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Abstract: The most important question in testing today’s complex digital systems is: how to improve the testing quality at continuously increasing
complexities of systems? Two main trends can be observed: defect-orientation to increase the quality of testing, and high-level modelling to reduce
the complexity problems of diagnostic analysis. Both trends can be joined in the hierarchical approach. Decision Diagrams (DD) serve as a good
tool for hierarchical modelling and diagnostic analysis of digital systems. Traditional Binary Decision Diagrams are well known for working with
logic level. New generalizations of BDDs in a form of High-Level DDs and Vector DDs as efficient tools for test generation and fault simulation of
complex digital systems are discussed in the paper. Finally, two examples of hierarchical test generation tools based on DDs together with corre-
sponding experimental results are given.

Odlocitveni diagrami in digitaino testiranje

Kjuéne besede: testiranje, testiranje digitalnih sistemov, odlogitveni diagrami, hierarhi¢no modeliranje, odio¢itveni diagrami na visjem nivoju, vektorski
odiocitveni diagrami

lzvle&ek: Eno najpomembneijsih danasnjih vprasan] pri testiranju digitainih sistemov je, kako izboljdati zanesljivost testiranja ob stalnem naras¢anju komple-
ksnosti sistemov ? Opazamo dvae glavni smeri : eno, ki je usmerjena k odkrivanju napak in drugo, ki obsega modeliranje na visjem nivoju, kar zmanjsa
zapletenost diagnostiGne analize. Obe smeri lahko zdruzimo v hierarhiéni pristop. Odloditveni diagrami ( DD ) sluzijo kot dobro orodje za hierarhi¢no mode-
liranje in diagnostiéno analizo digitalnih sistemov. Tradicionalni binarni odlo¢itveni diagrami { BDD ) so dobro poznani pri delu z logi¢nimi nivoji. V prispevku
obravnavamo nove posplositve BDD v obliki DD na visiem nivoju in vektorske DD kot uginkovita orodja za tvorbo testov in simulacijo napak pri kompleksnih

digitalnih sistemih. Na koncu podamo dva primera orodja za tvorbo hierarhi¢nih testov na osnovi DD skupaj z ustreznimi eksperimentalnimi rezultati

1. Introduction

Test generation for digital systems encompasses three ac-
tivities: selecting a description method, developing a fault
model and generating tests to detect the faults covered by
the fault model. The efficiency of test generation (quality,
speed) is highly depending on the description method and
fault models which have been chosen.

As the complexity of digital systems continues to increase,
the gate level test generation methods have become ob-
solete. Other approaches based mainly on higher level
functional and behavioral methods are gaining more popu-
larity /1-3/. However, the trend towards higher level mod-
elling moves us even more away from the real life of de-
fects and, hence, from accuracy of testing. To handle ad-
equately defects in deep-submicron technologies, new fault
models and defect-oriented test methods should be used.
On the other hand, the defect-orientation is increasing even
more the complexity. To get out from the deadlock, the
two opposite trends ~ high-level modelling and defect-ori-
entation - should be combined into hierarchical approach-
es. The advantage of hierarchical approaches compared
to high-level functional modelling lies in the possibility of
constructing test plans on higher levels, and modelling
faults on more detailed lower levels.

The drawback of traditional multi-level and hierarchical
approaches to digital test lies in the need of different ded-
icated languages and modeis for different levels. Uniform
methods for hierarchical diagnostic modelling of digital
systems can be developed by using Decision Diagrams
(DD) /4-9/. Binary DDs (BDD) have found already very
broad applications in design and test on the logic level /4-
5/. Aspecial class of BDDs, Structurally Synthesized BDDs
(SSBDD) can be used to represent gate-level structural
faults directly in the graph model /6,7/. Recent research
has shown that generalization of BDDs for higher levels
provides a uniform model for both gate and RT level or
even behavioral level test generation /8,9/.

