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Abstract
In this article, a mathematical model of controlling the system in conditions of fuzzy processes is 
presented. Such a system can also be a power supply system. Analytical approaches that can be 
used to describe the mutual impact of output and stocks (additional capacities) on hierarchically 
distributed occurrence/usage/variation or demand already exist. We add dynamics to the system 
with the use of continuous and discrete dynamic processes, which are of a random (stochastic) 
form. The dynamic discrete model of control for this system is built with a system of difference 
equations, and the dynamic continuous model is built with a system of differential equations. 
These systems of equations can be solved with a one-part z-transform in discrete situations in 
with Laplace transform in the continuous systems. Fuzzy system control follows a continuous and 
discrete stochastic mathematical closed-loop model of control of stocks (additional capacities) in 
production systems. The fuzzy model is demonstrated with a numerical example.

Povzetek
V članku je predstavljeno upravljanja sistema v pogojih mehkih dinamičnih procesov.  Takšen sis-
tem je lahko tudi energetski sistem.  Razviti so analitični pristopi, s katerimi opišemo medsebojni 
vpliv proizvodnje ter zalog (dodatnih kapacitet) na hierarhično porazdeljeno prostorsko dogajanje/
porabo/spremembo oziroma povpraševanje. V sistem vpeljemo dinamiko, kar storimo z uporabo 
zveznih in diskretnih dinamičnih procesov, ki so zaradi zahteve po čim tesnejšem približku opisova-
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nja dejanskega sistema, slučajnostne (stohastične) narave.  Dinamični diskretni model upravljanja 
takšnega sistema izgradimo s sistemom diferenčnih enačb, zvezni model pa opišemo s sistemom 
diferencialnih enačb.  Za reševanje uporabimo enostrano z-transformacijo pri diskretnih sistemih 
in Laplaceovo transformacijo pri zveznih sistemih.  Mehko upravljanje sistema izhaja iz zveznega in 
diskretnega slučajnostnega matematičnega modela upravljanja zalog v proizvodnem sistemu.  V 
članku je prikazan mehki pristop, ki ga vpeljemo z uporabo dvofaznega sistema mehkega sklepanja 
in pomeni približek zaprtozančnemu sistemu upravljanja. Mehki algoritem je ilustriran z numerič-
nim primerom. 

1 INTRODUCTION

A production system (power supply, logistics, traffic, etc.) is a complex dynamic system. If we could 
create a theoretical mathematical dynamic model of it, we would have to take into consideration 
a great many variables and their interrelationships. However, with methods of logical and method-
ological decomposition, every system may be divided into a finite set of simpler subsystems, which 
are then studied and analysed separately, [1].

A model of optimal control is determined with a system, its input/output variables, and the 
optimality criterion function. The system represents a regulation circle, which generally consists of 
a regulator, a control process, a feed-back loop, and input and output information. In this article, 
dynamic systems will be studied. The optimality criterion is the standard against which the control 
quality is evaluated. The term ‘control quality’ means the optimal and synchronized balancing of 
planned and actual output functions, [2, 3].

Let us consider a production model in a linear stationary dynamic system in which the input variables 
indicate the demand for products manufactured by a company. These variables, i.e. the demand, 
in this case, can either be a one-dimensional or multi-dimensional vector functions or they can be 
deterministic, stochastic or fuzzy. In this article, a system with fuzzy variables is presented.

