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Abstract

A signed graph is a graph Γ with edges labeled “+” and “−”. The sign of a cycle is the
product of its edge signs. Let SpecC(Γ) denote the list of lengths of cycles in Γ. We equip
each signed graph with a vector whose entries are the numbers of negative k-cycles for
k ∈ SpecC(Γ). These vectors generate a subspace of R| SpecC(Γ)|. Using matchings with a
strong permutability property, we provide lower bounds on the dimension of this space; in
particular, we show for complete graphs, complete bipartite graphs, and a few other graphs
that this space is all of R| SpecC(Γ)|.
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1 Introduction
A signed graph Σ is a graph Γ whose edges have sign labels, either “+” or “−”. The
sign of a cycle in the graph is the product of the signs of its edges. Write c−l (Σ) for the
number of negative cycles of length l in Σ and collect these numbers in the negative cycle
vector c−(Σ) = (c−3 , c

−
4 , . . . , c

−
n ) ∈ Rn−2, where n is the order of Σ. We are interested in

the structure of the collection NCV(Γ) of all negative cycle vectors of signings of a fixed
underlying simple graph Γ.

The negative cycle numbers are of interest for several reasons. Ours is that, while the
structure of a signed graph is more complex than that of an unsigned graph, much of that
complexity is traceable to the distribution of negative cycles. We think negative cycle vec-
tors are a step towards better understanding of those cycles. Beyond this, negative cycle
numbers have been an object of interest since the first days of signed graph theory. When
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signed graphs were introduced by Harary [2] to be applied to a problem in social psychol-
ogy by Cartwright and Harary [1], one of their concerns was to measure how unbalanced
a signed graph is. One measure they proposed was the proportion of negative cycles, i.e.,[∑

l c
−
l (Σ)

]
/
[∑

l cl(Γ)
]
, where cl denotes the total number of l-cycles in the graph. This

proportion is hard to calculate even for signed complete graphs, since the number of cycles
can be exponential in the order n and the negative cycle numbers are also complicated.

There are at least three natural questions raised by the existence of the collections
NCV(Γ). Most simply, since any set of points in Rn−2 lies in a smallest subspace, what
subspace do they span? That is the question we address here. The cycle spectrum SpecC(Γ)
is the list of lengths of cycles in Γ. The finite set NCV(Γ) generates a subspace of Rn−2

that is contained in the subspace RNCV(Γ) consisting of all vectors that are 0 in the coordi-
nates that correspond to cycle lengths not in the cycle spectrum of Γ. We develop a general
approach to the dimension question in terms of “permutable matchings” (see Section 2.3)
that allows us to prove that, for Γ = Kn, Km,n, and the Petersen graph, NCV(Γ) spans
RSpecC(Γ); it also gives us a lower bound on dimension for the Heawood graph and one
other graph family. We also solve a few examples with an ad hoc method.

Knowing the span of the negative cycle vectors, what is their convex hull? In [5] and
[8] Popescu and Tomescu gave inequalities bounding the numbers of negative cycles in a
signed complete graph, which may be a step towards the answer for Kn (see Section 5). A
related question: Do the facets of the convex cone generated by NCV(Γ) have combinato-
rial meaning?

The ultimate question: Which vectors in the convex hull are actually the vectors of
signed graphs? Kittipassorn and Mészáros [3], inspired by the theory of two-graphs from
finite group theory and geometry (see [7]) gave strong restrictions on the number of nega-
tive triangles in a signed Kn. This is a step towards the answer for Kn.

We discuss these questions further in Section 5.

Our work was originally focused on complete graphs and complete bipartite graphs.
Those cases and others led the first author to the following conjecture, to which we do not
know any counterexample.

Conjecture 1.1 (Schaefer, 2015). For any graph Γ, dim NCV(Γ) = |SpecC(Γ)|, the
number of different lengths of cycles in Γ.

2 Background

2.1 Graphs

A graph is a pair Γ = (V,E), where V = {v1, . . . , vn} is a finite set of vertices and E is a
finite set of unordered pairs of vertices, called edges. Our graphs are all unlabeled, simple,
and undirected. Thus, all cycle lengths are between 3 and n.