The disadvantage of the traditional hierarchical test ap-
proaches is the use of gate-level stuck-at fault (SAF) mod-
el. It has been shown that high SAF coverage cannot quar-
antee, high quality of testing /10/. The types of faults that
can be observed in a real gate depend not only on the
logic function of the gate, but also on its physical design.
These facts are well known but usually, they have been
ignored in engineering practice. In earlier works on layout-
based test techniques /11,12/ a whole circuit having hun-
dreds of gates was analysed as a single block. Such an
approach is computationally expensive and highly imprac-
tical as a method of generating tests for real VLS designs.
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In this paper, we present, first, in Section 2 a method for
mapping faults from lower levels to higher levels. For this
purpose the concept of functional fault model is used.
Thereafter, for hierarchical diagnostic modelling of digital
systems, DDs are presented. In Section 3 SSBDDs are
described for logic level test generation, and in Section 4
the use of higher level DDs for test generation is discussed.
Some experimental data are presented in Section 5 to il-
lustrate the efficiency of the described hierarchical ap-
proach. Section 6 concludes the paper.

2. Functional fault model in
hierarchical test

Consider a Boolean function y = f(x1, X2, ..., Xn) implement-
ed by an embedded component C in a digital circuit. Intro-
duce a Boolean variable d for representing a given physi-
cal defect in the component, which may affect the value y
by converting the Boolean function f into another faulty
function y = i (X1, X2, ..., Xn). Introduce for the block C a
generic parametric function

VA= L5 (0, %y x, d) =d f v df? ()

as a function of the defect variable d, which describes the
behavior of the component simultaneously for both possi-
ble fault-free and faulty cases. The solutions of the Boclean
differential equation

=27y ()
od

describe the conditions which activate the defect d on a
line y. The parametric modeling of a given defect d by
equations (1) and (2) allows us to use the constraints W9 =
1, either in defect-oriented fault simulation to check if the
condition (2) is fulfilled (i.e. if the defect d is tested by the
given pattern), or in defect-oriented test generation to solve
the equation (2) for testing the defect d. The conditions
W allow to map physical defects to logic level. The con-
straint W? = 1 defines how a lower level fault d should be
activated at a higher level to a given node y.

Table 1: Activating conditions for different defects

No Defect Conditions W
I | SAF x:=0 xp=1
2 |SAF x; =1 x=0

3 | Short between x; and x; x=1,x=0

x=1,x=0,or

4 | Exchange of lines xi and x;
Xk & O, X = 1

x=1,x"%=0,or

5 | Delay fault on the li
elay fault on the line x; =02 =1

Table 2: Library defect table for a complex gate AND2,2/NOR2

) i Input patterns ¢
i |Fault d;| Erroneous function f%
0 2(314(5]161718(9(10j11(|12!13/14|15

1|BIC not((B*C)*(A+D)) 1111
2{B/D not((B*D)*(A+C)) 1)1 1
3|B/ING  [|B*(not(A)) 1

4lB/Q B*(not(C*D)) 1|1 1111
5|B/A/DD  [not(A+(C*D))

6|B/VSS  [not(C*D) 10111
7|A/C not((A*C)*(B+D)) 1 1 111
3|AD not((A*D)*(B+C)) 1 1 1 1
9|ANS  |A*(not(B)) 1 111 |1 1

10|A/Q A*(not(C*D)) 1 111 i1 11141
11IA/VDD  [not(B+(C*D)) 111 1

12|CIN9  |not(A+B+D)+(C*(not((A*B)+D))) 1|1 1 11

13{C/Q C*(not(A*B)) 1 111 |1 111 1 1

14[CVSS  [not(A*B) 1 y p

15|D/IN9  |not(A+B+C)+(D*(not((A*B)+C))) 1 1 1 1

16/D/Q D*(not(A*B)) ' 1 1 |1 111 1 111

17|N9/Q  [not((A*B)+(B*C*D)+(A*C*D)) 1

18/NO/VDD [not((C*D)+(A*B*D)+(A*B*C)) 1
19/Q/VDD ([SA1atQ 1 1 11111111

20/Q/NVSS |SA0atQ 1 101 |1 1 11 1
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Some examples of the conditions W for different type of
defects (where SAF is a particular extreme case) are given
in Table 1 (here xx is the observable variable, and x’k is the
variable observed at the previous time moment).