2 DEFINING THE PROBLEM

Demand for a product should be met, if possible, by the current production. The difference between 
the current production and demand is the input function for the control process; the output func-
tion is the current stock/additional capacities. When the difference is positive, the surplus will be 
stocked, and when it is negative, the demand will also be covered by stock. In the case of a power 
supplier, stock in the usual sense does not exist (such as cars or computers, etc.); energy cannot be 
produced in advance for a known customer, nor can stock be built up for unknown customers. The 
demand for energy services is neither uniform in time nor known in advance. It varies, has its ups 
(maxima) and downs (minima), and can only be met by installing and activating additional proper 
technological capacities. Because of this, the function of stock in the energy supply process is held by 
all the additional technological potential/capacities large enough to meet periods of extra demand. 
The demand for energy services is not given and precisely known in advance. Demand is not given 
with explicitly expressed mathematical functions; it is a random process for which the statistical in-
dicators are known. The system input is the demand for the products/services that a given subject 
offers. Any given demand should be met with current production. The difference between the current 
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capacity of production/services and demand is the input function for the object of control. The output 
function measures the amount of unsatisfied customers or unsatisfied demand in general. When this 
difference is positive, i.e. when the power supply capacity exceeds the demand, a surplus of energy 
will be made. When the difference is negative, i.e. when the demand surpasses the capacities, extra 
capacities will have to be added or, if they are not sufficient, extra external purchasing will have to 
be done. Otherwise, there will be delays, queues, etc. In the new cycle, there will be a system regula-
tor, which will contain all the necessary data about the true state and that will, according to given 
demand, provide basic information for the production process. In this way, the regulation circuit is 
closed. With optimal control, we will understand the situation in which all customers are satisfied 
with the minimum involvement of additional facilities. On the basis of the described regulation circuit, 
we can establish a mathematical model of power supply control, i.e. a system of difference equations 
for discrete systems or a system or differential equations for continuous systems, [2]. For this model, 
the regulation circuit is given in Figure 1, [4]. The task is to determine the optimum production and 
stock/capacities so that the total cost will be as low as possible, [3]. 

Figure1: Regulation circuit of the power supply system

3. A MATHEMATICAL MODEL OF THE SYSTEM CONTROL

In the building of the model, we will restrict ourselves to a dynamic linear system, in which the 
input is a random process with known statistical properties. The system provides the output, which 
is, due to the condition of linearity, also a random process. These processes could be continuous 
or discrete. The model and its solution for continuous processes is obtained in [1] and for discrete 
processes in [5]. 

3.1 Continuous processes 

Notations for    are as follows:

( )Z t - additional capacities (stocks) at a given time t,

( )u t - production at time t,

( )d t  - demand for product at time t,

λ  - lead time,

( )v t  - delivery to storehouse at time t,

( )Q t - criterion function, complete costs.

production
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Let ( )Z t , ( )u t and ( )d t  be stationary continuous random variables/functions; they are 
characteristics of continuous stationary random processes. 

Now the system will be modelled with the known equations [1]:

   (3.1)

  (3.2)

  (3.3)

In the last equation, the function ( )G t  is the weight of the regulation that must be 
determined at optimum control, so that the criterion of the minimum total cost is satisfied. 
The lead time λ is the time period needed to activate the additional capacities in the 
power supply process. Assuming that the input variable demand is a stationary random 
process, we can also consider production and stock/additional capacities to be stationary 
random processes for reasons of the linearity of the system. 

Let us consider the functions ( )Z t , ( )u t and ( )d t  to be continuous stationary random 
processes. From this point of view, let us express the total cost, the minimum of which 
we are trying to define, with the mathematical expectation of the square of the random 
variables ( )Z t  and ( )u t :

( ) ( )( ) ( )( )2 2
Z uQ t =K E Z t +K E u t   (3.4)

Equations represent a linear model of control in which the minimum of the mean square 
error has to be determined.

ZK  and uK  are positive constant factors, attributing greater or smaller weight to individual 
costs. Both factors have been determined empirically for the product and are therefore in 
the separate plant [9]:

ZK  - constant coefficient, dependent on activated resources, derived empirically,

uK  - constant coefficient, dependent on performed services and derived empirically.

3.2 Discrete processes

Similar to the continuous system, we have in similar notations in the discrete system. 

