2015 | št.: 58/1 ISSN Tiskana izdaja / Print edition: 0016-7789 Spletna izdaja / Online edition: 1854-620X GEOLOGIJA 58/1 – 2015 GEOLOGIJA ISSN 0016-7789 © Geolo{ki zavod Slovenije Izdajatelj: Geolo{ki zavod Slovenije, zanj direktor Miloš Bavec Publisher: Geological Survey of Slovenia, represented by Director Miloš Bavec Financirata Javna agencija za raziskovalno dejavnost Republike Slovenije in Geoloki zavod Slovenije Financed by the Slovenian Research Agency and the Geological Survey of Slovenia Vsebina tevilke 58/1 je bila sprejeta na seji Urednikega odbora, dne 6. 7. 2015. Manuscripts of the Volume 58/1 accepted by Editorial and Scientific Advisory Board on July 6, 2015. Glavna in odgovorna urednica / Editor-in-Chief: Mateja Gosar Tehni~na urednica / Technical Editor: Bernarda Bole Uredni{ki odbor / Editorial Board Dunja aljinovi] haralD loBitzer Rudarsko-geolo{ki naftni fakultet, Zagreb Geologische Bundesanstalt, Wien Miloš Bavec Miloš Miler Geolo{ki zavod Slovenije Geolo{ki zavod Slovenije Mihael Bren^i^ rinalDo nicolich Naravoslovnotehni{ka fakulteta, Univerza v Ljubljani University of Trieste, Dip. di Ingegneria Civile, Italy Giovanni B. carulli siMon Pirc Dip. di Sci. Geol., Amb. e Marine, Universita di Trieste Naravoslovnotehni{ka fakulteta, Univerza v Ljubljani Katica DroBne Mihael riBi^i^ Znanstvenoraziskovalni center SAZU, Ljubljana Naravoslovnotehni{ka fakulteta, Univerza v Ljubljani jaDran FaGaneli Milan suDar Nacionalni in{titut za biologijo, MBP, Piran Faculty of Mining and Geology, Belgrade janos haas MarKo šParica Etvös Lorand University, Budapest Institut za geolo{ka istraživanja, Zagreb BoGDan jurKovšeK sašo šturM Geolo{ki zavod Slovenije, Ljubljana Institut »Jožef Stefan«, Ljubljana roMan Koch DraGica turnšeK Institut für Paläontologie, Universität Erlangen-Nürnberg Slovenska akademija znanosti in umetnosti, Ljubljana MarKo KoMac Miran veseli^ Poslovno svetovanje s.p., Ljubljana Fakulteta za gradbeni{tvo in geodezijo, Univerza v Ljubljani ^astni ~lani / Honorary Members Matija DroveniK Danilo ravniK Slovenska akademija znanosti in umetnosti, Ljubljana Naravoslovnotehni{ka fakulteta, Univerza v Ljubljani Mario Pleni^ar Slovenska akademija znanosti in umetnosti, Ljubljana Naslov uredni{tva / Editorial Office: GEOLOGIJA Geolo{ki zavod Slovenije / Geological Survey of Slovenia, Dimi~eva ulica 14, SI–1000 Ljubljana, Slovenija Tel.: +386 (01) 2809-700, Fax: +386 (01) 2809-753, e-mail: urednikgeologija-revija.si URL: http://www.geologija-revija.si/ GEOLOGIJA izhaja dvakrat letno / GEOLOGIJA is published two times a year GEOLOGIJA je na voljo tudi preko medknjižni~ne izmenjave publikacij / GEOLOGIJA is available also on exchange basis Izjava o eti~nosti Izdajatelji revije Geologija se zavedamo dejstva, da so se z naglim nara~anjem tevila objav v svetovni znanstveni literaturi razmahnili tudi poskusi plagiatorstva, zlorab in prevar. Menimo, da je naa naloga, da se po svojih mo~eh borimo proti tem pojavom, zato v celoti sledimo eti~nim smernicam in standardom, ki jih je razvil odbor COPE (Committee for Publication Ethics). Publication Ethics Statement As the publisher of Geologija, we are aware of the fact that with growing number of published titles also the problem of plagiarism, fraud and misconduct is becoming more severe in scientific publishing. We have, therefore, committed to support ethical publication and have fully endorsed the guidelines and standards developed by COPE (Committee on Publication Ethics). Baze, v katerih je Geologija indeksirana / Indexation bases of Geologija: Directory of Open Access Journals, GeoRef, Zoological Record, Geoscience e- Journals, EBSCOhost Cena / Price Posamezni izvod / Single Issue Letna naro~nina / Annual Subscription Posameznik / Individual: 15 € Posameznik / Individual: 25 € Institucija / Institutional: 25 € Institucija / Institutional: 40 € Tisk / Printed by: Tiskarna Formatisk d.o.o. Slika na naslovni strani: Ostanki iglavca vrste Doliostrobus taxiformis v zgornjeeocenskem laporovcu sote{kihplasti z obmo~ja Dobrne. (Šoster et al., ~lanek v tej {tevilki, foto: Ale{ Šoster) Cover page: The remains of Doliostrobus taxiformis in the Late Eocene marl of Socka beds from Dobrna area (Slovenia). (Šoster et al., paper in this issue, photo: Ale{ Šoster) VSEBINA – CONTENTS ^eru, T., Dolenec, M. & Marki~, M. Mineral composition of sediments underlying the Velenje lignite seam in the P-9k/92 borehole (Slovenia).......................................................................................................... 7 Mineralna sestava talninskih plasti velenjskega lignitnega sloja v vrtini P-9k/92 Kandu~, T. Isotopic composition of carbon in atmospheric air; use of a diffusion model at the water/atmosphere interface in Velenje Basin............................................................................ 35 Izotopska sestava ogljika v atmosferskem zraku in difuzijski model na fazni meji voda/atmosfera v Velenjskem bazenu Torkar, A. & Bren~i~, M. Spatio-temporal distribution of discharges in the Radovna River valley at low water conditions......................................................................................................................... 47 Prostorsko-~asovna porazdelitev pretokov v dolini reke Radovne v obdobju nizkih vod Križnar, M. Zob paleozojskega morskega psa rodu Glikmanius (Chondrichthyes, Ctenacanthidae) iz Karavank (Slovenija) ......................................................................................................................... 57 Upper Paleozoic shark tooth of genus Glikmanius (Chondrichthyes, Ctenacanthidae) from Karavanke Mts. (NW Slovenia) Mikuž, V. Nekaj novih najdb eocenskih rakovic iz najdi{~a ]opi v Istri............................................................ 63 Some new finds of Eocene crabs from ]opi in Istria, Croatia Mikuž, V., Križnar, M. & Caf, N. Panonijski mehkužci iz najdi{~a Osek-2 v Slovenskih goricah.......................................................... 71 Pannonian moluscs from site Osek-2 in Slovenske gorice, Slovenia Šoster, A., Poto~nik Krajnc, B. & Mikuž, V. Doliostrobus taxiformis iz sote{kih plasti pri Dobrni ......................................................................... 81 Doliostrobus taxiformis from Socka beds in Dobrna area, Slovenia Placer, L. Simplified structural map of Kras Kras (Slovene), Carso (Italian) = Geographical unit............................................................................ 89 Poenostavljena strukturno-geolo{ka karta Krasa Kras (slovensko), Carso (italjansko) = geografska enota Nove knjige Pacher, M., Pohar, V. & Rabeder, G. (eds.): Križna jama – Palaeontology, Zoology and Geology of Križna jama in Slovenia ............................ 94 Poro~ila Vre~a, P.: Letna skup{~ina Slovenskega združenja za geodezijo in geofiziko........................................ 95 Nekrolog Gori~an, Š. V spomin mag. Francu Cimermanu....................................................................................................... 96 Lo~ni{kar, A., Broži~, D. & Kromar, M. V spomin Igorju Špacapanu................................................................................................................... 99 Navodila avtorjem .................................................................................................................................... 101 Instructions for authors ........................................................................................................................... 102 doi:10.5474/geologija.2015.001 Mineral composition of sediments underlying the Velenje lignite seam in the P-9k/92 borehole (Slovenia) Mineralna sestava talninskih plasti velenjskega lignitnega sloja v vrtini P-9k/92 Teja ^ERU1, Matej DOLENEC2 & Milo{ MARKI^3 1Univerza v Ljubljani, Naravoslovnotehni{ka fakulteta, Oddelek za geotehnologijo in rudarstvo, A{ker~eva cesta 12, SI-1000 Ljubljana; e-mail: teja.ceruntf.uni-lj.si 2Univerza v Ljubljani, Naravoslovnotehni{ka fakulteta, Oddelek za geologijo, A{ker~eva cesta 12, SI-1000 Ljubljana; e-mail: smudutsiol.net 3Geolo{ki zavod Slovenije, Dimi~eva ulica 14, SI-1000 Ljubljana; e-mail: milos.markicgeo-zs.si Prejeto / Received 5. 6. 2015; Sprejeto / Accepted 1. 7. 2015 Key words: Velenje Basin, Pliocene, lignite underlying sediments, granulometry, geochemistry, mineralogy Klju~ne besede: Velenjski bazen, pliocen, talnina lignita, granulometrija, geokemija, mineralogija Abstract The paper presents the results of granulometrical, geochemical and mineralogical characterisation of sediments underlying the Velenje lignite seam as drilled through the P-9k/92 borehole in the central part of the Pliocene intermontane Velenje Basin. This study of differently lithified sediments/sedimentary rocks is based on analyses of 32 samples from 21 core intervals at the depth of 562.6–580.0 m (end of the borehole). Grain size was analysed on 12 samples, 24 samples were investigated geochemically, while mineral composition was obtained with X-ray diffraction (XRD) on 23 samples, and optical microscopy was performed on 7 samples. Granulometry of very low lithified samples revealed that they are mostly clayey silts (>85 % of the silt fraction), only two are silty sands and one is pebbly/rubbly sandstone. Well-lithified clastics are all sandstones cemented by calcite, siderite and/or marcasite. Geochemical analysis indicated that most samples are SiO2 + Al2O3 rich (>60–80 %). Some sediments, mostly at the base of the profile, are enriched in Fe2O3 and inorganic C both indicating the presence of siderite. At the top of the profile, thin limestone and gravelly sandstone beds contain a high CaO content and have high loss on ignition (LOI). Qualitative XRD analysis and microscopy showed that all clastic sediments consist of quartz, kaolinite and muscovite/illite. Feldspars occur sporadically, mainly in sands and sandstones. Gypsum was found in some samples of siltstones. Pyrite occurs only in a sample of limestone at the top of the profile. Also marcasite was found only in one sample. Izvle~ek V ~lanku predstavljamo rezultate granulometri~ne, geokemi~ne in mineralo{ke opredelitve talninskih plasti lignitnega sloja, prevrtanega z vrtino P-9k/92, v osrednjem delu pliocenskega intermontanega (medgorskega) Velenjskega bazena. Raziskava razli~no litificiranih sedimentov oziroma sedimentnih kamnin obravnava 32 vzorcev iz 21-ih jedrnih odsekov v globini 562,6–580,0 m, to je do kon~ne globine omenjene vrtine. Granulometri~no je bilo analiziranih 12 vzorcev, geokemi~no 24, mineralo{ko z rentgensko difrakcijo (XRD) 23 vzorcev in mikroskopsko 7 vzorcev. Granulometri~na analiza je pokazala, da so zelo slabo litificirani razli~ki ve~inoma glinasti melji (>85 % frakcije melja), le dva sta bila meljasta peska in eden prodnati do gru{~nati pesek. Mikroskopsko preiskani dobro litificirani klastiti so vsi pe{~enjaki, cementirani s kalcitom, sideritom ali markazitom. Geokemi~na analiza je pokazala za ve~ino vzorcev prevladujo~o SiO2 + Al2O3 (60–80 %) sestavo. Zlasti v spodnjem delu profila je izstopajo~a vsebnost Fe2O3 in anorganskega C, kar nakazuje prisotnost siderita. V zgornjem delu profila se pojavljata plasti apnenca in prodnato gru{~natega pe{~enjaka, ki sta nosilki visoke vsebnosti CaO in imata znatno žaroizgubo (LOI). Kvalitativna XRD analiza je pokazala, da vse preiskane vzorce sestavljajo kremen, kaolinit in muskovit/illit. Glinenci nastopajo ve~inoma v peskih in pe{~enjakih. V nekaj vzorcih meljev in meljevcev je bila dolo~ena sadra. Pirit je bil dolo~en le v plasti apnenca v zgornjem delu profila, v najglobljem vzorcu pe{~enjaka pa je bil dolo~en markazit. Introduction mostly xylite-rich, and of medium to low grade by its ash (mineral matter) content. The Velenje Basin The Velenje lignite seam is up to 100 m, and the lignite seam – its geometry, tectonics, extremely even up to 165 m thick. It occurs petrology, inorganic and organic geochemistry, approximately in the middle of the Pliocene to paleofloristic assemblages, genesis, quality, and Pleistocene intermontane Velenje Basin (Fig. 1) reserves – have been thoroughly described and which is filled with lacustrine, marshy and fluvial discussed in the following key works from the clastic sediments in a thickness of more than 1000 1960s onwards: DroBne (1967), šercelj (1968, m (Fig. 2). The lignite is an ortho-lignite by rank, 1987), BreziGar (1987), BreziGar et al. (1987, 1988), Fig. 1. Geological map of the lignite-bearing Velenje Basin (simplified after BreziGar, 1987, and BreziGar et al., 1987). Note the position of the P-9k/92 borehole and A-B cross-section shown in Fig. 2. Sl. 1. Geoloka karta Velenjskega bazena (poenostavljeno po BreziGar-ju, 1987 in BreziGar-ju et al., 1987). Prikazan je položaj vrtine P-9k/92 in prereza A-B na Sl. 2. Fig. 2. Left: Geological cross-section A-B – adapted after BreziGar's (1987) profile 3-3'. Basic geological facts along the P-12o/92 are summarised from Veseli^ et al. (1993). Note the position of the lignite underlying sediments in the studied P-9k/92 borehole. Right: Representative litho-stratigraphic column of the Pliocene and post-Pliocene sedimentary fill of the Velenje Basin (after BreziGar, 1987). Sl. 2. Levo: Geoloki prerez A-B – prirejen po BreziGar-jevem (1987) profilu 3-3'. Podatki za globoko vrtino P-12o/92 so povzeti po Veseli^-u et al. (1993). Prikazan je položaj talninskih sedimentov pod lignitnim slojem v vrtini P-9k/92. Desno: Zna~ilni stratigrafski stolpec pliocenske in postpliocenske sedimentne zapolnitve Velenjskega bazena (po BreziGar-ju, 1987). PezDi^ et al. (1998), veBer (1999), vraBec (1999), vraBec et al. (1999), Bruch (in heMleBen, 2000), MarKi^ et al. (2001), Bechtel et al. (2003), veBer & Dervari^ (2004), MarKi^ (2006), and MarKi^ & sachsenhoFer (1997, 2010). Rock-mechanical methods of measurements, properties and modelling were introduced and studied by riBi^i^ (1985, 1987), ŽorŽ et al. (1984), Ko^ar et al. (1988, 1989), liKar (1995), PsaKhie et al. (2000, 2001), and zavšeK (2004). Basic questions concerning dewatering of different aquifers above and within the lignite seam have been mostly solved in the 1970s and 1980s (veseli^, 1985; veseli^ et al., 1993). Hydrogeochemistry and the origin of Fig. 3. Lithotype log of the lignite seam and contents of the main element oxides in the P-9k/92 borehole (MarKi^, 2006). The studied lignite underlying sediments at the depth of 560–580 m are marked as “floor”. Sl. 3. Litotipnost velenjskega lignitnega sloja in vsebnosti oksidov glavnih prvin v vrtini P-9k/92 (MarKi^, 2006). Talninski sedimenti, obravnavani v tem prispevku, so ozna~eni kot “floor”. groundwaters were studied by Mali & veseli^ (1989), while the monitoring of water drainage was summarised by FijavŽ (2002). zaPušeK & ho^evar (1998), PezDi^ et al. (1999), Žula et al. (2011), liKar et al. (2008), liKar & tajniK (2013) studied gas (mostly CO2) adsorption/desorption properties of different lignite lithotypes, whereas the chemical composition of the lignite gasses (sampled in the mine), their origin and dynamics were thoroughly analysed, described and interpreted (especially using stable isotopes) by KanDu^ & PezDi^ (2005), KanDu^ et al. (2003, 2011), lazar et al. (2014). Even though it has been carried out for a long time already, a systematic study in how to degasify the lignite seam more successfully has been intensified in the recent years (jaMniKar et al., 2015). Most recently, monitoring and modelling of gas dynamics during exploitation in the Velenje lignite seam has been studied and published by si et al. (2015a, 2015b). In their study, the Velenje lignite served as a general case for monitoring and modelling gas dynamics within ultra-thick coal seams during the mining process of multi­ level longwall top caving. The most recent hydrogeological study was about groundwater/ surface-water interaction based on geochemical and stable isotopic investigations (KanDu^ et. al., 2014). The aim of this paper is to present the results of petrological and mineralogical investigations of sediments that underlie the Velenje lignite seam in the P-9k/92 borehole (Fig. 3) located in the centre of the Velenje lignite-bearing Basin. This borehole was chosen because it is a key borehole in which the lignite has been thoroughly studied petrologically (MarKi^ & sachsenhoFer, 1997, 2010), geochemically (Bechtel et al., 2003; MarKi^, 2006), and in the very close vicinity (in P-11r/98 – see Figs. 1 and 2) also paleobotanically (Bruch – in heMleBen, 2000). Lithological, mineralogical, and geochemical investigations presented in this paper have been carried out by the first author of this paper in the frame of her B.Sc. Thesis work at the University of Ljubljana – Department of Geology (^eru, 2013). Before that, petrological characterisation of the lignite underlying sediments had not attracted any special interest. The reason was probably that the lignite underlying sediments (also termed “footwall” or “floor” sediments) were not problematic from the coal-mining point of view. It was only BreziGar (1987) who published that the footwall sediments consist of clays/claystones, coaly clays, silts/siltstones, sands/sandstones, and also of gravels at the base. The thickness of the entire sedimentary fill between the pre-Pliocene sediments and the lignite seam is from a couple of metres to 450 m, depending on the position within the basin and the tectonic displacement of the pre-Pliocene basement, respectively. The pre-Pliocene basement is composed of a wide spectrum of carbonate, siliciclastic, volcaniclastic and magmatic rocks, from Paleozoic to Miocene in age (Mio^ & Žnidar^i^, 1976; Mio^, 1978; BreziGar et al., 1988) (Figs. 1 and 2). These rocks gave the sedimentary material that filled the basin. The southern hinterland of the Velenje Basin is mostly built up of volcaniclastic deposits of prevailingly andesitic and subordinately dacitic composition (also known as the Oligocene andesitic tuff) of the Smrekovec Volcanic Complex (Kralj, 2013). Areas to the north of the basin are composed of Triassic limestones and dolostones (Mio^ & Žnidar^i^, 1976), and further to the north of the Oligocene tonalite of the Central Karavanke Mountains (FaninGer, 1976). The bottom part of the sedimentary fill is characterised by coarse clastics, which grade upwards into finer clastics, and finally to clayey silts/siltstones, organic matter-rich and coaly mudstones, mineral-rich lignite and lignite. Published information about mineralogical composition of the Velenje lignite underlying sediments is very scarce. In the overview study of non-metallic raw materials in the Šalek Valley only štern et al. (1988) described the so-called “white footwall clay”. It occurs in the northern periphery of the Velenje Basin above the “dolomite (Triassic) threshold”, where the lignite seam lies close to the carbonate basement. The clay – in fact silty clay – is of the illite-kaolinite type, composed mainly of quartz, muscovite/ illite, kaolinite, and feldspars. The thickness of the “white footwall clay” is variable, 12.7 m at most. According to štern et al. (1988) it could be used as a ball clay but it lies too deep underground to be economically exploitable. The “white clay” is not present in our studied profile because it is situated in the centre of the basin, quite far from the dolomite threshold. Studying coal’s underlying sediments in coal mines is in most cases primarily important from the rock-mechanical point of view because mine workings often run at least partially in such “coal’s footwall” strata. Among the rock-mechanical parameters, load capacity, strength, and possibility of swelling are the most crucial ones. They are primarily dependent on the degree of lithification, tectonic deformations, water content, and mineral composition. Montmorillonite- (Na, Ca, Mg clay-mineral) bearing clays are especially undesirable due to their expanding behaviour in the presence of water. In many cases of coal deposits, mudrocks are the predominant lithology of strata just below a coal seam. They most often represent a final stage of the fining upwards sequences which preceded the development of peat-forming environments. In the time of biomass deposition, coal underlying sediments influenced the geochemistry of the standing waters. The type and abundance of dissolved chemical elements, salinity, acidity (pH), the redox potential (Eh), and the activity of bio-organisms governed processes of either precipitation or leaching of special chemical elements or minerals as well as processes of biochemical transformations of the organic matter during the early peatification/coalification process, known as the biochemical stage of coalification (stach et al., 1982; Diessel, 1992; taylor et al., 1998). The topography just before the development of a peat-forming environment probably also governed the distribution of different types of biomass, e.g. wet versus dry forest swamps, bush moors, fens, moss and grass lands. The authors are aware that the extent of the studied sediments in the P-9k/92 borehole is quite small in relation to the whole complex of the lignite underlying sediments. However, number of archived samples (25) and the interval studied (the depth of 560–580 m), were the most optimal in relation to available samples from some other wells (P-12o/92, P-8z/92, and P-11r/98). Sampling and analytical methods Our study of the lignite underlying sediments from the Velenje P-9k/92 borehole is based on collection, macroscopic description, granulometry, optical microscopy of standard thin sections, X-ray diffraction (XRD) and geochemical analysis of 32 samples. They were collected from 21 core-samples, representing 0.2–2.0 m long intervals (Fig. 4, Tab. 1). Prior to the beginning of this research, the samples were archived for almost 20 years in PVC bags in the rock samples depository of the Geological Survey of Slovenia. Core samples 1–21 were treated as whole samples (if homogeneous), or divided into two or three sub-samples (if heterogeneous) and marked with “a”, “b”, and “c”. The types of analyses are given in Tab. 1. The chosen samples were macroscopically described and photographed (see results and Fig. 5). The 12 compact but not lithified samples which were easily split into smaller fragments by hand, then gently crushed in an agate mortar and/or disintegrated by drowning into water for 48 hours, were granulometrically analysed with the laser diffraction particle size analyser Analysette 22. The following groups of fractions were separated: <0.002 mm (clay), 0.002–0.063 mm (silt), 0.063–2 mm (sand), and >2 mm (gravel). Three of the 12 samples, which were coarse grained, were also manually dry sieved and separated into the following fractions: <0.125 mm, 0.125–0.25 mm, 0.25–0.5 mm, 0.5–1 mm, 1–2 mm, 2–4 mm, and > 4 mm. Well-lithified 7 samples were saw-cut (if visible, perpendicular to bedding) and prepared as thin sections for optic microscopy in transmitted light. Each sample was carefully petrographically described (^eru, 2013), while its mineral composition was defined semi-quantitatively. In this paper, specific lithologic types are outlined and presented as groups of samples. Representative mineral compositions are described in detail and presented as microphotos in Plates 1–5. For the XRD analysis, 23 samples were pulverised. Each sample weighted ca. 50 g. Pulverizing was done by milling in a Co/W ring mill. The XRD was carried out at the Department of Geology – University of Ljubljana on the PHILIPS PW3710 Difractometer at the voltage of 40 kV, electric current of 30 mA, and the CuK. wavelength of 1.54060 A. The X’Pert HighScore Plus programme and the PAN-ICSD data basis were used for the XRD qualitative estimation of the mineral composition. Identification of minerals was done according to BrinDley & Brown (1980) and Moore & reynolDs (1997). Fig. 4. Lithotype log and sampling of the lignite underlying sediments in the P-9k/92 borehole. Sl. 4. Litotipnost in vzor~enje talninskih sedimentov v vrtini P-9k/92. The same samples as for the XRD and one additional sample, all weighting ca. 10 g, were prepared also for geochemical analysis. Inductively coupled plasma/atomic emission spectrometry (ICP/AES) was used to determine the main oxides, whereas ICP/MS (mass spectrometry) was applied to determine trace elements. The total sulphur (Stot.) and the total and organic carbon (Ctot., Corg.) were determined with Leco. The difference between Ctot. and Corg. is considered as the inorganic carbon (Cinorg.). The loss on ignition (LOI) was determined on the basis of the weight loss Table 1. Types of analyses of 32 samples from the lignite underlying sediments in the P-9k/92 borehole. Samples are from 21 depth intervals, which are 0.2 to 2.0 m long. Shaded are lignite samples, which were described only macroscopically. Tabela 1. Vrste analiz 32-ih vzorcev iz 21 globinskih intervalov talninskih sedimentov v vrtini P-9k/92. Dolžina intervalov 0,2–2,0 m. Osen~eni so vzorci lignita, opisani le makroskopsko. Sample Depth (m) Macroscopic description Granulometry Optical microscopy Geochemical analysis XRD analysis 21 563.00 - 562.60 x x x 20 563.50 - 563.15 x x x x 19b 19a 564.00 - 563.60 564.00 - 563.60 x x x x x x x 18 565.00 - 564.35 x x x x 17 565.30 - 565.10 x x x x 16 565.50 - 565.30 x x x x 15 565.80 - 565.50 x 14b 14a 566.00 - 565.80 566.00 - 565.80 x x x x x x 13 567.35 - 566.00 x x x 12 569.00 - 567.35 x x x 11b 11a 570.75 - 569.00 570.75 - 569.00 x x x x 10b 10a 571.75 - 570.75 571.75 - 570.75 x x x x x 9 573.95 - 571.95 x x x 8b 8a 575.85 - 573.95 575.85 - 573.95 x x x x x 7 576.05 - 575.85 x 6 577.00 - 576.05 x x x x 5b 5a 577.95 - 577.00 577.95 - 577.00 x x x x x x x x 4b 4a 578.55 - 577.95 578.55 - 577.95 x x x x x x 3b 3a 578.85 - 578.65 578.85 - 578.65 x x x x x 2b 2a 579.50 - 578.90 579.50 - 578.90 x x x x x x 1c 1b 1a 580.00 - 579.50 580.00 - 579.50 580.00 - 579.50 x x x x x x x x x x x x on heating at 1000 °C for 1 hour. Geochemical analysis was done in the ACME Laboratories in Vancouver (Canada) according to their well-established procedures (Acme Labs Schedule & Fees, 2012 – Groups 4A and 4B, and 2A for Leco). Results and discussion Macroscopic description The macroscopic appearance of the main lithologic varieties from the lignite underlying sediments in the Velenje P-9k/92 borehole is presented with photographs in Fig. 5. Photos 1–4 (samples 1c, 6, 9, 17 – see Fig. 4 for position) represent compact clayey silts. The most compacted is sample 9 (photo 3), but we did not succeed in preparing a thin section of it. However, it was also too lithified to be disintegrated for granulometric measurements, as we did with the other three samples (1c, 6, 17). Photo 5 (sample 10a) shows siderite (cut view at the bottom) covered with geloxylite (surface view), and photo 6 (sample 2b) is siderite concretion within sandstone. Very similar to sample 2b is sample 4a. Photo 7 (sample 1a) is a gravelly sandstone. It was sawn through and a thin section was prepared. Photos 8, 9 and 10 (samples 5a, 18 and 16) show compact silty sands (samples 5a and 16) and a gravelly sand (sample 18). All three samples were disintegrated in water and granulometrically analysed both by dry sieving and the laser analyser. Photos 11 and 12 (samples 19b and 20) both show lithified slightly gravelly sandstone composed of quartz, feldspars and clay (kaolinite). The sandstone is calcite-cemented. It reacts with diluted HCl. Fig. 5. Photographs of characteristic lithologic varieties: Photos 1–4 (samples 1c, 6, 9, 17): compact clayey silts; Photo 5 (sample 10a): siderite coated with geloxylite; Photo 6 (sample 2b): siderite concretion within sandstone; Photo 7 (sample 1a): gravelly sandstone; Photos 8, 9, 10 (samples 5a, 18 and 16): compact silty sands (photos 8 and 10) and a gravelly sand (photo 9); Photos 11 and 12 (samples 19b and 20): lithified slightly gravelly calcite-cemented quartz sandstones. Sl. 5. Fotografije zna~ilnih litolokih razli~kov: Foto 1–4 (vzorci 1c, 6, 9, 17): kompaktni glinasti melji; Foto 5 (vzorec 10a): siderit, obdan z geloksilitom; Foto 6 (vzorec 2b): sideritna konkrecija v pe~enjaku; Foto 7 (vzorec 1a): prodnato-gru~nati pe~enjak; Foto 8, 9, 10 (vzorci 5a, 18, 16): kompaktni meljasti pesek (foto 8 in 10) in prodnato-gru~nati pesek (foto 9); Foto 11 in 12 (vzorca 19b in 20): litificiran prodnato-gru~nati kremenov pe~enjak s kalcitnim vezivom. Concerning the term “sediments” as used in this paper for the “lignite underlying sediments” we suggest to the reader to keep in mind that we are discussing about Neogene lithology, which is mostly considered to be composed of sediments, not sedimentary rocks. In the broad literature, as well as colloquially, we normally encounter to terms such as “Tertiary sediments”, “Neogene sediments”, “sediments of the Pannonian Basin” etc. The reason for the term “sediments” in these cases is the fact that the Neogene lithologies are generally not yet “totally” cemented and lithified as are “true sedimentary rocks” from Mesozoic and older geological formations, for example. Strictly speaking, the term “sediment” is restricted only to designation of a loose material, e.g. clay, silt, sand, Table 2. Granulometric composition of samples which were easily disintegrated. Siltstone samples 1c–17 are listed from the lower to the upper part of the lithologic column in Fig. 4. Tabela 2. Granulometri~na sestava kompaktnih vzorcev, ki jih je bilo mogo~e z lahkoto dezintegrirati. Vzorci meljevcev 1c-17 so navedeni po litolokem stolpcu (sl. 4) od spodaj navzgor. Sample CLAY SILT SAND GRAVEL Particle size distribution classification Sedi­mentname <2 µm 2-63 µm 63 µm-2 mm >2 mm (%) (%) (%) (%) 17 13.82 85.53 0.65 0 slightly clayey silt 14b 6.57 92.09 1.34 0 very slightly sandy slightly clayey silt 14a 18.42 81.41 0.17 0 slightly clayey silt S 8b 14.76 85.24 0 0 slightly clayey silt L T 6 14.36 84.52 1.12 0 very slightly sandy slightly clayey silt S I 5b 12.63 85.97 1.40 0 very slightly sandy slightly clayey silt Clayey 4b 14.84 84.64 0.52 0 slightly clayey silt 3a 16.22 83.78 0 0 slightly clayey silt 1c 27.20 71.21 1.59 0 very slightly sandy clayey silt 18 1.86 23.79 51.69 22.66 gravelly silty sand S 16 1.82 28.11 69.40 0.67 very slightly clayey silty sand Silty/grav.SAND 5a 5.09 36.32 57.79 0.80 slightly clayey silty sand or gravel. When loaded under succeeding sediments, losing air and water, and becoming less porous, “sediment” transforms to a “compact material”. If such “compact materials” can still be disintegrated in a laboratory by hand, by gentle crushing (with no fracturing of mineral grains), and/or finally by drowning in water for some tens of hours, we can still call such materials “sediments”. Therefore, we apply the term “sediments” to all materials which were granulometrically investigated by dry sieving or by the laser diffraction method, whereas we use “-stones” for materials from which