The cycle spectrum SpecC(Γ) is the set of cycle lengths that appear in Γ. The number
of cycles of length l in Γ is cl = cl(Γ). The cycle vector of Γ is c(Γ) = (c3, c4, . . . , cn);
sometimes we omit the components that correspond to lengths l not in the cycle spectrum.
The number of cycle lengths in Γ, |SpecC(Γ)|, is clearly fundamental since
dim NCV(Γ) ≤ |SpecC(Γ)|.
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2.2 Signed graphs

A signed graph is a triple Σ = (V,E, σ) where Γ = (V,E) is a graph, called the underlying
graph of Σ, and σ : E → {+,−} is the sign function. Two signed graphs are isomorphic if
there is an isomorphism of underlying graphs that preserves edge signs. The sign of a cycle
is the product of the signs of its edges; a signed graph in which every cycle is positive is
called balanced. The negative edge setE− is the set of negative edges of Σ and the negative
subgraph is Σ− = (V,E−), the spanning subgraph of negative edges. We sometimes write
ΓN for Γ signed so that N is its set of negative edges.

Switching Σ means choosing a vertex subsetX ⊆ V and negating all the edges between
X and its complement. Switching yields an equivalence relation on the set of all signings
of a fixed underlying graph. If Σ2 is isomorphic to a switching of Σ1, we say that Σ1 and
Σ2 are switching isomorphic. This relation is an equivalence relation on signed graphs;
we denote the equivalence class of Σ by [Σ]. A signed graph is balanced if and only
if it is switching isomorphic to the all-positive graph. Signed graphs that are switching
isomorphic, like those in Figure 1, have the same negative cycle vector.

The negative cycle vector of Σ is c−(Σ) = (c−3 (Σ), c−4 (Σ), . . . , c−n (Σ)), where c−l =
c−l (Σ) is the number of negative cycles of length l. As with c(Γ), we may omit the compo-
nents of c−(Σ) that correspond to lengths l not in the cycle spectrum. Also, we may write
either c−(Σ) or c−(σ), the latter when only the signature σ is varying.

Figure 1: Two switching equivalent signings of K6, with the same negative cycle vector
(10, 18, 36, 36). Solid lines are positive, dashed lines are negative.

The negation of Σ is −Σ = (V,E,−σ), in which the sign of every edge is negated.
Sometimes Σ and −Σ are switching isomorphic, e.g., when Σ is bipartite or when it is a
signed complete graph whose negative subgraph is self-complementary.

2.3 Permutable matchings

A matching in Γ is a set M of pairwise nonadjacent edges; it is perfect if V (M) = V. A
matchingM—or any other edge set—is permutable if some subgroup of the automorphism
group of Γ acts on the edges of M as the symmetric group S|M |. We base our results
largely on permutable matchings, having noticed their utility for complete and complete
bipartite graphs. The advantage of permutability is that, in counting negative cycles using a
permutable matching, any two equicardinal subsets belong to the same number of negative
cycles of each length. That makes it feasible to calculate the numbers in the vectors we use
to estimate the dimension of NCV(Γ).

Our introduction of permutable matchings led to the question: Which graphs have per-
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mutable matchings? That has been investigated by Schaefer and Swartz in [6]; they find
large families of examples. On the other hand, there are only a few kinds of graph with
permutable perfect matchings; Schaefer and Swartz determine them all.

3 Rank and dimension
The dimension of NCV(Γ) is the rank of the matrix whose rows are the negative cycle
vectors of all signatures of Γ. The columns of this matrix that correspond to lengths k ∈
{3, 4, . . . , n} \ SpecC(Γ) are all zero; thus, we may ignore them. Since the rank cannot
be greater than |SpecC(Γ)|, if we produce a submatrix of that rank we have proved that
dim NCV(Γ) = |SpecC(Γ)|. That is what we now endeavor to do with the aid of a
permutable matching.

Even if permutable matchings fail to reach the spectral upper bound, they imply a lower
bound. However, we are happy to say that in our three main examples, permutable match-
ings solve the dimension problem.

The rank of a matrix A is written rk(A).

3.1 Any negative edge set

We begin with the most general calculation. Given a signed graph ΓN with an arbitrary
negative edge set N ⊆ E, how many negative cycles are there of each length? For X ⊆ N
let fl(X) = the number of l-cycles that intersect N precisely in X . We get a formula for
fl by Möbius inversion from gl(X) = the number of l-cycles that contain X , since

gl(X) =
∑

X⊆Y⊆N

fl(Y ),

which implies that
fl(X) =

∑
X⊆Y⊆N

(−1)|Y |−|X|gl(Y ).

The number of negative l-cycles is the number of l-cycles that intersectN in an odd number
of edges; therefore,

c−l (ΓN ) =
∑

X⊆N, |X| odd

fl(X) =
∑∑

X⊆Y⊆N, |X| odd

(−1)|Y |−|X|gl(Y )

=
∑
Y⊆N

gl(Y )
∑

X⊆Y, |X| odd

(−1)|Y |−|X|

=
∑
∅6=Y⊆N

(−2)|Y |−1gl(Y ). (3.1)

This applies to every underlying graph Γ.

