hence, Equation (2.1) reads

χ(∆(L2 \ {1})) = −(q3 + 1)
∑

H∈L2\{1}, H(P )=P

µL2
({1}, H),

where P is a given point of Hq(Fq2). By Lemma 2.2, we only consider those 2-groups in
M1(P ) which are elementary abelian. Then we consider all nontrivial subgroups H of an
elementary abelian 2-group Eq of order q. For any such group H = E2r of order 2r, with
1 ≤ r ≤ 2n, we have µL2({1}, H) = (−1)r · 2(r

2) by Lemma 2.2. Thus,

χ(∆(L2 \ {1})) = −(q3 + 1)

2n∑
r=1

(−1)r 2(r
2)
(

2n

r

)
2

where the Gaussian coefficient
(

2n

r

)
2

counts the subgroups of Eq of order 2r. Using the
property (

2n

r

)
2

=

(
2n − 1

r − 1

)
2

+ 2r
(

2n − 1

r

)
2

we obtain
2n∑
r=1

(−1)r 2(r
2)
(

2n

r

)
2

=

2n∑
r=1

(−1)r 2(r
2)
(

2n − 1

r − 1

)
2

+

2n∑
r=1

(−1)r 2(r
2)+r

(
2n − 1

r

)
2

=

2n−1∑
r=0

(−1)r+1 2(r+1
2 )
(

2n − 1

r

)
2

+

2n∑
r=1

(−1)r 2(r+1
2 )
(

2n − 1

r

)
2

= (−1)0 2(1
2)
(

2n − 1

0

)
2

+ (−1)2n

2(2n+1
2 )

(
2n − 1

2n

)
2

= −1.

Thus, χ(∆(L2 \ {1})) = q3 + 1.

Case 3: Let p | (q+ 1). Then Sp ≤ Cq+1 ×Cq+1, and hence Sp ∼= Cps ×Cps , where ps |
(q + 1) and ps+1 - (q + 1). Let H be a subgroup of Sp. By Lemma 2.2, µLp({1}, H) 6= 0
only if H is elementary abelian of order p or p2; in this cases, µLp

({1}, Cp) = −1 and
µLp

({1}, Cp × Cp) = r. Now we count the number of elementary abelian subgroups of
order p or p2 in G.
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(i) A subgroup Ep2 of G of type Cp × Cp is uniquely determined by the maximal sub-
group M3(T ) such that Ep2 is the Sylow p-subgroup of M3(T ). Hence, G contains

exactly [G : NG(M3(T ))] = q3(q2−q+1)(q−1)
6 elementary abelian subgroups of or-

der p2.

(ii) A subgroup Cp made by homologies is uniquely determined by its center P ∈
PG(2, q2) \ Hq of homology, because the group of homologies with center P is
cyclic. Hence, G contains exactly |PG(2, q2) \ Hq| = q2(q2 − q + 1) cyclic sub-
groups of order p made by homologies.

(iii) A subgroup Cp which is not made by homologies is made by elements of type (B1),
and fixes pointwise a unique self-polar triangle T . The Sylow p-subgroup Cp × Cp
of M3(T ) contains exactly 3 subgroups Cp made by homologies, namely the groups
of homologies with center one of the vertexes of T . Since Cp × Cp contains p + 1
subgroups Cp altogether, Cp × Cp contains exactly p − 2 subgroups Cp not made
by homologies. Thus, the number of subgroups Cp of G not made by homologies is
(p− 2) · [G : NG(M3(T ))] = q3(q2−q+1)(q−1)(p−2)

6 .

Thus, by direct computation,

χ(∆(Lp \ {1}))

= −
{q3(q2 − q + 1)(q − 1)(p− 2)

6
· r

+
[
q2(q2 − q + 1) +

q3(q2 − q + 1)(q − 1)(p− 2)

6

]
· (−1)

}
= − q6 − 2q5 − q4 + 2q3 − 3q2

3
.

Case 4: Let p | (q − 1). By Lemma 2.4, Sp is a subgroup of the cyclic group Cq2−1 fixing
two points P,Q on Hq(Fq2); then a proper p-subgroup H of G satisfies µLp({1}) 6= 0 if
and only if H has order p; in this case, µLp

({1}, H) = −1. Also, by Lemma 2.4, any two
Sylow p-subgroups of G have trivial intersection. Then the number of subgroups Cp of G
is equal to the number

(
q3+1

1

)
of couples of points in Hq(Fq2); equivalently, this number

is equal to [G : NG(Cq2)], where |NG(Cq2−1)| = 2(q2 − 1) by Proposition 3.3. Thus,
χ(∆(Lp \ {1})) = − q

6+q3

2 .

Case 5: Let p | (q2− q+ 1). Then Sp ≤ Cq2−q+1, and hence a proper p-subgroup H of G
satisfies µLp({1}, H) 6= 0 if and only if H has order p; in this case, µLp({1}, H) = −1.
The number of subgroupsCp ofG is equal to the number of subgroupsCq2−q+1, and hence

to the number [G : NG(M4(T̃ ))] = q3(q+1)2(q−1)
3 of maximal subgroups of type M4(T̃ )

in G. Thus, χ(∆(Lp \ {1})) = − q
3(q+1)2(q−1)

3 = − q
6+q5−q4−q3

3 .
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