The event of erroneous value of y can be described as dy
=1, where dy means Boolean differential. A functional fault
representing a defect d can be described as a couple (dy,
W) at the presence of the physical level defect d, we will
have an higher leve!l erroneous signal dy = 1 if the condi-
tion WY =1 is fulfilled.

The functional fault model (dy, W9 allows to use for test
generation for any physical defect d traditional stuck-at fault
test generators. To generate a test for a defect d, a test
pattern should be generated for the stuck-at faulty = (1 @
y(W?)) at the additional condition WY = 1. Here y(W) is the
expected value of y determined by the condition Wwo=1.

a i
Wt | Component k

f k
! » Low level
e i I Bridging fault
4 (Environment 9.
i 3
b e e e o o o J
Mapping

Mapping faults from lower level to higher
level

Figure 1:

In the described approach we have to characterize all pos-
sible defects in all library cells, and represent the results
as defect tables or as optimized sets of defect activating

X1 — Macro

2 X71j&§; a & d

M, X

X3 X7 X722 & e
ey L b

Figure 2: Combinational macro and his SSBDD

conditions W' = (W%, The defect characterization may be
computationally expensive, but it is performed only once
for every library cell. An example of the fault table for the
complex gate AND2,2/NOR2 with a function y = —(AB U
CD) is presented in Table 2 /13/.

The defect lists W'k of library components Cx embedded
in the circuit can be extended by additional physical de-
fect lists W5 in the close network environment of the com-
ponent Ck to take into account also the wrong behaviour
of Crinfluenced by the outside environment (bridging faults,
crosstalkings etc.). For these defects additional charac-
terization should be carried out by a similar way as for the
library cells.

3. Diagnostic modelling of digital
systems by BDDs

Decision Diagrams (DD) can serve as a basis for a uniform
approach to test generation for mixed-level representations
of systems, similarly as we use the Boolean algebra for the
plain logic level. In the following it is shown how the tradi-
tional logic level test methods can be implemented on Bi-
nary Decision Diagrams (BDD) /6,7,14/ as a special class
of DDs, and then we generalize the procedures developed
for BDDs for a general class of DDs /6,16,17/ to handle
the test generation problems at higher levels of systems.

Structurally synthesized BDDs. In 1959 C.Y.Lee intro-
duced a method for representing digital circuits by Binary
Decision Programs /18/. In 1976 /14/ and in 1977 /15/
independently the BDDs were introduced for test genera-
tion purposes. Today the theory of BDDs is developing
quickly /4,5,19/.

In /7 14/ structurally synthesized BDDs (SSBDD) as a spe-
cial class of BDDs was introduced to represent the topolo-
gy of gate-level circuits in terms of signal paths. Unlike “tra-
ditional” BDDs /4,18/, SSBDDs directly support test gen-
eration for gate-level structural faults without explicitly rep-
resenting the faults. The advantage of SSBDDs is that the
library of D-cubes for components is not needed for struc-
tural path activization. That's why SSBDD based test gen-
eration procedures do not depend on whether the circuit
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is represented on the gate level or on the higher macro-
level whereas the macro means an arbitrary single-output
subcircuit of the whole circuit. Moreover, the test genera-
tion procedures developed for SSBDDs can be easily gen-
eralized for higher level DDs to handie digital systems rep-
resented at higher levels /6,16,17/.

The BDD that represents a Boolean function is a directed
noncyclic graph with a single root node, where all nonter-
minal nodes are labelled by Boolean variables (arguments
of the function) and have always exactly two successor-
nodes whereas the terminal nodes are labelled by con-
stants O or 1. For all nonterminal nodes, a one-to-one cor-
respondence exists between the values of the label varia-
ble of the node and the successors of the node. The cor-
respondence is determined by the Boolean function to be
represented by the graph.