we were able to prepare thin sections. The materials in between, which could neither be sieved nor thinly sliced, we arbitrarily designate as a “sediment/-stone”, e.g. silt/siltstone etc. Granulometry As already mentioned, granulometry was carried out on samples of compact but not yet cemented and well-lithified sedimentary materials. Results are given in Tab. 2. In the set of samples 1c to 17, the silty fraction highly predominates with a share of more than 80 %. The sandy fraction is negligible, it is below 2 %. The clayey fraction is below 20 %. The only exception is sample 1c with 27 % of the clay fraction. In general, all samples from 1 to 17 in Tab. 2 are clayey silts. Samples 5a and 16 are silty sands with negligible (<5 %) clay and gravel fractions. Sample 18 contains a considerable gravel fraction (23 %). It was not the only gravelly sample in the whole suite, but other gravelly samples were more lithified, thus not suitable for the sieving analysis, but for preparing thin sections. In the gravelly fraction, rounded and angular grains are distinguished, the first termed as “pebbles” and the second as “rubbles”. If only grain size is discussed, both extreme grain shapes are unified under the term “gravel”. Granulometric composition of the sediments in Tab. 2 is additionally presented in triangular diagrams in Figs. 6 and 7. A large proportion of silt, clay and organic matter indicates a dominantly low-energy depositional environment. Furthermore, on the basis of low sorting and asymmetric grain-size distributions (^eru, 2013, p. 83) a short transport of these sediments can be presumed. On the other hand, coarse-grained sedimentary rocks reflect intense events and increased fluvial input of terrigenous material from the south and also from the north into the sedimentary basin. Geochemistry In this paper we take into consideration only the bulk geochemical analysis, which includes the determination of oxides of the main rock-forming elements such as Si, Al, Fe, Mg, Ca, Na, and K, plus Loss on Ignition (LOI), Ctot. and Corg. The results of the geochemical analysis are presented in Tab. 3 in which samples are grouped according to their main outstanding geochemical characteristics, that is: samples with increased Fe2O3 contents, increased CaO contents, increased SiO2 + Al2O3 contents, and samples with outstanding organic matter content. Fig. 6. Triangular diagram Sand-Silt-Clay (after Blott & Pye, 2012) showing a predominance of the clayey silt composition of the granulometrically investigated samples. Two samples are silty sand. Sl. 6. Trikotni diagram pesek–melj–glina (po Blott & Pye, 2012) za granulometri~no preiskane vzorce. Ve~ina vzorcev je glinasti melj, dva pa sta meljasti pesek. Fig. 7. Triangular diagram Mud-Sand-Gravel (after Blott & Pye, 2012) showing the granulometric composition of sample 18, which is gravelly muddy sand. Sl. 7. Trikotni diagram mulj-pesek-prod prikazuje (po Blott & Pye, 2012) sestavo vzorca 18, ki je prodnato muljasti pesek. Table 3. Basic (main elements) geochemical analysis of investigated sediments in the lignite underlying sediments of the P-9k/92 borehole, and geochemically distinguished groups of samples. Tabela 3. Osnovna geokemi~na analiza preiskanih vzorcev talninskih sedimentov pod lignitnim slojem v vrtini P-9k/92 in geokemi~no lo~ljive skupine vzorcev. Sample SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O LOI Ctot Corg Groups of samples % % % % % % % % % % 1a 49.2 8.6 19.3 0.3 0.6 1.4 1.3 18.8 0.2 1b 2b 52.8 11.7 10.4 3.2 15.6 48.7 1.1 0.7 1.8 3.6 1.2 0.3 1.6 0.4 14.6 29.2 3.8 9.3 1.4 HighFe 2 O 3 4b 35.8 12.2 20.3 2.0 3.3 0.4 1.5 23.6 7.1 3.7 10a 4.9 2.8 49.2 1.4 4.3 0.1 0.4 35.5 12.1 5.6 19a 19b 20 15.0 51.4 52.1 5.4 9.3 9.3 6.5 0.8 0.7 0.8 0.5 0.5 35.7 17.6 17.1 0.1 1.2 1.2 0.7 1.9 1.9 34.6 16.7 16.6 11.1 4.1 4.1 HighCaO 1c 56.8 22.3 1.9 1.3 0.3 0.5 3.0 12.8 1.9 3a 50.1 22.4 2.5 1.4 0.4 0.5 2.9 18.8 4.5 4.4 5a 61.6 17.7 2.6 1.0 0.5 0.8 2.1 12.5 2.3 5b 71.4 14.6 1.7 0.5 0.3 1.3 1.9 7.3 0.6 6 8b 9 56.6 57.7 46.2 21.8 20.7 21.6 2.1 1.8 1.7 1.1 1.0 1.2 0.4 0.9 0.5 0.5 0.4 0.4 2.5 2.6 3.1 13.9 13.8 24.2 2.5 2.8 9.2 9.2 PrevailingSiO2 + Al2 O 3 14b 50.3 23.2 1.7 1.2 0.4 0.3 3.0 18.7 4.9 16 66.8 14.8 1.9 0.2 0.1 0.3 3.6 11.5 1.4 17 50.4 20.6 2.8 1.0 0.4 0.3 2.6 20.7 5.2 18 71.3 15.4 1.1 0.3 0.4 1.5 3.3 6.0 0.2 21 11b 12 13 38.1 32.8 17.9 21.3 14.7 16.7 8.5 11.3 3.9 5.1 2.7 1.5 0.9 1.1 0.7 0.9 0.7 1.1 0.9 1.0 0.4 0.3 0.3 0.3 2.0 2.2 1.0 1.3 38.5 39.4 64.0 58.1 14.1 17.9 30.3 29.1 14.1 17.9 30.3 29.0 HighLOI andCCorg =Ctot It is evident from the data in Tab. 3 that most samples (1c–18) belong to SiO2 + Al2O3 rich sediments, composed mainly of quartz and kaolinite. The composition of organic matter-rich sediments with outstanding LOI ( 40–65 %) and Corg. ( 15–30 %) can be considered as a normally expected composition of sediments under a lignite (or coal) accumulation. In coal-bearing sequences, the content of organic matter often starts to increase already in the under-coal strata. It correlates more or less tightly with fining upwards trend in the grain size of the clastic sediments. The intervals (samples) with increased Fe2O3 content, remarkable Cinorg. content and low S content indicate siderite. Siderite (FeCO3) forms in more oxidative conditions than pyrite or marcasite (FeS2). It is highly probable that environmental conditions were more oxidative in pre-peat (lignite) forming environments than later in the true swamp environment. More oxidative conditions in presence of siderite have also been confirmed with the cerium (Ce) anomaly (^eru, 2013). CaO-rich samples are typically from the upper-most part of the investigated profile. CaO enrichment shows an influence of carbonate-enriched inflowing waters. The carbonate influence was also one of the key factors during the peat-to­lignite diagenesis of the Velenje lignite (MarKi^, 2006; MarKi^ & sachsenhoFer, 2010). Mineral composition as studied with XRD analysis of powdered samples The qualitative mineral composition of the majority of samples (23; without lignite) was interpreted using the XRD method on pulverised samples. The mineral composition and textures were studied supplementary with conventional optical microscopy, the results of which are presented in a separate chapter. The collected diffractograms of the XRD analysis are given in Fig. 8. The obtained mineral composition of samples is presented in Tab. 4. The interpreted diffractograms revealed the presence of the following 9 minerals: quartz (Qz), feldspars (Fsp), kaolinite (Kln), gypsum (Gp), siderite (Sd), muscovite/illite (Ms/Ilt), marcasite (Mrc), calcite (Cal), pyrite (Py). Quartz is present in all samples with the most characteristic diffraction pattern at the d-spacing value of 3.34 A (Moore & reynolDs, 1997). In general, quartz is mostly of terrigenous origin and is brought by a river or wind transport into a depositional basin (taylor et al., 1998; renton, 1982). Feldspars, predominantly occurring in coarse-grained sediments, are also of terrigenous origin. Their presence is the result of occurrences of lithic grains. Microscopic observations confirmed the presence of both plagioclases and K-feldspars. Clay minerals also represent a terrigenous material as a result of weathering of silicates such as feldspars and mica and as a result of alteration of volcanic rocks, respectively. On the other hand, they could also have been formed authigenically, i.e. chemically within a sedimentary basin (warD, 1989; taylor et al., 1998). In most coals, for instance, clay minerals form the most common constituents of the mineral matter (GlusKoter et al., 1981; taylor et al., 1998; velDe, 1995; warD, 2002), among which kaolinite and illite are the most abundant (renton, 1982; warD, 2002). Only these two clay minerals were determined by the XRD analysis in our study in almost all samples. Muscovite/illite was determined by the most characteristic diffraction peak at the d-spacing values of 9.9–10.1 A (BrinDley & Brown, 1980). Muscovite/Illite was recognised in most of the samples, except in coarse-grained sediments, siderite concretions and sedimentary rocks with calcite. Muscovite and illite were not distinguished by the XRD, so the tag muscovite/illite is used in the results. Only small amounts of muscovite mineral within coarse-grained sediments were recognised under optical microscope; therefore we assume that almost all samples contain higher amounts of illite, especially fine-grained samples. Kaolinite was determined on the basis of the characteristic diffraction from the basal plane (001) at 7.15 A (BrinDley & Brown, 1980). Kaolinite occurs in significant amounts in all samples, except in the siderite concretions and limestone. Fine-grained clastics are made up of quartz, kaolinite and muscovite/illite. A few samples also contain small amounts of gypsum. Marcasite was determined only in a sample 1a (gravelly sandstone) by the XRD and microscope, where it represents an authigenic mineral. A small amount of pyrite was recognised only in sample 19a (limestone). Thin section petrography showed that sample 20 (lithic feldspar quartz sandstone) also includes small amounts of framboidal pyrite, which is partly replaced by Fe-hydroxides. Calcite was determined only in three samples in the upper part of the profile (limestone and gravelly sandstones). Siderite and calcite were determined by the XRD and also by optical microscopy. Siderite occurs in sandstones (three samples) and in a clayey silt (one sample). It can only be formed if the activity Table 4. Qualitative mineral composition of 23 samples determined by the XRD and lithologic names defined by macroscopic observation, granulometry and optical microscopy. At the sample numbers, abbreviation “Mic” means that the sample was also investigated microscopically, and “Gr” means that it was also analysed granulometrically. All samples were analysed geochemically. Tabela 4. Kvalitativna mineralna sestava 23 vzorcev, dolo~ena z rentgensko prakovno difrakcijo ter litoloka imena, dolo~ena makroskopsko ter na podlagi granulometri~ne analize in opti~ne mikroskopije. Kratica »Mic« pomeni, da je bil vzorec preiskan tudi mikroskopsko, kratica »Gr« pa da tudi granulometri~no. Vsi vzorci so bili preiskani geokemi~no. Sample Depth (m) Lithologic name MINERAL COMPOSITION DETERMINED BY XRD ANALYSIS quartz(Qz) feldspar(Fsp) kaolinite(Kln) gypsum(Gp) siderite(Sd) musco­vite/illite(Ms/Ilt) marcasite(Mrc) calcite(Cal) pyrite(Py) 21 563.00 - 562.60 silt/siltstone x x x x x 20 (Mic) 563.50 - 563.15 slightly gravelly sandstone x x x x 19b 564.00 - 563.60 slightly gravelly sandstone x x x x 19a (Mic) 564.00 - 563.60 limestone x x x 18 (Gr) 565.00 - 564.35 gravelly muddy sand x x x x 17 (Gr) 565.30 - 565.10 slightly clayey silt x x x x 16 (Gr) 565.50 - 565.30 very slightly clayey silty sand x x x x 14b (Gr) 566.00 - 565.80 very slightly sandy slightly clayey silt x x x 13 567.35 - 566.00 xylite x x x x 12 569.00 - 567.35 slightly sandy silt/siltstone x x x x 11b 570.75 - 569.00 slightly sandy silt/siltstone x x x 10a (Mic) 571.75 - 570.75 siderite concretion x x 9 573.95 - 571.95 silt/siltstone x x x 8b (Gr) 575.85 - 573.95 slightly clayey silt x x x 6 (Gr) 577.00 - 576.05 very slightly sandy slightly clayey silt x x x 5b (Gr) 577.95 - 577.00 very slightly sandy slightly clayey silt x x x x 5a (Gr) 577.95 - 577.00 slightly clayey silty sand x x x x 4b (Gr) 578.55 - 577.95 slightly clayey silt x x x x 3a (Gr) 578.85 - 578.65 slightly clayey silt x x x x 2b (Mic) 579.50 - 578.90 siderite concretion within sandstone x x 1c (Gr) 580.00 - 579.50 very slightly sandy clayey silt x x x 1b (Mic) 580.00 - 579.50 slightly gravelly muddy sandstone x x x x 1a (Mic) 580.00 - 579.50 slightly gravelly sandstone x x x x Twinned plagioclase and K-feldspar were determined, which are strongly sericitised. As in sample 1a, volcanic rock fragments (Pl. 3, fig. 4) prevail over plutonic ones also in sample 1b. Low- grade metamorphic rock fragments occur sparsely (Pl. 3, figs. 3a, 3b). Chert fragments are infrequent. Some grains of amphiboles (Pl. 3, figs. 2a, 2b) and biotite are replaced by chlorite as an alteration product. Very small amounts of calcite grains are also present. Brownish-coloured areas with high birefringence are mostly authigenic interstitial and also corrosive siderite cement, which is partly limonitised. Calcite-rich sedimentary rocks (samples 19a and 20) Calcite-rich rocks, reacting with a diluted HCl, appear only in the upper part of the observed profile (Fig. 4). Sample 19a represents a limestone with fragments of carbonised plant remains. Pore spaces are filled with sparite cement. Subrounded monocrystalline quartz grains with mean grain size 0.06–0.1 mm dominate, while lithic grains of igneous origin are sparser (Pl. 4, fig.6). Sample 20 was determined as a slightly pebbly to rubbly lithic feldspar quartz sandstone. It has a clastic texture (Pl. 5, figs. 1a, 1b) and consists of about 50 % terrigenous grains of various sizes (0.02–3 mm). The most common are monocrystalline quartz grains of 0.02–0.2 mm in size, grains of polycrystalline quartz also occur (Pl. 5, fig. 3). Feldspars belong to plagioclase and K-feldspar. Most of them are generally sericitised or/and kaolinised and 0.035–1.4 mm in size. Lithic grains are the least abundant; fragments of igneous rocks dominate among them. The Altered volcanic lithic grains with phenocrysts of plagioclase laths in microcrystalline matrix are the most common (Pl. 5, figs. 4, 7). Felsic plutonic rock fragments with holocrystalline texture (Pl. 5, fig. 5) and aplite with granophyric texture also occur (Pl. 5, fig.6). In addition to igneous lithic grains the sandstone also contains rock fragments of metamorphic and sedimentary origin. Grains of cherts and quartz sandstones (Pl. 5, fig. 2) 0.4–1.3 mm were determined. Flakes of muscovite and grains of framboidal pyrite are very rare. The cement is sparry calcite, which occurs mainly as interstitial and in some places as corrosive and radiaxial fibrous cement. Some grains contain micro-cracks filled with sparry calcite cement. Siderite-rich concretions (samples 2b, 4a, 10a) Siderite also occurs in the investigated samples in the form of siderite-rich concretions. Its origin is well known as authigenic, formed in low oxidative environments, but still somewhat higher in oxygen supply than in the case of pyrite formation. A slightly higher (oxygen providing) energy level of the environment is mostly interpreted when siderite occurs in the sediment instead of pyrite/ marcasite, for example. Organic matter can also be well preserved in the Eh conditions of the siderite formation. In our case concentrations of siderite still contain small amounts of quartz (samples 2b and 4a) or they are almost clean siderite (sample 10a). The most pure siderite sample 10a contains only very few quartz and lithic grains. It is covered by geloxylite (Fig. 5/5). A microscopic view of the siderite-geloxylite contact is shown in Pl. 4, fig.5. A thin section of sample 2b was made from a siderite concretion within a slightly pebbly to rubbly sandstone. Quartz grains of two size classes (0.06–0.1 mm and 0.14– 0.2 mm) predominate over lithic grains among terrigenous components (Pl. 4, figs. 1a, 1b). Lithic grains (mean grain size 2–3 mm) of volcanic and plutonic igneous rocks prevail over chert and metamorphic lithic grains (Pl. 4, fig. 2). Flakes of muscovite are very rare and their sizes reach up to 0.1 mm. Sample 4a contains 10 % terrigenous component, 85 % siderite and 5 % pores. The terrigenous component in the siderite concretion is mainly composed of monocrystalline quartz grains (Pl. 4, figs. 4a, 4b) in addition to minor amounts of lithic grains. Rock fragments of volcanic origin with porphyritic texture predominate, while grains of cherts (Pl. 4, fig. 3) are very rare. Lithic grains are commonly altered and partly replaced by siderite and Fe-hydroxides, which also occur as interstitial minerals. Rare small grains of framboidal pyrite were also recognised. Conclusions Granulometrical, geochemical and mineralogical characterisation of sediments that underlie the Velenje lignite seam in the locality of the P-9k/92 borehole (central part of the Velenje Basin) has been carried out on a suite of 32 samples from 21 depth intervals. In spite of a relatively restricted extent of the investigated strata (only 20 m) we suppose that the study answered several questions and represents a good guide for eventual further investigations. Our work can be summarised in conclusions as follows: The Velenje lignite underlying strata of the Pliocene age are heterogeneous by their granulometrical, chemical and mineral composition. Clastic grains vary from well-rounded to angular. The sedimentary material as a whole varies from almost non-lithified (easy to be disintegrated) material, termed “sediment” (e.g. silt), to well­lithified (cemented) material termed with the ending “-stone” – e.g. “siltstone”. Non-lithified sediments were easily disintegrated and sieved for the grain size analysis, whereas lithified “stones” were suitable for preparation of thin sections. Clayey silts and siltstones predominate in the investigated profile. They indicate a prevailingly low energy level of the depositional environment. Sands and sandstones with admixtures of the gravelly fraction occur subordinately. They indicate sporadic water influxes of a higher energy level. Low roundness and angularity of terrigenous lithic grains, low sorting and asymmetric grain-size distributions show that the transport distances of deposited materials were short. Both the XRD analysis and the optical microscopy have shown that the mineral composition of fine-grained clastics is different from the mineral composition of coarse-grained clastics. It is also different in the lower part of the profile in comparison to the upper part. Fine-grained clastics are mainly composed of quartz grains bound by kaolinite matrix, whereas coarse-grained clastics also contain lithic grains, which are mostly angular. The later indicate a relatively short distance from the erosion site to the depositional basin. Cementitious minerals in well-lithified lithologic varieties are calcite, siderite and marcasite. The composition of the lower investigated strata with abundant lithic grains of andesitic volcanic rocks indicates an inflow of eroded sedimentary material mainly from the south. At the same time lithic grains of magmatic and metamorphic rocks indicate inflow of eroded material from the Železna Kapla (Eisen Kappel) – the Karavanke magmatic zone, i.e. from the north. The increased Ca-content in the upper part of the sedimentary succession indicates the influence of carbonate-rich waters inflowing from the northern terrains composed of Triassic limestones and dolostones. Carbonate waters from the north therefore became geochemically decisive toward the end of the pre-peat forming clastic infilling of the Velenje intermontane basin. Ca-HCO3 type of water and consequential alkalinity governed the diagenetic processes throughout the development of the peat-lignite formation. Well-lithified clastic samples are sandstones, whereas poorly lithified clastics are mostly clayey silts with a negligible sandy fraction. This indicates that cementation was stronger in the case of coarse clastics than in the case of fine-grained clastics. Siderite forms cement and concretions. Pyrite/ marcasite occurs more rarely than siderite. Siderite indicates somewhat more oxidative conditions than pyrite. Both siderite and pyrite indicate low Eh environments caused by the presence of a considerable amount of decaying organic matter. The observed incrustations of geloxylite (coalified wood) over siderite and xylitic remnants in siderite concretions support this statement. Gypsum was detected in some samples. It is most possibly a result of the oxidation of pyrite/ marcasite in the presence of Ca and organic matter. A detailed provenance of the sedimentary material that filled up the Velenje Basin prior to the establishment of the peat-forming environment still remains quite an open question and challenge for further research. A profound knowledge of geology and petrology of the wider area (the Savinja Alps, Smrekovec, Karavanke and Pohorje Mts) is necessary to solve such questions. Considerable knowledge already exists from the past and recent times. Our will is that it will be continued with further investigations. Referring to our study, the questions that remain especially interesting touch upon temporal dynamics and influx directions of the sedimentary material, as well as the roles of tectonics and climate as initial and controlling factors of sedimentary processes in the broader realm of the Velenje Basin. Acknowledgements The authors are sincerely thankful to the two reviewers of the manuscript for this paper, Dr. Mirka Trajanova and Assist. Prof. Dragomir Skaberne. They contributed numerous very valuable suggestions and comments how to improve the final version of the paper. We also highly appreciate the reading of the text by Mrs. Kaja Bucik Vavpeti~, who made our English language considerably better. Our further thanks go to Mrs. Bernarda Bole for editing, and, finally, to Prof. Breda Mirti~ (University of Ljubljana), who initially gathered the authors some years ago to do this study. The presented research was financed by the Slovenian Research Agency (ARRS) – Research Programmes P1-0011 (Regional geology), P1-0195 (Geochemical and structural processes), and P1-0025 (Mineral resources). References Bechtel, a., sachsenhoFer, r. F., MarKi^, M., Gratzer, r., lücKe, a. & PüttMann, w. 2003: Paleoenvironmental implications from biomarker and stable isotope investigations on the Pliocene Velenje lignite seam (Slovenia). Org. Geochem., 34: 1277–1298, doi:10.1016/ S0146-6380(03)00114-1. Blott, s. j. & Pye, K. 2012: Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology, 59: 2071–2096, doi:10.1111/j.1365-3091.2012.01335.x. BreziGar, a. 1987: Premogova plast Rudnika lignita Velenje. Geologija, 28/29: 319–336. BreziGar, a., Kosi, G., vrhov{eK, D. & velKovrh, F. 1987: Paleontolo{ke raziskave pliokvartarne skladovnice velenjske udorine. Geologija, 28/29: 93–119. BreziGar, a., oGorelec, B., rijavec, l. & Mio^, P. 1988: Geolo{ka zgradba predpliocenske podlage Velenjske udorine in okolice. Geologija, 30: 31– 65. PLATE 1 - TABLA 1 All thin sections viewed under plane polarised light. Vsi zbruski opazovani v presevni polarizirani svetlobi. Sample 1a (Feldspar quartz lithic sandstone with marcasite cement) Vzorec 1a (glinen~evo-kremenov liti~ni pe{~enjak z markazitnim cementom) Fig. 1. Lithic grain of low-grade metamorphic rock with mica flakes and quartz grains. The opaque mineral, filling the space between grains, is authigenic marcasite cement. Crossed polars, scale bar 500 µm. Sl. 1. Liti~no zrno nizko metamorfne kamnine z zrni sljude in kremena. Nepreseven mineral, ki zapolnjuje medzrnski prostor, je avtigeno izlo~en markazitni cement. Navzkrižni nikoli, merilo 500 µm. Fig. 2. Lithic grain of altered volcanic rock. Small laths of plagioclase in microcrystalline matrix on the right part of the lithic grain show intersertal texture. The left side of the black line separates the quartz vein which is visible within the lithic grain. Crossed polars, scale bar 100 µm. Sl. 2. Spremenjeno liti~no zrno predornine. Podolgovati preseki plagioklazov v drobno kristaljeni do steklasti kažejo zna~ilno intersertalno strukturo. Leva stran ~rne ~rte lo~i kremenovo žilico znotraj liti~nega zrna. Navzkrižni nikoli, merilo 100 µm. Fig. 3a. Polycrystalline quartz grain (Qz) and altered orthoclase grain (Or). Parallel polars, scale bar 500 µm. Sl. 3a. Zrno polikristalnega kremena (Qz) in spremenjeno zrno ortoklaza (Or). Vzporedni nikoli, merilo 500 µm. Fig. 3b. The same as fig. 3a. Polycrystalline quartz grain. Crossed polars, scale bar 500 µm. Sl. 3b. Isto kot sl. 3a. Zrno polikristalnega kremena. Navzkrižni nikoli, merilo 500 µm. Fig. 4. Weathered lithic grain of quartz sandstone. Crossed polars, scale bar 500 µm. Sl. 4. Preperelo liti~no zrno kremenovega pe{~enjaka. Navzkrižni nikoli, merilo 500 µm. Fig. 5. Lithic grains (Lg1 and Lg2). Lg1 belongs to the chert. Crossed polars, scale bar 500 µm. Sl. 5. Liti~ni zrni (Lg1 in Lg2). Liti~no zrno Lg1 pripada rožencu. Navzkrižni nikoli, merilo 500 µm. Fig 6a. Altered volcanic rock fragment. Matrix is partly replaced by corrosive marcasite cement. Parallel polars, scale bar 100 µm. Sl. 6a. Spremenjeno liti~no zrno predornine. Korozivni markazitni cement mestoma nadome{~a osnovo liti~nega zrna. Vzporedni nikoli, merilo 100 µm. Fig. 6b. Hyalophitic texture is visible on the left part of the lithic grain and oriented plagioclase laths on the right show trachytic texture in altered volcanic (intermediate-mafic) rock. Crossed polars, scale bar 100 µm. Sl. 6b. Na levi strani liti~nega zrna je vidna hialofitska struktura, ki prehaja v trahitsko z usmerjenimi pali~astimi plagioklazi v spremenjeni predornini (srednje do bazi~ni sestave). Navzkrižni nikoli, merilo 100 µm. PLATE 1 - TABLA 1 PLATE 2 - TABLA 2 Fig. 1a. Pores filled by marcasite (Mrc) and chlorite group mineral, and brown-colored Fe-oxy-hydroxides (Fe-hy). Parallel polars, scale bar 100 µm. Sl. 1a. Z markazitom (Mrc) in mineralom iz kloritne skupine zapolnjene pore ter rjavo obarvani minerali Fe-oksidov in hidroksidov (Fe-hy). Vzporedni nikoli, merilo 100 µm. Fig. 1b. The same motif as in Fig. 1a. Interference colours of chlorite group mineral (Chl), which occur together with marcasite as interstitial cement. Crossed polars, scale bar 100 µm. Sl. 1b. Isti motiv kot na sl. 1a. Interferen~ne barve minerala kloritove skupine (Chl), ki skupaj z markazitom nastopa kot porna cementna zapolnitev med zrni. Navzkrižni nikoli, merilo 100 µm. Fig. 2. Lithic grain of volcanic rock with visible contact (white line) between the different granularities plagioclase phenocrysts. The bigger twinned grain may belongs to sanidine (Sa?). Crossed polars, scale bar 500 µm. Sl. 2. Liti~no zrno z vidnim prehodom (bela linija) razli~ne velikosti vtro{nikov plagioklazov. Ve~je dvoj~i~no zrno lahko pripada sanidinu (Sa?). Navzkrižni nikoli, merilo 500 µm. Fig. 3. Lithic grain of probably felsic volcanic rock with plagioclase phenocrysts in microcrystalline­ cryptocrystalline matrix. Crossed polars, scale bar 1mm. Sl. 3. Liti~no zrno najverjetneje kisle predornine z vtro{niki plagioklazov v mikrokristalni-kriptokristalni osnovi. Navzkrižni nikoli, merilo 1mm. Fig. 4. Nests of opaque mineral marcasite. Parallel polars, scale bar 100 µm. Sl. 4. Gnezda markazita. Vzporedni nikoli, merilo 100 µm. Fig. 5. Chalcedony with radially oriented quartz fibers. Crossed polars, scale bar 100 µm. Sl. 5. Kalcedon z radialno žarkovito strukturo. Navzkrižni nikoli, merilo 100 µm. Fig. 6a. Lithic grain (Lg) of low-grade metamorphic rock. Marcasite cement forms the interstitial and also the corrosive cement (visible in the frame). Grain of plagioclase (Pl) occurs at the lower margin. Parallel polars, scale bar 500 µm. Sl. 6a. Liti~no zrno nizko metamorfne kamnine. Markazitni cement se pojavlja v dveh oblikah, kot porni in korozivni cement (viden v ozna~enem kvadratu). Manj{e zrno plagioklaza na spodnjem robu slike (Pl). Vzporedni nikoli, merilo 500 µm. Fig. 6b. The same as Fig. 6a. Sericite, chlorite and a plagioclase grain (Pl) can be seen. Crossed polars, scale bar 500 µm. Sl. 6b. Isto kot sl. 6a. Vidni so listki sljude, klorit in zrno plagioklaza (Pl). Navzkrižni nikoli, merilo 500 µm. PLATE 2 - TABLA 2 PLATE 3 - TABLA 3 Sample 1b (Quartz lithic sandstone with siderite cement) Vzorec 1b (kremenovo-liti~ni pe{~enjak s sideritnim cementom) Fig. 1a. Grains of subangular quartz (Qz), rounded lithic grains (Lg) and fragments of carbonised plant residues in sandstone. Parallel polars, scale bar 1 mm. Sl. 1a. Pe{~enjak z zrni kremena (Qz) in drobci razli~nih kamnin (Lg) ter fragmenti pooglenelih rastlinskih ostankov. Zrna kremena so pologlata, medtem ko so drobci kamnin zaobljeni. Vzporedni nikoli, merilo 1mm. Fig. 1b. Most of the lithic grains in sandstone with authigenic siderite cement belongs to both, volcanic and plutonic rocks. Crossed polars, scale bar 1 mm. Sl. 1b. Ve~ina liti~nih zrn v pe{~enjaku z avtigenim sideritnim cementom pripada magmatskim kamninam, tako predorninam kot globo~ninam. Navzkrižni nikoli, merilo 1mm. Fig. 2a. Grain of some altered (chloritized) mafic mineral, most probably belonging to the amphibole group (Chl-Amp) and a smaller grain of quartz (Qz). Parallel polars, scale bar 100 µm. Sl. 2a. Zrno spremenjenega (kloritiziranega) mafi~nega minerala, ki verjetno pripada skupini amfibolov (Chl-Amp) in manj{e zrno kremena (Qz). Vzporedni nikoli, merilo 100 µm. Fig. 2b. The same as Fig.3. Crossed polars, scale bar 100 µm. Sl. 2b. Isto kot sl. 3. Navzkrižni nikoli, merilo 100 µm. Fig. 3a. Lithic grain of metamorphic rock (Lg1), quartz grains (Qz) and rock fragments (Lg2) in limonitised siderite cemented sanstone. Parallel polars, scale bar 500 µm. Sl. 3a. Liti~no zrno metamorfne kamnine (Lg1), zrna kremena (Qz) in ostali drobci kamnin (Lg2) v sideritnem cementu pe{~enjaka. Vzporedni nikoli, merilo 500 µm. Fig. 3b. The same as Fig. 3a. Lithic grain of metamorphic origin consists of quartz and muscovite (Lg1). Lithic grain of volcanic origin (Lg2) is visible on the left edge of the photo. Small quartz grains (Qz) occur over the entire surface of the thin section. Crossed polars, scale bar 500 µm. Sl. 3b. Isto kot sl. 3a. Kremen in muskovit v sestavi liti~nega zrna metamorfne kamnine (Lg1). Na levem robu slike je vidno zrno predornine (Lg2) in posami~na manj{a kremenova zrna (Qz), ki se pojavljajo po celotni povr{ini zbruska. Navzkrižni nikoli, merilo 500 µm. Fig. 4. Lithic grain of volcanic rock with phenocrysts of plagioclase in microcrystalline matrix. Crossed polars, scale bar 500 µm. Sl. 4. Liti~no zrno predornine z vtro{niki plagioklazov v mikrokristalni osnovi. Navzkrižni nikoli, merilo 500 µm. PLATE 3 - TABLA 3 PLATE 4 - TABLA 4 Sample 2b (Siderite concretion within sandstone) Vzorec 2b (sideritna konkrecija znotraj pe{~enjaka) Fig. 1a. Small terrigenous quartz grains (Qz) and bigger lithic grains (Lg) in limonitised siderite cemented sandstone. Parallel polars, scale bar 1 mm. Sl. 1a. Manj{a terigena kremenova zrna (Qz) in ve~ja zrna razli~nih drobcev kamnin (Lg) v pe{~enjaku z limonitiziranim sideritnim cementom. Vzporedni nikoli, merilo 1mm. Fig. 1b. The same as Fig. 1a. Sandstone consists of crystals of quartz (Qz), lithic grains (Lg) and fragments of carbonised plant residues (black). Crossed polars, scale bar 1 mm. Sl. 1b. Isto kot sl. 1a: Pe{~enjak z zrni kremena (Qz), drobci kamnin (Lg) in fragmenti pooglenelih rastlinskih ostankov (~rni). Navzkrižni nikoli, merilo 1mm. Fig. 2. Two lithic grains of igneous origin with holocrystalline texture (Lg1). Two grains of chert (Lg2) and volcanic rock fragment (Lg3) are visible. Crossed polars, scale bar 1 mm. Sl. 2. Dve liti~ni zrni kisle globo~nine s holokristalno strukturo (Lg1), dve zrni roženca (Lg2) in zrno predornine (Lg3). Navzkrižni nikoli, merilo 1mm. Sample 4a (Siderite concretion with quartz and lithic grains) Vzorec 4a (sideritna konkrecija s kremenovimi in liti~nimi zrni) Fig. 3. Lithic grain of chert is visible in the middle of the microphotograph (Lg). Small grains of quartz and fragments of carbonised plant residues (black) occur within siderite concretion. Crossed polars, scale bar 500 µm. Sl. 3. Na sredini slike je ve~je zrno najverjetneje roženca. Po celotni povr{ini so manj{a zrna kremena ter premo{ki fragmenti rastlinskih ostankov (~rni). Navzkrižni nikoli, merilo 500 µm. Fig. 4a. Small grains of quartz in siderite cement. Parallel polars, scale bar 500 µm. Sl. 4a. Majhna zrna kremena v sideritnem cementu. Vzporedni nikoli, merilo 500 µm. Fig. 4b. The same as Fig. 4a. Crossed polars, scale bar 500 µm. Sl. 4b. Isto kot sl. 4a. Navzkrižni nikoli, merilo 500 µm. Sample 10a (Siderite concretion) Vzorec 10a (sideritna konkrecija) Fig. 5. Limonitised siderite concretion with several grains of quartz (white) and fragments of carbonised plant residues. Parallel polars, scale bar 1mm. Sl. 5. Limonitizirana sideritna konkrecija s posameznimi zrni kremena (bela) in fragmenti pooglenelih rastlinskih ostankov. Vzporedni nikoli, merilo 1mm. Sample 19a (Limestone) Vzorec 19a (apnenec) Fig. 6. Rare small quartz grains (white and gray) and fragments of carbonised plant residues (black) in calcite cement. Crossed polars, scale bar 500 µm. Sl. 6. Posamezna majhna zrna kremena (bela in siva) in premo{ki fragmenti rastlinskih ostankov (~rni) v kalcitnem cementu. Navzkrižni nikoli, merilo 500 µm. PLATE 4 - TABLA 4 TABLA 5 - PLATE 5 Sample 20 (Lithic feldspar quartz sandstone with sparry calcite cement) Vzorec 20 (liti~no-glinen~ev kremenov pe{~enjak s sparitnim kalcitnim cementom) Fig. 1a. Several monocrystalline quartz grains (Qz) and lithic grains (Lg) in sandstone with sparry calcite cement (stained red). Parallel polars, scale bar 1 mm. Zrna monokristalnega kremena (Qz) in liti~nih zrn (Lg) v pe{~enjaku s kalcitnim cementom (rde~e obarvan). Vzporedni nikoli, merilo 1 mm. Fig. 1b. The same as Fig. 1. Crossed polars, scale bar 1 mm. Sl. 1. Isto kot sl. 1. Navzkrižni nikoli, merilo 1 mm. Fig. 2. Quartz sandstone lithic grain at the centre of photo and grains of quartz (Qz). Crossed polars, scale bar 100 µm. Sl. 2. Liti~no zrno kremenovega pe{~enjaka na sredini slike in zrna kremena (Qz). Navzkrižni nikoli, merilo 100 µm. Fig. 3. Grain of recrystallized polycrystalline quartz with undulose extinction. Crossed polars, scale bar 500 µm. Sl. 3. Zrno rekristaliziranega polikristalnega kremena z valovito potemnitvijo. Navzkrižni nikoli, merilo 500 µm. Fig. 4. Strongly altered volcanic rock fragment. Crossed polars, scale bar 500 µm. Sl. 4. Zelo spremenjeno liti~no zrno predornine. Navzkrižni nikoli, pove~ava 500 µm. Fig. 5. Lithic grain of felsic plutonic rock. Micro-cracks within the feldspar grain are filled with sparry calcite. Crossed polars, scale bar 100 µm. Sl. 5. Liti~no zrno kisle globo~nine. Razpoke v zrnu glinenca so zapolnjene s sparitnim kalcitom. Navzkrižni nikoli, merilo 100 µm. Fig. 6. Lithic grain of some igneous rock, most probably belonging to aplite with granophyric texture. Detail in rectangle shows an intergrowth of quartz and K-feldspar. Muscovite flake (Ms) is visible at the lower margin. Crossed polars, scale bar 100 µm. Sl. 6. Liti~no zrno magmatske žilnine z granofirsko strukturo, najverjetneje aplita. V okvirju je vidno prera{~anje kalijevih glinencev in kremena. Na spodnjem robu se pojavlja muskovit (Ms). Navzkrižni nikoli, merilo 100 µm. Fig. 7. Volcanic rock fragment with phenocrysts of plagioclase. Grains of elongated apatite mineral (Ap) are visible in the frame. Crossed polars, scale bar 100 µm. Sl. 7. Liti~no zrno predornine z vtro{niki plagioklazov. V okvirju so vidna podolgovata zrna apatita (Ap). Navzkrižni nikoli, 100 µm. PLATE 5 - TABLA 5 BrinDley,G.w.