Let us denote:
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( )Z k  - activated facilities (resources, stocks) at given moment (output),

( )u k  - the amount of services performed (production) at a given moment,

( )d k  - the demand for services at a given moment (input),

κ  - time elapsed between the moment the data are received and the carrying out of   a 
service,

( )Q k  - criterion function, complete costs,

ZK  - constant coefficient, dependent on activated resources, derived empirically,

uK  - constant coefficient, dependent on performed services and derived empirically,

( )G k
 - operator (weight) of regulation.

{ }∈k 0, 1, 2, …  

The dynamic linear system will then be modelled with the following difference equations:

( ) ( ) ( ) ( )1 ,Z k Z k v k d k + − − = − ∈  Rψ ψ  (3.5)

κ κ= − ∈( ) ( ) ,v k u k N   (3.6)

( ) ( ) ( )
0

u k G Z k
∞

=

= − −∑
κ

κ κ   (3.7)

( ) ( )( ){ } ( )( ){ }2 2 1Z uQ k K E Z k K E u k= + −
 
minimum (3.8)

4 FUZZY SYSTEM

Construction of a fuzzy system takes several steps [6], [7]: selection of decision variables and their 
fuzzification, establishing the goal and the construction of the algorithm (base of rules of fuzzy 
reasoning), inference and defuzzification of the results of fuzzy inference. A graphic presentation of 
a fuzzy system is given in Figure 2, [5].

The entire system demonstrates the course of inference from input variables against output; it is 
built on the basis of ‘if-then’ fuzzy rules. The fuzzy inference consists of three phases:

1. Fuzzification,

2. Fuzzy inference,

3. Defuzzification.
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Figure 2:  The fuzzy system

In our closed-loop model we designed a two-phase fuzzy system, given in Figure 3. 

Figure 3: The two-phased fuzzy system

Let us assume that the demand d depends on [1]:

	 the market area, 

	 the density of the area, 

	 the price, 

	 the season, and 

	 the uncertainty. 

The demand is, in fact, the basic variable, on which the behaviour of all retailers depends. We 
assume that all expressions are fuzzy variables, market area, density of the area, price, season 
and uncertainty are input fuzzy variables, and demand is an output fuzzy variable in the first 
phase and in the same time also an input fuzzy variable for the second phase, Figure 4. 
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Figure 4: The two-phased fuzzy system with fuzzy demand in the first phase

4.1	 Fuzzification

In the fuzzification phase, fuzzy sets for all fuzzy variables (input and output) must be defined, 
as well as their membership functions. Every fuzzy variable is presented by more terms/fuzzy 
sets. In this system, there are eight fuzzy variables: the market area, the density of the area, 
the price, the season, the uncertainty and the demand in the first phase and the demand, and 
the production and the capacity in the second phase. 

The fuzzy variable demand is the output of the first rules block while simultaneously being the 
input for the second phase (i.e. rules block 2).  

Fuzzy sets are given by terms below. 

	 In the first rules block:

a) the input fuzzy variable MARKET AREA is represented by: SMALL, BIG,

b) the input fuzzy variable DENSITY OF THE AREA is represented by: WEAK, MEDIUM, 
STRONG,

c) the input fuzzy variable PRICE is represented by: LOW, MEDIUM, HIGH,

d) the input fuzzy variable SEASON is represented by: LOW, HIGH,

e) the input fuzzy variable UNCERTAINTY is represented by: SMALL, MEDIUM, BIG, 
VERY_BIG,

f) the output fuzzy variable DEMAND is represented by: VERY_LOW, LOW, MEDIUM, 
HIGH, EXTREMELY_HIGH. 
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	 In the second rule block:
g) the input fuzzy variable DEMAND is represented by: VERY_LOW, LOW, MEDIUM, 

HIGH, EXTREMELY_HIGH. 

h) the input fuzzy variable PRODUCTION is represented by: LOW, MEDIUM, HIGH, 
i) the output fuzzy variable CAPACITY is represented by: VERY_LOW, LOW, MEDIUM, 

HIGH, EXTREMELY_HIGH. 