Denote the variable which labels a node m in a BDD by
x(m). We say that a value of the node variable activates the
node output edge. According to the value of x(m), one of
two output edges of m will be activated. If x(m) = 1 we say
1-edge is activated, or if x(m) =0 we say 0-edge is activat-
ed. A path is activated if all the edges that form this path
are activated. The BDD is activated to O (or 1) if there ex-
ists an activated path which includes both the root node
and the terminal node labelled by the constant O {or 1).

Definition 3.1. A BDD Gy with nodes labelled by variables
X1, X2, ..., Xn, represents a Boolean function y = f(X) = f(x1,
Xs, ..., Xn), if for each pattern of X, the BDD will be activat-
ed to the value which is equal to y for the same pattern.

Important property of SSBDDs. SSBDDs differently from
traditional BDDs have the following property: each node
m in a Gy which describes a tree-like subnetwork Ny of the
gate-level circuit N, represents a signal path Ifm) in Ny.
There is an one-to-one correspondence between the
nodes m in a Gy and the paths /{m) in the corresponding
circuit Ny. :

An example of a combinational circuit with a tree-like mac-
ro and SSBDD for the macro is presented in Figure 2. For
simplicity, the values of variables on edges of the SSBDD
are omitted (by convention, the 1-edge is always directed
to the right, and the O-edge is always directed downwards).
Also, terminal nodes with constants 0 and 1 are omitted
(leaving the SSBDD to the right corresponds alwaysto y =
1, and down - to y = 0). Each node is marked by an input
variable of the macro. A node with the label x»; in the SSB-
DD represents the signal path through the macro which
begins with the input variable x;». The node variable is in-
verted when the path consists of odd number of inverters,
and not inverted when the number of inverters is even. For
example, the node x71 of SSBDD represents the signal
path with even number of inverters starting with the line
x71 through the nodes a,d,e to the output y in the macro

(the bold lines in the circuit). The node *\Jd in the SSBDD
has inverted variable since the corresponding path x1,d,e,y
consists of odd number of inverters. The fan-out node x7
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in the circuit has three branches, and each branch x7; (i =
1,2,3) is the beginning of a path which is represented by
the node x7in the SSBDD.

From the above described property of the SSBDD, auto-
matic fault collapsing results, Assume a node m with label
variable x(m) represents a signal path /(m) in a circuit. Sup-
pose the path /(m) goes through n gates. Then, instead of
2n faults of the path /(m) in the circuit, only 2 faults related
to the node variable x(m) should be tested when using the
SSBDD model.

Test generation with SSBDDs. Consider a combinational
circuit as a network of gates, which is partitioned into in-
terconnected tree-like subcircuits (macros). This is a new
higher level (macro-level) representation of the same cir-
cuit. Each macro is represented by a SSBDD where each
node corresponds to an input of the macro. In the tree-like
subcircuits only the stuck-at faults at inputs should be test-
ed. This corresponds to testing all the nodes in each SSB-
DD. Test generation for a node m in SSBDD, which repre-
sents a function y = f(X) of a macro, is carried out by the
following procedure /19,23/.

Algorithm 1.

1) Apath/nfrom the root node of SSBDD to the node m
is activated.

2) Two paths /me consistent with I, where e {0,1}, from
the neighborsan® of m to the corresponding terminal
nodes m"® are activated.

3) For generatipg a test for a particular stuck-at-e fault
x(m) = e, ec{0,1}, the opposite assignment for x(m)
is needed: x(m) =e.

4)  All the values assigned to node variables build the lo-

cal test pattern T(X,y) (input pattern of the macro) for
testing the node m in Gy.

The paths in the SSBDD activated by Algorithm 1 are
illustrated in Figure 3.

Root node

Figure 3: Test generation for the node m with SSBDD

To create the final test pattern in terms of primary inputs of
the circuit (network of macros) for the given fault in an
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embedded macro, fault propagation and line justification
through the network of macros are needed. The fault prop-
agation through a macro from the input x to its output y is
carried out similarly to the test generation for the node m
labelled by x in the corresponding SSBDD Gy as explained
in Algorithm 1. Line justification for the task y = e is car-
ried out by activating a path in the graph Gy from the root
node to the terminal node m"®.