&Brown,G. 1980: Crystal structures of clay minerals and their X-ray identification. Mineralogical society, London: 182 p. ^eru, T. 2013: Mineralo{ka, petrolo{ka in geokemi~na karakterizacija talninskih plasti velenjskega lignitnega sloja. Diplomsko delo. Naravoslovnotehni{ka fakulteta, Oddelek za geologijo, Ljubljana: 125 p. Diessel, c.F.K. 1992: Coal-Bearing Depositional Systems. – Springer-Verlag, Berlin: 721 p. DroBne, K. 1967: Izkopavanje mastodonta v Škalah pri Velenju. Geologija, 10: 305–312. FaninGer, e. 1976: Karavan{ki tonalit. Geologija, 19: 153–210. FijavŽ, O. 2002: Monitoring odvodnjevalnih procesov v jamah Premogovnika Velenje. Diplomsko delo. Naravoslovno tehnika fakulteta, Oddelek za geologijo, Ljubljana: 42 p. GlusKoter, h. j., shiMP, n. F. & ruch, r. r. 1981: Coal analyses, trace elements and mineral matter. In: elliott, M. a. (ed.): Chemistry of coal utilization, second supplementary volume. Wiley and Sons, New York: 369–424. heMleBen, c., MosBruGGer, v., neBelsicK, j., Bruch, a., löFFler, s., Mühlstrasser, t., schMiDle, G. & utescher, t. 2000: Klima- und Ökosystementwicklung im Oligozän/ Miozän des Ostalpenraumes. In: MosBruGGer, V. (ed.): Klimagekoppelte Prozesse in meso- und känozoischen Geoökosystemen (SFB 275). Univ. Tübingen, Bericht 1998-2000, 1: 141– 172. jaMniKar, s., seDlar, j., zav{eK, s. & zaDniK, i. 2015: Razplinjevanje odkopnega stebra in zaru{enega dela za odkopom v Premogovniku Velenje. In: KortniK, j. (ed.): Zbornik 12. znanstvenega posvetovanja rudarjev in geotehnologov ob 44. Skoku ~ez kožo, 23­ 29. Slovensko rudarsko dru{tvo inženirjev in tehnikov - SRDIT, Proceedings, Ljubljana. KanDu^, T. & PezDi^, J. 2005: Origin and distribution of coalbed gases from the Velenje basin, Slovenia. Geochemical Journal, 39: 397 -409. KanDu^, T., PezDi^, J., Lojen, S. & Zav{eK, S. 2003: Study of the gas composition ahead of the working face in a lignite seam from the Velenje basin. RMZ – Materials and Geoenvironment, 50/2: 503-511. KanDu^, T., Žula, J. & Zav{eK, S. 2011: Tracing coalbed gas dynamics and origin of gases in advancement of the working faces at mining areas Preloge and Pesje, Velenje Basin = Spremljanje sestave premogovega plina in izvor plinov z napredovanjem ~ela delovi{~ na pridobivalnih (rudarskih) obmo~jih jam Preloge in Pesje, Velenjski bazen. RMZ -Materials and Geoenvironment, 58/3: 273-288. KanDu^, t., Grassa, F., Mcintosh, j., stiBilj, v., ulrich-suPovec, M., suPovec, i. & jaMniKar, s. 2014: A geochemical and stable isotope investigation of groundwater/surface­water interactions in the Velenje Basin, Slovenia. Hydrogeology Journal, 22: 971-984, doi:10.1007/s10040-014-1103-7. Ko^ar, F., Medved, M., MeŽa, M. & veber, i. 1988: Klasifikacija leži{~a premoga glede na kurilno vrednost in geomehanske lastnosti hribin. Raziskovalna naloga MZT. Arhiv Premogovnika Velenje. Ko^ar, F., veseli^, M., riBi^i^, M. & MraMor, j. 1989: Kriteriji varnega odkopavanja premoga pod vodonosnimi plastmi v Rudniku lignita Velenje. RMZ, 36/2: 421–438. Kralj, P. 2013: Submarine pyroclastic deposits in Tertiary basins, NE Slovenia. Geologija, 56/2: 187-197, doi: 10.5474/geologija.2013.012. Lazar, J., KanDu^, T., JaMniKar, S., Grassa, F. & Zav{eK, S. 2014: Distribution, composition and origin of coalbed gases in excavation fields from Preloge and Pesje mining areas, Velenje Basin, Slovenia. Int. J. Coal Geol., 131: 363­377, doi:10.1016/j.coal.2014.05.007. liKar, j. 1995: Analiza mehanizmov nenadnih izbruhov premoga in plina v premogovnikih. Doktorska disertacija. Fakulteta za naravoslovje in tehnologijo, Oddelek za montanistiko, Ljubljana: 216 p. liKar, j. & tajniK, t. 2013: Analysis of CO2 adsorption in different lithotypes of lignite. Acta Chim. Slov., 60/1: 221–227. liKar, j., runovc, F., DeBelaK, B. & Malava{i^, H. 2008: Behaviour of CO2 saturated lignite in the different states of stresses. In: PezDi^, j., zav{eK, s. & jaMniKar, S. (eds.): Mine (green-house) gasses CO2, CH4, mine safety, prevention, managing and utilization. International workshop Velenje 2008, 51–64. Mali, N. & Veseli^, M. 1989: Dolo~anje izvora rudni{kih vod v Rudniku lignite Velenje na osnovi njihove kemi~ne sestave = Determination of of the origin of the mine waters from the Velenje mine on the basis of their chemical composition. Rudarsko­metalur{ki zbornik, 36: 383-394. MarKi^, M. 2006: Anorgansko-geokemi~na opredelitev velenjskega lignita v reprezentativnem profilu vrtine P-9k/92. Geologija, 49/2: 311–338, doi:10.5474/ geologija.2006.023. MarKi^, M. & sachsenhoFer, r. F. 1997: Petrographic composition and depositional environments of the Pliocene Velenje lignite seam (Slovenia). Int. J. Coal Geol., 33: 229– 254. MarKi^, M. & sachsenhoFer, r. F. 2010: The Velenje Lignite – Its Petrology and Genesis. Geolo{ki zavod Slovenije, Ljubljana: 218 p. MarKi^, M., zav{eK, s., PezDi^, j., sKaBerne, D. & Ko^evar, M. 2001: Macropetrographic characterization of the Velenje lignite (Slovenia). Acta Univ. Carol., 45/2-4: 81–97. Mio^, P. 1978: Explanatory book of Sheet Slovenj Gradec, L 33-55, Basic Geological Map SFRYugoslavia 1:100.000. Zvezni geolo{ki zavod, Beograd: 74 p. Mio^, P. & Žnidar^i^, M. 1976: Basic Geological Map SFRYugoslavia 1:100.000, Sheet Slovenj Gradec, L 33-55. Zvezni geolo{ki zavod, Beograd. Moore, D. M. & reynolDs, r. c. 1997: X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York: 378 p. PezDi^, j., MarKi^, M., lojen, s., ^erMelj, B., ulrich, M. & zav{eK, s. 1998: Carbon isotope composition in the Velenje lignite mine - its role in soft brown coal genesis. RMZ -Materials and Geoenvironment, 45/1-2: 149–153. PezDi^, j., MarKi^, M., leti^, M., PoPovi^, a. & zav{eK, s. 1999: Laboratory simulation of adsorption-desorption processes on different lignite lithotypes from the Velenje lignite mine. RMZ -Materials and Geoenvironment, 46/3: 555–568. PsaKhie, S. G., Zav{eK, S., Jezer{eK, J., ShilKo, E. V., SMolin, A. Yu. & BlatniK, S. 2000: Computer-aided examination and forecast of strength properties of heterogeneous coal- beds. Comput. Mater. Sci., 19/1-4: 70-76. PsaKhie, S. G., Horie, Y., OsterMeyer, G. P., Korostelev, S. Yu., SMolin, A. Yu., ShilKo, E. V., DMitriev, A. I., BlatniK, S., ŠPeGel, M. & Zav{eK, S. 2001: Movable cellular automata method for stimulating materials with mesostructure. Theor. Appl. Fract. Mec., 37 /1: 311 -334. renton, j. j. 1982: Mineral matter in coal. In: Meyers, r. a. (ed.): Coal structure. Academic Press: 283–326. riBi^i^, M. 1985: Matemati~no modeliranje zaru{nih procesov pri odkopavanju premoga v Rudniku lignita Velenje z metodo kon~nih elementov. Magistrska naloga. Fakulteta za naravoslovje in tehnologijo, Oddelek za montanistiko, Ljubljana: 64 p. riBi^i^, M. 1987: In situ meritve za dolo~itev pogojev odkopavanja v debelih premo{kih slojih, kjer preti nevarnost vdorov vode in teko~ih mas. Doktorska disertacija, Univerza v Ljubljani, Fakulteta za naravoslovje in tehnologijo, Oddelek za geologijo: 141 p. si, G., jaMniKar, s., seDlar, j., shi, j-Q., Durucan, s., Korre, a., & zav{eK, s. 2015a: Monitoring and modelling of gas dynamics in multi-level longwall top coal caving of ultra-thick coal seams. Part I., Borehole measurements and a conceptual model for gas emission zones. Int. J. Coal Geol., 144/145, 98-110, doi:10.1016/j. coal.2015.04.008. si, G., shi, j-Q., Durucan, s., Korre, a., seDlar, j., jaMniKar, s. & zav{eK, S. 2015b: Monitoring and modelling of gas dynamics in multi-level longwall top coal caving of ultra-thick coal seams. Part II., Numerical modelling. Int. J. Coal Geol., 144/145: 58-70, doi:10.1016/j. coal.2015.04.009. stach, e., MacKowsKy, M.–th., teichMüller, M., taylor, G.h., chanDra, D. & teichMüller r. 1982: Stach's Textbook of Coal Petrology (Third edition). Gebrüder Borntraeger, Berlin: 535 p. šercelj, a. 1968: Pelodna stratigrafija velenjske krovninske plasti z ostanki mastodontov. Razprave IV. Razreda SAZU, 11/10: 377–397. šercelj, a. 1987: Palinolo{ke raziskave v velenjskem premogovnem bazenu. Geologija, 28/29 (1985/86): 199-203. štern, j., BreziGar, a., Mi{i^, M. & štuKovniK, j. 1988: Nekovinske mineralne surovine na ozemlju Šale{ke kotline. Geologija, 30: 315– 331. taylor, G. h., teichMüller, M., Davis, a., Diessel, c. F. K., littKe, r. & roBert, P. 1998: Organic Petrology. Gebrüder Borntraeger, Berlin: 260 p. veBer, i. 1999: Elaborat o kategorizaciji, klasifikaciji in izra~unu rezerv premoga na obmo~ju Premogovnika Velenje – stanje 31. 12. 1998 (v treh knjigah). Arhiv Premogovnika Velenje in Republi{ke komisije za ugotavljanje rezerv rudnin in talnih voda. veBer, i. & Dervari^, e. 2004: Reserves presentation for Velenje coliery according to United Nations framework classification (Power Point presentation). First session of the ad hoc group of experts on classification of energy reserves and resources; Geneva. velDe, B. 1995: Origin and mineralogy of clays. Clays and the environment. Springer-Verlag, Berlin Heidelberg: 169 p. veseli^, M. 1985: Hidrogeolo{ke razmere velenjskega rudni{kega obmo~ja. V: 6. Simpozij Jugoslovanskega dru{tva za mehaniko hribin v Titovem Velenju leta 1985, 5-8. Jugoslovansko dru{tvo za mehaniko hribin in podzemna dela. veseli^, M., otorePec, s., BreziGar, a., suPovec, i. & Ko^evar, M. 1993: Poro~ilo o izdelavi strukturno-piezometrske vrtine P-12o/92. In{titut za geologijo, geotehniko in geofiziko, 36 p., 42 pril. vraBec, M. 1999: Style of postsedimentary deformation in the Plio-Quaternary Velenje basin, Slovenia. Neues Jahrb. Geol. Paläontol., 8: 449–463. vraBec, M., ^ar, j. & veBer, i. 1999: Kinematics of the Šo{tanj fault in the Velenje basin area – Insights from subsurface data and paleostress analysis. RMZ -Materials and Geoenvironment, 46/3: 623–634. warD, c. r. 1989: Minerals in bituminous coals of the Sydney basin (Australia) and the Illinois basin (U.S.A.). Int. J. Coal Geol., 13: 455–479. warD, c. r. 2002: Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol., 50: 135–168, doi:10.1016/S0166-5162. (02)00117-9. zaPu{eK, a. & ho^evar, s. 1998: Adsorption and desorption properties of lignite. V: Meunier, F. (ed.): Fundamentals of adsorption 6 : Proceedings of the sixth international conference of fundamentals of adsorption, Presqu'Île de Giens, 24–28 May 1998. Paris: Elsevier, cop. 1998: 653–658. Zav{eK, S. 2004: Model za raziskavo sprememb strukturnih in petrografskih lastnosti velenjskega lignita pri razli~nih napetostnih stanjih in ob prisotnosti plinov. Doktorska disertacija, Univerza v Ljubljani: 114 p. ŽorŽ – PoPovi^, z., riBi^i^, M., veseli^, M., toM{i^, B., GruBi{i^, z., BreziGar, a., aDaMi^, z., Mihelj, B., treBec, j., suPovec, i., otorePec, s., Majhen, i., Mali, n., ^erni^, a., ^ePon, D. & jaKoPin, D. 1984: Geomehanski model intaktne premo{ke kadunje Rudnika lignite TitovoVelenje (Študija v treh knjigah). Arhiv GeoZS (Knjiga 1, 124 str., Knjiga 2, reambulacija geomehanskih podatkov (pril. 2), Knjiga 3, pril. 1 in pril. 3–143). Žula, j., Pezdi^, j., zav{eK, s. & Buri^, e. 2011: Adsorption capacity of the Velenje lignite: methodology and equipment. RMZ - Materials and Geoenvironment, 58/2: 193–216. doi:10.5474/geologija.2015.002 Isotopic composition of carbon in atmospheric air; use of a diffusion model at the water/atmosphere interface in Velenje Basin Izotopska sestava ogljika v atmosferskem zraku in difuzijski model na fazni meji voda/atmosfera v Velenjskem bazenu Tjaa KANDU^ Jožef Stefan Institute, Jamova cesta 39, SI–1000 Ljubljana, Slovenia; e-mail: tjasa.kanducijs.si Prejeto / Received 7. 4. 2015; Sprejeto / Accepted 5. 6. 2015 Key words: atmospheric carbon dioxide, carbon isotopes, phase boundary air/water, diffusion model, Velenje Basin, thermal power plant, anthropogenic influence Klju~ne besede: atmosferski ogljikov dioksid, ogljikovi izotopi, fazna meja zrak/voda, difuzijski model, Velenjski bazen, termoelektrarna, antropogeni vpliv Abstract COconcentrations (partial pressure of CO, pCO), and isotope compositions of carbon dioxide in air (.13C), 2 22CO2 temperature (T) and relative humidity (H) have been measured in the atmosphere in the Velenje Basin. Samples were collected monthly in the calendar year 2011 from 9 locations in the area where the largest thermal power plant in Slovenia with the greatest emission of CO2 to the atmosphere (around 4M t/year) is located. Values of pCO2 ranged from 239 to 460 ppm with an average value of 294 ppm, which is below the average atmospheric COpressure (360 ppm). .13Cranged from -18.0 to -6.4 ‰, with an average value of -11.7 ‰. These values are 2 CO2 similar to those measured in Wroclaw, Poland. We performed the comparison of .13CCO2 values in atmospheric air with Wroclaw since researchers used similar approach to trace .13CCO2 around anthropogenic sources. The isotopic composition of dissolved inorganic carbon (.13CDIC) in rivers and lakes from the Velenje basin changes seasonally from -13.5 to -7.1‰. The values of .13CDIC indicate the occurrence of biogeochemical processes in the surface waters, with dissolution of carbonates and degradation of organic matter being the most important. A concentration and diffusion model was used to calculate the time of equilibration between dissolved inorganic carbon in natural sources (rivers) and atmospheric CO2. Izvle~ek Ta {tudija opisuje rezultate analize koncentracij COv zraku (parcialni tlak CO, pCO) in izotopske sestave 2 2 2 ogljika v atmosferskem zraku (.13CCO2), temperature (T) in relativne vlažnosti (H) v atmosferi iz Velenjskega bazena. Vzorce smo vzor~ili mese~no na 9 lokacijah v koledarskem letu 2011 na obmo~ju Velenjskega bazena, kjer je locirana najve~ja termoelektrarna v Sloveniji, ki predstavlja najve~jega proizvajalca emisij CO2 v atmosfero (okoli 4 Mt/leto). Koncentracije pCO2 v zraku se v ~asu te {tudije spreminjajo od 239 do 460 ppm. Merjene povpre~ne koncentracije pCO2 v na{i {tudiji zna{ajo 294 ppm in so pod povpre~nim atmosferskim tlakom CO2, ki zna{a 360 ppm. Merjena .13Cse spreminja od -18,0 do -6,4 ‰ s povpre~no vrednostjo .13C-11,7 ‰. Vrednosti CO2 CO2 atmosferskega CO2 in .13CCO2 so v ~asu te raziskave podobne vrednostim objavljenim za Wroclaw, Poljska. Naredili smo primerjavo z .13CCO2 vrednostmi v atmosferskem zraku z Wroclawom, ker so raziskovalci uporabili podoben pristop sledenja .13CCO2 vrednosti okrog antropogenih virov. Izotopska sestava raztopljenega anorganskega ogljika (.13CDIC) v rekah in jezerih Velenjskega bazena se je v letu 2011 sezonsko spreminjala od -13,5 do -7,1 ‰. Vrednosti .13CDIC odražajo biogeokemijske procese v povr{inskih vodah, med katerimi sta najpomembnej{a raztapljanje karbonatov in razgradnja organske snovi. Izdelali smo tudi koncentracijski in izotopski difuzijski model za izra~un ~asa uravnoteženja med atmosferskim CO2 in raztopljenim CO2 na re~nih to~kah. Introduction of atmospheric CO2 have been carried out to assess their anthropogenic impact (Kuc et al., Investigation of the fate of atmospheric CO2 2003; lonGinelli & selMo, 2005; PataKi et al., is central to efforts to measure and predict 2005; ziMnoch et al., 2004). In the atmospheric global anthropogenic changes and to assess the boundary layer, the concentration and carbon impact of fossil fuel usage on environmental isotope composition of atmospheric CO2 (.13CCO2) quality (eea, 1998, 2003). Analyses of the is determined by the mixing of tropospheric concentration and anisotropic composition air with locally derived air that is affected by anthropogenic and/or biogenic CO2 sources and sinks (ziMnoch et al., 2004). Biogenic CO2 originates from plant respiration and from heterogenic soil microbes which convert soil organic matter to CO2. Because 12C is taken up preferentially by plants during photosynthesis, soils are lower in 13C than the atmosphere (BowlinG et al., 2008). Where C3 vegetation (e.g. Filipendulion (with dominant and characteristic species Filipendula ulmaria (L.) Maxim.) and Bidention (species from genera Bidens L., Rorippa Scop., Chenopodium L., Polygonum L.,…), Fagus sylvatica L., Picea abies (L.) Karst., Abies alba P. Mill.) dominates, as is the case for the studied area, soil organic matter and CO2 respired by vegetation exhibit .13C values between -28 and -20 ‰ (szaran, 2002). Values of .13CCO2 derived from burning fossil fuels (anthropogenic sources) range from -40.5 (natural gas burning fumes) to -24.6 ‰ (coal burning fumes) (wiDory & javoy, 2003). Combustion of coal produces almost twice as much carbon dioxide per unit of energy as does the combustion of natural gas, while the amount from the combustion of crude oil falls in between (Energy Information administration, Emissions of Greenhouse Gases in the United States 1985­1990 (DOE/EIA-0573)). In the vegetative season the anthropogenic input is minimized and the biological input is dominant (lonGinelli & seMo, 2005). Values of .13Cand pCO in the CO2 2 atmosphere have also been used to determine pollution levels in the atmosphere (zwozaDziaK et al., 2010). Concentrations of dissolved inorganic carbon, DIC, and its isotopic composition (.13CDIC) in freshwater environments have been widely investigated (aMiotte-suchet et al., 1999; ateKwana & KrishnaMurthy, 1998; MarFia et al., 2004; KanDu^ et al., 2007) and groundwater/ surface water interactions, with evaluation of biogeochemical processes, have been reported for Velenje Basin (KanDu^ et al., 2010, KanDu^ et al., 2014). Here we report measurements of pCO2 (partial pressure) and .13CCO2 in the vicinity of the Šo{tanj thermal plant which is the biggest emitter of CO2 to the atmosphere in Slovenia. Thus, around 4 Mt of CO2 are emitted (EMEP/EEA, 2013) into the atmosphere per year. The aim of this study was 1) to measure monthly air concentrations of pCO2 and to measure .13CCO2 in air to determine the influence of the combustion of lignite on pCO2 concentrations and to define the origin of the CO2 in the air masses in Velenje Basin, 2) to compare pCO2 concentrations and .13C in air with published data (Wroclaw between 1st January and 31st December 2008) and 3) using the concentration and isotope diffusion model to calculate the time of equilibration of CO2 needed to equilibrate concentrations of pCO2 and .13CDIC values between air/water interface. Materials and methods Partial pressure of CO2 (pCO2) in the atmosphere was measured above surface water at 9 locations (Figure 1) in Velenje Basin, using an IAQ-CALC Indoor Air Quality Meter, Model 7545, Thrust Science Innovation (TSI) with an accuracy of ±3 % of reading or ±50 ppm. Air samples for measurement of the carbon isotope composition in carbon dioxide in air (.13CCO2) were sampled as follows: a Labco ampoule (4 ampoules per location) was opened in the windward direction to let it fill with air. After filling (about 2 minutes), the ampoule was immediately closed and transported to the laboratory for prompt analysis of carbon (.13C.13C isotope composition ). Air for CO2CO2 analysis was sampled 2 m above surface water. At the same locations, relative humidity (H), and Figure 1. Sampling locations (10 locations) from Velenje Basin area (river locations: 1, 2, 3, 4, 6 and 8, lake locations: 5, 7, 9). temperature (T), in the air were measured monthly during the year 2011. .13CCO2 in air was measured with a Europa Scientific 20-20 continuous flow IRMS ANCA-TG preparation module with an estimated precision of ±0.3 ‰. Working standards calibrated to VPDB (Vienna Pee Dee Belemnite) were used during measurements with a defined value of -3.2 ‰ for CO2. Since CO2 concentrations in air are very low, working standards were diluted to air CO2 concentrations to optimize peak area. At the same locations surface water samples (additionally at location 3, which was not sampled .13C for CO2 air measurements) were collected .13C seasonally for DIC measurements (Table 1, Figure 1). Surface waters (lakes and rivers) were measured at 10 locations for alkalinity and .13CDIC (Figure 1). Discharge data were obtained from the Slovenian Environment Agency for the gauging stations: Paka at Šo{tanj, Gaberke at Velunja and Lepena at Škale (internet). Total alkalinity of surface waters was measured according to Gran (GiesKes, 1974). The stable isotope content of dissolved inorganic carbon (.13CDIC) in surface waters (lakes and rivers) was determined on an IsoPrime GV isotope ratio mass spectrometer coupled with a MultiflowBio preparation module. Phosphoric acid (100%) was added (100-200 µl) to a septum tube and then purged with pure He. A water sample (1 ml) was then injected into the tube and CO2 measured directly from the headspace. Two standard solutions of Na2CO3 (Carlo Erba and Scientific Fisher), with known .13C DIC values of –10.8 ± 0.2 ‰ and -4.8 ± 0.2 ‰, were used to calibrate .13CDIC measurements (sPötl 2005; KanDu^ et al., 2007). When sampling surface waters, pCO2 immediately above the surface water was measured in an open system and in a closed system. pCO2 was measured in a closed system above water as follows. A cardboard box with a surface area of 36 cm2 and a probe for pCO2 measurements (IAQ-CALC Indoor Air Quality Meter, Model 7545, Thrust Science Innovation (TSI)) was placed through a hole in a cardboard box and, after 10 minutes (GórKa et al., 2011) of equilibration between water and air phase, pCO2 (partial pressure of CO2) was read. Results and discussion Atmospheric data: relative humidity (H), temperature (T), .13Cand pCO in calendar CO2 2 year 2011 with notes on weather conditions are presented in Table 1. Locations from 1-10 are labeled in Figure 1. Table 1. Sampling locations with sampling dates, air temperature (T), relative humidity (H), and values of pCO2, .13CCO2 together with notes on weather conditions. No. Location Date T (° C) H (%) pCO2 (ppm) d13CCO2 (‰) . NOTES 1 Toplica, 8h20 28.1.2011 10.5 52.8 350 -14.0 sunny 1 Toplica, 8h30 30.3.2011 21.0 26.6 305 -11.9 sunny 1 Toplica, 8h25 19.4.2011 20.8 22.7 290 -11.2 sunny 1 Toplica, 8h22 19.5.2011 26.4 36.1 272 -12.3 sunny 1 Toplica, 8h23 16.6.2011 31.1 41.0 250 -10.6 sunny 1 Toplica, 8h26 18.7.2011 21.2 78.0 285 -13.9 showers 1 Toplica, 8h27 26.8.2011 29.1 46.3 297 -12.7 sunny 1 Toplica, 8h28 15.9.2011 26.3 33.9 266 -12.0 sunny 1 Toplica, 8h35 29.9.2011 18.2 56.3 294 -12.4 sunny 1 Toplica, 8h38 10.10.2011 14.5 45.4 295 -8.1 sunny, after snow 2 Pečovnica, 8h40 28.1.2011 6.5 59.8 360 -10.9 sunny 2 Pečovnica, 8h50 30.3.2011 22.0 30.7 316 -12.5 sunny 2 Pečovnica, 8h45 19.4.2011 20.9 36.3 306 -9.3 sunny 2 Pečovnica, 8h42 19.5.2011 25.6 39.0 272 -12.9 sunny 2 Pečovnica, 8h43 16.6.2011 31.4 38.2 270 -11.0 sunny 2 Pečovnica, 8h46 18.7.2011 21.0 75.9 296 -13.1 showers 2 Pečovnica, 8h47 26.8.2011 31.0 38.5 303 -11.6 sunny 2 Pečovnica, 8h48 15.9.2011 22.4 37.6 255 -10.9 sunny 2 Pečovnica, 8h40 29.9.2011 17.5 55.1 303 -11.3 sunny 2 Pečovnica, 8h55 10.10.2011 12.6 45.3 297 -9.9 sunny, after snow 2 Pečovnica, 8h58 11.11.2011 9.0 53.0 309 -13.0 sunny 4 Velunja, 9h00 28.1.2011 8.8 55.4 333 -12.1 sunny 4 Velunja, 9h10 10.3.2011 17.4 32.4 316 -12.5 sunny 4 Velunja, 9h05 30.3.2011 21.6 31.3 294 -12.1 sunny 4 Velunja, 9h02 19.4.2011 21.4 21.5 300 -10.1 sunny 4 Velunja, 9h03 19.5.2011 25.7 36.6 272 -11.9 sunny 4 Velunja, 9h03 19.5.2011 25.7 36.6 272 -11.9 sunny 4 Velunja, 9h06 16.6.2011 35.0 37.4 239 -13.0 sunny 4 Velunja, 9h07 18.7.2011 21.1 76.0 294 -13.5 showers 4 Velunja, 9h08 26.8.2011 29.1 45.0 275 -11.3 sunny 4 Velunja, 9h10 15.9.2011 25.9 28.3 247 -11.5 sunny 4 Velunja, 9h15 29.9.2011 18.9 46.0 280 -9.5 sunny 4 Velunja, 9h20 11.11.2011 8.0 55.0 270 -11.1 sunny 5 Šoštanjsko jezero, 9h20 28.1.2011 9.1 54.0 330 -10.4 sunny 5 Šoštanjsko jezero, 9h30 10.3.2011 13.6 27.2 330 -11.5 sunny 5 šoštanjsko jezero, 9h25 30.3.2011 21.5 31.2 312 -11.9 sunny 5 šoštanjsko jezero, 9h22 19.4.2011 19.6 23.0 292 -11.3 sunny 5 Šoštanjsko jezero, 9h23 19.5.2011 28.5 27.0 270 -10.5 sunny 5 Šoštanjsko jezero, 9h26 16.6.2011 29.0 47.8 255 -11.0 sunny 5 Šoštanjsko jezero,9h27 18.7.2011 21.3 77.1 303 -12.0 showers 5 Šoštanjsko jezero, 9h28 26.8.2011 28.4 38.0 280 -11.3 sunny 5 Šoštanjsko jezero, 9h30 15.9.2011 30.8 27.9 269 -10.2 sunny 5 šoštanjsko jezero, 9h35 29.9.2011 19.9 51.7 320 -10.8 sunny 5 Šoštanjsko jezero, 9h40 10.10.2011 8.3 65.9 290 -15.6 sunny, after snow 5 Šoštanjsko jezero, 9h45 11.11.2011 7.7 53.9 311 -12.3 sunny 6 Ljubela, 9h40 28.1.2011 8.6 51.8 320 -11.9 sunny 6 Ljubela , 9h50 10.3.2011 16.5 21.0 314 -12.0 sunny 6 Ljubela, 9h45 30.3.2011 20.0 30.0 299 -13.0 sunny 6 Ljubela, 9h42 19.4.2011 19.2 30.3 289 -9.5 sunny 6 Ljubela, 9h 43 19.5.2011 23.5 38.2 270 -10.5 sunny 6 Ljubela, 9h46 16.6.2011 29.4 31.4 242 -10.5 sunny 6 Ljubela, 9h47 18.7.2011 20.7 72.4 290 -11.8 showers 6 Ljubela, 9h48 26.8.2011 -12.0 sunny 6 Ljubela, 9h 50 15.9.2011 27.6 34.5 252 -12.0 sunny 6 Ljubela, 9h 55 29.9.2011 21.3 47.3 283 -12.3 sunny 6 Ljubela, 10h00 10.10.2011 8.2 66.3 280 -7.7 sunny, after snow 6 Ljubela, 10h05 11.11.2011 9.9 54.0 250 -11.1 sunny 7 Velenjsko jezero, 10h00 28.1.2011 9.2 54.5 328 -9.4 sunny 7 Velenjsko jezero,10h10 10.3.2011 15.3 20.2 316 -11.1 sunny 7 Velenjsko jezero, 10h05 30.3.2011 22.3 31.5 299 -12.8 sunny 7 Velenjsko jezero, 10h12 19.4.2011 19.2 31.9 295 -11.7 sunny 7 Velenjsko jezero, 10h13 19.5.2011 26.6 36.5 271 -10.5 sunny 7 Velenjsko jezero, 10h16 16.6.2011 35.0 37.4 239 -10.7 sunny 7 Velenjsko jezero,10h08 18.7.2011 22.1 71.8 289 -12.0 showers 7 Velenjsko jezero, 10h20 15.9.2011 27.3 31.5 249 -12.5 sunny 7 Velenjsko jezero, 10h40 29.9.2011 10.2 54.1 300 -10.7 sunny 7 Velenjsko jezero, 11h00 10.10.2011 10.2 54.1 300 -9.5 sunny, after snow 7 Velenjsko jezero,11h20 11.11.2011 9.5 55.2 260 -18.0 sunny 8 Lepena,10h20 28.1.2011 12.9 44.2 335 -12.4 sunny 8 Lepena,10h30 10.3.2011 16.2 18.0 316 -11.5 sunny 8 Lepena,10h25 30.3.2011 24.8 28.8 309 -13.5 sunny 8 Lepena,10h32 19.4.2011 20.0 21.6 290 -10.7 sunny 8 Lepena,10h33 19.5.2011 25.6 36.8 262 -10.3 sunny 8 Lepena,10h36 16.6.2011 31.4 35.2 244 -12.5 sunny 8 Lepena, 10h28 18.7.2011 21.0 77.2 285 -12.4 showers 8 Lepena, 11h00 26.8.2011 31.1 31.0 271 -12.0 sunny 8 Lepena, 11h20 15.9.2011 27.3 28.7 246 -11.9 sunny 8 Lepena,11h40 29.9.2011 20.6 50.5 282 -11.6 sunny 8 Lepena,12h00 10.10.2011 11.3 50.4 298 -9.0 sunny, after snow 8 Lepena, 12h20 11.11.2011 9.2 52.2 316 -12.2 sunny 9 p Škalsko jezero, 10h40 28.1.2011 6.3 66.2 328 -15.0 unny sunny 9 Škalsko jezero, 10h50 10.3.2011 17.8 23.2 326 -11.7 sunny 9 Škalsko jezero, 10h45 30.3.2011 22.6 27.7 298 -12.7 sunny 9 Škalsko jezero,11h05 19.4.2011 19.0 29.8 291 -14.5 sunny 9 Škalsko jezero,11h25 19.5.2011 26.5 37.6 262 -10.1 sunny 9 Škalsko jezero, 11h45 16.6.2011 31.6 35.8 251 -10.5 sunny 9 Škalsko jezero,12h05 18.7.2011 21.3 74.5 283 -11.9 showers 9 Škalsko jezero, 12h25 26.8.2011 30.2 45.6 270 -11.5 sunny 9 Škalsko jezero,12h45 15.9.2011 29.7 27.7 272 -12.7 sunny 9 Škalsko jezero, 13h05 29.9.2011 22.0 47.1 285 -11.6 sunny 9 Škalsko jezero, 13h25 10.10.2011 7.4 63.3 293 -8.9 