3.2 A matrix calculation

Now assume we have a graph Γ of order n together with m unbalanced sign functions
σ1, . . . , σm in addition to the all-positive function σ0 ≡ +. To avoid redundancy we want
the associated signed graphs to be switching nonisomorphic. For instance, choosing more
than half the edges at a vertex to be negative is switching equivalent to choosing fewer than
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half, so we would not want the negative edge set to contain more than 1
2 deg(v) of the edges

incident with any vertex v.
We construct the matrix of the negative cycle vectors of all signings σs and their neg-

atives, with columns segregated by parity. The rows are one for +Γ (i.e., σ0 ≡ +), then
m rows for the unbalanced signatures σs, 0 < s ≤ m, then −Γ (the signature −σ0 ≡ −),
then the m negations −σs. The relationship between the upper and lower halves is that

c−l (−σs) =

{
cl − c−l (σs) if l is odd,
c−l (σs) if l is even.

The resulting matrix is

0 0 · · · 0 0 · · ·
c−3 (σ1) c−5 (σ1) · · · c−4 (σ1) c−6 (σ1) · · ·

...
...

. . .
...

...
. . .

c−3 (σm) c−5 (σm) · · · c−4 (σm) c−6 (σm) · · ·
c3 c5 · · · 0 0 · · ·

c3 − c−3 (σ1) c5 − c−5 (σ1) · · · c−4 (σ1) c−6 (σ1) · · ·
...

...
. . .

...
...

. . .
c3 − c−3 (σm) c5 − c−5 (σm) · · · c−4 (σm) c−6 (σm) · · ·


. (3.2)

The last column in the left half is that of n−1 or n depending on whether n is even or odd;
in the right half it is that of n or n− 1, respectively. Row operations reduce this matrix to

0 0 · · · 0 0 · · ·
c−3 (σ1) c−5 (σ1) · · · 0 0 · · ·

...
...

. . .
...

...
. . .

c−3 (σm) c−5 (σm) · · · 0 0 · · ·
c3 c5 · · · 0 0 · · ·
0 0 · · · c−4 (σ1) c−6 (σ1) · · ·
...

...
. . .

...
...

. . .
0 0 · · · c−4 (σm) c−6 (σm) · · ·


. (3.3)

Ignoring the first row of zeros, this is a block matrix

A =

 U O
codd(Γ) 0

O R

 .

The middle row codd(Γ), consisting of the odd-cycle numbers of Γ, corresponds to−Γ. The
upper left block U is the matrix of negative odd-cycle vectors of the unbalanced signatures
σs, and the lower right block R is the matrix of negative even-cycle vectors of the same
signatures. We infer the fundamental fact that:

Lemma 3.1. The rank of the negative cycle matrix (3.2) equals the sum of the ranks of(
U

codd(Γ)

)
and R.

For a bipartite graph U = O and codd = 0, so only R needs to be considered.



630 Ars Math. Contemp. 16 (2019) 625–639

3.3 Permutable negative matchings

Henceforth we assume we have chosen a fixed permutable matching Mm of m edges in Γ.
For each s = 1, 2, . . . ,m we choose a submatching Ms ⊆ Mm of s edges and we define
the signature σs as that of the signed graph ΓMs . (It does not matter which Ms we use,
because Mm is permutable.) This generates a matrix of negative cycle vectors as in (3.2).

Permutability implies that gl(Y ) depends only on |Y | so we may defineGl(k) = gl(Y )
for any one k-edge subset Y ⊆Mm. Then (3.1) becomes

c−l (ΓMs
) =

s∑
k=1

(−2)k−1

(
s

k

)
Gl(k) =

n∑
k=1

(−2)k−1Gl(k)

k!
(s)k, (3.4)

where (x)k denotes the falling factorial, (x)k = x(x−1) · · · (x−[k−1]). We may let k run
up to n in the second summation because if k > s, the falling factorial equals 0. Formula
(3.4) gives c−l (ΓMs

) as a polynomial function pl(s) without constant term, of degree dl
where dl is the largest integer k for which Gl(k) > 0; that is, dl is the largest size of a
submatching of Mm that is contained in some cycle of length l. We leave dl undefined if
no l-cycle intersects Mm. Clearly, dl ≤ m.

(This method works equally well for subsets of any permutable edge setN in any graph.
It is easy to see that there are only three possible kinds of permutable set: a matching,
a subset of the edges incident to a vertex, and the three edges of a triangle. In Kn a
permutable set of edges at a vertex is useless since then the entire matrix (3.2) has rank 1.
We have not seen a graph where a triangle’s edges might help find the dimension.)