Example 1. Consider test generation for the bridging de-
fect between lines xg and x7 of the circuit in Figure 2. This
defect can be described by a functional fault model (dx7,

Zx7 =1), which corresponds to the AND-type bridging
model. To generate a test for the short we can generate a
test for the stuck-at-1 fault (x71 = 1) of the internal line x7 1
(input of the macro) in the circuit at aditional conditions xs
= (0, x7 = 1. Using SSBDD we have to generate by Algo-
rithm 1 atest for the node x7,1 in the SSBDD in Figure 2 at
the preconditions xs = 0, x7 = 1. Activating the path In

through the nodes xg, x—l and x» gives new additional as-
signments x1 = 1, and x2 = 1. Activating the path /m,1 through

the node ;c; gives x5 = 0. The path /m,o is activated “auto-
matically”, since the O-edge from the node x71 is connect-
ed directly to the terminal node m"©. The paths, activated
by the generated test pattern xixoxsxex7 = 11001, are
shown by bold lines in Figure 2.

4. Using high-level DDs for diagnostic
modelling

Test generation and fault simulation methods developed
for SSBDDs have the advantage compared to other logic
level methods that they can be easily generalized to han-
dle the test generation and fault simulation problems at
higher system levels /6,16,17/.

In general case (beyond the Boolean algebra and BDDs) a
decision diagram can be defined as a non-cyclic directed
graph G = (M, I, X) with a set of nodes M, a set of variables

Figure 4: Register-transfer level data-path system

X, and a relation I'in M /6/. The nodes m € M are la-
belled by variables x(m) € X (constants or algebraic ex-
pressions of x € X). For each value from a set of prede-
fined values of a non-terminal node variable x(m), there
exists a corresponding output edge from the node m into
a successor node m’ € Itm). Consider a situation where
all variables are fixed to some value. By these values, for
each non-terminal node m a certain output edge is cho-
sen, which is connected to a successor node. Let us call
these connections between nodes - activated edges, and
the chains of them - activated paths. For each combina-
tion of values of variables of X, there exists always a full
activated path from the root node to a terminal node. This
relation describes a mapping from a Cartesian product of
the sets of values for variables in all nodes to the joint set
of values for variables (or expressions) in terminal nodes.
Therefore, by DDs it is possible to represent arbitrary dig-
ital functions Y=F(X), where Y is the variable whose value
will be calculated by the DD and X is the vector of all varia-
bles in nodes of the DD.

Depending on the class of the system (or its representa-
tion level), we may have DDs, where nodes have different
interpretations and relationships to the system structure.
In register transfer level (RTL) descriptions, we usually par-
tition the system into control and data parts. State and
output variables of the control part serve as addresses and
control words, the variables in the data part serve as data
words. High-level data word variables allow to describe RTL
functions in data parts. When using DDs for describing
complex digital systems, first we have to represent the sys-
tem by a suitable set of interconnected components (com-
binational or sequential subcircuits). Then, we have to de-
scribe the components by their functions which can be
represented as DDs.

As an example, in Figure 4 a RTL data-path and his com-
pressed DD is presented /20/. The DD is created by su-
perposition /6,21/ of elementary DDs for the components
of the circuit. The word variables Ry, Rz and R3 represent
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registers, IN representss the input bus, the integer varia-
bles y1, y2, y3, and y4 represent the control signals. My,
Mz and M3 are multiplexers, and the functions R7 + R2
and R1* Rz represent the adder and multiplier, correspond-
ingly. The whole DD describes the behaviour of the input
logic of the register Roz.

In test pattern simulation, a path is traced in the graph,
guided by the values of input variables until a terminal node
is reached, similarly as in the case of SSBDDs. In this
example, the result of simulating the vector yy, vy, ¥3, va,
Ry, Ry, IN =0,0,3,2,10,6,12 is Ro = R1*R2 = 60 (bold ar-
rows mark the path activated by the control pattern). In-
stead of simulating all the components in the circuit, on
the DD only 3 control variables are visited during simula-
tion, and only a single data manipulation R; = R1*R> is car-
ried out.