This fuzzy system is a two-phased system. The final output is CAPACITY (i.e. STOCKS) which depends 
on inputs DEMAND and PRODUCTION. This means that the control system is, in fact, the closed-
loop system. 

For every fuzzy set and for every fuzzy variable, we have to create membership functions, see 
Figures 5 to 12. 

On the x-axis, the measures are given in units such as the number of customers, EUR, EUR/
kWh, MWh and so on, depending on the data. On the y-axis, membership is measured for 
every possible fuzzy variable and for every fuzzy set. 

Due to the simplicity in this model, we suppose that all units for all fuzzy variables are given 
in relative measure, i.e. percentages from 0 to 100. Of course, the expert knows what, for ex-
ample, 30% for ‘market area’ or 80 % of the ‘price’ etc. means.



JET 43 

System control in conditions of fuzzy dynamic processes

Figure 5: MBF of  ‘MARKET’ Figure 6: MBF of  ‘DENSITY’

Figure 7: MBF of  ‘PRICE’ Figure 8: MBF of  ‘SEASON’

Figure 9: MBF of  ‘ UNCERTAINTY ‘ Figure 10: MBF of  ‘DEMAND’

Figure 11: MBF of  ‘ PRODUCTION ‘ Figure 12: MBF of  ‘ CAPACITY ‘
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4.2 Fuzzy inference

Fuzzy inference is a process in which a certain conclusion is derived from a set of fuzzy statements. 
In addition to linguistic variables, there are basic widgets of a fuzzy logic system as well as sets of 
rules that define the behaviour of a system. A single fuzzy rule (implication) assumes the form: if x is 
A, then y is B, where A and B are linguistic values defined by fuzzy sets on the universes of discourse 
X and Y, respectively. The if part of the rule is called the antecedent or premise, while the then part 
is called the consequent or conclusion. Variables x and y are defined by the sets X and Y. 

With the assembly of a base of rules, the question always appears of how to obtain the rules. Usu-
ally, this is written down as a base of knowledge within the framework of ‘if-then’ rules by an expert 
for a definite system based on his own knowledge and experiences. An expert must also define 
entry and exit fuzzy functions, as well as their shape and position. However, it often occurs that the 
expert’s knowledge is not sufficient, and he cannot define an adequate number of rules. Therefore, 
the procedures of forming or supplementation to the base of rules based on available numerical 
data were developed.

With fuzzy inference, we must put all values and facts in a definite order and connect them to the 
procedure of inference execution, so that will be feasible do so with a computer. This order is given 
as a list or system of rules. 

In our work, we applied FuzzyTech software (FuzzyTech, 2001), [8]. In accordance with this software 
tool, 144 rules in the first phase (Rule block 1) and 15 rules in the second phase (Rule block 2) were 
automatically created. Some of them are represented in Tables 1 and 2. 

Table 1: Some rules Rules of the Rule Block ‘RB1’

IF THEN

DENSITY MARKET PRICE SEASON U N C E R -
TAINTY

DoS DEMAND

WEAK SMALL LOW LOW SMALL 0.97 LOW

WEAK SMALL MEDIUM HIGH SMALL 1.00 LOW

WEAK SMALL HIGH LOW MEDIUM 0.64 VERY_LOW

WEAK SMALL HIGH HIGH VERY_BIG 1.00 LOW

WEAK BIG MEDIUM LOW BIG 1.00 LOW

WEAK BIG HIGH HIGH BIG 1.00 MEDIUM

MEDIUM SMALL LOW LOW SMALL 1.00 LOW

MEDIUM SMALL MEDIUM HIGH BIG 1.00 MEDIUM

MEDIUM SMALL HIGH LOW MEDIUM 0.75 LOW

MEDIUM BIG LOW LOW VERY_BIG 1.00 HIGH

MEDIUM BIG HIGH HIGH MEDIUM 0.63 MEDIUM

MEDIUM BIG HIGH HIGH VERY_BIG 0.20 HIGH

STRONG SMALL LOW LOW SMALL 1.00 MEDIUM
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IF THEN