A column of U or R is not all zero if and only if it corresponds to a cycle length l for
which there exists an l-cycle in Γ that intersects Mm. Such a column contains m values
of the polynomial pl(s). Since pl has degree at most m and no constant term, these values
determine pl completely.

Now a nonzero column in U or R for cycle length l looks like this:
pl(1)
pl(2)

...
pl(m)

 =


αl1

dl + · · ·
αl2

dl + · · ·
...

αlm
dl + · · ·

 , (3.5)

since pl is a polynomial of degree dl; here αl = (−2)dl−1Gl(dl)/dl!. Moreover, dl =
µ(l) > 0 for a nonzero column, where we define

µ(l) = max
Cl

|Cl ∩Mm|, (3.6)

maximized over all l-cycles Cl.
Define δodd to be the number of distinct degrees dl for odd lengths l whose column in

U is not zero, and let δeven be the number of distinct degrees dl for even lengths whose
column in R is not zero. If some values of dl for, e.g., odd lengths l happen to be equal,
they are counted only once. Thus, δodd may be less than the number of nonzero columns.
The number of distinct polynomial degrees represented in the columns of U is δodd, and
similarly for R the number is δeven. Let ∆odd be the set of distinct degrees dl counted by
δodd, and similarly for ∆even.
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Lemma 3.2. The rank of U is at least δodd and that of R is at least δeven.

The rank of
(
U
codd

)
is rk(U) + 1 if there is an odd length l such that an l-cycle exists

in Γ but no l-cycle intersects Mm.

Proof. In U choose one column of each different degree dl. Divide by the leading coeffi-
cient αl, which is necessarily nonzero; this does not affect the rank. Now add columns of
the form

(
sd
)m
s=1

for every d = 1, 2, . . . ,m that is not in ∆odd. Column operations allow
us to eliminate the lower-degree terms of the column (3.5), leaving a Vandermonde matrix
with 1d in the top row and md in the bottom row of column d for each d = 1, 2, . . . ,m, the
rank of which is m. Now reverse the column operations; the rank remains the same, so the
columns of U must have full column rank.

The same reasoning applies to R.

The extra 1 in the rank of
(
U
codd

)
arises from the fact that, under the assumption, it has

a column that is zero in U but is nonzero in codd.

3.4 Theorems

Lemma 3.2 yields our principal general theorem. Given a matching Mm and a cycle length
l ∈ SpecC(Γ), define µ(l) by Equation (3.6).

Theorem 3.3. Let Mm be a permutable m-matching in Γ. Then

|{µ(l) : odd l ∈ SpecC(Γ)}|+ |{µ(l) > 0 : even l ∈ SpecC(Γ)}|
≤ dim NCV(Γ) ≤ |SpecC(Γ)|.

(3.7)

Suppose that all values µ(l) for even lengths l ∈ SpecC(Γ) are distinct and positive,
and all values µ(l) for odd lengths l ∈ SpecC(Γ) are distinct. Then NCV(Γ) spans
RSpecC(Γ).

Proof. The first part follows directly from Lemma 3.2 since

dim NCV(Γ) ≥ rk(A) = rk

(
U
codd

)
+ rk(R) ≥ δodd + δeven.

Moreover, if there is an odd length l such that µ(l) = 0, then rk

(
U
codd

)
= rk(U) + 1 ≥

δeven + 1; that explains why we do not exclude µ(l) = 0 from being counted in the odd-
length part of (3.7).

In the second part, δeven = the number of even cycle lengths in Γ and δodd or (if some
odd l ∈ SpecC(Γ) has µ(l) = 0) δodd + 1 = the number of odd cycle lengths in Γ. Then
the left-hand side of Formula (3.7) equals |SpecC(Γ)|.

There is a simpler statement that applies to graphs with a permutable matching that
is sufficiently omnipresent, i.e., meeting the condition of Theorem 3.4. Given m, define
νodd(m) = the number of odd lengths l < 2m in SpecC(Γ), +1 if there is an odd cycle
length l ≥ 2m, and define νeven(m) = the number of even lengths l < 2m in SpecC(Γ),
+1 if there is an even cycle length l ≥ 2m.



632 Ars Math. Contemp. 16 (2019) 625–639

Theorem 3.4. Suppose Mm is a permutable m-matching in Γ and for every length l ∈
SpecC(Γ) there exists a cycle Cl such that |Cl ∩Mm| = min(m, bl/2c). Then

dim NCV(Γ) ≥ νodd(m) + νeven(m).