sunny, after snow 9 Škalsko jezero,13h45 11.11.2011 8.9 53.6 317 -17.9 sunny 10 Paka, at 8h10 28.1.2011 5.6 70.0 330 -12.1 sunny 10 Paka, at 8h20 10.3.2011 11.6 31.0 360 -11.4 sunny 10 Paka, at 8h10 30.3.2011 20.1 29.8 323 -13.8 sunny 10 Paka, at 8h05 19.4.2011 19.7 25.6 305 -9.5 sunny 10 Paka, at 8h02 19.5.2011 24.2 42.3 293 -11.9 sunny 10 Paka, at 8h03 16.6.2011 28.8 40.1 266 -10.5 sunny 10 Paka, at 8h06 18.7.2011 20.0 63.5 333 -13.5 showers 10 Paka, at 8h07 26.8.2011 28.1 53.0 460 -14.9 sunny 10 Paka, at 8h08 15.9.2011 25.7 39.0 267 -13.0 sunny 10 Paka, at 8h15 29.9.2011 17.2 65.9 333 -12.0 sunny 10 Paka, at 8h18 10.10.2011 12.6 37.6 318 -6.4 sunny, after snow 10 Paka, at 8h19 11.11.2011 10.0 53.4 314 -12.3 sunny Air temperature ranged from 5.6 to 35.0 °C during 2011 (Figure 2A). Relative humidity ranged from 18.0 to 78.0 % with an average value of 43.6 % (Figure 2B). CO2 concentration in the atmosphere, expressed in ppm as pCO2 and carbon isotope signatures of carbon dioxide in the atmosphere (.13CCO2) from the Velenje Basin indicate seasonal variation (Figures 3A and B). Partial pressures (pCO2) in the atmosphere from 9 different locations range from 239 to 460 ppm – average 294 ppm. The lowest pCO2 value was recorded at Velunja location and the maximum value at Paka River (Figure 3A). The values of .13CCO2 range from -18 to -6.4 ‰, depending on the source (Figure 3 B). The .13CCO2 values that approach -6.4 ‰ (location Paka, South Preloge mine) could reflect bacterial CO2 and/or endogenic CO2 from underground coalmine activity (lazar et al., 2014), while values approaching -18 ‰ (Škalsko and Velenjsko jezero in November 2011) could be attributed to anthropogenic Figure 2A. Air temperature in the calendar year 2011. Figure 2B. Humidity in the calendar year 2011. Numbers from 1–10 refer to sampling locations. At location 3 only surface water was sampled. pollution and natural sources (Figure 3 B). For comparison, the concentration of atmospheric CO2 at the pristine river Kamni{ka Bistrica source was 355 ppm and .13CCO2 value -9 ‰ in different sampling seasons in 2011 (KanDu^, unpublished .13C data). The concentrations of pCO2 and CO2 values reported in this study for Velenje basin are similar to those reported for southern Poland (Kuc et al., 2003; ziMnnoch et al, 2004) (Figure 4). Comparison with Wraclaw, Poland was performed since their study was focused on investigation of isotopic composition of carbon in air (.13CCO2) around anthropogenic sources in relation with other air parameters. The unpolluted .13CCO2 value (around -8 ‰) is taken from Baltic Sea values (white & vauGhn, 2009) and the .13CCO2 values of respiration of C3 plants from PataKi et al., 2003. In a coal burning chimney, .13CCO2 values are -24.1 ‰, exhaust from a gasoline propelled car has values of .13CCO2 of -31.7 ‰, from a diesel car -31.9 ‰ and from a liquid petroleum gas car -33.5 ‰ (GórKa et al., 2011). The characteristic value of .13CCO2 for a coal-burning chimney is -24.1 ‰ and is much lower in comparison to .13CCO2 values in our study, where .13C CO2 ranges from -18.0 to -6.4 ‰ (Table 1). No correlation was obtained between the following parameters measured in the atmosphere for different locations and in different seasons in Velenje Basin: pCOvs. .13C(R2=0.0292), H vs. 2 CO2 pCO (R2=0.0324), pCO vs .13C (R2=0.0292), T vs. 22CO2 pCO2 (R2=0.2644), T vs. .13CCO2 (R2=0.0008). Similarly no significant regression was obtained between measured quantities in air (daily temperature vs. humidity, CO concentration, CO2 concentration, .13C CO2) for Wroclaw (GórKa et al., 2011). Seasonal variations of total alkalinity, .13CDIC and pCO2 (ppm) in surface waters, with pCO2 (closed system, measurements with cardboard box) measured and pCO2 measured just above surface water during year 2011 are presented in Table 2. Discharge data (Q) were obtained from the Slovenian Environmental Agency gauging stations for the year 2011 for locations Velunja, Lepena and Paka. Alkalinity in surface waters changes seasonally from 2.2 to 5.7 mM in January 2011, from 2.6 to 5.5 mM in May 2011, from 2.5 to 6.1 mM in August 2011 and from 2.5 to 5.7 mM in October 2011. .13C DIC changes seasonally from -11.0 to -8.8 ‰ in January 2011, from -11.8 to -7.7 ‰ in May 2011, from -13.5 to -7.1 ‰ in August 2011 and from -12.8 to -9.1 ‰ in October 2011 (Table 2). Higher .13CDIC values would be expected in lake water (standing water) since it equilibrates more quickly than surface water (running water), but it is only the case in lake Velenje (.13CDIC = -7.7 ‰ in spring season). The opposite trend is observed between .13CDIC and alkalinities (Figure 5A), with the lowest .13CDIC value and the highest alkalinity being observed at location Pe~ovnica (location 2) in January 2011. Since surface water is an open system, its equilibration with the atmosphere is important. Equilibration lines (Figure 5A) were calculated according to possible biogeochemical processes influencing .13CDIC value as follows: Line 1. Given the isotopic composition of atmospheric CO2 of -7.8 ‰ (levin et al., 1987) and the equilibration fractionation with DIC of +9 ‰, DIC in equilibrium with the atmosphere should have a .13CDIC of about +1 ‰. Line 2. Considering the average isotopic (.13C composition of carbonates ) with a CaCO3 value of -2 ‰ (KanDu^ & PezDi^, 2005) and isotopic fractionation (and enrichment in 12C) due to dissolution of carbonates, which is 1.0±0.2 ‰ (roManeK et al., 1992), .13CDIC would be -3.0±0.2 ‰. DIC22 data (m3/s) and surface water temperature (°C) in the year 2011. Numbers Locations Date of sampling Q (m3/s) T [° C] Alkalinity (mM) d13CDIC (‰) . pCO2 air, opened system (ppm) pCO2 water/air, closed system (ppm) 1 Toplica January, 2011 8.6 3.6 -10.4 355 357 2 Pečovnica January, 2011 2.1 2.2 -10.2 360 356 3 Klančnica January, 2011 4 Velunja January, 2011 0.633 2.0 3.0 -8.8 357 357 5 Šoštanjsko jezero January, 2011 1.2 2.7 -11.0 6 Ljubela January, 2011 3.0 5.4 -10.1 361 7 Velenjsko jezero January, 2011 2.2 3.2 -9.8 363 8 Lepena January, 2011 0.063 3.0 5.7 -10.4 364 355 9 Škalsko jezero January, 2011 0.7 5.4 -11.0 363 10 Paka January, 2011 2.79 2.6 4.4 -10.1 360 363 Numbers Locations Date of sampling Q (m3/s) T [° C] Alkalinity (mM) d13CDIC (‰) . pCO2 air, opened system (ppm) pCO2 water/air, closed system (ppm) 1 Toplica May, 2011 16.5 3.6 -9.9 362 365 2 Pečovnica May, 2011 14.0 3.0 -10.4 404 425 3 Klančnica May, 2011 16.5 2.9 -11.8 370 388 4 Velunja May, 2011 0.431 15.8 2.9 -8.9 362 362 5 Šoštanjsko jezero May, 2011 20.2 2.6 -9.1 368 368 6 Ljubela May, 2011 16.0 5.1 -10.3 358 370 7 Velenjsko jezero May, 2011 19.6 3.4 -7.7 361 351 8 Lepena May, 2011 0.052 17.1 5.5 -10.3 387 353 9 Škalsko jezero May, 2011 20.9 4.9 -8.4 350 356 10 Paka May, 2011 2.05 14.1 4.1 -9.9 402 389 Numbers Locations Date of sampling Q (m3/s) T [° C] Alkalinity (mM) d13CDIC (‰) . pCO2 air opened system (ppm) pCO2 water/air, closed system (ppm) 1 Toplica August, 2011 16.2 4.8 -10.4 360 362 2 Pečovnica August, 2011 16.7 6.1 -13.1 358 360 3 Klančnica August, 2011 23.3 2.5 -7.0 355 367 4 Velunja August, 2011 0.37 16.7 3.4 -7.8 400 408 5 Šoštanjsko jezero August, 2011 16.7 4.6 -12.6 395 396 6 Ljubela August, 2011 23.3 4.2 -7.7 350 353 7 Velenjsko jezero August, 2011 16.4 3.1 -11.0 365 370 8 Lepena August, 2011 0.04 16.4 3.6 -13.5 375 378 9 Škalsko jezero August, 2011 17.5 3.8 -11.3 360 364 10 Paka August, 2011 1.86 24.0 2.5 -7.1 350 355 Numbers Locations Date of sampling Q (m3/s) T [° C] Alkalinity (mM) d13CDIC (‰) . pCO2 air opened system (ppm) pCO2 water/air, closed system (ppm) 1 Toplica October, 2011 9.3 4.0 -12.5 408 420 2 Pečovnica October, 2011 6.3 2.5 -12.1 421 450 3 Klančnica October, 2011 3.2 4 Velunja October, 2011 0.37 7.8 3.1 -11.3 388 390 5 Šoštanjsko jezero October, 2011 9.1 3.3 -10.3 386 395 6 Ljubela October, 2011 7.5 5.1 -12.3 386 400 7 Velenjsko jezero October, 2011 11.6 2.9 -9.1 386 400 8 Lepena October, 2011 0.03 7.5 5.7 -12.8 396 402 9 Škalsko jezero October, 2011 10.4 5.2 -12.1 386 400 10 Paka October, 2011 1.55 6.7 4.5 -11.0 460 480 Line 3. An average .13C value of -26.6 ‰ for particulate organic carbon (POC) was assumed to represent the isotopic composition of POC that was transferred to DIC by in-stream respiration. Open system equilibration of DIC with CO2 enriches DIC in 13C by about 9 ‰ (MooK et al., 1974), which corresponds to a value of -17.6 ‰. Line 4 represents open system equilibration of DIC, with soil CO2 originating from degradation of organic matter with .13CCO2 of -26.6 ‰. From Figure 5A it is observed that most of the samples fall between lines 2 and 3: dissolution of carbonates with an average .13C= -2 ‰ CaCO3 and non-equilibrium carbonate dissolution with carbonic acid produced from soil zone with .13C of -26.6 ‰. The highest pCO is observed CO2 2 at location Paka (location 10) with a value of 460 ppm (open system), pCO2 measured value is 480 ppm (measured as a closed system) in October 2011 probably due to higher degradation of organic matter at the end of the summer season. Elevated pCO2 concentrations are also recorded at Figure 3A. pCO2 (partial pressure in air) in the calendar year 2011. atmosphere DICex based on a diffusion model (two layer model in which the molecules are transported through a gas film and a liquid layer adjacent to the surface) can be calculated according to the following equation (BroecKer, 1974): (1) Figure 3B. .13CCO2 in the calendar year 2011. Numbers from 1–10 refer to sampling locations. At location 3 only surface water was sampled. where D is the CO2 diffusion coefficient in water with value of 1.26 x 10-5 cm2/s at a temperature of 10 °C and 1.67 x 10-5 cm2/s at a temperature of 20 °C (jähne et al., 1987), z is the empirical thickness of the liquid layer cm, CO and CO are the concentrations of 2eq 2 dissolved CO2 at equilibrium with the atmosphere and with the studied water mol · cm-3, respectively. The thickness of the boundary layer z, a thin film existing at the air-water interface, depends largely on wind velocity (BroecKer et al., 1978) and water turbulence (holley, 1977). D/z, therefore, is the gas exchange rate, which gives the height of the water column that will equilibrate with the atmosphere per unit time. Using a mean wind speed of 4 m/s in all sampling seasons (jähne et al., 1987), D/z was estimated to be 8 cm/h under low turbulence conditions, 28 cm/h under moderate turbulence conditions and 115 cm/h under high turbulence conditions. Unpolluted CO2 Velenje Basin .13C2 2011 Wraclaw d13CCO2 2008 Respiration Vegetation period Coal combustion Wood combustion Natural gas combustion Car gasoline combustion Car LPG combustion Car petroleum combustion .13 CCO2 (‰) 18.11.2010 7.1.2011 26.2.2011 17.4.2011 6.6.2011 26.7.2011 14.9.2011 3.11.2011 23.12.2011 11.2.2012 1 -4 -9 -14 -19 -24 -29 -34 Date Figure 4. .13CCO2 levels in the calendar year 2011 compared with those at Wroclaw (GórKa et al., 2011). Bold lines indicate the potential anthropogenic sources analyzed in Wroclaw (GórKa et al., 2011). The .13CCO2 value characteristic for the absence of pollution is taken from Baltic Sea values (white & vauGhn, 2009) and .13CCO2 values characteristic for C3 plants respiration from PataKi et al., 2003. Calculation of the CO2 flux between the river water surface and the atmosphere at the Paka River gauging station, according to equation (1), gives values ranging from 2.6 x 10-8 to 9.0 x 10-8 mol/cm2h in spring 2011, from 6.0 x 10-8 to 20 x 10-8 mol/cm2h in late summer 2011 and from 2.7 x 10-8 to 9.4 x 10-8 mol/cm2h in winter 2011. Taking into consideration the river surface area of 0.40 km2 (mean width of 10 m and length of 40 km), the total loss of inorganic carbon through its surface in the spring ranges from 6.0 x 104 mol/day during periods of low wind speeds to 2.0 x 105 mol/day during high turbulence storm events. The predicted total loss of inorganic carbon to the atmosphere in the late summer ranges from 1.0 x 105 to 5.0 x 105 mol/day and from 6.0 x 104 to 2.1 x 105 mol/day in winter. Concentration diffusion model In addition, values of the time evolution of stream pCO2 and .13CDIC were calculated using available diffusion models (e.g. BroecKer 1974; richey et al. 1990; aucour et al., 1999). These calculations yield the amount of time needed for CO2 evasion and for stream – atmosphere isotopic exchange relative to the transit time of stream waters. Such calculations were performed only for two main tributaries: Velunja River (location 4) and Paka River (location 10) for all sampling seasons (Figure 1, Table 2). The estimated rate of change of DIC concentration due to CO2 evasion are calculated by: (2) and the DIC concentration in water is expressed as a function of time by: (3) where h is the mean depth of the river cm and t is the time needed for equilibration min, all other parameters having been determined by equation (1). The calculations assume a value of 8 cm/h for D/z (low turbulent conditions due to low discharge) for both locations (4 and 10) (MooK, 1970) and h values of 10 cm. The computed results, according to equation (3), show that between 0.6 and 2.6 hours (January, 2011), 8.8 and 9.2 hours (May, 2011), 5.7 and 6.4 hours (August, 2011), and from 5.7 to 6.4 hours (October, 2011) would be required for equilibrium between atmospheric CO2 and dissolved riverine CO2 to be approached. Isotopic diffusion model Additionally, the rate of change of .13CDIC resulting from CO2 exchange between the river and the atmosphere was also estimated by the equation (aucour et al., 1999): (4) Again, the DIC concentration (DIC) is expressed as a function of time (t) by: (5) In equations (4) and (5), .13Ca and .13CDIC are the .13C values of atmospheric CO2 (-7.8 ‰; levin et al., 1987) and DIC, .13C0 is the initial value of DIC and . is the equilibrium fractionation factor - between CO2 and HCO3 (zhanG et al., 1995). Starting with the .13CDIC value of –12.5 ‰ (aucour et al., 1999) and h value of of 10 cm, calculated time of equilibration ranged from 26.2 to 132.6 hours, which would be needed to equilibrate .13C and .13Cvalues. This DICCO2 time interval was calculated for Velunja River Figure 5A. .13CDIC values of surface water samples as a function of alkalinity, with lines indicating processes occurring in surface waters in Velenje Basin. Arrows show expected trends for a variety of biogeochemical processes (coetsiers & walraevens, 2009). Figure 5B. Seasonal variation of pCO2;comparison between pCO2 air (open system) and pCO2 water/air (closed system) at 9 locations from Velenje Basin. Normal pCO2 in air is considered to be 360 ppm. (location 4) and Paka River (location 10) and suggests that stream – atmosphere isotopic exchange alone cannot explain the 13C enrichment of DIC in this carbonate/clastics catchment. Stream – atmosphere isotopic exchange alone cannot explain the 13C enrichment of DIC since longer time is needed for equilibration than expected. Both models (concentration and isotopic) should provide same values of time of equilibration, but in our case they do not. However, it has been shown that equilibration of CO2 between water/air boundaries is more significant in impermeable silicate drainages (KanDu^ et al., 2007). Therefore equilibration of atmospheric CO2 does not influence the value of .13CDIC in surface waters significantly, which is a consequence of low discharge conditions in the catchment area. Conclusions Values of the carbon isotope composition of atmospheric CO2 (.13CCO2), at locations in the vicinity of the thermal power plant in Velenje Basin, have been measured in the calendar year 2011. Based on measurements of alkalinity and .13Cfor surface water, values of .13Cof air DIC CO2 samples taken just above water (opened system) and from a closed cardboard box (closed system) it is concluded that combustion of lignite in thermal power plant has little influence on the .13Cvalue in the atmosphere. Measured CO CO2 2 concentrations (average pCO2 value of 294 ppm) and .13CCO2 in the atmosphere in the vicinity (few kilometers) of the thermal power plant are in the normal range in the atmosphere (360 ppm) and the influence of lignite combustion is negligible at the locations investigated in this study. The values of .13CCO2 in air range from -18 to -6.4 ‰, with an average value of -11.7 ‰, indicating the absence of influence of coal combustion, since the characteristic value of coal combustion is -24.1 ‰. .13CCO2 values in our study (observations during year 2011) are similar as obtained for Wroclaw, Poland (observation during year 2008). The total alkalinity in surface waters ranged from 2.2 to 6.1 mM. Dissolution of carbonates and degradation of organic matter are the most important biogeochemical processes affecting .13C DIC. They range seasonally from -13.5 to -7.1 ‰ in the surface waters (lakes, rivers) investigated in this study. pCO2 in the air immediately above water (open system) and in the air above the water, measured in the cardboard box (closed system), is similar at all measured locations. The highest pCO2 in an open system – immediately above water– and in a closed system (measured in a box) were measured at Paka (location 10) and Pe~ovnica (location 2) in May 2011 and in October 2011, respectively. Both locations are located in the vicinity of the thermal power plant. Based on thermodynamic modelling and on previous studies reported for Slovenian watersheds (rivers and lakes), surface waters acted like sources of CO2 (oversaturated more than 10 times) released to the atmosphere. However, the measurements of pCO2 reported here were made just above the surface water, where normal values of pCO2 (around 360 ppm) are present. Two diffusion models (concentration and isotopic) were applied to obtain the time of equilibration at two locations. Between 0.6 and 6.4 hours were required to equilibrate atmospheric CO2 and dissolved riverine DIC (concentration diffusion model), and 26.2 to 132.6 hours to .13C.13C equilibrate and values (isotopic DICCO2 diffusion model) if equilibration with atmospheric CO2 was the only factor influencing DIC values of surface waters. Even though Velenje Basin is a natural analogue with very large amounts of endogenic and bacterial CO2 (with the characteristic value of .13C 2 ‰) and with large amounts of CO emitted CO2 2 (around 4 Mt/year) from lignite combustion from the thermal power plant, we conclude from this study that pCO2 concentrations in air around the thermal power plant are not elevated. Acknowledgements This study was conducted in the frame of national research projects funded by Slovenian Research Agency (ARRS) Z1-2052, L1-5451 and Programme research group P1-0143. Special thanks are given to Mr. Stojan Žigon for technical support in laboratory. Thanks also to Prof. Roger Pain for linguistic corrections. References aMiotte-suchet, P., auBert, D., ProBst, j.l., Gauthier-laFaye, F. ProBst, a., anDreux, F. & viville, D. 1999: .13C pattern of dissolved inorganic carbon in a small granitic catchment: the Strengbach case study (Vosges mountains, France). Chemical Geology, 159: 129–145. ateKwana, e:a. & KrisnaMurthy, r.v. 1998: Seasonal variations of dissolved inorganic carbon and .13C of surface waters: application of modified gas evolution technique. Journal of Hydrology, 205/3: 265–278. aucour, aM., shePParD, s.M.F., GuyoMar o. & wattelet, j. 1999: Use of 13C to trace the origin and cycling of inorganic carbon in the Rhône river system. Chemical Geology, 159: 87–105. BowlinG, D. r., PataKi, D.e. & ranDerson, j.t. 2008: Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New. Phytol., 178: 24–40. BroecKer, w.s. 1974: Chemical Oceanography. Harcourt Brace Jovanovich, New York. BroecKer, h.c., PeterMan, j. & sieMs, w. 1978: The influence of wind on CO2 – exchange in a wind – wave tunnel, including the effects of monolayers. Journal of Marine Research, 36: 595–610. coetsiers, M. & walraevens, K. 2009: A new correction model for 14C ages in aquifers with complex geochemistry-application to the Neogene Aquifer, Belgium. Applied Geochemistry, 24: 768–776. EMEP/EEA 2013: Air pollutant emission inventory guidebook. Available online: http:// www.eea.europa.eu/publications/emep-eea­guidebook-2013. enerGy inForMation aDMinistration, eMissions oF Greenhouse Gases in the uniteD states 1985-1990. DOE/EIA-0573 (Washington, DC, September 1993), p. 16. euroPean environMent aGency, 1998: Assessment and Management of Urban Air Quality in Europe, EEA Monograph no. 5. http://www. eea.europa.eu/publications/environmental_ monograph_2006_5. euroPean environMent aGency, 2003: Air pollution in Europe 1990-2004. EEA Report No 2/2007. http://www.eea.europa.eu/publications/eea_ report_2007_2. GiesKes, j.M. 1974: The alkalinity-total carbon dioxide system in seawater. In: GolDBerG, E.D. (ed.): Marine chemistry of the sea, 5: 123–151. GórKa, M., sauer, P.e., lewicKa-szczeBaK, D. & jeDryseK, M.o. 2011: Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO2. Environmental Pollution, 159: 294–301. holley, e.h. 1977: Oxygen transfer at the air – water interface. In: GiBBs, r.j. (ed.): Transport Processes in Lakes and Oceans, Proc. Symp. On Transp. Processes in the Ocean held at the 82nd Nat. Meet of the AICE, Atlantic City, N. J. Aug. 29. – Sep. 1, 1976:17–150. Plenum Press. jähne B., heinz G., & Dietrich w. 1987: Measurements of the diffusion coefficients of sparingly soluble gases in water. Journal of Geophysical Research, 92: 10767–10776. KanDu^, t., szraMeK, K., oGrinc, n. & walter, l.M. 2007: Origin and cycling of riverine inorganic carbon in the Sava River watershed (Slovenia) inferred from major solutes and stable carbon isotopes. Biogeochemistry, 86: 137–154. KanDu^, t., jaMniKar, s. & Mcintosh, j. 2010: Geochemical characteristics of surface and groundwaters in the Velenje basin (Slovenia). Geologija, 53/1: 37–46, doi:10.5474/ geologija.2010.003. KanDu^, t., Grassa, F., Mcintosh, j., stiBilj, v., ulrich-suPovec, M., suPovec, i., jaMniKar, s. 2014: A geochemical and stable isotope investigation of groundwater/surface-water interactions in the Velenje Basin, Slovenia. Hydrogeology Journal, 22/4: 971–984, doi:10.1007/s10040-014-1103-7. KanDu^, t. & PezDi^, j. 2005: Origin and distribution of coalbed gases from the Velenje Basin, Slovenia. Geochemical Journal, 39:397– 409. Kuc, T., roŽansKi, K., ziMnoch, M., necKij, M. & Korus, a. 2003: Anthropogenic emissions of CO2 and CH4 in an urban environment. Applied Energy, 75/3-4: 193–203, doi:10.1016/S0306­2619(03)00032-1. lazar, j., KanDu^, t., jaMniKar, s., Grassa, F. & zavšeK, s. 2014: Distribution, copmposition and origin of coalbed gases in excavation fields from the Preloge and Pesje mining areas, Velenje Basin. International Journal of Coal Geology, 131: 363–377, doi:10.1016/j. coal.2014.05.007. levin, i., KroMer, B., waGenBacK, D., Minnich, K.o. 1987: Carbon isotope measurementsof atmospheric CO2 at a coastal station in Antartica. Tellus, 39B: 89–95. lonGinelli, a. & selMo, e. 2005: Seasonal and diurnal variations of .13C and concentration of atmospheric CO2 at Parma, Italy. Geol. Quarter., 49/2: 127–134. MarFia, a.M., KrishnaMurthy, r.v., ateKwana, e.a. & Panton, w.F. 2004: Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: a case study from Belize, central America. Applied Geochemistry, 19: 937–946, doi:10.1016/j.apgeochem.2003.10.013 MooK, w.G. 1970: Stable carbon and oxygen isotopes of natural water in the Netherlands. In Isaotopic Hydrology, IAEA: 163–190. MooK, w.G., BoMMerson, j.c. & staverMan, w.h. 1974: Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planetary Science Letters, 22: 169–176. PataKi, D.e., BowlinG, D.r. & ehlerinGer, j.r. 2003: Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: anthropogenic and biogenic effects. Journal of Geophysical Research, 108/D23: 4735, doi:10.1029/2003JD003865. PataKi, D.e., tyler, B.j., Peterson, r.e., nair, a.P., steenBurGh, w.j. & ParDyjaK, e.r. 2005: Can carbon dioxide be used as a tracer of urban atmospheric transport? Journal of Geophysical Research, 110/ D15102, doi:10.1029/2004JD005723. richey, j.e., heDGes, j.i., Devol, a.h. & Quay P.D. 1990: Biogeochemistry of carbon in the Amazon River. Limnology Oceanography, 35/2: 352–371. roManeK, c.s., GrossMan, e.l. & Morse, j.w. 1992: Carbon isotopic fractionation in synthetic aragonite and calcite: effects temperature and precipitation rate. Geochimica Cosmochimica Acta, 56/1: 419–430. sPötl, c. 2005: A robust and fast method of sampling and analysis of .13C of dissolved inorganic carbon in ground waters. Isotopes in Environmental and Health Studies, 41/3: 217–221, doi:10.1080/10256010500230023. szaran, j., niezGoDa, h. & treMBaczowsKi, a. 2002: Respiration and assimilation process and isotopic composition of atmospheric carbon dioxide. Nukleonika, 47 (Suppl. 1): S59–S61. white, j.w.c. & vauGhn, B.h. 2009: University of Colorado, Institute of Arctic and Alpine Research (INSTAAR), Stable Isotopic Composition of Atmospheric Carbon Dioxide (13C and 18O) from the NOAA ESRI. Carbon Cycle Cooperative Global Air Sampling Network, 1990-2008, Version: 2010-01-08. Path: ftp.cmdl.noaa.gov/ ccg/co2c13/flask/event/. wiDory, D. & javoy, M. 2003. The carbon isotopic composition of atmospheric CO2 in Paris. Earth Planetary Science Letters, 215: 289–866. zhanG, j., Quay, P.D. & wilBur, D.o. 1995: Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim Cosmochim Acta, 59/1: 107-1146. ziMnoch, M., FlorKowsKi, t., necKi, j.M. & neuBert, r.e.M. 2004: Diurnal variability of .13C and .18O of atmospheric CO2 in the urban atmosphere of Kraków, Poland. Isotopes in Environmental and Health Studies, 40/2: 129–143. zwozaDziaK a., GórKa M., sówKa i., lewicKa­szczeBaK D., zwozaDziaK j. & orion jeDryseK M. o. 2010. Air polluion origins using PM10 Data and CO2 Isotopic Analysis. Polish J. of Environ. Stud., 19/6: 1345–1352. Internet resources: internet:http://vode.arso.gov.si/hidarhiv/pov_ arhiv_tab.php (cited online May 2015). doi:10.5474/geologija.2015.003 Spatio-temporal distribution of discharges in the Radovna River valley at low water conditions Prostorsko-~asovna porazdelitev pretokov v dolini reke Radovne v obdobju nizkih vod Anja TORKAR1 & Mihael BREN^I^1,2 1Univerza v Ljubljani, Naravoslovnotehni{ka fakulteta, Oddelek za geologijo, A{ker~eva cesta 12, SI-1000 Ljubljana; e-mail: anja.torkarntf.uni-lj.si 2Geoloki zavod Slovenije, Dimi~eva ulica 14, SI–1000 Ljubljana Prejeto / Received 11. 5. 2015; Sprejeto / Accepted 13. 7. 