Each node in DD represents a subcircuit of the system. To
test a node means to test the corresponding subcircuit.
The paths to be activated during test generation in high-
level DDs are illustrated in Figure 5.

Root node

mon

Test generation with high-level Decision
Diagrams

Figure 5:

We differentiate two testing types used for systems: scan-
ning test (for testing terminal nodes in DDs, i.e. fortesting
the data path), and conformity test (for testing nontermi-
nal nodes, i.e. for testing the control path).

Procedure 1. Scanning test. To generate a scanning test
for a terminal node m"™ in the DD Gy, the path /(m™) from
the root node to m™ is to be activated, and the test pat-
terns for testing the function z(m"™) should be generated
(according to the hierarchical approach, these patterns can
be generated on the lower level representation of z(m),
and they can be regarded as a set of additional conditions
wf according to the functional fault model to map the faults
from logic level to RT level).

Procedure 2. Conformity test. To generate a conformity
test for a node m in Gy, the following paths are to be acti-
vated: 1) {{m), and 2) for all the values of i = 1,2,...,n:
fim,i}, and the proper data are to be found by solving the

192

inequali‘[y‘x(mm);ﬁx(mT’Q)saE L.#=x(m"ywherei=1,2,....n,
and x(m™) are the algebraic expressions of the terminal
nodes.

To generate a scanning test for the node R+ * R; of the DD
in Figure 4, a path {R1*R2) = (y4, y3, Y2, B1*R2) is to be
activated, and the data vetors (local test patterns) DATA =
(R11,R21; R1,2,R2.2; ... R1,m,Ra.m) for testing the multiplier
are to be generated at low level by any ATPG. The scan-
ning test consists in cyclically run seqguence: FOR all
(a,b)e DATA: /L.oad: Ry =a; Load: Ro = b; Apply: y2 =0, y3
=3, y4=2; Read Ry/.

To generate a conformity test for the node m = ys, the
following paths are activated {im) = (ya, y3), m, 1) = (ya, y1,
R1+Ra), km,2) = (ys, IN}, km,3) = (ya, R1), lm, 4} = (y3, y2,
R1*Ro) that produces a test control vector i, yo, Vs, Y4 =
0,0,D,2. The test data vector DATA = (R*y, R*», IN*)is found
by solving the inequality (R1+R2) #/N+# R4 # (R1*R2). The
conformity test consists in cyclically run sequence: FOR
all De {0,1,2,3}: /Load: R1 = R*y; Load: Rz = R*y; Apply:
vi=0,y2=0,y3=D,ys=2;IN=IN* ReadRy/.

i MVIAD A=IN

I; MOVRA R=4A

i MOVM,ROUT=R OUT
I MOVM,A OUT=4

Is MOVRM R=IN

Iy MOVAM 4=IN

A
3
O=®
® e
a=asg  R—(D2
A=AVR 5 ® (AR

I; ADDR
131 ORAR
Iy: ANAR A=4 AR 10
-Z A
gt CMAAD A=-4 1,3,4,6-10 -

Decision Diagrams for a hypothetical
microprocessor

Figure 6:

An example of a hypothetical microprocessor is presented
in Figure 5 given by a instruction set and three DDs Gp,
Gr, Gour, for representing the behaviour, corresponding-
ly, of accumulator A, register R and output logic. Since the
model consists of several DDs representing a network of
modules, the following tasks are solved for test genera-
tion: fault manifestation, fault propagation and line justifi-
cation.