STRONG SMALL LOW HIGH MEDIUM 1.00 HIGH

STRONG SMALL HIGH LOW MEDIUM 1.00 LOW

STRONG SMALL HIGH LOW VERY_BIG 1.00 MEDIUM

STRONG BIG MEDIUM HIGH MEDIUM 0.98 HIGH

STRONG BIG MEDIUM HIGH VERY_BIG 0.73 EXTR_HIGH

Table 2: Rules of the Rule Block ‘RB2’

IF THEN

DEMAND PRODUCTION DoS CAPACITY

VERY_LOW LOW 1.00 VERY_LOW

VERY_LOW MEDIUM 1.00 LOW

VERY_LOW HIGH 1.00 LOW

LOW LOW 1.00 LOW

LOW MEDIUM 1.00 LOW

LOW HIGH 1.00 MEDIUM

MEDIUM LOW 1.00 LOW

MEDIUM MEDIUM 1.00 MEDIUM

MEDIUM HIGH 1.00 HIGH

HIGH LOW 1.00 MEDIUM

HIGH MEDIUM 1.00 HIGH

HIGH HIGH 1.00 HIGH

EXTR_HIGH LOW 1.00 HIGH

EXTR_HIGH MEDIUM 1.00 HIGH

EXTR_HIGH HIGH 1.00 EXTR_HIGH

4.3	 Defuzzification

Results from the evaluation of fuzzy rules is fuzzy. Defuzzification is the conversion of a given fuzzy 
quantity to a precise, crisp quantity. In the procedure of defuzzification, fuzzy output variables are 
changed into crisp numerical values. There are many procedures for defuzzification, which give 
different results. 

The most frequently method used in praxis is CoM-defuzzification (the Centre of Maximum). As 
more than one output term can be accepted as valid, the defuzzification method should be a com-
promise between different results. The CoM method does this by computing the crisp output as 
a weighted average of the term membership maxima, weighted by the inference results, [6]. CoM 
is a type of compromise between the aggregated results of different terms j of a linguistic output 
variable, and is based on the maximum Yj of each term j.



46 JET

JET Vol. 8 (2015)
Issue 1

Janez Usenik

As already mentioned, there are many methods of defuzzification that generally give various re-
sults. In our example, our model is created by FuzzyTech 5.55i software, and we use the Centre of 
Maximum (CoM) defuzzification method.

4.4 Optimisation

When the system structure is set and all elements of the system are defined, the model must also 
be tested and checked for its fit to data and for whether it produces the desired results. In our 
case, we have tasks with relatively simple optimization, because we have limited the problem to 
concrete conditions. We simplified the system so that it is well defined and gives the desired re-
sults. During optimization, we verify the entire definition area of input data. For each point of the 
definition area, we check whether the system is giving the desired result and if this result is logical. 
If we are not satisfied with the results, we can change any of the membership functions or any of 
the fuzzy inference rules. 

For optimisation, there are various methods, such as trial and error, or using graphic tools that 
can visually demonstrate system activity. Such a graphic demonstration shows us the response to 
a change of data or change in the definition of the system elements, [8]. One of the most efficient 
methods is using neural nets during the neuro-fuzzy training to obtain good and regular results. 

4.5 Neuro-fuzzy training 

To optimise our results and to obtain a stable and robust fuzzy model, we have to perform 
neuro-fuzzy training, [9], [10]. At this point, help from an expert who knows the system very 
well is required. Suppose that we have a base of knowledge and we can start our neuro-fuzzy 
procedure. We have used FuzzyTech software’s option for neuro-fuzzy learning in the first 
phase, [1]. Making 500 iterations in the phase of training (35 samples) and 500 iterations in 
the phase of checking (also 35 samples), we have changed the shapes of the membership 
functions for all fuzzy variables and also changed the weights (DoS) for some rules for fuzzy 
inference in Rules block 1. When comparing expert and fuzzy results, the statistical data are 
the following: the average deviation (expert results vs. fuzzy results) is 1.74%, 16 data points 
(samples) between 0 and 1%, 9 data points between 1 and 2%, 5 between 2 and 4% and 5 data  
points between 4 and 8%.