2015 Key words: aquifer, groundwater, discharge, electrical conductivity, Radovna River Klju~ne besede: vodonosnik, podzemna voda, meritve pretokov, elektroprevodnost, reka Radovna Abstract The Radovna River is a 19.4 km long river located in the north-western part of Slovenia, which runs almost entirely over the area of Triglav National Park. The bottom of the valley is filled with fluvioglacial sediments, which represent an unconfined aquifer with karst aquifers in the recharge area consisting of carbonate rocks of the Triassic age. The Radovna River has only few short stream tributaries, which are recharged from the karstic springs. Therefore, the Radovna River is groundwater dominated river. Within this study, simultaneous measurements of discharge were performed. Discharge and electrical conductivity (EC) were shown to increase downstream. In low water conditions, the average increase in discharge was from 88 l/s km-1 to 287 l/s km-1 . Izvle~ek Reka Radovna je 19,4 km dolga reka v severozahodni Sloveniji, ki skoraj v celoti te~e po obmo~ju Triglavskega narodnega parka. Njeno dolino tvorijo fluvioglacialni sedimenti, ki predstavljajo odprt vodonosnik, zaledje pa tvorijo kra{ki vodonosniki v triasnih karbonatnih kamninah. Reka ima le nekaj kratkih pritokov, ki jih napajajo kra{ki izviri, zaradi tega je pretežno pod vplivom podzemne vode. V okviru raziskav so bile izvedene ve~kratne simultane meritve pretokov, s katerimi je bilo ugotovljeno, da pretok in elektroprevodnost nara{~ata vzdolž toka. V obdobju nizkih vod zna{a povpre~ni prirastek pretoka od 88 l/s km-1 do 287 l/s km-1 . Introduction In Slovenia, most of the drinking water comes from groundwater resources. Although the Radovna River is not a large river, groundwater from its alluvium already supplies three large communities in NW Slovenia: Bled, Gorje and Radovljica. It is important to understand the hydrogeological conditions in the Radovna River valley and its recharge area. Firstly, because potential water reserves are much greater than used today (MarinKo, 1978; internet 2), and secondly, because the valley is positioned in the Triglav National Park, representing an important natural treasure. The purpose of the present study is to describe hydrogeological phenomena and conditions in the Radovna River. In parallel, the spatial distribution of discharges in low water conditions along the river course. It is hypothesised that, in low water conditions, only groundwater outflow is presented in the Radovna riverbed, and with the methods applied, possible spatial relations between various contributions to the river flow can be interpreted. During 2006, 2008 and 2009, discharge and electrical conductivity (EC) were measured at several locations along the river. General settings The Radovna River is, in large part, an Alpine river positioned in a narrow glacial valley with steep slopes. The bottom of the valley is filled with alluvial and glacial material. The river flows between the karstified mountainous plateaus of Pokljuka in the south and Mežakla in the north, both of which are covered by forests (Fig. 1). Pokljuka is a 20 km long plateau with an altitude of between 1000 and 1400 m a.s.l., with the highest point at 1630 m a.s.l. The Mežakla plateau is surrounded by two rivers: the Sava Dolinka River in the north and the Radovna River in the south. The altitude of the plateau is approximately 1200 m a.s.l., with the highest point at 1593 metres. The total width of the Radovna River valley is between 300 and 350 metres. The narrowest part is the Vintgar gorge, which is located in the lower part of the valley and is surrounded by two hills: Hom (834 m) and Bor{t (931 m). The river’s terminal springs are positioned in Zgornja Radovna. In the village of Moste, near Žirovnica, the river, after 19.4 km, converges with the Sava Dolinka River. In the valley, only a few stream tributaries are present; all of which are short, and nearly all are supplied by karstic springs. From south of village Zgornje Gorje, small stream Buden is coming from the dolomite aquifer and in the watershed of Re~ica part of water is coming from the Obranca area where also dolomite aquifer is present. North of Re~ica is the Poljane valley, which does not have significant surface water flow. All water sinks into the sediments on the valley floor; even after a heavy rain, water does not reach Re~ica. Between Spodnja Radovna and the Grab~e gorge, Rib{~ica is also present, where water only flows after heavy rain. It has been estimated that the balance contribution of these creeks during periods of low water is negligible. Along the valley, several factors indicate that the Radovna River is a groundwater dominated river; in all cases, the groundwater level on the banks is higher than the water level in the river. In the upper part of the valley, Kreda, an artificial lake representing a former chalk pit, is present. During exploitation, two separate layers of gravel were open from where groundwater flowed into the pit: the water level in the lake was higher than in Radovna. In Srednja Radovna, in two artesian boreholes (downstream from RMP-4), the hydraulic head is higher than the water level in the Radovna River. The last indicator is the drainage gallery in Ov~ja jama, in which the water level is again higher than in the Radovna. Streams dominated by groundwater can be indicated by other factors, including a stable flow regime and stable water temperature (Sear et al, 1999). The upper part of the Radovna River valley continues further to two Alpine glacial valleys, Kot and Krma, with occasional streams Kotarica and Krmarica. Both valleys are filled with highly permeable gravel. Precipitation in this area infiltrates and recharges groundwater; therefore, no surface springs and streams are present. Springs and torrential water in the streambeds occur only after prolonged periods of rain. In various parts of the valley, several geological and hydrogeological investigations were conducted. However, almost no results were published, but all data are available in the archive of the Geological Survey of Slovenia. In 1961, the first geological mapping was conducted for chalk exploitation in Srednja Radovna (jaM{eK, 1969). In 1977 and 1987, geological mapping was performed in the same region for the preparation Fig. 1. Geographical map of the area with gauging locations. Sl. 1. Geografska karta obmo~ja z lokacijami merskih to~k. of state geological maps: sheets Celovec and Beljak -Ponteba (Buser, 1980; jurKov{eK, 1987). In 1975, hydrogeological and geomechanical investigations were carried out in the region between Zgornja Radovna and Gabrje for a high-dam construction waterstorage reservoir (DroBne, 1975); however, construction never began. In 1978, hydrogeological investigations were performed south-east of Srednja Radovna (Ov~ja jama) for planning and designing a deep-drainage for water supply (MarinKo, 1978). In parallel, engineering geology was performed along the pipeline route (MarinKo & anDri^, 1978). After the capture zone, the Ov~ja jama was constructed and in 1984, detailed hydrogeological mapping was done for the design of groundwater protection zones (roGelj, 1984). Recent studies in the Radovna River valley refer to the stable isotope composition of three karstic springs (KanDu^ et al, 2012) and to the impact of iron ore processing activity in Srednja Radovna (Ferjan stani^ et al, 2013). In addition, the hydrogeology of spring Zmrzlek was investigated (serianz, 2013). Geological settings Wider area of the Radovna River valley is comprised of Triassic, Tertiary and Quaternary rocks and sediments. Lower Triassic marl, marlstone, oolite, grained limestone, mica dolomite and silt are positioned in the eastern part of the Mežakla plateau. Anisian strata located in the north-eastern part of the Mežakla plateau are represented as light grey and thick stratified massive reef limestone, which is deposited on stratified dolomite. There exists an Anisian-Ladinian rock outcrop on the southern slope of Mežakla near the village of Srednja Radovna, in which dolomite prevails; the rocks are different colours and vary from dark and olive grey to brown and slightly pink. Ladinian rocks are positioned in the eastern part of Pokljuka and Mežakla, represented as light and brownish grey platy and stratified micritic limestone with chert. Numerous patches of volcanic rock are present on the Pokljuka plateau; however, their frequency is higher in the east than in the west. A large portion of the Carnian rock in both plateaus is represented as granular massive dolomites; among them, stratification is subordinate. Locally, dolomite, limestone and dolomitised limestone can also occur. Middle Oligocene layers are present south of the Žirovnica village, at the confluence of the Radovna and Sava Dolinka rivers. Beds are comprised of dark grey mica sandy silt, which transitions into clay. Quaternary sediments occur in the bottom of the valley. In Srednja Radovna village, chalk deposited in the fluvioglacial lake is present and, in the past, it has been exploited. Chalk also outcrops in the north-western part of the valley, but it is mixed with sand. Unconsolidated fluvioglacial sediments are represented as gravel and sand and are only partly conglomerated. Moraines are separated according to the location where they occur: in the valley, on the slope and in the Pokljuka plateau. Moraines in the valley are homogeneous and are the result of accumulation due to glacial activity. Slope moraines occur on slopes of the Pokljuka plateau and are comprised of unsorted material, which is dominated by finer fractions with rare, round rocks of limestone. The youngest moraines are on the Pokljuka plateau and are represented as unconsolidated and unsorted grains: predominantly limestone. Flat heterogeneous alluvial deposits of the Holocene age are located along both banks of the stream in the central part of the valley. These deposits are covered with dark grey to black alluvial, containing a number of sharp-edged pieces of white and light grey Triassic limestone and dolomite (Buser, 1980; jurKov{eK, 1987). The overall thickness of the Quaternary deposits is unknown, but only a few boreholes were made in the past along the valley, which can indicate the approximate thickness of the sediments. During the planning of a tourist centre in 1965, three boreholes were drilled in Krma valley, showing that the thickness of the glacial and alluvial deposits is at least 60 m (ŽlebniK, 1966). Later between Srednja Radovna and Gabrje, in 1974, three boreholes were drilled for high-dam construction. The deepest borehole was 103 metres and did not reach the bottom of the valley (DroBne, 1975). Based on these data, we can conclude that, in the upper part of the Krma valley, the thickness of the sediment is at least 60 m and, in the central part of the valley, the thickness is greater than 100 m. Hydrogeological settings In the Radovna River valley and its recharge area, a combination of intergranular and karst aquifers is present. Intergranular aquifers are positioned at the bottom of the valley, while karst aquifers form valley slopes and a wider recharge area. In the valley, numerous springs are present. They can be classified into karstic springs, gravity (descending) springs, contact springs on the edge of moraines, seepage springs and diffuse springs from unconsolidated sediments (Kresic, 2010); some of which are present only during high water conditions. The terminal spring of the river is positioned in Zgornja Radovna, in the area where the large and steep alluvial fan comes from the west and is in contact with the relatively flat fluvioglacial deposits of the river bottom in Gogala in the settlement of Zgornja Radovna. There are several diffuse springs with non-permanent positions. Because the alluvial fan is an unconfined aquifer, the groundwater table in the aquifer substantially fluctuates depending on precipitation and snowmelt infiltration. Consequently, the location of the springs moves up and down along the upper part of the valley. In addition to the main terminal of the Radovna River spring, numerous springs are present in the valley; however, only two (Lipnik and Re~ica) were investigated (Fig. 1). Springs appear throughout the valley, while short tributaries appear mainly in the central part of the valley. The recharge areas of all springs are in the karstic aquifers and are developed due to the contact between alluvial sediments in the central part of the valley and carbonate rocks on valley slopes. Due to the karstic nature of springs, their discharge fluctuates profoundly depending on the amount of precipitation and snowmelt infiltration. The following springs are positioned downstream from the terminal of the Radovna River springs on the north-west side. South of Mlinarjev rovt, the right-bank tributary is recharged by the karstic spring, Zmrzlek, where discharge substantially fluctuates and, thus, the position of the spring changes depending on hydrological conditions. Further downstream, on the left bank of the karstic spring, Zatrep is positioned. It is recharging in the area of Perniki. The next tributary is Lipnik, which is on the right bank, and is recharged from the karstic spring of the same name. Its recharge area is on Pokljuka plateau. The last tributary is the Re~ica creek on the left bank, between Zgornje Laze and Poljane villages, flowing out from the south-eastern part of Mežakla plateau. The Re~ica creek is supplied with several karstic springs. Water intake structures Several water intake structures for the capture and abstraction of water appear along the Radovna River. The structure that is furthest upstream is a small hydroelectric power plant (HPP), Klemenak, which has been in operation since 1993: it provides 40kW of power. This HPP diverts water from the riverbed. The Zmrzlek spodnji spring, which is positioned approximately 250 m downstream from the main Zmrzlek spring, is captured for water supply. Presently, water from this source is not used (internet 2). Bellow Srednja Radovna is the Gorje HPP, which has been in operation since 1906 and is one of the oldest in Slovenia (PaPler, 2004). The water is taken from the river at a nearby small dam and diverted to the HPP; during low water conditions between the intake structure and the outflow from the HPP (at a distance of 1000 m), the riverbed is occasionally completely dry, which profoundly influences the river’s hydrologic regime. Further down the river at Ov~ja jama on the left bank, a deep drainage reservoir for drinking water (with a capacity of 400 l/s) is positioned (internet 2). In NW Slovenia, this is one of the most important water resources, as it supplies 14,500 inhabitants. In the village of Grab~e, an intake structure on the right bank is positioned. The intake is intended to supply Bled Lake via tunnel transfer with fresh, aerated water. The tunnel was constructed between 1962 and 1964, and water transfer began in 1972. The tunnel has a transfer capacity of up to 2000 l/s (PoDliPniK & luKan, 1999). Until 1994, 200 l/s were transferred to the Bled Lake; later, the intake increased to 400 l/s (reMec-reKar, 2004). In the village of Grab~e, a small HPP (Mihova kova~nica, operating since 1990) is also positioned. The last water structure on the river is Vintgar HPP, which has been in operation since 1903; this is also one of the oldest HPPs in Slovenia (reMec-reKar, 2004). Upstream from Vintgar HPP, a dam used for water capture is constructed. Beside the dam, there is a canal for water abstraction. Vintgar HPP abstracts most of the water from the river and transfers it downstream directly into the Sava Dolinka River at Zasip village. Consequently, the lower part Radovna River flows into the Sava Dolinka River only during high water conditions. Methods and materials Measuring sites and events Discharge and EC of the river and spring water were measured at eight locations along the river and at tributaries. The locations on the river were named RMP-1 to RMP-8 (Fig. 1). At tributaries, measurements were made on Lipnik (LIP-1) and Re~ica (RE^-1). Water coming out of the Gorje HPP in Srednja Radovna was also measured. For further interpretation, the discharges at locations RMP-5 and Gorje HPP were combined and used as one discharge. RMP-2 is the first location downstream from the main terminal spring (GKY 421837, GKX 142602). As the position of the main spring fluctuates substantially, the location was selected where the discharge is always present. RMP-1 is the next downstream location, which is situated where the otherwise braided riverbed becomes uniform. RMP-3 is situated after Kreda Lake. RMP-4 and RMP-5 are located before and after the lake, where most of the karstic springs discharge into the Radovna River. RMP-6 is located after Ov~ja jama and before the Re~ica flows into the Radovna River. RMP-7 is positioned before Vintgar gorge, where the maximum discharge in low flow conditions is measured. The last location, RMP-8, is located before the Radovna River discharges into the Sava Dolinka River. Additional discharge data were provided by the Slovenian Environmental Agency. Measurements were performed daily at Podhom, which is positioned in front of the Vintgar gorge (GKY 430055, GKX 139215). The data gathered was from 1933–2013. For further interpretation, the average annual discharge of water flow was calculated. Discharge measurements The chemical integration method was used for discharge measurements in the Radovna valley. The method is based on the instantaneous injection of the tracer into the stream. The method is usually used for watercourses that have high velocities and uneven river bottoms (Boiten, 2008). As a tracer, kitchen salt was used. It is the most Table 1. Discharge and electrical conductivity at gauging points. Tabela 1. Pretok in elektroprevodnost na merskih to~kah. LOCATION DATE GKY GKX DISCHARGE (l/s) ELECTRICAL CONDUCTIVITY (µS/cm) RMP-2 3.2.2006 421837 142602 148 225 0 km 15.2.2008 408 225 2.9.2008 1840 215 16.3.2009 1100 209 RMP-1 1.2.2006 422188 142150 824 213 0,65 km 15.2.2008 1040 221 2.9.2008 1580 218 17.3.2009 1270 229 RMP-3 3.2.2006 423082 141082 554 224 2,40 km 15.2.2008 740 221 2.9.2008 1720 222 16.3.2009 1545 233 RMP-4 3.2.2006 423923 139420 857 228 6,96 km 14.2.2008 1440 229 2.9.2008 2990 229 16.3.2009 2010 240 RMP-5 3.2.2006 425832 138291 1221 286 7,04 km 14.2.2008 2052 283 1.9.2008 3792 276 17.3.2009 3596 287 RMP-6 2.2.2006 427249 137822 1010 246 8,77 km 14.2.2008 1815 242 1.9.2008 2375 248 17.3.2009 2240 259 RMP-7 2.2.2006 429975 138975 1510 256 12,68 km 14.2.2008 2760 252 1.9.2008 4435 252 17.3.2009 4600 271 RMP-8 2.2.2006 432988 140308 206 283 16,56 km 15.2.2008 40 283 1.9.2008 32 276 LIP-1 1.2.2006 425635 138412 134 / 15.2.2008 186 277 1.9.2008 526 294 16.3.2009 483 294 RE^-1 2.2.2006 429446 138863 64 374 14.2.2008 146 289 1.9.2008 108 352 17.3.2009 443 330 commonly used tracer for this method because it is easily available, inexpensive, has good solubility and does little or no harm to animal life and flora in the water. Salt concentration was determined by the EC of, in our experiment, the Flo-Tracer of Flow-Tronic. Before each field campaign, the instrument was calibrated in the laboratory. A certain quantity of salt is injected at a point in the watercourse; then, downstream at a certain point, where the tracer has been sufficiently dispersed, the instrument is gauging the tracer cloud. The recommended quantity of salt is 2 to 12 g per 1 l/s (internet 1). The salt quantity was chosen based on previous recommendations, the distance between the injection and gauging points, and according to the knowledge of the experienced technician who performed the measurements. The longer the distance, the bigger the tracer dilution and, as a result, the smaller the increase in salinity in the gauging area. Discharge calculations were based on the following expression (Boiten, 2008, internet 1). Q = m t2 () ct dt .t 1 where Q is the flow to be determined, m is the mass of the tracer, t is the time, t1 is the time at the beginning of the tracer’s passage, t2 is the time at the end of tracer’s passage and c(t) is the time dependent tracer concentration. Electrical conductivity EC is a simple method for indirectly estimating the total dissolved solids in water. It is very often employed during filed hydrogeological mapping and is defined as the EC of one cubic centimetre of water at a constant water temperature of 25 °C. When the temperature increases by 1°C, EC rises approximately 2 %. The international unit of EC is Si/cm (toDD & Mays, 2005), where Si is the Siemens unit. Measurements together with water temperature were performed with a WTW Multiline P3 instrument. Results and discussion Measurement campaigns were performed in February 2006, in February 2008, in September 2008 and in March 2009. Coordinates and distances of the measuring points from the terminal spring in the NW part of the valley are presented in Table 1. On all measurement campaigns, discharge was gauged at 11 locations, except in March 2009, when RMP-8 was not accessible due to weather conditions. EC was measured concomitantly at the same locations as the discharge. The spatial distributions of discharges and EC are plotted as curved lines (Figs. 2 and 4). To provide the representative discharge measurements at every location, discharges were measured twice, or, at some locations, three times. The average relative error was below 10 %; only at two locations was the error between 15 and 20 % (RMP-3 in February 2008 and RMP-5 in 2009). Representative discharge was calculated as an average. During the evaluation of measured values, the shape of the salt dilution breakthrough curve was verified. In the past, at particular time intervals, discharges of the Radovna River were more closely monitored with several gauging stations. Overall, six gauging stations were in operation; however, their observation periods were different; Fužine (1953–1982), Grab~e (1960–1982), Podhom (1933– current), Spodnja Radovna (1957–1966), Srednja Fig. 2. Plot of discharge versus distance from the spring with trend lines. Sl. 2. Diagram pretoka v odvisnosti od razdalje od izvira s trendnimi ~rtami. Radovna (1952–1982) and Vintgar (1954–1966) (Fig. 1). Currently, the Podhom gauging station is the only station in operation, and we have applied only these data; others were statistically analysed elsewhere (torKar, 2010). The average annual discharges for the Podhom gauging station were calculated and illustrated in Figure 3. The annual average discharge is between 5.1 m3/s and 13.2 m3/s, with one exception (in 1934, when the average annual discharge was 18.3 m3/s) (Fig. 3). Lower annual average discharges are present after 1970, and are rarely above 10 m3/s. A decrease in discharge could be attributed to the upstream construction of tunnels, which conduct fresh water to Lake Bled. Data in Figure 3 illustrate that measuring campaigns were performed during conditions that were lower than average. Discharge measured in 2006 was between 148 l/s and 1510 l/s. In February 2008, discharge was between 40 l/s and 2760 l/s, and in September 2008, it was between 32 l/s and 3792 l/s. In the last campaign performed in March 2009, discharge was between 1100 l/s and 4600 l/s. During measuring campaigns, maximum discharges were not observed inside only one campaign. In September 2008, maximum discharges were measured at all points, except at RMP-7 and at RMP-8, which are positioned in the most distant part of the river valley (before the confluence with the Sava Dolinka River) (Table 1). In March 2009, maximum discharges were measured at points RMP-7 and RMP-8 (Table 1). Despite the difference between measuring campaigns, the relation Fig. 3. Average yearly discharge at the location Podhom between 1933 and 2013. Sl. 3. Povpre~ni letni pretoki za mersko mesto Podhom v letih od 1933 do 2013. Fig. 4. Plot of electrical conductivity versus the distance from the spring. Sl. 4. Diagram elektroprevodnosti v odvisnosti od razdalje od izvira. between discharges measured at particular points and their spatial positions along the riverbed show similar behaviour (Fig. 2). The relative distances between measuring points are similar, but the differences between measurements at the particular measuring point for different sampling campaigns are more profound when high water conditions are present. Along the river, an increase in discharges was expected and observed. Trend lines neglecting measuring points RMP-6 and RMP-8, representing a strong deviation from the trend, are calculated and illustrated in Figure 2. These trends indicate an average increase of discharge along the riverbed. In February 2006, the average discharge increase was 88 l/s km-1; in February 2008, the discharge increase was 174 l/s km1; in September 2008, the discharge increase was 237 l/s km-1; and in March 2009, the discharge increase was 287 l/s km-1. The diagram in Figure 2 indicates that the average discharge increase also specifies hydrological conditions along the river. In low water conditions is lower than at the higher conditions. An increase in discharge is a consequence of direct inflows to the riverbed as well as of recharge from karstic springs from both sides of the valley. Discharges from the Lipnik tributary (LIP-1) were between 134 l/s and 526 l/s, and were between 64 l/s and 443 l/s from Re~ica (RE^-1) (Table 1). Slight irregularities were observed at RMP-1, RMP-2 and RMP-3. In this part of the valley, a hyporheic flow is present. These differences can also be attributed to the changes in the riverbed due to the high spatial fluctuations of the terminal spring position and relatively braided riverbed where certain changes in riverbed morphology can occur over time. During all four campaigns, a significant drop in discharges can be seen at RMP-6 and RMP­ 8. RMP-6 is positioned after Ov~ja jama, where a large drinking water resource is positioned. It is expected that a certain amount of water is diverted from the riverbed by water abstraction from the drainage; consequently, a drop in the river discharge is expected. However, the drop in discharge in relatively high water conditions in September 2008 and March 2009 is too big to be attributed only to water abstraction. At this point, it is possible that certain discharge is flowing in the alluvial sediments parallel to the river course. Because the RMP-6 gauging profile river water flow is relatively idle, possible discharge differences can also be attributed to the applied discharge measuring method. The chemical integration method is most suitable for turbulent flows. At RMP-6, the water current slows, which does not favour the mixing of diluted salt. The large drop between RMP-7 and RMP-8 is due to water intake for the Vintgar HPP. From the diagram, it can be clearly seen that nearly all the water is taken from the riverbed, and water reaching the Sava Dolinka River via natural river flow is negligible compared to the discharge before the Vintgar HPP intake structure. Such conditions have substantial hydromorphological and ecological consequences, which, for the river flowing in the Triglav National Park, are unacceptable. EC is an indicator of total dissolved solids and indirectly points to lithology in the recharge area, groundwater residence time in the aquifer and possible pollution. Higher EC occurs where water is in contact with more soluble minerals for longer periods. Measured EC is between 213 µS/cm and 287 µS/cm. EC values are not high due to carbonate lithology in the recharge area and indicate a very permeable aquifer with a low residence time. In general, EC increases along the river course. There is only one significant deviation from this trend: RMP-5. This is the observation point where the Lipnik tributary flows into the Radovna River and where discharge in the riverbed is relatively depleted due to water removed by the Gorje HPP. An increase in the EC of the Radovna River is due to the inflowing waters with higher ECs (e.g., Re~ica); however, there could also be processes in the river water responsible for this trend, which remains to be investigated. Conclusions Discharge measurements at all four measuring campaigns on the Radovna River indicated their gradual increase along the riverbed. The average km-1 discharge increase was from 88 l/s to 287 l/s km-1 depending strongly on hydrological conditions. Due to the presence of several water intake structures along the valley, the increase was not regular, and significant drops in the discharge are present. An analysis of the EC indicated a monotone increase in the downstream direction and, consequently, low residence times in permeable intergranular and karstic aquifers recharging the river. In the upper part of the river, changes in the discharge trend were also consequences of the stream’s hyporheic flow. With the lack of significant tributaries, it was evident that the flow of Radovna is mainly supplied by groundwater directly flowing into the riverbed. With the results represented, we have illustrated the fact already known from the direct hydrogeological observations that Radovna River is groundwater dominated river. However, in the hydrology of the Radovna River, several questions remain. In the future, more precise discharge measurements along the river are needed for better understanding of groundwater and surface water exchange. The chemical integration method is suitable for use with the torrential flow in the upper part of the Radovna River, but is not precise enough for the lower part, where the water flow is slower and the riverbed is wider. There are also many questions related to the water balance of the river basin as a whole, as well as particular tributaries and karstic springs on the rim of the Radovna Valley. Acknowledgments Authors are greatly acknowledging Zmago Bole, technician at the Department of Groundwater – Hydrogeology, Geological Survey of Slovenia, who performed and help within all measuring campaigns. Paper was prepared through the research programme “Groundwater and geochemistry” (P1-020) of the Geological Survey of Slovenia financially supported by the Slovenian Research Agency. This research was also financially supported by the Slovenian Research Agency (ARRS), contract number 1000-10-310073. References Buser, s. 1980: Osnovna geolo{ka karta SFRJ. 1:100.000. Tolma~ lista Celovec (Klagenfurt) L 33–53. Zvezni geolo{ki zavod, Beograd: 62 p. Boiten, w. 2008: A comprehensive introduction to the measurements of flow in open channels. 3rd Hydrometry, edition, Taylor & Francis Group, London: 247 p. DroBne, F. 1975: Geolo{ke in geotehni~ine raziskave k idejni {tudiji »Akumulacija Radovna«. Arhiv Geolo{kega zavoda Slovenije, Ljubljana: 43 p. Ferjan stani^, t., Bren^i^, M. & zuPan^i^, n. 2013: Heavy metal concentrations in soil in the vicinity of former ironworks in Spodnja Radovna, Slovenia. Geologija, 56/2, 229–241, doi:10.5474/geologija.2013.015. jaM{eK, z. 1969: »Kreda Bled« - Srednja Radovna, Izra~un rezerv kredne gline. Arhiv Geolo{kega zavoda Slovenije, Ljubljana: 12 p. jurKov{eK, B. 1987: Osnovna geolo{ka karta SFRJ. 1:100.000. Tolma~ listov Beljak in Ponteba: L 33–51 L 33–52. Zvezni geolo{ki zavod, Beograd: 58 p. KanDu^, t., Mori, n., KocMan, D., stiBilj, v. & Grassa, F. 2012: Hydrogeochemistry of Alpine springs from North Slovenia: Insights from stable isotopes. Chemical Geology, 300–301: 40–54, doi:10.1016/j.chemgeo.2012.01.012 Kresic, n. 2010: Types and classifications of springs. In: Kresic, n. & stevanovic, z. (eds.): Groundwater hydrology of springs. Butterworth-Heinemann, Burlington: 31-85. MarinKo, M. 1978: Poro~ilo o hidrogeolo{kih raziskavah za zajem pitne vode v kvartarnem zasipu Radovne. Arhiv Geolo{kega zavoda Slovenije, Ljubljana: 10 p. MarinKo, M. & anDri^, z. 1978: Poro~ilo o inženirsko geolokih razmerah vzdolž predlagane trase cevovoda v dolini Radovne. Arhiv Geolokega zavoda Slovenije, Ljubljana: 9 p. PaPler, D. 2004: Elektrifikacija Bleda, Bled 1000 let: Blejski zbornik 2004, Radovljica: Didakta, 221–226. PoDliPniK, B. & luKan, D. 1999: Blejsko jezero z vodarsko-komunalne plasti, Slovenski vodar 8, Dru{tvo vodarjev Slovenije, 19–23. reMec-reKar, š. 2004: Vode Blejskega kota, Bled 1000 let: Blejski zbornik 2004, Radovljica, Didakta, 47–56. roGelj, j. 1984: Za{~ita vodnega vira Radovna: Predlog varstvenih pasov in obmo~ji drenaže Radovna. Arhiv Geolo{kega zavoda Slovenije, Ljubljana: 11 p. Sear, D. a., arMitaGe, P.D. & Dawson, F.h. 1999: Groundwater dominated rivers, Hydrological processes 13, 255-276. serianz, l. 2013: Hidrogeologija izvira Zmrzlek v dolini reke Radovne. Diplomsko delo, Faculty of Natural Sciences and Engineering, University of Ljubljana, Ljubljana: 37 p. toDD, K. D. & Mays, w. l. 2005: Groundwater hydrology 3rd edition. Wiley international ed., J. Wiley & Sons (2004), Hoboken: 636 p. torKar, a. 2010: Hidrogeologija doline reke Radovne. Diplomsko delo, University of Ljubljana, Faculty of Natural Sciences and Engineering, Ljubljana: 68 p. ŽlebniK, l. 1965: Poro~ilo o hidrogeolo{kih razmerah v zgornjem delu doline Krme. Arhiv Geolo{kega zavoda Slovenije, Ljubljana: 5 p. Internet resources: internet 1: http://www.flow-tronic.com/en/ downloads/manuals/flo-tracer-en/view (25.3.2015) internet 2: http://www.infrastruktura-bled.si/ sl/Dejavnosti/Vodovod/Vodovodni-sistemi (25.3.2015) doi:10.5474/geologija.2015.004 Zob paleozojskega morskega psa rodu Glikmanius (Chondrichthyes, Ctenacanthidae) iz Karavank (Slovenija) Upper Paleozoic shark tooth of genus Glikmanius (Chondrichthyes, Ctenacanthidae) from Karavanke Mts. (NW Slovenia) Matija KRIŽNAR Prirodoslovni muzej Slovenije, Pre{ernova 20, SI–1001 Ljubljana; mkriznarpms-lj.si Prejeto / Received 16. 3. 2015; Sprejeto / Accepted 10. 4. 