The hypothesis can be lessened since, if there is any cycle length l ≥ 2m, it suffices to
have one length l ≥ 2m for which there is a Cl with |Cl ∩Mm| = m.

Proof. The hypotheses imply that

dl =

{
bl/2c if l ≤ 2m,

m if l ≥ 2m.

We count the number of distinct values dl for odd and even cycle lengths. For odd l we get
(l − 1)/2 if l ∈ SpecC(Γ) and l < 2m, and we get m if and only if there exists a cycle
length l ≥ 2m. The total is νodd(m). The computation of νeven(m) is similar.

The values of µ(l) in Theorem 3.3 are the same as those of dl unless there is a cy-
cle length for which no l-cycle intersects Mm; but that is ruled out by our hypotheses.
Theorem 3.4 follows.

A connected graph is bipancyclic if it is bipartite with vertex classes of size p and q and
has a cycle of every even length from 4 to 2 min(p, q). (This extends the usual definition,
which assumes p = q.) This is the bipartite analog of pancyclicity, in which the graph has
a cycle of every length from 3 to n, the order of the graph.

Corollary 3.5. Assume Γ is pancyclic and has a permutable m-matching Mm, and for
every l with 3 ≤ l ≤ n there is an l-cycle Cl with |Cl ∩Mm| = min(m, bl/2c). Then

dim NCV(Γ) = n− 2 if 2m ≥ n− 1,

n− 2 ≥ dim NCV(Γ) ≥ 2m− 1 if 2m ≤ n− 2.

Assume Γ is bipancyclic and has vertex class sizes p, q with p ≤ q, and it has a per-
mutable m-matching Mm such that for every k with 2 ≤ k ≤ p there is a 2k-cycle C2k

with |C2k ∩Mm| = min(m, k). Then

dim NCV(Γ) = p− 1 if m = p,

p− 1 ≥ dim NCV(Γ) ≥ m− 1 if m ≤ p− 1.

The hypotheses can be lessened in the same way as those of Theorem 3.4.

Proof. If Γ is pancyclic, νodd counts all the numbers 3, 5, . . . , 2m− 1 plus 1 for 2m+ 1 if
n > 2m, and νeven counts the numbers 4, 6, . . . , 2m−2 plus 1 for 2m since n ≥ 2m. Thus

νodd + νeven =

{
(m) + (m− 1) = 2m− 1 if n > 2m,

(m− 1) + (m− 1) = 2m− 2 if n = 2m.

The conclusion follows easily.
If Γ is bipancyclic, then νeven = m− 1 and the conclusion follows easily.
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The two most complete graphs are easy consequences of any of the preceding results,
but especially of Corollary 3.5.

Corollary 3.6. For a complete graph Kn with n ≥ 3,

dim NCV(Kn) = n− 2.

For a complete bipartite graph Kp,q with p, q ≥ 2,

dim NCV(Kp,q) = min(p, q)− 1.

4 Examples
4.1 The complete graph

Our original example was Kn. The biggest permutable edge set is a perfect or near-perfect
matching. This turns out to be “perfect” for our purposes. But first, let us see the negative
cycle vectors of all signings of small complete graphs.

The vectors for K3 are
(0), (1)

(from the balanced and unbalanced triangle). The vectors for K4 are

(0, 0), (2, 2), (4, 0)

(the all-positive graph, one negative edge, and two nonadjacent negative edges). Here are
the vectors for K5:

(0, 0, 0), (3, 6, 6), (4, 8, 8), (5, 10, 6), (6, 8, 4), (7, 6, 6), (10, 0, 12);

and for K6:

(0, 0, 0, 0), (4, 12, 24, 24), (6, 18, 36, 36), (8, 20, 32, 24),
(10, 18, 36, 36), (8, 24, 40, 32), (10, 22, 36, 28), (12, 24, 24, 32),
(10, 26, 36, 28), (8, 24, 48, 32), (14, 18, 36, 36), (12, 24, 32, 32),
(12, 20, 40, 24), (10, 30, 36, 20), (16, 12, 48, 24), (20, 0, 72, 0).

The number of switching isomorphism classes of complete graphs grows super-expo-
nentially [4]. Since two signed graphs which yield different vectors must belong to different
classes, one naturally wonders about the converse property, that the vector uniquely iden-
tifies a switching class. This is true up through K7 but false for K8: see Figure ?? below
(found by Gary Greaves, whose assistance we greatly appreciate). Thus when n = 8 there
are fewer vectors than classes; for n > 8 see Question 5.5.