5 NUMERICAL EXAMPLE 

When we have a robust fuzzy system, we can start numerical simulations. Using FuzzyTech soft-
ware, we can simulate all possible situations interactively. Some results in Phase 1 are given in Table 
3. The first five columns represent input fuzzy variables; the last column ‘demand’ as output of the 
fuzzy system is divided into two sub-columns. In the first, we can see crisp values of demand before 
neuro-fuzzy training and, in the second, values after neuro-fuzzy training.
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Table 3: Some numerical results in phase 1

Density Market Price Season Uncertainty
Demand

before 
training 

after train-
ing 

0 0 100 0 0 0 1

50 50 50 50 50 60 50

100 100 1 100 100 100 100

30 30 80 80 50 50 42

70 50 90 20 90 45 58

60 100 40 50 50 77 73

60 60 30 50 50 71 67

70 70 90 90 70 72 76

90 50 100 100 100 74 78

50 30 80 20 20 31 28

19 33 49 66 66 53 52

39 70 60 60 50 52 54

78 78 39 78 78 88 80

Of course, in the table, we merely have some results, but with the interactive simulation that is pos-
sible with FuzzyTech software, we can simulate every situation. The quality of the results depends 
on the expert who prepares a data file for the neuro-training procedure. 

After optimization of the first subsystem (Phase 1), we can also run the fuzzy system in Phase 2. 
Some numerical results are presented in Table 4, in which the fuzzy variables of density, market, 
price, season, uncertainty and production are inputs, and the fuzzy variable capacity is the output 
of a two-phased fuzzy system. The fuzzy variable demand is an output in the first subsystem while 
simultaneously being an input to the second subsystem, i.e. the second phase in the entire fuzzy 
system.
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Table 4: Some numerical results in two-phased fuzzy system

Density Market Price Season Uncertainty Production Capacity 

90 98 10 100 95 90 116

50 50 50 50 50 50 50

100 100 1 100 100 100 90

30 30 80 80 50 50 34

70 50 90 20 90 90 68

60 100 40 50 50 80 90

60 60 30 50 50 80 60

70 70 90 90 70 70 72

90 50 100 100 100 70 82

50 30 80 20 20 30 23

20 40 40 60 50 80 65

40 70 60 60 50 100 70

78 78 39 78 78 10 41

6 CONCLUSION

A theoretical mathematical model of system control can also be used in an energy technology sys-
tem and in all its subsystems. Input-output signals are discrete or continuous functions. For opera-
tions, many conditions have to be fulfilled. During the control process, a great deal of information 
must be processed, which can only be done if a transparent and properly developed information 
system is available. The solution, i.e. optimal control, depends on many numerical parameters. All 
data and numerical analysis can only be processed into information for control if high quality and 
sophisticated software and powerful hardware are available. 

For the study of the structure, interrelationships and operation of a phenomenon with system char-
acteristics, the best method is the general systems theory. When we refer to system technology as a 
synthesis of organization, information technology and operations, we have to consider its dynamic 
dimension when creating a mathematical model. As each such complex phenomenon makes up 
a system, the technology in this article is again dealt with as a dynamic system. Elements of the 
technological system compose an ordered entity of interrelationships and thus allow the system 
to perform production functions. During the control process, a great deal of information must be 
processed, which can only be done if a transparent and properly developed information system is 
available. Models of optimum control can also be used in the power station system. 

The fuzzy approach in creating the mathematical model with which we are describing the system 
can be successful in the case that we have a good robust base of expert knowledge. With appropri-
ate computer tools, an algorithm can be used for concrete numerical examples. 
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