To generate a scanning test for the node A+R in Ga, a path
I(A+R) = (I, A+R) in Gais activated, which produces a test
pattern / = /7. The test data vector DATA =(A:1,Rz1;
A12,R22; ... Aim,R2 m) for testing the adder are generated
by a low level ATPG. These operations correspond to the
fault manifestation procedure, i.e. for solving a set of con-
ditions W9 =1 to map the low-level defects of the adder to
the behavior level errors in the register A. For propagating
the faults from A to OUT, a scanning test for the node A in
Gour is generated. As the result, the path /(4) = {/, A) in
Gour is activated, which produces a test pattern / = /4. For
justification of the data variables A and R, the paths /(IN) =
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Data Path M
A
B ADR
Cc
MUX: 7
cc &
] z
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)
COND[ X
Control Path SIn
q’ H
;

Figure 7:

(/, IN), correspondingly, in Ga and Gg are to be activated
which produce symbolic test vectors (I =14, IN = a) and (/
=[5, IN = r). The scanning test consists in cyclically run
sequence: FOR all (a,r) € DATA: /Is: MOV R,M (Load R =
N 11 MVIAD (Load A =a); I7: ADDR(A=a+ b); l4: MOV
M,A (Read A)/.

Consider a digital system with a behavioral description in
Figure 6. The system consists of control and data parts.
The FSM of the control part of the system is given by the
output function y = A (g, x) and the next-state function
g =0(q’, x), where y is an integer output vector variable,
which represents a microinstruction with four control fields
Y = (VM Yz Y21, Yz2), X = (X4, Xc) is a Boolean input vector
variable, and g is the integer state variable. The value j of
the state variable corresponds to the state s; of the FSM.
The apostrophe refers to the value from the previous clock
cycle.

The data path consists of the memory block M with three
registers A, B, C together with the addressing block ADR,
represented by three DDs: A = Ga (ym, 2), B = Gg (ym, Z),
C = Gc (ym, z); of the data manipulation block CC where

Figure 8.

A digital system with a behavioral description

z = Gz (yz 21, 22); and of two multiplexers z1 = Gz1 (yz1, M)
and zz = Gz2 (yz,2, M). The block COND performs the cal-
culation of the condition function x = Gx (A, C).

By superpositioning the DDs /21/ we can represent the
system by only four DDs Gq, Ga, Ga, and Gg in Figure 7a.

Consider now the possibility of joining a set of DDs into a
single DD. In Figure 7b the DDs Ga, Gg, G¢ and Gg are
joined into a single Vector Decision Diagram (VDD) M =
A.B.C.q = Gm (g, A, B, C, i) which produces a new con-
cise model of the system. For calculating the values to dif-
ferent components of the vector variable M, we introduce
a new type of node in VDD called addressing node la-
beled by an addressing variable /. The VDDs offer the ca-
pability to efficiently represent the array variables (corre-
sponding to register blocks and memories) for calculating
and updating their values. VDDs are particularly efficient
for representing functional memories with complex input
logic - with shared and dedicated parts for different mem-
ory locations. In general case, all the registers of the data
path can be combined in the model as a single memory
block.

Representing the digital system in Figure 7 by high-level Decision Diagrams
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Using VDDs allows significally to increase the speed of sim-
ulation. For example, in Gum in Figure 7b for the input vec-
torq’ =4, xa = 0, xc = 0, the nodes g”and xa, are traversed
for calculating both new values of A and B only once, where-
as in case of separate DDs in Figure 7a the nodes g”and
x4 should be traversed for all the graphs: for calculating
separately A, B, C, and q.

5. Experimental results

Table 3 presents the results of investigating the defect-
oriented hierarchical test generation based on using of
physical defect tables for library cells and logic macro lev-
el test generation. Experiments were carried out with a
new defect-oriented Automated Test Pattern Generator
(ATPQG) DOT /22/ for detecting the AND-short defects in
the 0.8pum CMOS technology. We used circuits resynthe-
sized from the Verilog versions of the ISCAS85 suite as
benchmarks for tests. The circuits were synthesised by
SYNOPSYS Design Compiler. Column 2 in Table 3 shows
the total number of defects in the defect tables summed
over all the gates belonging to the netlist. Column 3 re-
flects the number of gate level redundant defects. These
are defects that cannot be covered by any gate input (Gl)
vector of the gate. In column 4 circuit level redundant de-
fects are counted. These are defects that cannot be test-
ed as the circuit structure does not allow to generate a test
for any of the Gl vectors covering the defect. This redun-
dancy is proved by the DOT tool. Column 8 shows the
percentage of defects covered by DOT, while column 5
shows the ability of logic level SAF-oriented ATPG to cover
the physical defects. The next coverage measure shows
the SAF-oriented test efficiency. In this value, both, gate
level redundancy of defects (column 6) and circuit level
redundancy of defects (column 7) are taken into account.