Now we compute the function Gl of Section 3.3. Consider the signed Kn’s whose
negative edges are s nonadjacent edges, for 0 ≤ s ≤ bn/2c. It is straightforward to
compute gl. For a fixed k ≥ 1 and set Y with |Y | = k, we need to form an l-cycle using Y
and l− k other edges. (Since Y is a matching, we know that l ≥ 2k.) So we choose l− 2k
of the remaining n− 2k vertices, and then create our cycle as follows: imagine contracting
the edges in Y ; the resultant vertices, together with the other l − 2k vertices, will form an
l−k-cycle in the contracted graph (which will eventually give an l-cycle inKn). Cyclically
order these l − k “vertices”; this orders the vertices in our actual cycle while ensuring the
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Figure 2: Two switching inequivalent signings of K8 with the same negative cycle vector
(28, 108, 336, 848, 1440, 1248).

edges from Y remain. There are (l−k−1)!
2 ways to do this. Then, we expand the contracted

edges to regain them; there are 2 ways to do this for each edge. So we have

gl(Y ) =

(
n− 2k

l − 2k

)
(l − k − 1)! · 2k−1,

whence

Gl(k) =

(
n− 2k

l − 2k

)
(l − k − 1)! · 2k−1.

By Equation (3.4), c−l (s) is a polynomial in s of degree dl = bl/2c and the general
formula is

c−l (s) =

n∑
k=1

(
s

k

)
(−4)k−1

(
n− 2k

l − 2k

)
(l − k − 1)!,

For example, c−3 (s) = s(n−2) and c−4 (s) = s(n2 +5n+8)−2s2. This formula for c−l (s)
demonstrates that the degrees dl of the odd polynomials are all distinct, and the same for
the even polynomials; consequently our main Theorem 3.3 itself implies that the matrix of
negative cycle vectors c−(s) has full rank n− 2.

Alternatively, in Kn with a maximum matching, ∆odd = {3, 5, . . .} (odd numbers up
to n) and ∆even = {4, 6, . . .} (even numbers up to n). So, by Lemma 3.2, for Kn the ranks
of U and R are dn/2e − 1 and bn/2c − 1, respectively, which sum to n− 2.

4.2 Complete bipartite graphs

We now examine Kp,q , which always has p ≤ q. We use a maximum matching Mp, i.e.,
we set m = p.

To get c−2l(Kp,q) we compute g2l, where the subscript is now 2l because all cycles have
even length. Call the two independent vertex setsA = {a1, . . . , ap} andB = {b1, . . . , bq}.
For a fixed k-edge set Y = {ai1bj1 , . . . , aikbjk} ⊆ Mp, where k ≤ l, we need to form a
2l-cycle using Y and 2l−2k other vertices. Fix one edge y1 ∈ Y , say y1 = ai1bj1 . Choose
l− k of the remaining p− k vertices from A, in order, in one of (p− k)l−k ways; l− k of
the remaining q − k vertices from B, also in order, in one of (q − k)l−k ways; and shuffle
the sequences together as (aik+1

, bjk+1
, . . . , ail , bjl). Insert Y into this 2(l − k)-sequence
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by inserting y1 before aik+1
, which we may do because each Y edge must be between anA

vertex and a B vertex; treating the resulting sequence as cyclically ordered, which can be
done in only one way since the A neighbor of y1 appears after y1; then ordering Y \ {y1}
in one of (k − 1)! ways as (y2, . . . , yk); and finally inserting y2, . . . , yk anywhere into the
cycle in one of (

[2(l − k) + 1] + [k − 1]− 1

[2(l − k) + 1]− 1

)
=

(
2l − k − 1

k − 1

)
ways. Note that when those edges are inserted into the cycle, there is only one way to orient
each edge. The net result is that

G2l(k) = g2l(Y ) = (p− k)l−k(q − k)l−k · (k − 1)!

(
2l − k − 1

k − 1

)
.

Then by Equation (3.4), for 2 ≤ l ≤ p,

c−2l(s) =

p∑
k=1

(s)k
(−2)k−1

k
(p− k)l−k(q − k)l−k

(
2l − k − 1

k − 1

)
.

This explicit formula for the negative cycle vectors c−(s), with Theorem 3.3, implies that
dim NCV(Kp,q) = p = min(p, q).

4.3 The Petersen graph

Next we consider the Petersen graph P , which has four cycle lengths, 5, 6, 8, and 9, so
dim NCV(P ) ≤ 4. It lacks a permutable 4-matching. In fact:

Theorem 4.1. A 3-regular graph that is arc transitive cannot have a permutable
4-matching.