2015 Klju~ne besede: paleozojski morski pes, Glikmanius, spodnji perm, Karavanke, Slovenija Key words: Paleozoic shark, cladodont shark, Glikmanius, Lower Permian, Karavanke Mts., Slovenia Izvle~ek Zgornjepaleozojske (karbonske in permske) plasti v Karavankah so znane po pestri favni nevreten~arjev in posameznih najdbah karbonskih rastlin. Zelo redki so ostanki vreten~arjev. Nova in presenetljiva je najdba ve~jega zoba ktenakantidnega morskega psa vrste Glikmanius cf. occidentalis (Leidy) iz spodnjepermskih plasti med Dovjim in Plav{kim Rovtom, severno od Hru{ice. Gre za prvo najdbo te vrste v južni Evropi. Abstract Upper Paleozoic beds of Karavanke Mountains are rich in invertebrate and plant fossils, while the remains of vertebrates are extremely rare. A new cladodont shark tooth was found in Lower Permian beds near Hru{ica, at the locality named Na Visokih. We have identified the tooth as belonging to species Glikmanius cf. occidentalis (Leidy). This is the first find of this species in the southern Europe. Uvod (raMovš, 1978). V zgornjekarbonskih plasteh so na{li predvsem trilobite (hahn et al., 1977) Na ozemlju med Jesenicami in Dovjim poznamo in razli~ne ramenonožce (raMovš, 1969; novaK vrsto zanimivih najdi{~ fosilov, ki stratigrafsko & sKaBerne, 2009). Spodnjepermske plasti ustrezajo zgornjemu karbonu (Auerni{ka in vsebujejo poleg bogate favne ramenonožcev Schulterkofelska formacija) in spodnjemu permu (schellwien, 1900) in trilobitov (hahn et al., 1990) Sl. 1. Karta z najdi{~em Na Visokih v Karavankah; najdi{~e je obkroženo. Vir zemljevida: geopedia.si. Fig. 1. Map of locality Na Visokih in Karavanke Mountains, Slovenia; locality in circle. Source of map: geopedia.si. tudi biostratigrafsko pomembne fuzulinidne foraminifere (novaK, 2007). Nasprotno so najdbe vreten~arjev izjemno redke. O najdbi zob rodu Petalodus v Sloveniji sta prva poro~ala raMovš in BeDi^ (1993). raMovš (1997) je pozneje najdbe tudi opisal in dolo~il kot vrsto Petalodus ohioensis Safford. Peternel (1995) poro~a o omenjenih najdbah in {e o dveh novih primerkih iz Karavank. Pavši^ (1995) prikazuje enega izmed bolje ohranjenih primerkov zob iz najdi{~a v Javorni{kem Rovtu. raMovš (1998) je dolo~il {e en primerek zoba kot Petalodus ohioensis Safford in opisal nedolo~eni petalodontni zob, ki ju omenja in prikazuje že Peternel (1995) in izhajata iz nahajali{~a pri Planini pod Golico. novaK (2006) poro~a o najdbi zoba družine Petalodontidae v spodnjepermskih (sakmarijskih) plasti v Dovžanovi soteski. V pri~ujo~em ~lanku predstavljam novo najdbo zoba ktenakantidnega morskega psa iz spodnjepermskh plasti v okolici Hru{ice. Geolo{ka zgradba okolice najdi{~a Na osnovi geolo{ke karte (Buser, 1980) kamnine na najdi{~u pripadajo spodnjepermskim rotnove{kim in trogkofelskim plastem. V {ir{em smislu pripadajo kamnine klasti~no-karbonatni seriji spodnjepermskih plasti (raMovš, 1968; novaK & sKaBerne, 2009). Kosi kamnitih blokov iz najdi{~a in prikamnina na primerku vsebujejo množico izluženih pecljev morskih lilij, preseke ramenonožcev (cf. Martinia sp.) in fuzulinidne foraminifere s podolgovatimi hi{icami (verjetno rodovi Pseudofusulina ali Quasifusulina). Kamnina je svetlo do temno sivi apnenec (biomikrit), ki ima na povr{ini prevleke sljudnatega pe{~enjaka in meljevca. Natan~nej{a dolo~itev fuzulinidnih foraminifer nam bo omogo~ila natan~no opredelitev starosti kamnine s primerkom. Paleontolo{ki del Sistematika sledi Ginter et al., 2010. Classis Chondrichthyes Huxley, 1880 Subclassis Elasmobranchii Bonaparte, 1838 Ordo Ctenacanthiformes Glikman, 1964 Familia Ctenacanthidae Dean, 1909 Genus Glikmanius Ginter, Ivanov & Lebedev, 2005 Rod Glikmanius so z revizijo zelo {irokega rodu Cladodus revidirali Ginter s sodelavci (2005). Rod se pojavlja v karbonskih in permskih plasteh ZDA, Rusije in Japonske (Ginter et al., 2010; yaMaGishi & FujiMoto, 2011). Glavne zna~ilnosti zob rodu Glikmanius podajajo DuFFin & Ginter (2006) in hoDnett s sodelavci (2012). Glikmanius cf. occidentalis (Leidy, 1859) (sl. / fig. 3, a-d) 1903 Cladodus occidentalis Leidy, 1859 – eastMan, Pl. 2, Figs. 3, 8, 9. 2002 »Cladodus« occidentalis Leidy, 1859 – Ginter, 549, Fig. 1, D-F. 2004 »Cladodus« occidentalis Leidy, 1859 – elliott et al., 274, Fig. 4, J-L. 2005 Glikmanius occidentalis (Leidy, 1859) – Ginter et al., 625, Fig. 1, C, Fig. 2, B. 2008 Glikmanius occidentalis (Leidy, 1859) – johnson, 206, Figs. 1–2. 2011 Glikmanius occidentalis (Leidy, 1859) – yaMaGishi & FujiMoto, 2, Figs. A-F. 2012 Glikmanius occidentalis (Leidy, 1859) – hoDnett et al., 5, Fig. 2, F-G. Sl. 3. Glikmanius cf. occidentalis (Leidy), inv. {t. 2349. Najdi{~e: Na Visokih, severno od Hru{ice, Karavanke. Merila 10 mm. a. Primerek na kamnini. Labialni pogled. b. Risba primerka z ozna~enimi glavnimi morfolo{kimi znaki. c. Globok žleb v bazolabialnem delu (pu{~ica). d. Stranske konice na desni strani zoba. Okraj{ave (morfolo{ki znaki): Mc – glavna konica zoba mlc – zunanja stranska (sekundarna) konica zoba ic – srednja stranska (notranja) konica zoba B – korenina zoba (baza zoba) Fig. 3. Glikmanius cf. occidentalis (Leidy), specimen no. SMNH 2349. Locality: Na Visokih, north of Hru{ica, Karavanke Mts. Labial view. Scale bar 10 mm. a. Specimen in matrix, labial view. b. Drawing of specimen with some morphological terms. c. Deep basolabial depression of specimen (arrow). d. Lateral cusp on right side of specimens. Abbreviations (morphological terms): Mc – median cusp mlc – main lateral cusp ic – intermediate cusplet (cusp) B – base Late Paleozoic shark tooth of genus Glikmanius (Chondrichthyes, Ctenacanthidae) from Karavanke Mts. (NW Slovenia) Conclusion Remains of Paleozoic vertebrates are very rare in Slovenia. All of documented remains were found in Karavanke Mountains and were identified as petalodont teeth (raMovš & BeDi^, 1993; raMovš, 1997, 1998; novaK, 2006). In year 2012, a new and different, typical cladodont shark tooth was found in presumably Lower Permian beds, near the town of Hru{ica on locality named Na Visokih. After preparation of specimen (no. 2349, collection Slovenian Museum of Natural History), we identified it as Glikmanius cf. occidentalis (Leidy). The tooth has triangular median cusp, deep basolabial depression and two cusplets on both side, with bigger main lateral cusp. New specimen of Glikmanius cf. occidentalis (Leidy) from Karavanke Mountains (Slovenia) is the first from Southern Alps or perhaps even from southern Europe. Literatura Buser, s. 1980: Tolma~ lista Celovec (Klagenfurt) Osnovne geolo{ke karte SFRJ 1 : 100.000. Zvezni geolo{ki zavod, Beograd: 62 p. DuFFin, c.j. & Ginter, M. 2006: Comments on the selachian genus Cladodus Agassiz, 1843. Journal of Vertebrate Paleontology, 26/2: 253–266. eastMan, c. r. 1903: Carboniferous fishes from the Central Western states. Bulletin of the Museum of Comparative Zoology, 39/7:163–326. elliott, D.K., irMis, r.B., hansen, M.c. & olson, t.j. 2004: Chondrichthyans from the Pennsylvanian (Desmoinesian) Naco Formation of Central Arizona. Journal of Vertebrate Paleontology, 24/2: 268–280. Ginter, M. 2002: Taxonomic notes on ‘Phoebodus heslerorum’ and Symmorium reniforme (Chondrichthyes, Elasmobranchii). Acta Palaeontologica Polonica, 47/3: 547–555. Ginter, M., haMPe, o. & DuFFin, c. j. 2010: Chondrichthyes. Paleozoic Elasmobranchii: Teeth. In: schultze, h.-P. (ed.): Handbook of Paleoichthyology, Vol. 3D. Verlag Dr. Friedrich Pfeil, Munich: 168 p. Ginter, M., ivanov, a. & leBeDev, o. 2005: The revision of "Cladodus" occidentalis, a late Paleozoic ctenacanthiform shark. Acta Palaeontologica Polonica, 50/3: 623–631. hahn, G., hahn, r. & raMovš, a. 1977: Trilobiten aus dem Ober-Karbon (Gshelium) der Karawanken / Slowenien. Geologica et Palaeontologica, 11: 135–160. hahn, G., hahn, r. & raMovš, a. 1990: Trilobiten aus dem Unter-Perm (Trogkofel-Kalk, Sakmarium) der Karawanken in Slowenien. Geologica et Palaeontologica, 24: 139–171. hoDnett, j.-P.M., elliott, D.K., olson, t.j. & wittKe, j.h. 2012: Ctenacanthiform sharks from the Permian Kaibab Formation, northern Arizona, Historical Biology: An International Journal of Paleobiology: 1–15, doi:10.1080/08 912963.2012.683193 johnson, G.D. 2008: Ctenacathiform cladodont teeth from the lower Permian Wichita Group, Texas, U.S.A. Acta Geologica Polonica, 58/2: 205–209. novaK, M. 2006: Zanimivi fosili in sedimentolo{ke posebnosti Dovžanove soteske. V: reŽun, B. (ur.): 2. slovenski geolo{ki kongres, Idrija, 26.-28. september 2006. Zbornik povzetkov. Rudnik živega srebra v zapiranju, Idrija: 38 p. novaK, M. 2007: Depositional environment of Upper Carboniferous – Lower Permian beds in the Karavanke Mountains (Southern Alps, Slovenia). Geologija, 50/2: 247–268, doi:10.5474/geologija.2007.018. novaK, M. & sKaBerne, D. 2009: Zgornji karbon in spodnji perm = Upper Carboniferous and Lower Permian. In: Pleni^ar, M., oGorelec, B. & novaK, M. (eds.): Geologija Slovenije = The Geology of Slovenia. Geolo{ki zavod Slovenije, Ljubljana: 99–136. Pavši^, j. 1995: Fosili, zanimive okamnine iz Slovenije. Tehni{ka založba Slovenije, Ljubljana: 139 p. Peternel, M. 1995: Zobje morskih psov v zgornjem karbonu Karavank. Jeseni{ki zbornik (Jeklo in Ljudje), 7: 273–276. raMovš, a. 1968: Biostratigraphie der klastischen Entwicklung der Trogkofelstufe in den Karawanken und Nachbargebieten. Neues Jahrbuch für Geologie und Paläontologie, Abh. 131/1: 72–77. raMovš, a. 1969: Karavankininae, nova podružina produktid (Brachiopoda) iz alpskih zgornjekarbonskih in permijskih skladov. Jeseni{ki zbornik (Jeklo in Ljudje), 2: 251–268. raMovš, a. 1978: Okamnelo življenje v jeseni{kem prostoru. Tehni{ki muzej Železarne Jesenice, Jesenice: 82 p. raMovš, a. 1997: Petalodus ohioensis (Chondrichthyes, Upper Carboniferous) from the Karavanke Mountains, Slovenia. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, H. 2: 109–113. raMovš, a. 1998: Two new petalodont teeth (Chondrichthyes, Upper Carboniferous) from the Karavanke Mountains, Slovenia. Geologija, 40: 109-112, doi:10.5474/geologija.1997.004. raMovš, a. & BeDi^, j. 1993: Enkratni petalodontni zobje v karavan{kih zgornjekarbonskih plasteh. Proteus, 56/3: 149–150. schellwien, e. 1900: Die Fauna der Trogkofelschichten in den Karnischen Alpen und den Karawanken. Abhandlungen der k. k. Geologischen Reichsanstalt, 16/1: 1–122. yaMaGishi, h. & FujiMoto, t. 2011: Chondrichthyan Remains from the Akasaka Limestone Formation (Middle Permian) of Gifu Prefecture, Central Japan. Bulletin of the Kanagawa Prefectural Museum. Natural Science, 40: 1–6. doi:10.5474/geologija.2015.005 Nekaj novih najdb eocenskih rakovic iz najdi~a ]opi v Istri Some new finds of Eocene crabs from ]opi in Istria, Croatia Vasja MIKUŽ Univerza v Ljubljani, Naravoslovnotehnika fakulteta, Oddelek za geologijo, Privoz 11, SI – 1000 Ljubljana, Slovenija; vasja.mikuzntf.uni-lj.si Prejeto / Received 18. 5. 2015; Sprejeto / Accepted 18. 6. 2015 Klju~ne besede: rakovice (Decapoda), srednji eocen, ]opi, osrednja Istra, Hrva{ka Key words: crabs (Decapoda), Middle Eocene, ]opi, Central Istria, Croatia Izvle~ek V prispevku so obravnavani ostanki rakovic iz srednjeeocenskih fli{nih plasti okolice ]opija v osrednji Istri na Hrva{kem. Dva primerka pripadata razmeroma pogostni vrsti Lophoranina marestiana (König, 1825), del oklepa in segment {karij pa vrsti Lessinicarcinus euglyphos (Bittner, 1875). Manj{ega kamenega jedra zaradi njegove slab{e ohranjenosti ni mogo~e taksonomsko opredeliti. Abstract The contribution deals with crab remains from Middle Eocene flysch beds of environs of ]opi in central Istria, Croatia. Two specimens belong to the relatively abundant species Lophoranina marestiana (König, 1825). A part of carapace and a segment of chela belong to the species Lessinicarcinus euglyphos (Bittner, 1875). A smaller crab stone cast could not be taxonomically interpreted due to its poor state of preservation. Uvod V osrednji Istri je veliko eocenskih fli{nih kamnin s {tevilnimi fosilnimi ostanki najrazli~nej{ih morskih organizmov. V dolo~enih horizontih fli{a najdemo tudi veliko makrofavne. Na {ir{em obmo~ju ]opija, ki leži južnovzhodno od Pazina (sl. 1) je ve~ najdi{~ eocenske makrofavne. Prevladujejo ostanki velikih foraminifer, mehkužcev in morskih ježkov, manj je ostankov rakovic. V letu 2012 je Vili Rakovc iz Kranja znova obiskal tamkaj{nja najdi{~a in na{el nekaj novih rakovi~jih ostankov, ki jih prikazujemo v prispevku. O najdbah in raziskavah rakovic iz Istre smo že poro~ali. Iz Gra~i{}a pri Pazinu smo predstavili ve~jo rakovico vrste Harpactoxanthopsis quadrilobata (Desmarest) in skromen ostanek vrste Lophoranina marestiana (König) (MiKuŽ, 2002; 2004), iz ]opija smo imeli v raziskavah ve~ primerkov vrste Lophoranina marestiana (König), karapaks vrste Lobonotus ? euglyphos (Bittner), (MiKuŽ, 2010 a; 2011) in karapaks vrste Cyrtorhina globosa Beschin, De Angeli & Tessier, 1988 (MiKuŽ, 2010 b). Paleontoloki del Sistematika po: Martin & Davis 2001, De Grave et al. 2009 in De anGeli 2012 Subphylum Crustacea Brünnich, 1772 Classis Malacostraca Latreille, 1802 Subclassis Eumalacostraca Grobben, 1892 Superordo Eucarida Calman, 1904 Ordo Decapoda Latreille, 1802 Subordo Pleocyemata Burkenroad, 1963 Infraordo Brachyura Linnaeus, 1758 Sectio Raninoida De Haan, 1839 Familia Raninidae De Haan, 1839 Subfamilia Ranininae De Haan, 1839 Genus Lophoranina Fabiani, 1910 Beschin, De anGeli & zorzin (2011: 38) pi{ejo, da so primerki rodu Lophoranina izklju~no fosilni in raz{irjeni od zgornje krede do oligocena. Lophoranina marestiana (König, 1825) Tab. 1, sl. 1, 2a-2b 1825 Ranina Maresiana. n. – KöniG, 2, Fig. 14 1825 Ranina Maretiana – KöniG, I, Fig. 15 1859 Ranina Marestiana Kön. – reuss, 21, 81, Taf. 5, Figs. 1-2 1872 Ranina Maresiana Koenig – Milne eDwarDs, 8 1875 Ranina Marestiana König – Bittner, 64, Taf. 1, Figs. 1, 2a-2c 1877 R. Maresiana, Koenig – Brocchi, 7 1881 Ranina Maresiana (Koenig) – Milne eDwarDs, 7 1910 Lophoranina. R. marestiana Koenig – FaBiani, 89 2005 Lophoranina marestiana (Kjunig, 1825) – ilyin, 223, Tabl. 10, Figs. 4-7 2009 Lophoranina marestiana (König, 1825) – Beschin, De anGeli & zorzin, 69, Tav. 3, Figs. 2, 3 2010 a Lophoranina marestiana (König, 1825) – MiKuŽ, 48, Tab. 1, Sl. 1-11 2011 Lophoranina marestiana (König, 1825) – Beschin, De anGeli & zorzin, 38, Fig. 5, Tav. 1, Figs. 1-4 Material in najdi{~e: En delno ohranjen karapaks in del prve lovilne, grabilne ali obrambne okon~ine. Oboje je na{el Vili Rakovc v letu 2012 blizu zaselka ]opi, v kaoti~ni bre~i s {tevilnimi numulitinami razli~nih velikosti in drugimi foraminiferami, redkimi ostanki rakovic in polihetov, pogostnimi kamenimi jedri mehkužcev in razmeroma dobro ohranjenimi koronami iregularnih morskih ježkov. Vasja MIKUŽ Velikost karapaksa (Size of carapace): Tab. 1, sl. 1 dolžina (Length) = 54 mm {irina (Width) = 45 mm {tevilo pre~nih grebenov (Number of transverse ridges) = 14 Velikost lakta ali roke (Size of arm or merus): Tab. 1, sl. 2a-2b dolžina (Length) = 23 mm {irina (Width) = ~13 mm debelina (Thickness) = 10 mm {tevilo pre~nih grebenov (Number of transverse ridges) = 7 Pripombe: Prva lovilna, grabilna ali obrambna okon~ina (chelipeda) sestoji iz ve~ ~lenov, trije ve~ji segmenti so: {karje ali kle{~e, ki sestoje iz telesa ali propodusa, spodnjega nepremi~nega prsta in zgornjega premi~nega prsta, sledita zapestje (carpus) in laket ali roka (merus). Munier-chalMas (1891: 48, 51, 53) iz ve~ najdi{~ Veneta navaja vrsto Ranina marestiana König, vendar izklju~no iz srednjeeocenskih skladov. FaBiani (1915: 284-285) vrsto Ranina marestiana Koenig omenja iz Veneta v skladih od lutetija do priabonija, torej od srednjega do vklju~no zgornjega eocena. wanK (1986: 61-62) predstavlja primerka vrste Ranina (Lophoranina) cf. marestiana Koenig iz eocenskih skladov cementarne Wietersdorf, severno od Dobranberga na Koro{kem. Primerjava: Med nekaterimi vrstami loforanin je opaziti veliko podobnosti na njihovih karapaksih. Mislim, da pri fosilnih loforaninah {e ne poznamo dovolj njihovih vrstnih raznolikosti, razen tega je pri družini Raninidae ugotovljen tudi spolni dimorfizem (FelDMann & schweitzer 2007), ki je najbolj izrazit v oblikovanosti in velikosti njihovega abdomna. Stratigrafska in geografska raz{irjenost vrste Lophoranina marestiana (König, 1825) v Evropi in severni Afriki (tabela 1), primerke iste vrste so na{li tudi v spodnjeeocenskih skladih severnega dela Evrazije (ilyin 2005: 223, Tabl. 10, Figs. 4-7). Sectio Eubrachyura de Saint Laurent, 1980 Subsectio Heterotremata Guinot, 1977 Superfamilia Pilumnoidea Samouelle, 1819 Familia Pilumnidae Samouelle, 1819 Subfamilia Pilumninae Samouelle, 1819 Genus Lessinicarcinus De Angeli, 2012 Lessinicarcinus euglyphos (Bittner, 1875) Tab. 1, sl. 3a-3b, 5 1875 Titanocarcinus euglyphos nov. spec. – Bittner, 35 (95), Taf. 2, Figs. 6a-6b 2007 »Titanocarcinus« euglyphos – schweitzer et al., 282-283, Figs. 1A, B, D Tabela 1. Stratigrafska in geografska razirjenost vrste Lophoranina marestiana (König, 1825) v Evropi in severni Afriki Table 1. Stratigraphical and geographical distribution of Lophoranina marestiana (König, 1825) in Europe and north Africa STAROST AGE NAJDIš^A LOCALITIES SPODNJIEARLY SREDNJIMIDDLE ZGORNJILATE AVTORJI AUTHORS E O C E N E O C E N E ŠPANIJASPAIN Provinca Alicante (Tángel, Garbinet, Callosa de Ensarriá, Agost, Orcheta) ---------­ vía 1959; 1970 Beschin et al. 1988; 1994; 1998; 2011 ITALIJAITALY Okolica Verone, San Giovanni Ilarione, Veneto, Mt. Postale, Ciuppio, Mt. Vegroni, Purga di Bolca, Vallle di Chiampo, Cava »Rossi« di Monte di Malo, Vicenza, Pordenone, ---------------------­ reuss 1859 Milne eDwarDs 1872 Bittner 1875; 1883 Munier-chalMas 1891 oPPenheiM 1896 Dainelli 1915 FaBiani 1910; 1915 Parona 1924 Friuli Venezia-Giulia, Palermo-Sicilija? ancona 1966 Glaessner 1969 savazzi 1981 Beschin et al. 1988; 1994; 1998; 2009; 2011 HRVAŠKACROATIA Okolica Splita, Istra (v okolici Labina in Rae, v okolici Pazina - Paz, Gra~i~e, ]opi) ---------­ schuBert 1905 Pavlovec 1958 KochansKy-DeviDé 1964 Moosleitner 1996 MiKuŽ 2004; 2010a Beschin et al. 2011 AVSTRIJAAUSTRIA St. Pankraz (Salzburg), Wietersdorf ---------­ voGeltanz 1968 vía 1970 wanK 1986 haGn, DarGa & schMiD 1992 schultz 1998 ŠVICASWITZERL. Severnovzhodni del Švice, blizu meje z Nem~ijo? -----?----­ vía 1970 NEM^IJAGERMANY Kressenberg (Bavarska) --------- Milne eDwarDs 1872 zittel 1895 vía 1970 haGn, DarGa & schMiD 1992 EGIPTEGYPT Mokattam, Gebel Haridi ---------­ nötlinG 1885 vía 1970 2011 Lobonotus? euglyphos (Bittner, 1875) – MiKuŽ, 24, Tab. 1, Sl. 1a-1b 2012 Lessinicarcinus euglyphos (Bittner, 1875), comb. nov. – De anGeli, 79, Figs. 2a-2b, 3b Material in najdi{~e: Razmeroma dobro ohranjen segment prve okon~ine, ki ga je na{el Vili Rakovc in leva polovica oklepa ali karapaksa (]r-22), ki ga je pred leti na{el avtor prispevka. Oba primerka sta najdena v kaoti~ni bre~i pod zaselkom ]opi. Telo desnih karij (Right chela): Tab. 1, sl. 3a-3b dolžina = 26 mm {irina = 18 mm debelina = 11 mm Leva polovica karapaksa (Left half of carapace): Tab. 1, sl. 5 dolžina ostanka karapaksa (Length of carapace remain) = 27 mm Opis in primerjava: Oblika in vzorec ornamentiranosti {karij ustrezata primerku iz Italije, ki ga prikazuje De anGeli (2012: 81, Fig. 3. 2a-2b). Tudi del rakovi~inega karapaksa iz ] opija lahko primerjamo s primerki De anGeli-ja (2012: 81, Fig. 3. 1, 3b, 4b). Povr{ina na karapaksu iz ]opija je zelo reliefna in izrazita ter bolj bogato ornamentirana. Stratigrafska in geografska raz{irjenost: FaBiani (1915: 285) vrsto rakovice Titanocarcinus euglyphos Bittn. omenja samo iz lutetijskih plasti Veneta. De anGeli (2012: 79) je postavil nov rod Lessinicarcinus, vrsta L. euglyphos pa je opisana iz srednjeeocenskih skladov najdi{~a Cava Main di Arzignano v dolini re~ice Chiampo, v italijanski pokrajini Monti Lessini Veronesi. Genus et species indet. Tab. 1, Sl. 4a-4b Material: En slabo ohranjen ostanek kamenega jedra (]r-20) iz najdi{~a pod zaselkom ]opi. Na{el sem ga pred nekaj leti. Velikost problemati~nega ostanka (Size of problematic remain): Tab. 1, sl. 4a-4b dolžina (Length) = 25 mm {irina (Width) = 18 mm Opis in primerjava: Zelo pomanjkljivo kameno jedro iz ]opija (]r-20) oziroma odtis notranjosti treh ~lenov cefalotoraksa ali pa abdominalnega dela dekapodnega raka je razmeroma majhno. Posamezni ~leni se deloma prekrivajo. Najdba je problemati~na in njena uvrstitev je vpra{ljiva. Tak{no nakazano trojno segmentacijo karapaksa in precej{no podobnost v velikosti ter izbo~enosti najdemo tudi pri eocenskih dekapodnih vrstah Dromia hilarionis (Bittner 1883: 306, Taf. 1, Fig. 5) in D. claudiopolitana (Bittner 1893: 21, Tab. 2, Fig. 5). Rodovno ime druge oblike je bilo preimenovano v Noetlingia, torej Noetlingia claudiopolitana (Bittner, 1893) (Beschin et al. 1994: 166, Tav. 1, Fig. 4). Bittner (1893: 21) {e pi{e, da je primerek iz panonske kotline (najdi{~a Kardosfalva) velik 26 x 18 mm, kar je zelo blizu velikosti primerka iz ]opija. Bittner (1893: 22) in Beschin et al. (1994: 166) omenjajo {e eno eocensko vrsto Dromia veronensis (Bittner, 1886). Na podlagi navedenih podobnostih lahko sklenemo, da kameno jedro iz ]opija najverjetneje pripada primerku rodu Noetlingia Beurlen 1928, ki je iz družine Dromiidae De Haan 1833, naddružine Dromioidea De Haan 1833 ter sekcije Dromiacea De Haan 1833. Pripombe: Ostanek kamenega jedra (]r-20) je deloma podoben tudi trem segmentom manj{ega navtilidnega fragmokona, vendar pri kamri~nih {ivih navtilidov obi~ajno ne opazujemo tak{nega prekrivanja. Pri navtilidih se kamri~ni segmenti proti ustju po~asi {irijo, podalj{ujejo in hkrati pove~ujejo, pri primerku iz ]opija (tab. 1, sl. 4a­4b), te navtilidne zna~ilnosti {irjenja kamric ni videti. Diskusija in zaklju~ki V raziskavi smo imeli pet razli~nih, dobro do slabo ohranjenih fosilnih ostankov iz srednjeeocenskih kaoti~nih bre~ najdi{~a ]opi v osrednji Istri na Hrva{kem. Dva rakovi~ina ostanka (tab. 1, sl. 1, 2a-2b) pripadata vrsti Lophoranina marestiana (König, 1825), druga dva (tab. 1, sl. 3a-3b, 5) vrsti Lessinicarcinus euglyphos (Bittner, 1875), dolo~itev petega ostanka kamenega jedra (tab. 1, sl. 4a-4b) ni bila mogo~a. ^e upo{tevamo podatke o stratigrafski raz{irjenosti vrste Lophoranina marestiana (tabela 1) in ~e so stratigrafski podatki korektni ugotavljamo, da je ta vrsta rakovice eocenska. Na obmo~ju dana{nje Evrope in severne Afrike je najdena v kamninah razli~ne eocenske starosti. Kaže, da so se loforanine pojavile najprej v severnem delu takratnega sedimentacijskega bazena v spodnjem eocenu, v srednjem eocenu so se raz{irile proti jugu in v zgornjem eocenu pristale {e južneje. V eocenskih kamninah Slovenije loforanin do sedaj {e nismo na{li. Šele zdaj, ko nam je uspelo pridobiti in videti prvi KöniG-ov opis iz leta 1825, imamo pri poimenovanju dekapodne vrste Lophoranina marestiana nekaj pripomb in predlogov. Nem{ki botanik in mineralog carl (charles) Dietrich eBerharD KöniG (1774-1851) je leta 1825 prvi nakazal novo obliko fosilne raninidne rakovice, ki je bila druga~na od takrat že dolo~ene Ranzani­jeve vrste Ranina aldrovandi (cf. DesMarest 1822: 121). Novo obliko naj bi KöniG poimenoval v ~ast francoskemu zoologu Anselme-ju Gaëtan-u Desmarest-u (1784-1838). KöniG-ov opis nove oblike oziroma vrste (1825: 2) je zelo pomanjkljiv, prikazan primerek holotipa in njegova risba (I, Fig. 15) pa izredno slaba. Zato predlagamo, da italijanski raziskovalci in specialisti eocenskih dekapodov, ki imajo najbolje ohranjene primerke tovrstnih eocenskih loforanin izberejo neotip omenjene oblike in preimenujejo KöniG-ovo vrstno ime, ki je dejansko neustrezno oziroma po nomenklaturnih pravilih zelo vpra{ljivo. KöniG (1825: 2, I, Fig. 14) je novo vrsto poimenoval Ranina Maresiana. n., njena podoba je na tabli I pod {tevilko 15 in ne 14! V istem njegovem delu zasledimo {e drugo ime Ranina Maretiana (I, Fig. 15). Torej dvakrat z razli~nima in napa~nima vrstnima imenoma, noben od njiju pa ne ustreza imenu Ranina marestiana, ki ga zasledimo {ele pri reuss-u iz leta 1859. Tak{no taksonomsko stanje z neustreznima vrstnima imenoma lahko uvrstimo med gola imena ali »nomina nuda«. Ker je priimek nekdanjega francoskega zoologa DesMarest in ker je bilo ime rakovice posve~eno njemu, predlagamo preimenovanje vrstnega imena marestiana v desmaresti, torej Lophoranina desmaresti ali v povsem novo vrstno ime po nem{kem naravoslovcu, avtorju in predlagatelju nove vrste C. D. E. Königu -Lophoranina koenigi. Some new remains of Eocene crabs from ]opi in Istria, Croatia Discussion and conclusion Examined were five different well to poorly preserved fossil remains from the Middle Eocene chaotic breccias at the ]opi locality in central Istria, Croatia. Two crab remains (pl. 1, figs. 1, 2a-2b) belong to species Lophoranina marestiana (König, 1825), the following two (pl. 1, figs. 3a-3b, 5) to species Lessinicarcinus euglyphos (Bittner, 1875), whereas the attribution of the fifth remain of a stone cast (pl. 1, fig. 4a-4b) could not be done. If taking into consideration the data on stratigraphic distribution of species Lophoranina marestiana (tabela 1), and accepting the stratigraphic data as correct, we should conclude that this crab species is of Eocene age. In the realm of the present Europe and North Africa the species occurs in rocks of various Eocene ages. It looks like that lophoraninas appeared first in the northern part of the sedimentary basin that existed in the Early Eocene; in the Middle Eocene it expanded southwards, and in the Late Eocene even farther to the south. In Eocene rocks of Slovenia no lophoraninas were found so far. Only now, after obtaining and inspecting the first KöniG's description from 1825, we could forward several remarks and proposals concerning the naming of the decapod species Lophoranina marestiana. The German botanist and mineralogist carl (charles) Dietrich eBerharD KöniG (1774­1851) in 1825 first denoted a new form of the fossil raninid crab, different of the then already determined Ranzani's species Ranina aldrovandi (DesMarest 1822: 121). The new form should have been named by KöniG in honor of the French zoologist Anselme Gaëtan Desmarest (1784-1838). KöniG's description of the new form respectively species (1825: 2) is, however, very deficient, and the presented specimen of the holotype and its drawing (I, Fig. 15) very poor. Therefore we are advancing the proposal that Italian researchers and specialists for Eocene decapoda, who have in posession the best preserved specimens of these Eocene lophoraninas, select the neotype of the mentioned form and rename the KöniG's species name, which is actually unsuitable, and very questionable in view of the nomenclature rules. KöniG (1825: 2, I, Fig. 14) named the new species Ranina Maresiana. n., and its drawing appears on plate I under number 15, and not 14! In his same work we find an additional name, Ranina Maretiana (I, Fig. 15). So twice with distinct and erroneous species names, of which none corresponds to the name Ranina marestiana that can be found only with reuss in 1859. Such taxonomic situation with improper species names can be attributed to »nomina nuda«. Since the family name of the mentioned French zoologist is DesMarest and since the name of the crab was dedicated to him, we propose to rename the species name marestiana to desmaresti, i.e. Lophoranina desmaresti, or, perhaps to a completely new species name after the German natural scientist, author and proposer of the new species. C. D. E. König - Lophoranina koenigi. Zahvale Za posredovane in podarjene fosilne primerke se zahvaljujemo Viliju Rakovcu iz Kranja, sodelavcu Marijanu Grmu za fotografske in ra~unalnike usluge, za prevode v angle~ino zaslužnemu profesorju dr. Simonu Pircu. Literatura ancona, l. 1966: Esemplari di Ranina (Decapodi Brachiuri) eccezionalmente ben conservati nell`Eocene medio della Valle del Chiampo (Vicenza). Mem. Mus. Civ. Stor. Natur. Verona, 14: 401–408, Tav. 1–3. Beschin, c., Busulini, a., De anGeli, a. & tessier, G. 1988: Raninidae del Terziario Berico-Lessineo (Italia settentrionale). Lavori Soc. Ven. Sc. Nat. Venezia, 13: 155–215. Beschin, c., Busulini, a., De anGeli, a. & tessier, G. 1994: I Crostacei eocenici della cava »Boschetto« di Nogarole Vicentino (Vicenza – Italia settentrionale). Lavori Soc. Ven. Sc. Nat. Venezia, 19: 159–215. Beschin, c., Busulini, a., De anGeli, a. tessier, G. & unGaro, s. 1998: Crostacei eocenici di »Cava Rossi« presso Monte di Malo (Vicenza - Italia settentrionale). Studi Trentini Sci. Natur., Acta Geol. (1996), Trento, 73: 7–34. Beschin, c., De anGeli, a. & zorzin, r. 2009: Crostacei fossili del Veneto: una inedita fauna eocenica dei Lessini orientali (Monte Serea di San Giovanni Ilarione, Verona), con descrizione di tre nuove specie. Boll. Mus. Civ. Storia Naturale Verona, 33: 59–83, (Tav. 1–4). Beschin, c., De anGeli, a.& zorzin, r. 2011: Il genere Lophoranina Fabiani, 1910 (Crustacea, Decapoda, Brachyura, Raninidae) nel Terziario dei Lessini veronesi (Italia settentrionale). Boll. Mus. Civ. Stor. Natur. Verona, Geol. Paleont. Preist., 35: 33–56, (Tav. 1–4). Bittner, a. 1875: Die Brachyuren des Vicentinischen Tertiärgebirges. Denkschr. Akad. Wiss., mathem. naturwiss. Cl., Wien, 34: 3–46 (63-106), Taf. 1–5. Bittner, a. 1883: Neue Beiträge zur Kenntniss der Brachyuren-Fauna des Alttertiärs von Vicenza und Verona. Denkschr. Akad. Wiss., mathem.­naturwiss. Cl., Wien, 46: 299–316, Taf. 1. Bittner, a. 1893: Decapoden des pannonischen Tertiärs. Sitzungsber. Akad. Wiss., Mathem. naturwiss. Cl., Wien, 102/1: 10–37, Taf. 1–2. Brocchi, P. 1877: Description de quelques Crustacés fossiles appartenant a la tribu des Raniniens. Annales Sci. Géol., 8: 1–8, Pl. 29. Dainelli, G. 1915: L'Eocene friulano. Monografia geologica e paleontologica. Editrici le »Memorie geografiche« (Firenze): 1–72, Tav. 1–56. De anGeli, a. 2012: Lessinicarcinus n. gen. nuovo genere per Titanocarcinus euglyphos Bittner, 1875 (Crustacea, Brachyura, Pilumnidae) dell`Eocene del Veneto (Italia settentrionale). (Lessinicarcinus n. gen., a new genus for Titanocarcinus euglyphos Bittner, 1875 (Crustacea, Brachyura, Pilumnidae) from the Eocene of Veneto territory (Northern Italy). Natura Vicentina 2011, 15: 75–84. De Grave, s., PentcheFF, n. D., ahyonG, s. t., chan, t.-y., cranDall, K. a., DworschaK, P. c., FelDer, D. l., FelDMann, r. M., Fransen, c. h. j. M., GoulDinG, l. y. D., leMaitre, r., low, M. e. y., Martin, j. w., nG, P. K. l., schweitzer, c. e., tan, s. h., tshuDy, D. & wetzer, r. 2009: A classification of living and fossil genera of decapod crustaceans. Raffles Bulletin Zoology, Suppl., 21: 1–109. DesMarest, a.