The experiments prove that relying on 100 % SAF test cov-
erage would not necessarily guarantee a good coverage
of physical defects. In many situations the achieved cover-
age remained well below what can be achievable with the
defect-oriented tool. For example, for circuit c2670 the
defect coverage 98,29% obtained by SAF tests was more

than 1.7 % lower than the result of the proposed tool. An
interesting remark is, that up to nearly 25% of the defects
were proved redundant by the DOT and can therefore not
be detected by any voltage test. 75% defect coverage for
c880 by 100% SAF-test gives not much confidence for
this test. Only using DOT allows to prove that most of the
undetected defects are redundant, and that the real test
efficiency of this SAF-test is actually 99,66% giving finally
a good confidence to the test.

Table 4: Comparison of ATPGs

DECIDER
[9,23]
F.C. |Time | F.C. | Time | F.C., |Time,
% S % S % S
ged 454 81.1] 170/ 91.0 75| 89.9 14
sosq | 1938 77.3] 728 79.9 739 80.0 79
mult | 2036] 65.9] 1243] 69.2| 822 74.1 50)
ellipf | 5388 87.9] 2090] 94.7| 6229, 95.0| 1198
risc 6434 52.8/149020, 96.0] 2459 96,5 151

diffeq 10008 96.2{13320] 96.4] 3000 96.5 296
average F.C.: 76.9 87.9 88.6

o HITEC [1] |{GATEST [3]
Circuit [Faults

The experiments of the hierarchical DD-based ATPG DE-
CIDER /9,23/ developed at the Tallinn Technical Univer-
sity were run on a 366 MHz SUN UltraSPARC 60 server
with 512 MB RAM under SOLARIS 2.8 operating system.
At present, DECIDER contains gate-level EDIF interface
which is capable of reading designs of CAD systems CA-
DENCE, MENTOR GRAPHICS, VIEWLOGIC, SYNOPSYS,
etc. In Table 4, comparison of test generation results of
three ATPG tools are presented on six hierarchical bench-
marks. The tools used for comparison include HITEC /1/,
which is a logic-level deterministic ATPG and GATEST /3/
as a genetic-algorithm based tool.

Actual stuck-at-fault coverages of the test sequences gen-
erated by all the tools were measured by the same fault
simulation software. The experimental results show the high
speed of the ATPG DECIDER which is explained by the
DD-based hierarchical approach used in test generation.

Table 3. Experiments of defect oriented test generation on logic level

Number of defects Defect coverage
Circuit All Redundant defects
defects G 100% stuck-at fault ATPG DOT
ates System
1 2 3 4 5 6 7 8

c432 1519 226 0 78,6 99,05 99,05 100,00
c880 3380 499 5 75,0 99,50 99,66 100,00
c2670 6090 703 61 79,1 98,29 98.29 100,00
c3540 7660 985 74 30,1 98,52 99,76 99,97
c5315 14794 1546 260 82.4 97,73 99,93 100,00
c6288 24433 4005 41 77,0 99,81 100,00 100,00
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6. Conclusions

Two main trends can be observed today in the field of dig-
ital test: defect-orientation to increase the quality of test-
ing, and high-level modelling to reduce the complexity prob-
lems of diagnostic analysis. However, on the other hand,
counting physical defects increases the complexity, and
high-level modelling reduces the accuracy. Hierarchical
approaches can solve this antagonism. Decision diagrams
discussed in the paper contribute as a good tool for hierar-
chical modelling and diagnostic analysis of digital systems.
The new innovative forms of DDs, structurally synthesized
binary decision diagrams, high-level and vector decision
diagrams have been discussed. From simulation point of
view, they provide a compact and efficient representations
of digital systems. High-level DDs is a new model, and there
are a lot of possibilities for further research, for additional
improvements and optimization.
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