Proof. By [6, Theorem 1.1] an arc-transitive graph with a permutable m-matching, where
m ≥ 4, must have degree at least m.

The Petersen graph does have a permutable 3-matching, in fact, two kinds.
The first kind consists of alternate edges of a C6. In the language of Theorem 3.3, we

must compute µ(l) = |max{Cl ∩M3}| for each cycle length. We find with little difficulty
that µ(5) = 2, µ(6) = 3, µ(8) = 2, and µ(9) = 3. Therefore |∆odd| = 2 and |∆even| = 2,
whence, despite only having a 3-matching, we can deduce that dim NCV(P ) = 4. We even
know the negative cycle vectors corresponding to negative 0-, 1-, 2-, and 3-submatchings
and the negated signatures; they are (in order of matching size)

(0, 0, 0, 0), (4, 4, 8, 12), (6, 6, 8, 10), (6, 10, 0, 10)
(12, 0, 0, 20), (8, 4, 8, 8), (6, 8, 8, 10), (6, 10, 0, 10).

The bottom vector in each column corresponds to the negated signing.
The second kind of permutable 3-matching consists of three edges at distance 3. The

first matching type also is three equally spaced edges in a C9, but not every such subset of
a C9 is also a set of alternating edges of a C6; the other such subsets are 3-matchings of the
second kind. This second kind generates negative cycle vectors from negated submatchings
and the corresponding negated sign functions whose dimension is only 3, not 4, since with
this matching the negated signatures are switching isomorphic to unnegated signatures.
This shows that not all permutable m-matchings in a graph are equally useful.
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4.4 The Heawood graph

The Heawood graph H is bipartite and has five cycle lengths, 6, 8, 10, 12, and 14, so
dim NCV(H) ≤ 5. It has a permutable 3-matching, indeed three different kinds, for
instance alternate edges of a 6-cycle. Using that 3-matching we find that µ(6) = 3,
µ(8) = 2, µ(10) = 3, µ(12) = 3, and µ(14) = 3. These are two different values,
thus dim NCV(H) ≥ 2. The results for the other two kinds of permutable 3-matching are
the same except that µ(6) = 2. In every case µ has two values.

Our matching method, in principle, cannot prove more because H has no permutable
4-matching (see Theorem 4.1). Nonetheless we suspect the dimension equals |SpecC(H)|.

4.5 Other graphs with permutable perfect matchings, and the cube

Schaefer and Swartz found all graphs that have a permutable perfect matching. BesidesKn

and Kp,p they are the hexagon C6, the octahedron graph O3, and three general examples:
the join Kp ∨ Kp of a complete graph with its complement, the matching join Kp Y Kp

obtained from two copies of Kp by inserting a perfect matching between the two copies,
and the matching join Kp Y Kp, obtained by hanging a pendant edge from each vertex
of Kp.

Our treatment of them leads us to one other family, the cyclic prisms Cp�K2.

4.5.1 The simple four

Trivially,
dim NCV(C6) = 1 = |SpecC(C6)|.

It is easy to verify by hand that O3 satisfies the conditions of Corollary 3.5, so

dim NCV(O3) = |SpecC(O3)| = 4.

As for Kp YKp, since the pendant edges contribute nothing to cycles, SpecC(Kp YKp) =
SpecC(Kp) and NCV(Kp YKp) = NCV(Kp); thence

dim NCV(Kp YKp) = |SpecC(Kp YKp)| = p.

It is also easy to show that Kp ∨Kp satisfies the conditions of Corollary 3.5. Thus,

dim NCV(Kp ∨Kp) = |SpecC(Kp ∨Kp)| = 2p.

4.5.2 The matching join of two complete graphs

This graph, Kp Y Kp, is pancyclic, but its permutable matchings are peculiar. One kind
is any matching in a Kp. A maximum matching Mbp/2c in Kp has µ(l) = min(p, bl/2c),
hence dim NCV(Kp Y Kp) ≥ p by reasoning similar to that for Kp. The matching M∨p
that joins the copies of Kp prevents a permutable matching from having edges in both
copies. The only other permutable matchings are subsets of M∨p . This matching only gen-
erates bp/2c switching nonisomorphic signatures since negating a subset of M∨p switches
to negating the complementary subset. By itself, therefore, choosing our grand matching
Mm to be M∨p does not give a better lower bound than p. Nonetheless we feel the dimen-
sion is likely to be n− 2 = 2p− 2.
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The smallest case, K3 Y K3, is the triangular prism. There are four cycle lengths;
the cycle count vector is (c3, c4, c5, c6) = (2, 3, 6, 3). The required dimension can be
found directly. There are four unbalanced signatures; see Figure 3. The negative cycle
vectors are linearly independent so dim NCV(K3 YK3) = |SpecC(v)|, in agreement with
Conjecture 1.1.