-G. 1822: Les Crustacés proprement dits. In: Histoire naturelle des Crustacés fossiles, sous les rapports zoologiques et géologiques. Chez F. –G. Levrault, Libraire (A Paris): 85–149, Pl. 5–11. FaBiani, r. 1910: Sulle specie di Ranina finora note ed in particolare sulla Ranina Aldrovandii. Atti Accad. Sci. Veneto-Trentino-Istriana, 3: 85–102. FaBiani, r. 1915: Il Paleogene del Veneto. Mem. Ist. Geol. R. Univ. Padova, 3: XVI, 336 p, Tav. 1-9. FelDMann, r. M. & schweitzer, c. e. 2007: Sexual dimorphism in extinct and extant Raninidae (Decapoda: Brachyura). Annals Carnegie Museum, 76/1: 39–52. TABLA 1 - PLATE 1 1 Lophoranina marestiana (König, 1825); karapaks, hrbtna ali dorzalna stran, ]opi, južnovzhodno od Pazina (osrednja Istra), × 1,5 Lophoranina marestiana (König, 1825); carapace, dorsal view, ]opi, southeast of Pazin (central Istria), x 1,5 2a Lophoranina marestiana (König, 1825); zapestni del ali karpus, s strani,]opi, × 2,5 Lophoranina marestiana (König, 1825); wrist or carpus, lateral view, ]opi, × 2,5 2b Nasprotna bo~na stran istega primerka, ]opi, × 2,5 Same specimen, lateral-dorsal view, ]opi, × 2,5 3a Lessinicarcinus euglyphos (Bittner, 1875); telo desnih {karij, zunanja povr{ina, ]opi, × 2,4 Lessinicarcinus euglyphos (Bittner, 1875); right chela, external surface, ]opi, × 2,4 3b Notranja stran istega primerka, ]opi, × 2,4 Same specimen, inner surface, ]opi, × 2,4 4a Kameno jedro, gen. et spec. indet.; zgornja stran, (]r-20), ]opi, × 2,7 Stone cast, gen. et spec. indet.; dorsal view, (]r-20), ]opi, × 2,7 4b Bo~na stran istega primerka, ]opi, × 2,7 Same specimen, lateral view, ]opi, × 2,7 5 Lessinicarcinus euglyphos (Bittner, 1875); levi del karapaksa, hrbtna stran, (]r-22), ]opi, × 2,5 Lessinicarcinus euglyphos (Bittner, 1875); the left part of carapace, dorsal view, (]r-22), ]opi, × 2,5 Foto (Photo): Marijan Grm TABLA 1 - PLATE 1 Glaessner, M. F. 1969: Decapoda. In: Moore, r. c. (ed.): Treatise on Invertebrate Paleontology, Part R, Arthropoda 4/2. The Geological Society of America Inc. and The University of Kansas (Lawrence): R399–R533. haGn, h., DarGa, r. & schMiD, r. 1992: Erdgeschichte und Urwelt im Raum Siegsdorf. Fossilien als Zeugen der geologischen Vergangenheit. Im Eigenverlag der Gemeinde Siegsdorf: 241 p. ilyin, i. v. 2005: Melovie i paleogenovie desjatonogie rakoobraznie (Crustaceamorpha, Decapoda) zapadnoj ~asti Severnoj Evrazii = Cretaceous and Paleogene decapod crustaceans of the western part of Northern Eurasia. Izdatelstvo Moskovskogo universiteta, Moskva: 296 p., Tabl. 1–16. KochansKy-DeviDé, v. 1964: Paleozoologija. Izdava~ko poduze}e »{kolska knjiga« (Zagreb): XI, 1–451. KöniG, c. D. e. 1825: Icones Fossilium Sectiles. (London): 1–4 + I-VIII (Figs. 1-100). Martin, j. w. & Davis, G. e. 2001: An Updated Classification of the Recent Crustacea. Nat. Hist. Mus. Los Angeles County, Sci. Ser., 39: 1–124. MiKuŽ, v. 2002: Nova najdba rakovice Harpactoxanthopsis quadrilobata (Desmarest) v eocenskem fli{u pri Gra~i{}u blizu Pazina v Istri (Hrva{ka) = New finding of crab Harpactoxanthopsis quadrilobata (Desmarest) in the Eocene flysch at Gra~i{}e near Pazin in Istria (Croatia). Geologija, 45/1: 97–102, (Tab. 1), doi:10.5474/geologija.2002.008. MiKuŽ, v. 2004: Lophoranina marestiana iz srednjeeocenskih fli{nih plasti pri Gra~i{}u v Istri = Lophoranina marestiana from Middle Eocene flysch beds at Gra~i{}e in Istria, Croatia. Geologija, 47/1: 23–27, (Tab. 1), doi:10.5474/geologija.2004.002. MiKuŽ, v. 2010 a: Loforanine iz eocenskih plasti osrednje Istre = Lophoraninas from Eocene beds in central Istria, Croatia. Geologija, 53/1: 47–54, (Tab. 1), doi:10.5474/geologija.2010.004. MiKuŽ, v. 2010 b: Cyrtorhina globosa iz srednjeeocenskih plasti }opija v Istri, Hrva{ka = Cyrtorhina globosa from Middle Eocene beds of ]opi in Istria, Croatia. Geologija, 53/2: 165– 168, (Tab. 1), doi:10.5474/geologija.2010.014. MiKuŽ, v. 2011: Eocenska rakovica iz }opija v osrednji Istri na Hrva{kem = Eocene crab from }opi in central Istria, Croatia. Folia biologica et geologica, 52/3: 23–28, (Tab. 1). Milne eDwarDs, A. 1872: Note sur quelques Crustacés fossiles appartenant aux genres Ranina et Galenopsis. Annales Sci. Géol., 3: 1–11, Pl. 8 (Articles 3). Milne eDwarDs,a. 1881: Note sur quelques Crustacés fossiles des environs de Biarritz. Annales Sci. Géol., 11: 1–8, Pl. 21–22 (Articles 2). Moosleitner, G. 1996: Fossilien aus dem Mittel- Eozän von Istrien. Fossilien (Korb) 2: 105–110. Munier-chalMas, e. c. P. a. 1891: Étude du Tithonique, du Crétacé et du Tertiaire du Vicentin. Série Stratigraphique, Paris: 184 p. nötlinG, F. 1885: Über Crustaceen aus dem Tertiär Aegyptens. Sitzungsber. Preussisch. Akad. Wiss. Berlin, 26: 487-500, Taf. 4. oPPenheiM, P. 1896: Die Eocaenfauna des Monte Postale bei Bolca im Veronesischen. Palaeontographica, 43: 125–221, Taf. 12–19. Parona, c. F. 1924: Trattato di geologia con speciale riguardo alla Geologia d`Italia. Biblioteca delle scienze fisiche e naturali. Casa Editrice Dottor Francesco Vallardi (Milano): XIV, 648 p. Pavlovec, r. 1958: Fosilni raki v Sloveniji. Proteus, (1957-1958), 20/6: 149–153. reuss, a. 1859: Zur Kentniss fossiler Krabben. Denkschr. Akad. Wiss., mathem.-naturwiss. Cl. Wien, 17: 1–90, Taf. 1–24. savazzi, e. 1981: Functional morphology of the cuticular terraces in Ranina (Lophoranina) (brachyuran decapods; Eocene of NE Italy). N. Jb. Geol. Paläont. Abh., 162/2: 231–243. schuBert, r. j. 1905: Zur Stratigraphie des istrisch - norddalmatinischen Mitteleocäns. Jb. Geol. R. A., 55: 153–188. schultz, o. 1998: Tertiärfossilien Österreichs. Wirbellose, niedere Wirbeltiere und marine Säugetiere. Goldschneck-Verlag (Korb): 1–159. schweitzer, c. e., artal, P., van BaKel, B., jaGt, j w. M. & Karasawa, h. 2007: Revision of the genus Titanocarcinus (Decapoda: Brachyura: Xanthoidea) with two new genera and one new species. Journal of Crustacean Biology, 27/2: 278–295. vía, l. 1959: Decápodos fósiles del Eocene espanol. Bol. Ist. Geol. Min. Espanol, 70: 331–402. vía, l. 1970: Crustáceos Decápodos del Eocene Espanol. Pirineos, Rev. Inst. Est. Pirenaicos (1969), 25 (91–94): 1-479, Lám. 1–39. voGeltanz, r. 1968: Beitrag zur Kenntnis der fossilen Crustacea Decapoda aus dem Eozän des Südhelvetikums von Salzburg. N. Jb. Geol. Paläont. Abh., 130/1: 78–105. wanK, M. 1986: Neue Fossilien aus den Steinbrüchen der Wietersdorfer Zementwerke. Carinthia II, 176/96: 61–67. zittel, K. a. 1895: Grundzüge der Palaeontologie (Palaeozoologie). Druck und Verlag von R. Oldenbourg, München und Leipzig: VIII, 971 p. doi:10.5474/geologija.2015.006 Panonijski mehkužci iz najdi{~a Osek-2 v Slovenskih goricah Pannonian moluscs from site Osek-2 in Slovenske gorice, Slovenia Vasja MIKUŽ1, Matija KRIŽNAR2 & Nina CAF3 1Univerza v Ljubljani, Naravoslovnotehnika fakulteta, Oddelek za geologijo, Privoz 11, SI–1000 Ljubljana, Slovenija; e-mail: vasja.mikuzntf.uni-lj.si 2Prirodoslovni muzej Slovenije, Pre{ernova 20, SI–1001 Ljubljana, Slovenija; e-mail: mkriznarpms-lj.si 3Pernica 29m, SI–2231 Pernica, Slovenija Prejeto / Received 18. 5. 2015; Sprejeto / Accepted 18. 6. 2015 Klju~ne besede: mehkužci, zgornji miocen, spodnji panonij, Zgornji Osek, Slovenske gorice Key words: molluscs, Late Miocene, Early Pannonian, Zgornji Osek, Slovenske gorice, Slovenia Izvle~ek V prispevku so obravnavani ostanki mehkužcev iz profila Osek-2 v Slovenskih goricah blizu Zgornjega Oseka. Med mehkužci je ugotovljenih nekaj melanopsidnih polžev in {koljka Mytilopsis ornithopsis (Brusina, 1892). Fosilna favna dolo~a pe{~enim sedimentnim kamninam profila Osek-2 spodnjepanonijsko starost. Abstract Remains of molluscs from a small outcrop at Zgornji Osek (section Osek-2) in Slovenske gorice are described. Some melanopsid gastropods and a bivalve Mytilopsis ornithopsis (Brusina, 1892) were documented. The fossil assemblage from fluvio-lacustrine sediments at Osek-2 corresponds to the Early Pannonian. Uvod Panonijske plasti so v Sloveniji omejene predvsem na njen vzhodni del, vendar ni veliko krajev z bogato fosilno makrofavno. Med lokacije z ve~ ostanki panonijske favne lahko uvrstimo najdi{~e ^anje pri Sevnici, Blatno severno od Globokega oziroma severnovzodno od Brežic, Ruhno vas na Dolenjskem in seveda Osek z zelo lepo ohranjenimi mehkužci, kjer prevladujejo melanopsidni polži in mitilopsidne {koljke. Najdi{~e Osek-2 (sl. 1 in 2a) smo obiskali in raziskovali že leta 1997, takrat smo na{li nekaj mehkužcev, predvsem polžev. Razen omenjenih polžev smo v raziskave vklju~ili tudi {koljke, ki jih je leta 2003 na{el Franci Golob s Ptuja in jih kasneje podaril zbirki Prirodoslovnega muzeja Slovenije (PMS) v Ljubljani. Nina Caf je v jeseni 2013 v okviru svoje diplomske naloge raziskovala in zbrala panonijske fosilne ostanke v najdi{~u Osek-2 pri Zgornjem Oseku. Na{la je ve~ melanopsidnih polžjih hi{ic, nekaj slabo ohranjenih {kolj~nih lupin, rastlinske ostanke in dva fragmentirana kosa sesalskih vretenc. V za~etku leta 2014 je pridobila {e fosilne {koljke iz najdi{~a Osek, ki jih je prejela od uslužbencev Prirodoslovnega muzeja Slovenije. Opis profila Osek-2 Žnidar^i^ in Mio^ (1988; 1989) iz okolice najdi{~a Osek-2 omenjata pe{~en laporovec, glino, pesek in prod, ki sta jim pripisala panonijsko starost (M32) in braki~no sedimentacijsko okolje. Starost je potrjena z ostrakodi. Zanimivo je, da iz panonijskih plasti ne omenjata ostankov mehkužcev. caF in sodelavci (2014 in 2015) so naredili sedimentolo{ko, paleontolo{ko in stratigrafsko analizo profila Osek-2 (sl. 2b). V podlagi 5m debelega profila je meljast prod, sledi rumenkastorjav malo prodnat sljudnat meljevec z ostanki mehkužcev, rastlin in kostmi kopenskega sesalca. Do vrha profila je sljudnati meljevec z razli~nimi sedimentnimi teksturami. caF (2015) navaja valovne sipinice, horizontalno, konvolutno in valovito laminacijo in bioturbacijo s plamenastimi teksturami. Omenjeni sedimenti so nastajali v spodnjem panoniju in ustrezajo najmlaj{emu delu cone B v Centralni Paratetidi, na kar kažejo predvsem ostanki {koljk vrste Mytilopsis ornithopsis (Brusina, 1892). Najverjetneje je bila sedimentacija v sprednjem delu lakustrine delte v bližini obale Panonskega bazena. Paleontoloki del Sistematska razvrstitev polžev po: wenz 1938, 1960; GoliKov & staroBoGatov 1975 in Bouchet & rocroi 2005 Classis Gastropoda Cuvier, 1797 Cladus Sorbeoconcha Ponder & Lindberg, 1997 Superfamilia Cerithioidea Fleming, 1822 Familia Melanopsidae H. Adams & A. Adams, 1854 Genus Melanopsis Férussac, 1807 Melanopsis bonellii Manzoni, 1870 Tab. 1, sl. 1-2, 5 1902 Melanopsis Bonellii Sismonda – Brusina, Tab. 5, Figs. 29-30, 31-32 1953 Melanopsis impressa pseudonarzolina n. ssp. – PaPP, 132, Taf. 9, Figs. 14-18 Sl. 1. Geografski položaj najdi{~a Zgornji Osek (Osek-2) Fig. 1. Geographical position of site Zgornji Osek (Osek-2) Sl. 2a. Položaj najdi~a Osek-2 na satelitskem posnetku Fig. 2a. Position of site Osek-2 on satelite image Sl. 2b. Profil panonijskih plasti v najdi~u Osek-2 Fig. 2b. Exposure of Pannonian beds in site Osek-2 1985 Melanopsis impressa bonellii Manzoni 1870 – PaPP, 284, Taf. 32, Figs. 1-5 Material: Nekaj manj{ih in po{kodovanih hi{ic (C/1, C/2, D in D/1) iz panonijskih plasti profila Osek-2. Opis: Hi{ice so v obodu bikoni~ne sestoje iz 5-6 nizkih, ozkih in deloma prekrivajo~ih zavojev. Najve~ji zadnji zavoj zavzema dobri dve tretjini in prekriva starej{e zavoje. Ustje je podolgovato, notranja ustna je debela oziroma {iroka, zunanja ustna je zelo tanka in zato le poredkoma cela. Ustje se zaklju~uje z ozko sifonalno režo. Nekako po sredini zadnjega zavoja poteka neizrazit spiralni greben. Velikost primerkov (Size of specimens): VZZ = vi{ina zadnjega zavoja (HLW = height of last whorl): Primerki (Specimens) Vi{ina (Height) mm širina (Width) mm VZZ (HLW) mm C/1, T. 1, sl. 1 30 16 21 C/2, T. 1, sl. 2 26,5 14 20 D, T. 1, sl. 5 15,5 8,5 13 D/1 20 11 17,5 Primerjava: Primerka D in D/1 (tab. 1, sl. 5) iz Oseka sta najbolj podobna primerkom vrste Melanopsis bonellii, ki jih prikazuje Brusina (1902). Deloma sta primerljiva tudi s primerki podvrste Melanopsis narzolina doderleini Pantanelli, ki jih prikazuje PaPP (1953: 132, Taf. 9, Figs. 5-8). V Dunajski kotlini so primerki podvrste M. narzolina doderleini najdeni v kongerijskih plasteh cone B. V Italiji je vrsta Melanopsis narzolina najdena v zgornjemiocenskih messinijskih plasteh. Stratigrafska in geografska raz{irjenost: Brusina (1902) vrsto Melanopsis bonellii predstavlja iz neogenskih plasti najdi{~a Tinnye na Madžarskem in Grabovac v Srbiji. PaPP (1953: 132) pi{e, da je ta melanopsidna oblika pogostna v kongerijskih plasteh cone B v južnem delu ^e{ke in v Dunajski kotlini. Zelo redka je v mlaj{i coni C. Melanopsis posterior Papp, 1953 Tab. 1, sl. 3a-3b, 4, 6-7 1953 Melanopsis impressa posterior n. ssp. – PaPP, 133, Taf. 9, Figs. 19-23 1980 Melanopsis posterior Papp – lueGer, 129, Taf. 1, Fig. 27 1985 Melanopsis impressa posterior Papp 1953 – PaPP, 284, Taf. 32, Figs. 6-10 2005 Melanopsis impressa posterior Papp, 1953 – MiKuŽ, 227, Tab. 1, sl. 2a-b Material: Ve~ primerkov (B/3–B/6, F, G/1–G/4), njihove hi{ice so zaradi krhkosti ve~inoma po{kodovane. Opis: Majhne hi{ice sestoje iz 5–6 zavojev, starej{i zavoji so zelo nizki in ožji od zavojev vrste Melanopsis bonelli. Vrh hi{ice je izrazito koni~ast. Med zadnjim zavojem in ostalimi je nekak{na poglobljena stopnica in hi{ica je bolj trebu{astega videza. Zadnji zavoj zavzema ve~ino hi{ice, v zgornjem delu zavoja poteka spiralni greben. Ustje je solzaste oblike z ozko sifonalno režo. Notranja ustna je debela, zunanja tanj{a. Po povr{ini zadnjega zavoja potekajo {tevilne tanj{e in debelej{e prirastnice. Velikost primerkov (Size of specimens): Primerki (Specimens) Vi{ina (Height) mm širina (Width) mm VZZ (HLW) mm B/3, T. 1, sl. 3a-3b 23 14 20,5 B/4 23 14 21 B/5 22 13,5 20 B/6 24,5 14,5 22,5 F, T. 1, sl. 4 21,5 15 20 G/1, T. 1, sl. 6 22 14 20 G/2, T. 1, sl. 7 26 15 23,5 G/3 22 13 19,5 G/4 25,5 14,5 22,5 Stratigrafska in geografska raz{irjenost: PaPP (1953: 133) poro~a, da je oblika Melanopsis impressa posterior zelo pogostna v panonijskih peskih cone B v Dunajski kotlini. Tipi~no najdi{~e je peskokop v Leobersdorfu. lueGer (1980: 129) omenja primerke te vrste iz panonijskih plasti Burgenlanda v Avstriji. MiKuŽ (2005: 229) predstavlja tovrstno hi{ico iz panonijskih plasti ^anja pri Sevnici. Melanopsis fossilis (Gmelin, 1790) Tab. 1, sl. 10a-10b, 11 1856 Melanopsis Martiniana Fér. – hörnes, 594, Taf. 49, Figs. 5a-5b 1953 Melanopsis fossilis fossilis (Martini, Gmelin). – PaPP, 133, Taf. 10, Figs. 1-8 1953 Melanopsis fossilis coaequata Handmann. – PaPP, 134, Taf. 10, Figs. 11-12 1980 Melanopsis coaequata Handmann – lueGer, 129, Taf. 1, Fig. 22 1980 Melanopsis constricta Handmann – lueGer, 129, Taf. 1, Fig. 24 1985 Melanopsis fossilis fossilis (Martini–Gmelin 1790) – PaPP, 284, Taf. 32, Figs. 11-14 1985 Melanopsis fossilis coaequata Handmann – PaPP, 285, Taf. 33, Fig. 4 2002 Melanopsis fossilis (Gmelin, 1790) phenotype handmanniana Fischer, 1996 – harzhauser, KowalKe & ManDic, 95, Pl. 6, Figs. 6, 9-10; Pl. 7, Figs. 11-12 2005 Melanopsis fossilis coaequata Handmann, 1887 – MiKuŽ, 227, Tab. 2, Sl. 3a-b Material: Na{li smo le nekaj primerkov, predstavljamo dve hi{ici z oznakama A in B/1. Najdeni sta v panonijskih pe{~enih sedimentih profila Osek-2 v letu 1997. Pannonian moluscs from site Osek-2 in Slovenske gorice, Slovenia Conclusions From Osek-2 site we describe a mollusc assemblage with gastropods Melanopsis bonellii Manzoni 1870, M. posterior Papp 1953, M. fossilis (Gmelin 1790), M. cf. senatoria Handmann 1887 and Melanopsis sp. Bivalves are documented with species Mytilopsis ornithopsis (Brusina 1892) and some shell fragments of genus Congeria. Pannonian melanopsid gastropods of species Melanopsis fossilis (Gmelin, 1790) from Osek­2 are morphologicaly very diverse and some specimens could represents morphospecies or transitional species of melanopsids. Described melanopsid gastropods are characteristic of Pannonian age. The bivalve Mytilopsis ornithopsis (Brusina, 1892) dates site Osek-2 in Early Pannonian mollusc biozone A/B within the Central Paratethys (cf. harzhauser & teMPFer 2004; harzhauser et al. 2011). Zahvale Zahvaljujemo se gospodu Franciju Golobu s Ptuja za posredovane fosilne koljke iz najdi~a pri Zgornjem Oseku. Za fotografiranje in izdelavo tabel se zahvaljujemo sodelavcu Mateju Fistru z Oddelka za geologijo NTF UL. Literatura Bouchet, P. & rocroi, j. P. 2005: Classification and Nomenclatur of Gastropod Families. Malacologia, 47/1–2: 1–397. Brusina, s. 1892: Ueber die Gruppe der Congeria triangularis. Zeitschr. Deutsch. Geol. Gesell., 44: 488–497. Brusina, s. 1902: Iconographia Molluscorum fossilium in tellure Tertiaria Hungariae, Croatiae, Slavoniae, Dalmatiae, Bosniae, Herzegovinae, Serbiae et Bulgariae inventorum. (Gragja za neogensku malakolo{ku faunu Dalmacije, Hrvatske i Slavonije uz neke vrste iz Bosne, Hercegovine i Srbije). (Zagreb) Atlas: Tab. 1–30. TABLA 1 - PLATE 1 1 Melanopsis bonellii Manzoni, 1870; C/1, Osek-2, velikost 30×16 mm Melanopsis bonellii Manzoni, 1870; C/1, Osek-2, size 30×16 mm 2 Melanopsis bonellii Manzoni, 1870; C/2, Osek-2, velikost 26,5×14 mm Melanopsis bonellii Manzoni, 1870; C/2, Osek-2, size 26,5×14 mm 3 Melanopsis posterior Papp, 1953; B/3, Osek-2, velikost 23×15 mm a-zadnja stran, b-sprednja stran Melanopsis posterior Papp, 1953; B/3, Osek-2, size 23×15 mm a-posterior view, b-anterior view 4 Melanopsis posterior Papp, 1953; F, Osek-2, velikost 21×15 mm Melanopsis posterior Papp, 1953; F, Osek-2, size 21×15 mm 5 Melanopsis bonellii Manzoni, 1870; D, Osek-2, velikost 16×8 mm Melanopsis bonellii Manzoni, 1870; D, Osek-2, size 16×8 mm 6 Melanopsis posterior Papp, 1953; G/1, Osek-2, velikost 22×14 mm Melanopsis posterior Papp, 1953; G/1, Osek-2, size 22×14 mm 7 Melanopsis posterior Papp, 1953; G/2, Osek-2, velikost 27×14,5 mm Melanopsis posterior Papp, 1953; G/2, Osek-2, size 27×14,5 mm 8 Melanopsis sp.; B/2, Osek-2, velikost 20×10,5 mm Melanopsis sp.; B/2, Osek-2, size 20×10,5 mm 9 Melanopsis cf. senatoria Handmann, 1887; E, Osek-2, velikost 20,5×13 mm Melanopsis cf. senatoria Handmann, 1887; E, Osek-2, size 20.5×13 mm 10 Melanopsis fossilis (Gmelin, 1790); A, Osek-2, velikost 27,5×15,5 mm a-zadnja stran, b-sprednja stran Melanopsis fossilis (Gmelin, 1790); A, Osek-2, size 27,5×15,5 mm a-posterior view, b-anterior view 11 Melanopsis fossilis (Gmelin, 1790); B/1, Osek-2, velikost 28×15 mm Melanopsis fossilis (Gmelin, 1790); B/1, Osek-2, size 28×15 mm TABLA 1 - PLATE 1 caF, n. 2015: Sedimentolo{ka, stratigrafska in paleontolo{ka analiza profila v Oseku, Sveti Trojici v Slovenskih goricah. Diplomsko delo, UL, NTF, Oddelek za geologijo: 29 p, (Tab. 1-2). caF, n., MiKuŽ, v., KriŽnar, M., barTol, M. & Gale, l. 2014: Sedimentolo{ka, paleontolo{ka in stratigrafska analiza profila Osek pri Sv. Trojici v Slovenskih goricah. V: roŽi^, B., verBov{eK t. & vraBec, Mi. (ured.): Povzetki in ekskurzije. 4. Slovenski geolo{ki kongres, Ankaran, 8.-10. oktober 2014. Univerza v Ljubljani, Naravoslovnotehni{ka fakulteta: 9–10. caF, n., MiKuŽ, v., KriŽnar, M. & Gale, l. 2015: Fosili profila »Osek 2« pri Sveti Trojici v Slovenskih goricah. Konkrecija, 4: 13–16. cox, l. r., n. D. newell, D. w. BoyD, c. c. Branson, r. casey, a. chavan, a. h. cooGan, c. Dechaseaux, c. a. FleMinG, F. haas, l. G. hertlein, e. G. KauFFMan, a. Myra Keen, a. la rocQue, a. l. Mc alester, r. c. Moore, c. P. nuttall, B. F. PerKins, h. s. Puri, l. a. sMith, t. soot-ryen, h. B. stenzel, e. r. trueMan, r. D. turner & j. weir, 1969: Part N, Mollusca 6, Bivalvia, 2. In: Moore, R. C. (ed.): Treatise on Invertebrate Paleontology. The Geological Society of America, Inc. and The University of Kansas (Lawrence): N491-N951. GoliKov, a. n. & staroBoGatov, y. j. 1975: Systematics of Prosobranch Gastropods. Malacologia, 15/1: 185–232. harzhauser, M., Daxner-höcK, G., Göhlich, u. B. & naGel, D. 2011: Complex faunal mixing in the early Pannonian palaeo-Danube Delta (Late Miocene, Gaweinstal, Lower Austria). Ann. Naturhist. Mus. Wien, Ser. A, 113: 167– 208. harzhauser, M., Daxner-höcK, G. & Piller, w. e. 2004: An integrated stratigraphy of the Pannonian (Late Miocene) in the Vienna Basin. Mitt. österr. geol. Ges., 95/96 (2002/2003): 6–19. harzhauser, M. & KowalKe, t. 2002: Sarmatian (Late Miocene) Gastropod Assemblages of the Central Paratethys. Facies, 46: 57–82, (Pl. 9-13). harzhauser, M., KowalKe, t. & ManDic, o. 2002: Late Miocene (Pannonian) Gastropods of Lake Pannon with Special Emphasis on Early Ontogenetic Development. Ann. Naturhist. Mus. Wien, Ser. A, 103 (2001): 75–141, (Pl. 1–13). harzhauser, M. & teMPFer, P. M. 2004: Late Pannonian Wetland Ecology of the Vienna Basin based on Mollusc and Lower Vertebrate Assemblages (Late Miocene, MN 9, Austria). Cour. Forsch. Inst. Senckenberg, 246: 55–68. TABLA 2 - PLATE 2 1 Mytilopsis ornithopsis (Brusina, 1892), leva lupina, 1976/1, Osek-2, velikost 43x48 mm a-zgornja stran, b-sprednja stran, c-zadnja stran Mytilopsis ornithopsis (Brusina, 1892), left valve, 1976/1, Osek-2, size 3×48 mm a-upper view, b-anterior view, c-posterior view 2 Mytilopsis ornithopsis (Brusina, 1892), leva lupina, 1976/2, Osek-2, velikost 8×47 mm Mytilopsis ornithopsis (Brusina, 1892), left valve, 1976/2, Osek-2, size 8×47 mm 3 Mytilopsis ornithopsis (Brusina, 1892), leva lupina, 1976/4, Osek-2, velikost 45×45 mm Mytilopsis ornithopsis (Brusina, 1892), left valve, 1976/4, Osek-2, size 45×45 mm 4 Mytilopsis ornithopsis (Brusina, 1892), leva lupina, 1976/3, Osek-2, velikost 50×56 mm Mytilopsis ornithopsis (Brusina, 1892), left valve, 1976/3, Osek-2, size 50×56 mm 5 Mytilopsis ornithopsis (Brusina, 1892), 1974, Osek-2, velikost 48×46 mm a-zgornja stran leve lupine, b-sprednja stran koljke Mytilopsis ornithopsis (Brusina, 1892), 1974, Osek-2, size 48×46 mm a-upper view of left shell, b-anterior view of shells 6 Mytilopsis ornithopsis (Brusina, 1892), leva lupina, 1976/5, Osek-2, velikost 37×35 mm Mytilopsis ornithopsis (Brusina, 1892), left valve, 1976/5, Osek-2, size 37×35 mm 7 Mytilopsis ornithopsis (Brusina, 1892), leva lupina, 1976/9, Osek-2, velikost 30×23 mm Mytilopsis ornithopsis (Brusina, 1892), left valve, 1976/9, Osek-2, size 30×23 mm 8 Mytilopsis ornithopsis (Brusina, 1892), leva lupina, 1976/6, Osek-2, velikost 37×37 mm Mytilopsis ornithopsis (Brusina, 1892), left valve, 1976/6, Osek-2, size 37×37 mm Fotografije (Photos): Matej Fister TABLA 2 – PLATE 2 hörnes, M. 1856: Die Fossilen Mollusken des Tertiaer-Beckens von Wien. Bd. I: Univalven. Abh. Geol. R. A., 3: 1-736, Taf. 1-52. hörnes, M. 1870: Die Fossilen Mollusken des Tertiaer-Beckens von Wien. Bd. II, Bivalven. Abh. Geol. R. A., 4: 1–479 + Taf. 1–85. lueGer, j. P. 1980: Die Molluskenfauna aus dem Pannon (Obermiozän) des Fölligberges (Eisenstädter Bucht) im Burgenland(Österreich). Mitt. österr. geol. Ges., 73: 95– 134, (Taf. 1–4). MiKuŽ, v. 2005: Panonijski mehkužci iz okolice ^anja pri Sevnici = Pannonian molluscs from surroundings of ^anje near Sevnica, Slovenia. Geologija, 48/2: 225–243, (Tab. 1–6), doi:10.5474/geologija.2005.019. MiKuŽ, v. & Ga{Pari^, r. 2014: Slovenske gorice in njihove paleontolo{ke posebnosti. V: roŽi^, B., verBov{eK, t. & vraBec, Mi. (ured.): Povzetki in ekskurzije. 4. Slovenski geolo{ki kongres, Ankaran, 8.-10. oktober 2014. Univerza v Ljubljani, Naravoslovnotehni{ka fakulteta: 46. PaPP, a. 1953: Die Molluskenfauna des Pannon im Wiener Becken. Mitt. Geol. Gesellsch. Wien, 44 (1951): 85–222, Taf. 1–25. PaPP, a. 1960: Umfang und Gliederung des oberen Miozäns im Mittelmeer-gebiet und in Mitteleuropa. Mitt. Geol. Gesel. Wien, 52 (1959): 169–176. PaPP, a. 1985: Die Mollusken-Fauna des Pannonien der Zentralen Paratethys. In: PaPP, a., jáMBor, á. & steininGer, F. F. (Eds.), Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys, Bd. VII, M6 Pannonien (Slavonien und Serbien). Akadémiai Kiadó: 274-339. schultz, o. 1998: Tertiärfossilien Österreichs. Wirbellose, niedere Wirbeltiere und marine Säugetiere. Goldschneck-Verlag (Korb): 1–159. schultz, o. 2005: Bivalvia neogenica (Solenoidea – Clavagelloidea). In: Piller, W. E (ed.): Catalogus Fossilium Austriae. Band 1/ Teil 3. Ein systematisches Verzeichnis aller auf österreichischem Gebiet festgestellten Fossilien. Verlag der Österreichischen Akademie der Wissenschaften (Wien): V, 691­1067 + Taf. 96-152. ŠKerlj, Ž. 1985: Ablagerungen des Pannonien in Slowenien (Jugoslawien). In: PaPP, a., jáMBor, á. & steininGer, F. F. (eds.): Chronostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys, Bd. VII, M6 Pannonien (Slavonien und Serbien). Akadémiai Kiadó (Wien): 85–89. wenz, w. 1938: Gastropoda. Teil 1: Allgemeiner Teil und Prosobranchia. Handbuch der Paläozoologie, 6. Gebrüder Borntraeger, Berlin: 1200 p. wenz, w. 1960: Gastropoda. Teil 2, Euthyneura. In: zilch, a. (ed.): Gebrüder Borntraeger 1959­1969 (Berlin-Nikolassee): XII, 1-834. In: O. H. Schindewolf, Handbuch der Paläozoologie, Band 6, Teil 2. Žnidar^i^, M. & Mio^, P. 1988: Osnovna geolo{ka karta SFRJ, Maribor in Leibnitz 1:100 000. Zvezni geolo{ki zavod Beograd. Žnidar^i^, M. & Mio^, P. 1989: Tolma~ za lista Maribor in Leibnitz. Osnovna geolo{ka karta SFRJ. Zvezni geolo{ki zavod Beograd, Beograd: 60 p. doi:10.5474/geologija.2015.007 Doliostrobus taxiformis iz sotekih plasti pri Dobrni Doliostrobus taxiformis from Socka beds in Dobrna area, Slovenia Ale šOSTER1, Barbara POTO^NIK KRAJNC2 & Vasja MIKUŽ3 1Dobrna 20, SI–3204 Dobrna, Slovenija; e-mail: geolog.baucigmail.com 2Center 10, SI–2393 ^rna na Koro{kem, Slovenija; e-mail: barbarapotocnikkrajncgmail.com 3Univerza v Ljubljani, Naravoslovnotehni{ka fakulteta, Oddelek za geologijo, Privoz 11, SI–1000 Ljubljana, Slovenija; e-mail: vasja.mikuzntf.uni-lj.si Prejeto / Received 19. 5. 2015; Sprejeto / Accepted 2. 7. 2015 Klju~ne besede: flora, eocen, Doliostrobus, sote{ke plasti, Slovenija Key words: flora, Eocene, Doliostrobus, Socka beds, Slovenia Izvle~ek Prispevek obravnava ostanke iglavca vrste Doliostrobus taxiformis iz rjavosivih laporovcev zgornjeeocenskih sote{kih plasti, ki izdanjajo na južnih pobo~jih med Vra~kovim vrhom in Gru{evcem severno od Dobrne. Med ostanki iglavcev so najpogostej{e vejice z listi. Zelo redke so luske storžev. Abstract This paper is discussing remains of conifer species Doliostrobus taxiformis from brown-grey marls belonging to Upper Eocene Socka beds, which outcrop on the southern slopes of the Vra~kov vrh and Gru{evec north of Dobrna. The material consists mainly of leafy twigs and of rare cone scales. Uvod Na južnih pobo~jih Pa{kega Kozjaka, severno od Dobrne, izdanjajo eocenske sote{ke plasti. V njih je na posameznih delih mogo~e najti premogovne le~e in zoglenele ostanke rastlin (sl. 1). Sote{ke plasti so plasti glinavca, laporovca in pe{~enjaka med katerimi se pojavljajo le~e s premogom. Sote{ke plasti se razprostirajo med Dobrno in Socko, Konji{ko goro, Bo~em in Roga{ko Slatino. Ponekod je na njihovi bazi, na triasnih karbonatih odložen konglomerat s premogom. Sote{ke plasti so v bazalnem delu razvite kot sladkovodna tvorba in po profilu navzgor prehajajo v braki~na ter v tipi~na morska okolja; sprva v robnomorsko in nazadnje v globoka sublitoralna ali okolja zgornjega batiala (Mio^, 1972; jelen et al., 2000; ciMerMan et al., 2006; Pavši^, 2006). O najdbah fosilne flore z obmo~ja Socke, ki leži le nekaj kilometrov stran od Dobrne, sta pisala že unGer (1850) in ettinGshausen (1858), ki sta v svojih delih identificirala ve~ kot 100 razli~nih fosilnih vrst rastlin. Od tedaj naprej pa podrobnej{e obdelave in raziskav fosilne flore s tega obmo~ja ni bilo. Prve makrofloristi~ne ostanke smo na{li jeseni leta 2013 v vseku novo narejene gozdarske vlake pod Vra~kovim vrhom, kjer smo odkrili razmeroma pestro združbo rastlinskih ostankov in mehkužcev. Raziskave smo nadaljevali leta 2014, kjer smo približno na isti koti na sosednjem hribu, imenovanem Gru{evec, na{li v materialu iz izkopa za stanovanjsko hi{o bogato združbo rastlin, {koljk in piritiziranih kamenih jeder polžev. V pisanje tega prispevka nas je vodila najdba izredno ohranjenega ve~jega skupka listnatih vejic, ki pripadajo izumrlemu iglavcu Doliostrobus taxiformis. Primerek je predstavljen na tabli 2. Poleg tega primerka je bilo najdenih {e ve~ manj{ih fragmentiranih vejic iste vrste, tri storževe luske, ter ve~ ostankov listavcev. Geoloka zgradba obmo~ja Južna pobo~ja Pa{kega Kozjaka gradijo paleozojske in mezozojske klasti~ne in karbonatne kamnine, ki s stali{~a strukturne ~lenitve pripadajo Južnim Alpam (Placer, 2008). Najstarej{e kamnine predstavljajo paleozojski, zgornjekarbonski skrilavi glinavci, kremenovi pe{~enjaki in konglomerati ter apnenci, ki nastopajo v ozkih luskah in pripadajo Vitanjskemu nizu kamnin (raMovš,1960;Mio^,1972). Sledijo jim mezozojski, spodnjetriasni klasti~ni dolomiti in anizijski dolomit. Kenozojske kamnine s strukturnega vidika pripadajo Panonskemu sistemu bazenov, ki so jih skozi paleogen in neogen zapolnili sedimenti Paratetide. Sedimenti Panonskega bazena so na raziskovanem obmo~ju odloženi v pogreznjenih delih Južnih Alp (Placer, 2008). Paleogenu pripadajo zgornjeeocenske sote{ke plasti laporovcev in glinavcev z le~ami premoga, ki jih najdemo severno in vzhodno od Dobrne (ciMerMan et al., 2006; BreziGar, 2007). Prav tako je zgornjeeocenske starosti svetlo siv Sl. 1. Situacijska skica nahajali{~ fosilne makroflore Fig. 1. Situational drawing of fossil macroflora localities grebenski lo{ki apnenec, imenovan po vasi Loka severozahodno od Dobrne (BreziGar, 2007). Neogenu pripadajo spodnjemiocenski, egerijsko­eggenburgijski kremenovo glavkonitni pe{~enjaki in konglomerati, ki pripadajo gov{kim plastem ter karpatijske klan{ke plasti. Klan{ke plasti gradijo morski pe{~enjaki, laporovci in bre~e s karbonatnim vezivom (BreziGar, 2007). Paleontolo{ke raziskave, rezultate katerih podaja ta prispevek, so se izvajale v zgornjeeocenskih sote{kih plasteh severno in severovzhodno od Dobrne. Material in metode Obravnavan material predstavljajo vejice z listi in redkeje semenske luske, ki so bili najdeni na južnih pobo~jih Pa{kega Kozjaka severno od Dobrne, natan~neje pri zaselkih Klanc in Zavrh nad Dobrno (sl. 1). Fosilni material je najden v sivih do rjavih laporovcih. Fotografije za table so bile posnete z digitalnim foto aparatom »Canon PowerShot S2 IS«. Dosedanje makrofloristi~ne raziskave sotekih plasti Prvi je makrofloristi~ne ostanke iz sote{kih plasti opisal unGer (1850) v svojem delu »Die fossile Flora von Sotzka«, ki je flori pripisal izjemen pomen. Dolo~il je 121 razli~nih rastlinskih ostankov, ki jih je razvrstil v 68 rodov. Sote{kim plastem je pripisal eocensko starost. Obmo~je nastanka sote{kih plasti je interpretiral kot otok, kateri je bil del ve~je združbe otokov, ki so ležali v oceanu med Evropo in Afriko. Paleogeografsko je obmo~je umestil na vzhodni del južne hemisfere, ter jo zaradi posebnega tropskega zna~aja primerjal s floro Oceanije, kjer srednja letna temperatura zna{a med 18 in 22°C. Menil je, da so se ostanki dreves in grmovnic, ki predstavljajo floro sote{kih plasti, odlagali v lagunah, ki so postale izolirane od morja zaradi naravnih jezov; v teh lagunah so ostanke rastlin prekrili glinasti sedimenti (unGer, 1850). Kasneje ettinGshausen (1858) revidira unGer­jevo delo (1850) ter s primerjavo z recentnimi vrstami sklepa na napa~no poimenovanje ve~ine primerkov. Primerke ponovno klasificira in jih razvrsti v {tiri skupine (»Arten des I, II, III, IV Grades«), med katerimi v prvo skupino uvr{~a makrofloristi~ne ostanke dolo~ene nedvomljivo, v ostalih skupinah pa pri njihovem dolo~evanju in poimenovanju obstaja dvom o dolo~ljivosti oziroma jih po njegovem mnenju ni mogo~e taksonomsko opredeliti. Hkrati ettinGshausen (1858) v svojem delu dolo~i nekaj, za sote{ke plasti novih vrst in raz{iri popisano makrofloristi~no združbo na danes poznanih 134 vrst, ki pripadajo 75 rodovom. S fosilno floro sote{kih plasti se je ukvarjal tudi junGwirth (2003a, 2003b, 2004), ki je obravnaval taksonomske opredelitve paleogenskih rastlin iz najdi{~ v Sloveniji, na Hrva{kem ter v Bosni in Hercegovini in njeno problematiko. Tabela 1. Preglednica velikosti primerkov Table 1. Table of specimen sizes Vzorec / Specimen Tip materiala / Type of material Viina / Height mm Širina / Width mm Tab. 1, Sl. / Fig. 1 Vejica z listi / leafy twig 71 10 Tab. 1, Sl. / Fig. 2 Vejica z listi / leafy twig 44 5 Tab. 1, Sl. / Fig. 3 Vejica z listi / leafy twig 103 26 Tab. 1, Sl. / Fig. 4 Vejica z listi / leafy twig 52 5 Tab. 1, Sl. / Fig. 5 Vejica z listi / leafy twig 17 8 Tab. 1. Sl. /Fig. 6 Storževa luska / cone scale 8 5 Tab. 1, Sl. / Fig. 7 Storževa luska / cone scale 18 10 Tab. 1, Sl. /Fig. 8 Storževa luska / cone scale 17 10 Tab. 2, Sl. / Fig. 9 Vejice z listi / leafy twigs 225 98 Paleontoloki del Material Sistematika po Kva~ek, 2002 Ordo Pinales, Dumortier, 1829 Familia Doliostrobaceae Kva~ek, 2002 Genus Doliostrobus Marion, 1888 Doliostrobus taxiformis (Sternberg) Kva~ek, 1971 (Tab. 1, Sl. 1-8; Tab. 2, Sl. 9) 1850 Araucarites sternbergii Göpp. – unGer, p. 27, Taf. 3, Fig. 1-13. 