(a) (0, 2, 4, 2) (b) (1, 1, 3, 2) (c) (2, 0, 6, 0) (d) (2, 2, 2, 2)

Figure 3: The four unbalanced switching classes of the prism K3 YK3 and their negative
cycle vectors.

As for permutable matchings in the triangular prism, M∨3 gives µ(3) = 0, µ(4) =
µ(5) = µ(6) = 2, thus dim NCV(K3 Y K3) ≥ 3, less than the true value. A strange
permutable matching gives the right dimension. Choose M2 to consist of one edge from
each triangle, not both in a C4. Then µ(3) = µ(4) = 1 and µ(5) = µ(6) = 2, so by
Theorem 3.3, dim NCV(K3 Y K3) = 4, the exact value. This example and the Petersen
graph demonstrate that useful permutable matchings need not be perfect matchings.

4.5.3 Prisms, with cube

The triangular prism lends support to our belief that dim NCV(Kp Y Kp) = 2p − 2.
However, it is atypical since it is also a prism, the Cartesian product Cp�K2 with p = 3.

Prisms with p > 3 do not have permutable perfect matchings but they make good
examples, especially the next case, the cube Q3 = C4�K2. It is bipartite and has only
three cycle lengths: 4, 6, and 8. Three unbalanced signatures whose negative cycle vectors
are linearly independent are

σ1, with one negative edge, e. It has c−(σ1) = (2, 8, 4);

σ2, with a second negative edge, parallel to e and sharing a quadrilateral with it. It has
c−(σ2) = (2, 12, 4);

σ3, with a second negative edge, also parallel to e but not in a common quadrilateral. It
has c−(σ3) = (2, 4, 2).

Thus, dim NCV(Q3) = |SpecC(Q3)|, again agreeing with Conjecture 1.1.

5 Questions
Here are what we consider the principal open questions concerning negative cycle numbers
and vectors. The purpose is to find connections between the structure of Γ and the signed
cycle structure of signatures of Γ. We list them in order of increasing refinement. Complete
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graphs seems to be the simplest example with interesting properties so we recommend them
as the first object of study, except of course in Question 5.1.

5.1 Dimension

Resolve Conjecture 1.1. If it is false, can dim NCV(Γ) be determined in terms of structural
properties of Γ?

5.2 Cone

The zero vector is the most obvious negative cycle vector of every graph. That suggests
looking at the convex cone generated by NCV(Γ). In particular, we wonder whether the
facets or edges of that cone have combinatorial meaning.

5.3 Polytope

The convex hull conv NCV(Γ) is a natural object of interest, and in particular its facets,
which represent the complete set of inequalities satisfied by all negative cycle vectors.
Almost nothing is known about these inequalities even for Kn. We looked at complete
graphs of orders up to 6 but they were too small to suggest a conjecture.

If Σ is a signedKn with frustration indexm = l(Σ) ≤ n/2, the negative cycle numbers
for lengths l < n/2 (approximately) must satisfy bounds found by Popescu and Tomescu
[5, Corollary 1]; the lower bounds occur when E− is an m-edge star and the upper bounds
when E− is an m-edge matching. Since the bounds depend on the frustration index, they
do not appear to constrain conv NCV(Γ), but perhaps something relevant can be made of
them.

5.4 Characterization

The negative cycle numbers of a signed Kn, Σ, must satisfy divisibility conditions found
by Popescu and Tomescu [5, Section 4]. Aside from that and the work of Kittpassorn
and Mészáros [3] on c−3 (Σ)—that is, sizes of n-vertex two-graphs—it is not known which
integral vectors in conv NCV(Kn) can be negative cycle vectors. Surely, a characterization
will be difficult if not impossible.

We know of no partial results for other graphs.

5.5 Collapsing pairs

Concerning Gary Greaves’ counterexample mentioned in Section 4.1, we propose:

Conjecture 5.1. For every n ≥ 8 there are pairs of switching nonisomorphic signed Kn’s
that have the same negative cycle vector.

In a related question, we ask whether the number In of switching isomorphism types
of signed complete graphs [4] is asymptotic to the number |NCV (Kn)| of negative cycle
vectors of those graphs; that is, whether |NCV (Kn)|/In → 1. If not, does it approach 0?

5.6 Conclusion

Evidently, there is much to discover before we can say the negative cycles in signed graphs
are well understood.
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