1853 Araucarites sternbergii Göpp. – ettinGshausen, p. 36, Taf. 7, Fig. 1-10. Non 1853 Eucalyptus haeringiana Ettingsh. – ettinGshausen, p. 84, Taf. 28, Fig. 20 sed. Doliostrobus taxiformis (sternBerG) Kva^eK 1854 Araucarites sternbergii Göpp. – ettinGshausen, p. 12, Taf. 5, Fig. 1-3. 1855 Araucarites sternbergii Goepp. – heer, p. 55, Taf. 21, Fig. 5. 1867 Sequoia sternbergii Heer. – ettinGshausen, p. 116, Taf. 13, Fig. 3-8. 1998 Doliostrobus taxiformis (Sternberg) Kva~ek var. hungaricus (Rásky) stat. N. – Kva^eK & haBly, p. 6, Tab. 1, Fig. 1-2. 2002 Doliostrobus taxiformis (Sternberg) Kva~ek – Kva^eK, p. 53, Pl. 1, Fig. 1. L 2004 Doliostrobus sternbergii (Göppert) – junGwirth, p. 188. 2007 Doliostrobus taxiformis (sternB.) Kva~ek – Kva^eK & teoDoriDis, Fig. 2 k, n. L 2010 Doliostrobus taxiformis (Sternberg) Z. Kva~ek – haBly, p. 406. 2011 Doliostrobus taxiformis (Sternberg) Kva~ek var. sternbergii Mai et Walther ex Kva~ek – Kva^eK, p. 89, Pl. 1, Fig. 14-16. Obravnavanih je bilo skupno 9 primerkov makrofloristi~nih ostankov iglavca vrste Doliostrobus taxiformis, od tega 6 primerkov predstavljajo vejice (angle{ko leafy twigs) in 3 primerki izolirane storževe luske (angle{ko cone scales). Material je bil najden v zgornjem delu profila Vra~ek (sensu ciMerMan et al., 2006; Profil Vr. 1) in na obmo~ju Gru{ovca pri Zavrhu nad Dobrno (sl. 1). Opis materiala Listnate vejice s spiralno in radialno razporejenimi igli~astimi listi, ki ob osi delno ovijajo steblo. Listi so dolgi do 10 mm in {iroki 1-3 mm, so ukrivljeni in usmerjeni. Listi so zaobljeni do zaoblejno-suli~asti. Konice listov so za{iljene (tab. 1, sl. 1-5; tab. 2, sl. 9). Storževe luske kažejo zna~ilno vzdolžno progavost ter se na vrhu zaklju~ujejo za{iljeno v ostanek apikalne bodice. Semena niso ohranjena. Semenske luske so izolirane in imajo eno lateralno krilo. Lateralno krilo je stož~asto in rahlo zamaknjeno (tab. 1, sl. 6-8). Stratigrafska in geografska razirjenost Doliostrobus taxiformis je razirjen med srednjim eocenom in spodnjim oligocenom (Kva^eK, 2002), ter izumre v zgornjem oligocenu (haBly, 2010). V Sloveniji je Doliostrobus taxiformis evidentiran iz zgornjeeocenskih sote{kih plasti pri Socki (unGer, 1850; ettinGshausen, 1853; junGwirth, 2004). Po podatkih junGwrith-a je vrsta poznana tudi iz oligocenske Trboveljske formacije med Trbovljami in Zagorjem (junGwirth, 2003a). S severozahoda ^e{ke je vrsta poznana iz zgornjeeocenskih diatomitov in laporovcev z okolice Bíline (Bílin) in Ku~lína (ettinGhausen, 1867; Kva^eK, 2011). D. taxiformis je opisan tudi iz eocenskih laporovcev Spodnje sladkovodne molase (»Untern Sußwassermollase«) Švicarskem molasnem bazenu. heer (1855) Spodnjo sladkovodno molaso ena~i s Sote{kimi plastmi, plastmi pri Zagorju, Radoboju in Häringu na Tirolskem. V Avstriji je Doliostrobus taxiformis opisan iz spodnjeoligocenskih (rupelijskih) ~rno-rjavih terciarnih laporovcev in bituminoznih laporastih apnencev s premogom pri Häringu na Tirolskem (ettinGshausen, 1853; ButzMann et al., 2009). Iz spodnjega oligocena je vrsta najdena tudi v glinah formacije Tard na severnem Madžarskem pri mestu Eger. Prav tako je spodnjeoligocenske starosti najdi{~e blizu Santa Giustina v italjanski Liguriji (haBly, 2010). Taksonomija Doliostrobus taxiformis je izumrla vrsta iglavca, ki je v preteklosti zaradi svojega morfolo{kega polimorfizma bila pripisana razli~nim rodovom: Araucarites, Cryptomeria in Sequoia (junGwirth, 2004; Kva^eK, 2011). Kljub razlikam ima Doliostrobus skupne lastnosti z araukaridami; imajo podobno morfologijo pelodov ter po eno seme na storževo lusko (Kva^eK, 2011). Samostojno družino Doliostrobaceae je leta 2002 postavil Kva^eK. V omenjeno družino spadajo tipski rod Doliostrobus Marion in dva fosilna rodova: Araucarites Krutzsch – Araucarites europaeus Krutzsch, 1971 zaradi razpr{enih pelodov; in Doliostoboxylon Dolezych zaradi strukture lesa (Kva^eK, 2011). Na podlagi lesa, dolo~enega kot Doliostoboxylon, velja D. taxiformis za veliko lesnato drevo. Doliostrobus taxiformis v Evropskem paleogenu nastopa v treh oblikah; D. taxiformis (Sternberg) z. Kva~ek var. taxiformis, var. sternbergii Mai et Walther ex Z. Kva~ek in var. hungaricus (Rásky) Z. Kva~ek et Hably), ki se med seboj lo~ijo po strukturi kutikularnih celic. Razprava V sote{kih plasteh na obmo~ju Dobrne je ostanke Doliostrobus taxiformis mogo~e najti v obliki igli~astih vejic in fragmentov storževih lusk. Na terenu nismo opazili in situ ali ex situ debel, panjev ali korenin, zato lahko re~emo, da so ostanki fosilne makroflore bili podvrženi transportu zato lahko nahajali{~e opredelimo kot hipavtohtono ali alohtono. Ohranjene so le bolj obstojne rastlinske komponente, kot so kutikule in smole (DroveniK, 1984). Mikroskopskega preparata kutikule nismo napravili, za to ne moremo dolo~iti variacijske oblike, lahko pa glede na obliko semenske luske (tab. 1, sl. 6-8) sklepamo na variacijo sternbergii Mai et Walther ex Z. Kva~ek (Kva^eK, 2002; fig. 3c). Vendar na podlagi semenskih lusk ne moremo vseh primerkov enozna~no pripisati tej variaciji. TABLA 1 - PLATE 1 1 a Doliostrobus taxiformis (Sternberg) Kva~ek, vejica z listi. Naravna velikost. Doliostrobus taxiformis (Sternberg) Kva~ek, leafy twig. Natural size. 1 b Doliostrobus taxiformis (Sternberg) Kva~ek, vejica z listi. Doliostrobus taxiformis (Sternberg) Kva~ek, leafy twig, same specimen, other side. 2 Doliostrobus taxiformis (Sternberg) Kva~ek, vejica z listi (2×) Doliostrobus taxiformis (Sternberg) Kva~ek, leafy twig (2×) 3 Doliostrobus taxiformis (Sternberg) Kva~ek, vejice z listi (1,2×) Doliostrobus taxiformis (Sternberg) Kva~ek, leafy twigs (1.2×) 4 Doliostrobus taxiformis (Sternberg) Kva~ek, vejica z listi. Naravna velikost. Doliostrobus taxiformis (Sternberg) Kva~ek, leafy twig. Natural size. 5 a Doliostrobus taxiformis (Sternberg) Kva~ek, vejica z listi (2×) Doliostrobus taxiformis (Sternberg) Kva~ek, leafy twig (2×) 5 b Doliostrobus taxiformis (Sternberg) Kva~ek, vejica z listi, isti primerek (3,5 ×) Doliostrobus taxiformis (Sternberg) Kva~ek, leafy twig, same specimen (3.5×) 6 Doliostrobus taxiformis (Sternberg) Kva~ek, storževa luska (2,5×) Doliostrobus taxiformis (Sternberg) Kva~ek, cone scale (2.5×) 7 a Doliostrobus taxiformis (Sternberg) Kva~ek, storževa luska (2×) Doliostrobus taxiformis (Sternberg) Kva~ek, cone scale (2×) 7 b Doliostrobus taxiformis (Sternberg) Kva~ek, storževa luska. Druga stran (2×) Doliostrobus taxiformis (Sternberg) Kva~ek, cone scale, other side (2×) Doliostrobus taxiformis (Sternberg) Kva~ek, storževa luska (3,7×) Doliostrobus taxiformis (Sternberg) Kva~ek, cone scale (3.7×) TABLA 1 - PLATE 1 Zaklju~ki V zgornjeeocenskih rjavo sivih laporovcih sote{kih plasti severno od Dobrne je bila odkrita razmeroma pestra združba fosilne flore. Prispevek obravnava del najdenih makrofloristi~nih ostankov, ki pripadajo izumrli vrsti iglavca Doliostrobus taxiformis (Sternberg) Kva~ek. Primerki so bili najdeni v useku gozdarske vlake pod Vra~kovim vrhom in v izkopanem materialu za stanovanjsko hi{o na obmo~ju Gru{evca. Najdeni ostanki predstavljajo zlasti vejice z listi in storževe luske brez ohranjenih semen. Akumulacija rastlinskega drobirja je hipavtohtona ali alohtona, saj na terenu nismo opazili debel, korenin ali ~okov. So pa med materialom ohranjeni bolj obstojni deli rastlin, kot so kutikule in drobne kapljice smole. Analiza kutikule ni bila narejena, ker pa je {tudija kutikule nujna za dolo~itev variacije, smo pri dolo~evanju ostali na nivoju vrste. Med plastmi laporovcev sote{kih plasti so opazne tudi akumulacije nedolo~ljivih polžev in {koljk. Doliostrobus taxiformis from Socka beds in Dobrna area, Slovenia Conclusions In Upper Eocene brownish-gray marlstones of Socka beds north of Dobrna a relatively diverse fossil flora assemblage has been found. This paper deals with a part of macrofloristic remains belonging to conifer species Doliostrobus taxiformis (Sternberg) Kva~ek. Fossil specimens were collected from a new forestry trail under Vra~kov vrh and from material excavated for residental house in the area of the Gru{evec. Fossil material consists mainly of leafy twigs and of cone scales, without seed preserved. Accumulation of plant debris is hypautochthonous or allochthonous, since no roots, logs or tree stumps were observed. Among the material, only most resistant parts of the plants, such as cuticle and tiny resinous droplets are preserved. Cuticle analysis was not performed; since its analysis is mandatory for determening the variety of the species our determination stays at the species level. Between the marlstone strata, accumulations of indeterminate gastropods and bivalves are found. Literatura BreziGar, a. 2007: Geolo{ka pisna dedi{~ina Šale{ke doline in okolice. Geologija, 50/2: 233–245, doi:10.5474/geologija.2007.017. ButzMann, r., Fisher, t. c. & reiBer, e. 2009: Makroflora aus dem inneralpinen Fächerdelta der Häring-Formation (Rupelium) vom Duxer Köpfl bei Kuferstein/Unterinntal, Österreich. Zittelania A48/49: 129–163, Taf. 1–4. ciMerMan, F., jelen, B. & sKaBerne, D. 2006: Poznoeocenska benti~na foraminiferna favna iz klasti~nega zaporedja med Socko in Dobrno in njen kronostratigrafski pomen. Geologija, 49/1: 7–44, doi:10.5474/geologija.2006.001. DroveniK, M. 1984: Nahajali{~a premogov, nafte in zemeljskega plina. Fakulteta za naravoslovje in tehnologijo, Ljubljana: 120 p. ettinGshausen,c. 1853: Die Tertiäre Flora von Häring in Tirol. Abhandl. d.k.k. geolog. Reichsanst. II. Bd, 3 Abth. Nr. 2: 1–109, Taf. 1–31. ettinGshausen, c. 1854: Die Eocene Flora des Monte Promina. Denkschrift. Der Mathem.-Naturw. Wien, 1–28 p., Taf. 1–14. ettinGshausen, c. 1858: Beiträge zur kenntnis der fossilen Flora von Sotzka in Untersteiermark. Sitzungsb. Keiserl. Akad. Wiss. Wien. Math. Naturwiss. 101/28: 471–567, Taf. 1–5. ettinGshausen, c. 1867: Die fossile Flora des tertiärbeckens von Bilin. I. Theil: Enthaltend die Thallophyten, kryptogamischen Gefässpflanzen, Monokotyledonen, Coniferen, Julifloren und Oleraceen. Denkschr. Akad. Wiss. Wien, 26/1: 79–174, Tab. 30. haBly, l. 2010: The Early Oligocene of Santa Giustina (Liguria, Italy) – Revision and comparison with the flora of Tard clay formation. Rivista Italiana di Paleontologia e Stratigrafia, 116/3: 405–420, Tab. 1–5. heer, o. 1855: Die tertiäre Flora der Schweiz. Der Naturforschenden Gesellschaft in Zurich, 1–30, Taf. 1–50. junGwirth, e. 2003a: Prikaz paleontolo{kih raziskav v Zasavju. Geolo{ki zbornik 17. Oddelek za geologijo, 72–75. junGwirth, e. 2003b: Paleogene flora of Slovenia, Croatia and Bosnia and Herzegovina. Nat. Croat., 12/3: 151–156. TABLA 2 - PLATE 2 Doliostrobus taxiformis (Sternberg) Kva~ek, vejice z listi (0,9×) Doliostrobus taxiformis (Sternberg) Kva~ek,, leafy twigs (0.9×) Fotografije (Photos): Ale{ Šoster & Barbara Poto~nik Krajnc TABLA 2 - PLATE 2 junGwirth, e. 2004: The determination and taxonomic problems of Palaeogene fossil macroflora from Slovenia and Croatia. Nat. Croat., 13/2: 187–196. Kva^eK, z. 2002: Novelties on Doliostrobus (Doliostrobaceae), an extinct conifer genus of the European Palaeogene. J. Nat. Mus., Nat. Hist. Ser. 171/ 1–4: 131–175. Kva^eK, z. 2011: Late Eocene flora of Ku~lín near Bílina in north Bohemia revisited. Acta Musei Nationalis Pragae. Series B – Historia naturalis, 67/3–4: 83–144. Kva^eK, z. & haBly, l. 1998: New plant elements in the Tard clay formation from Eger-Kiseged. Acta Paleobot., 38/1: 5–23. Kva^eK, z. & teoDoriDis, v. 2007: Tertiary macrofloras of the Bohemian massif: A review with correlations within Boreal and Central Europe. Bulletin of Geosciences, 82/4: 383– 408, Fig. 1–5. Mio^, P.1972: Tolma~ lista Slovenj Gradec. Osnovna geolo{ka karta SFRJ 1:100.000. Zvezni geolo{ki zavod Beograd, Beograd: 111 p. Pavši^, j. 2006: Geolo{ki terminolo{ki slovar. ZRC SAZU, Ljubljana: 331 p. Placer, l. 2008: Osnove tektonske ~lenitve Slovenije. Geologija, 51/2: 205–217 doi:10.5474/geologija.2008.021. raMovš, a. 1960: Razvoj mlaj{ih paleozojskih skladov v vitanjskem nizu. Geologija, 6: 170–234. unGer, F. 1850: Die fossile Flora von Sotzka. Denkschr. Akad. Wiss. Wien, 2/1: 131–197, Taf. 1–68. doi:10.5474/geologija.2015.008 Simplified structural map of Kras Kras (Slovene), Carso (Italian) = Geographical unit Poenostavljena strukturno-geolo{ka karta Krasa Kras (slovensko), Carso (italjansko) = geografska enota Ladislav PLACER Geological Survey of Slovenia, Dimi~eva ul. 14, SI–1000 Ljubljana; e-mail: ladislav.placergeo-zs.si Prejeto / Received 27. 5. 2015; Sprejeto / Accepted 23. 6. 2015 Key words: Region Kras, tectonic, tectonic geomorphology, Slovenia Klju~ne besede: Kras, tektonika, tektonska geomorfologija, Slovenija Abstract With this contribution comes a printed copy of the Simplified structural map of Kras, comprising an area on both sides of the state border between Slovenia and Italy, as well as its short description. The map conveys updated information on faults and newly discovered geomorphologically indicated joint-fault zones in the area. Izvle~ek Prispevek prina{a natis Poenostavljene strukturno-geolo{ke karte Krasa, ki zajema ozemlje na slovenski in italijanski strani državne meje ter kratek opis. Karta vsebuje dopolnjene podatke o poteku prelomov in o novoodkritih geomorfolo{ko izraženih razpoklinsko-prelomnih conah. In this issue of Geologija, the Simplified structural map of Kras is published in order to provide some information about the progress of research conducted in the Kras region (Classical Karst Region – Kras). The map has been compiled as an essential appendix of a more extensive work, Geomorphology of Kras, which is being prepared in co-authorship by L. Placer and A. Mihevc. In the Slovenian part, the map is based on works published by jurKovšeK et al. (1996), jurKovšeK (2010, 2013) and Placer (2005, 2007), and in the Italian part on those by cucchi & Piano (2013), cucchi et al. (2015) and riŽnar (2014). Moreover, data gathered during sea bottom research of the Gulf of Trieste (Busetti et al., 2010; carulli, 2011) are also included. The interpretation of structure is based on the before mentioned works and on the reconnaissance structural profiling of the entire area of the map, made in 2010 to 2013. The interpretation of structure and geomorphology of the Kras region was based on the findings published in a paper entitled The bases for understanding of the NW Dinarides and Istria Peninsula tectonics (Placer et al., 2010). By applying the mentioned maps, recent structural profiling and study of remote sensing data, we identified several kinematic phases that reflect in the geological structure and geomorphology of the surface. Most of the faults underwent one or more reactivations in various directions, and therefore were not marked by map symbols of movement directions of their fault blocks. Some symbols appear only on the most important faults of the Istria-Friuli Underthrust Zone, which is the most stable in this sense. Interestingly, among the more important newly established features there are three geomorphologicaly active joint- fault zones within which structural escarpment have developed. The first one is the Doberdo (Doberdob) joint-fault zone along which the larger part of Vallone di Doberdo (Doberdobski dol) has formed, and the Opajsko selo structural escarpment, that separates the peneplains of the Kostanjevica and Doberdo (Doberdob) Kras. The latter subsided along the joint-fault zone for 60 to 70 m. The second one is the Sežana joint-fault zone with the Lipica structural escarpment, along which the west block has subsided for about 15 to 20 m. The third one is the Matavun joint-fault zone with the Škocjan structural escarpment, along which the eastern block has subsided. Systems of fissures in various directions, predominately north-south, are quite abundant on the Kras plateau, but hitherto they have been considered mostly in connection with the processes leading to the formation of dolines, caves and sinkholes. Among the plicative deformations, larger and smaller ones have been distinguished. I would like to emphasize the larger ones located on the borders between the Trieste-Komen anticlinorium and the ^i~arija anticlinorium (after Buser 1976, ^i~arija anticline) and the Brkini synclinorium (after Buser 1976, Reka synclinorium) respectively, and the ones between the Vipava synclinorium and the Ravnik anticlinorium (after Placer 2005, Ravnik anticline). On previous maps some of these were not depicted as folds; they are, however, very important for the understanding of structure and geomorphology. The Geomorphology of Kras is conceive as an extended guidebook to the Simplified structural map of Kras. It comprises a discussion on the influence of the Istria Pushed Area on the postorogenic evolution of the External Dinarides and their geomorphology. From this basis follows a schematic morphotectonic subdivision of the Dinaric Karst in the area of the External Dinarides, and a concept of morphogenetic evolution of the area of Classical Karst (between the Gulf of Trieste and Ljubljansko barje / the Ljubljana Marsh) with Istria Peninsula and Kras. The latter is considered in detail. The evolution of morphology is presented in terms of synergistic effects of lithostratigraphy, structure, exogenic processes and tectonics. In the frame of the latter, we attempted to provide some answers to the complex question of causes that lead to the formation of the Istria Pushed Area. Poenostavljena strukturno-geolo{ka karta Krasa Kras (slovensko), Carso (italjansko) = geografska enota V tej {tevilki Geologije je objavljena Poenostavljena strukturno-geolo{ka karta Krasa, kar predstavlja prispevek k obve{~anju o poteku raziskav na Krasu. Izdelana je kot osnovna priloga obsežnej{ega dela Geomorfologija Krasa, ki se pripravlja v soavtorstvu L. Placerja in A. Mihevca. Na obmo~ju Slovenije je karta sestavljena iz del, ki so jih objavili jurKovšeK et al. (1996), jurKovšeK (2010, 2013) in Placer (2005, 2007), na obmo~ju Italije pa cucchi & Piano (2013), cucchi et al., (2015) in riŽnar (2014). Poleg tega so zajeti tudi podatki raziskav morskega dna Trža{kega zaliva (Busetti et al., 2010; carulli, 2011). Interpretacija strukture sloni na omenjenih delih in na preglednem strukturnem profiliranju, ki je bilo opravljeno na celotnem ozemlju v letih 2010­2013. Ladislav PLACER Raziskovanje strukture in geomorfologije Krasa je bilo zasnovano na ugotovitvah razprave The bases for understanding of the NW Dinarides and Istria Peninsula tectonics = Osnove razumevanja tektonske zgradbe NW Dinaridov in polotoka Istre (Placer et al., 2010). Na podlagi podatkov zgoraj omenjenih kart, novega strukturnega profiliranja in prou~evanja daljinskih posnetkov, je bilo mogo~e dolo~iti ve~ kinematskih faz, ki se odražajo v geolo{ki zgradbi in geomorfologiji povr{ja. Prelomi so ve~inoma doživeli eno ali ve~ reaktivacij v razli~nih smereh, zato nimajo oznak, ki bi nakazovale smer premika prelomnih kril. Te so zabeležene le pri najpomembnej{ih prelomih Istrsko-furlanske podrivne cone, ki so v tem smislu najbolj stabilni. Od pomembnej{ih novosti so zanimive tri geomorfolo{ko tvorne razpoklinsko-prelomne cone, znotraj katerih so se razvili strukturni pragovi; prva je doberdobska razpoklinsko prelomna cona po kateri je nastal ve~ji del Doberdobskega dola in opajski strukturni prag, ki lo~i uravnavi Kostanjevi{kega in Doberdobskega Krasa. Slednja je ob njej ugreznjena okoli 60 do 70 m. Druga je sežanska razpoklinsko-prelomna cona z lipi{kim strukturnim pragom ob katerem je zahodno krilo ugreznjeno okoli 15 do 20 m. Tretja je matavunska razpoklinsko-prelomna cona s {kocjanskim strukturnim pragom ob katerem pa je ugreznjeno vzhodno krilo. Snopi razpok v razli~nih smereh, posebno v smeri sever-jug, so na Krasu {tevilni, toda doslej smo menili, da so pomembni predvsem za nastajanje vrta~, jamskih objektov in udornic. Plikativne deformacije so lo~ene na ve~je in manj{e. Opozoril bi na ve~je na mejah Trža{ko-komenskega antiklinorija s ^i~arijskim antiklinorijem (po Buserju 1976, ^i~arijska antiklinala) in Brkinskim sinklinorijem (po Buserju 1976, Re{ki sinklinorij) ter med Vipavskim sinklinorijem in Ravni{kim antiklinorijem (po Placerju 2005, Ravni{ka antiklinala), od katerih nekatere na dosedanjih kartah niso bile prikazovane kot gube, vendar imajo za razumevanje strukture in geomorfologije velik pomen. Geomorfologija Krasa je zasnovana kot raz{irjeni tolma~ Poenostavljene strukturno­geolo{ke karte Krasa. V njej bo tekla razprava o vplivu Istrskega potisnega obmo~ja na postorogeni razvoj Zunanjih Dinaridov in njihovo geomorfologijo. Iz tega bo izveden pogled na morfotektonsko rajonizacijo dinarskega krasa na prostoru Zunanjih Dinaridov ter pogled na morfogenetski razvoj ozemlja klasi~nega krasa (med Trža{kim zalivom in Ljubljanskim barjem) z Istro in na Krasu. Slednji bo obdelan podrobneje. Razvoj reliefa bo prikazan kot sinergija litostratigrafije, strukture, eksogenih procesov in tektonike. V okviru slednje bomo sku{ali odgovoriti na kompleksno vpra{anje vzrokov, ki so pripeljali do nastanka Istrskega potisnega obmo~ja. Debela griža POENOSTAVLJENA STRUKTURNO-GEOLOŠKA KARTA KRASA References Buser, S. 1976: Tektonska zgradba južnozahodne Slovenije = Tektonischer Aufbau Südwest-Sloweniens. Geotektonika, geofizika 3, 8. jugoslov. geol. kongres, Bled 1974: 45–58. carulli, G. B. 2011: Structural model of the Trieste Gulf: A proposal. Journal of Geodynamics, 51: 156–165. Busetti, M., volPi, v., Barison, e., Giustiniani, M., Marchi, M., raMella, r., warDell, n. & zanolla, c. 2010: Meso-Cenozoic seismic stratigraphy and the tectonic setting of the Gulf of Trieste (northern Adriatic). GeoActa, SP3: 1–14. cucchi, F. & Piano, c. (curated by) 2013: Carta Geologica del Carso Classico Italiano 1:50.000. Regione Autonoma Friuli Venezia Giulia, Direzione centrale ambiente e lavori pubblici -Servizio geologico. cucchi, F., Biolchi, s., zini, l., jurKovšeK, B. & Kolar-jurKovšeK, t. 2015: Carta geologica del carso classico = Geolo{ka karta klasi~nega Krasa. In: cucchi, F., zini, l. & calliGaris, c. (curated by) Progetto/Projekt HYDROKARST, Univerzitá di Trieste:179 p. jurKovšeK, B., toMan, M., oGorelec, B., šriBar, lu., DroBne, K., PoljaK, M. & šriBar, lj. 1996: Formacijska geolo{ka karta južnega dela Trža{ko-komenske planote = Geological map of Southern part of the Trieste-Komen Plateau (Slovenia) 1:50.000. Intitut za geologijo, geotehniko in geofiziko, jurKovšeK, B. 2010: Geolo{ka karta severnega dela Trža{ko-komenske planote = Geological map of the Northern part of the Trieste-Komen Plateau (Slovenia) 1:25.000. Geolo{ki zavod Slovenije, Ljubljana. jurKovšeK, B. 2013: Geolo{ka karta Krasa = Geological map of Kras (Slovenia). In: jurKovšeK, B., cvetKo tešovi], B. & Kolar jurKovšeK, t. (eds.): Geologija Krasa = Geology of Kras. Geolo{ki zavod Slovenije, Ljubljana: 205 p. Placer, l. 2005: Strukturne posebnosti severne Istre = Structural curiosity of the northern Istria. Geologija, 48/2: 245-251, doi:10.5474/ geologija.2005.020. Placer, l. 2007: Kra{ki rob. Geolo{ki prerez vzdolž AC Kozina – Koper = Kra{ki rob – landscape term. Geologic section along the motorway Kozina – Koper/Capodistria. Geologija, 50/1, 29-44, doi:10.5474/geologija.2007.003. Placer, l., vraBec, M. & celarc, B. 2010: The bases for understanding of the NW Dinarides and Istria Peninsula tectonics = Osnove razumevanja tektonske zgradbe NW Dinaridov in polotoka Istre. Geologija, 53/1, 55–86, doi:10.5474/geologija.2010.005. riŽnar, i. 2014: The flysch/carbonates junction in the S. Dorligo delle Vale / Dolina Municipality. IPA Project Roof of Rock 2007–2013. Nova knjiga Uredniki / Editors: Martina PACHER, Vida POHAR & Gernot RABEDER, 2014: Križna jama – Palaeontology, Zoology and Geology of Križna jama in Slovenia. Mitteilungen der Kommission für Quartärforschung, 21. Verlag der Österreichischen Akademie der Wissenschaften, Dunaj: 136 p. Križna jama je ena izmed najbolj znanih in raziskanih kra{kih jam v Sloveniji. Poleg njene speleolo{ke dedi{~ine so njeni sedimenti ponekod polni kosti jamskih medvedov. Tako je na prelomu 21. stoletja gostila raziskovalce iz Avstrije in Slovenije, ki so izvedli izkopavanja v nekaterih suhih predelih jame. Rezultat teh izkopavanj je predstavljena monografija o Križni jami. Publikacija je nekak{na združitev zoolo{kih, geolo{kih in paleontolo{kih spoznanj, ~eprav uredniki niso izpustili niti speleolo{kih niti hidrolo{kih tem. Sprehod po publikaciji nas vodi skozi zgodovino raziskovanja Križne jame in zadnjih izkopavanj ne izpusti pa niti pregleda dana{nje jamske favne. Glavnina monografije je namenjena predstavitvi izsledkov izkopavanj oziroma analizi ostankov jamskega medveda (vrsta Ursus ingressus). Obsežna publikacija je nastala v sodelovanju s {tirinajstimi raziskovalci iz razli~nih evropskih raziskovalnih ustanov. Opremljena je s kvalitetnimi slikami in risbami, ki nazorno prikazujejo obravnavano temo. Na žalost je publikacija nekako zaob{la zainteresirano slovensko publiko s tem, da je bila izdana v Avstriji. Vsekakor bi si podobne monografije zaslužile svojo (nekoliko bolj ob{irno) predstavitev tudi v Sloveniji, navsezadnje je to na{a bogata paleontolo{ka, geolo{ka in speleolo{ka dedi{~ina, ki jo premore le redkokatera dežela. Matija Križnar Poro~ila Letna skup{~ina Slovenskega združenja za geodezijo in geofiziko (SZGG) Polona VRE^A Institut “Jožef Stefan”, Odsek za znanosti o okolju, Jamova cesta 39, SI–1000 Ljubljana, Slovenia, e-mail:polona.vrecaijs.si V Ljubljani je 29. januarja 2015 na Fakulteti za gradbeni{tvo in geodezijo bila letna skup{~ina Slovenskega združenja za geodezijo in geofiziko (SZGG). Po skup{~ini pa je sledilo dvajseto sre~anje z naslovom »Raziskave s podro~ja geodezije in geofizike – 2014«. SZGG je združenje, ki povezujejo zelo razli~ne profile strokovnjakov, ki se ukvarjajo z raziskavami Zemlje, tudi geologov in omogo~a zanimivo izmenjavo razli~nih znanj. Na skup{~ini je najprej podal kratko poro~ilo o delu v preteklem letu predsednik združenja R. ^op, nato pa je sledilo poro~ilo tajnika združenja M. Kuharja. V SZGG deluje osem sekcij, katerih vodje so hkrati predstavniki Slovenije v mednarodnih združenjih, ki delujejo v Mednarodni zvezi za geodezijo in geofiziko (International Union of Geodesy and Geophysics – IUGG). Predstavniki posameznih sekcij so predstavili kratka poro~ila o delu v preteklem letu: B. Stopar (Sekcija za geodezijo), A. Gosar (Sekcija za seizmologijo in fiziko notranjosti Zemlje), R. ^op (Sekcija za geomagnetizem), G. Skok (Sekcija za meteorologijo), M. Li~er (Sekcija za oceanografijo), M. Kobold (Sekcija za hidrologijo) in P. Vre~a (Sekcija za kriosfero). Predstavitve so dostopne na http://www.fgg.uni-lj.si/sugg/. Na strokovnem sre~anju je trinajst predavateljev predstavilo rezultate raziskovalnega dela. R. ^op je predstavil rezultate raziskav razelektritve v ionosferi, S. Šebela rezultate ve~letnih merjenj tektonskih mikro premikov v kra{kih jamah, M. Merih je predstavil vpliv podnebne spremenljivosti na rezultate verjetnostih analiz visokovodnih konic s primerom vodomerne postaje Litija na reki Savi, V. Hladnik pa rezultate objektne analize padavin iz satelitskih meritev, reanaliz ERA-Interim ter modela WRF na obmo~ju Evrope in Severnega Atlantika. Nadalje je M. Z. Božnar predstavila modeliranje difuznega son~nega obseva, M. Triglav ^ekada aerofotografiranje in aerolasersko skeniranje Slovenije, P. Pavlov~i~ Pre{eren problematiko geodetskih terenskih meritev z GNSS in simulacije vodostaja na podlagi DMR na delu Cerkni{kega jezera, M. Petek dolo~anje kazalnikov nizkih pretokov s prikazom na primeru vodomerne postaje Kokra I na reki Kokri, T. Podobnikar pa je govoril o geomorfometri~ni analizi vr{ajev planeta Marsa za uporabo na Zemlji. Sledila so {e predavanja M. Pav{ka o snežnih plazovih in preventivi v Srednjih Karavankah, M. Kobold o analizi poplavnega dogodka v maju 2014 v Bosni in Hercegovini za pore~je reke Bosne, D. Deželjina o prenosu merilnih podatkov iz geomagnetnega observatorija po obstoje~em komunikacijskem omrežju ter A. Mihevca o eroziji arheolo{kega najdi{~a v Dabarski pe~ini pri Sanskem mostu ob poplavi maja 2014. Prispevki so objavljeni v zborniku del in so dostopni na http://www.fgg. uni-lj.si/sugg/. V spomin mag. Francu Cimermanu Na ve~er 1. junija 2015 nas je zapustil priznani mikropaleontolog in vsestranski geolog mag. Franc Cimerman. Rodil se je 22. novembra 1933 v Kranju. Po maturi na kranjski gimnaziji leta 1952 se je vpisal na {tudij geologije s paleontologijo na Prirodoslovno-matemati~ni fakulteti Univerze v Ljubljani, kjer je leta 1958 diplomiral. Strokovno se je izpopolnjeval na Univerzi na Dunaju (1963) in na École pratique des hautes études v Parizu (1976). Leta 1984 je magistriral na Fakulteti za naravoslovje in tehnologijo Univerze v Ljubljani. Že pred diplomo se je konec leta 1956 zaposlil v Prirodoslovnem muzeju Slovenije, kjer je najprej delal kot preparator in po diplomi kot kustos. Od leta 1979 je bil zaposlen kot raziskovalec na Paleontolo{kem in{titutu SAZU, pozneje preimenovanem v Paleontolo{ki in{titut Ivana Rakovca ZRC SAZU. Leta 1997 se je upokojil, vendar je {e naprej znanstveno delal in aktivno sodeloval pri in{titutskih projektih. Osrednja tema njegovega raziskovanja so bile male bento{ke foraminifere, s katerimi se je za~el ukvarjati že v diplomski nalogi z naslovom Razvoj oligocena pri Polj{ici. V {estdesetih letih je v okviru raziskovalne naloge Terciar Posavskih gub, ki jo je vodil prof. dr. Du{an Ku{~er, preu~eval oligocensko in pozneje miocensko foraminiferno favno. Glavnina rezultatov je žal ostala samo v rokopisnih poro~ilih, objavil pa je taksonomski {tudiji rodov Pavonitina in Halkyardia. Za rod Pavonitina in miocensko vrsto Pavonitina styriaca Schubert je ugotovil, da je za~etni del biserialen in ne triserialen, kot je veljalo dotlej. Iz oligocenske morske gline pri Polj{ici je leta 1969 opisal novo vrsto Halkyardia maxima, ki je zna~ilen oligocenski mikrofosil in se že po velikosti razlikuje od starej{e vrste Halkyardia minima (Liebus, 1911), opisane iz eocenskih laporjev v Dalmaciji. Da bi obe vrsti bolje spoznal, je na tipi~ni lokaliteti pri vasi Smokovi} v Dalmaciji nabral primerjalni material in na preparatih iz izoliranih hi{ic prvi opisal notranjo zgradbo te foraminifere. Originalni Liebusov opis namre~ podaja samo zunanjo obliko. Pozneje je preu~eval {e eocenske foraminifere Vipavske doline (rokopisna poro~ila) in paleogenske planktonske foraminifere v Gori{kih Brdih (objavljeno 1974). V 70. letih se je na pobudo in v sodelovanju z dr. Katico Drobne lotil raziskovanja recentnih foraminifer Jadranskega morja. Najprej je {tudiral foraminiferno favno kvartarnih sedimentov iz vrtin v Se~ovljah in v Koprskem zalivu. Pozneje se je posvetil vzorcem s sten podvodne vzpetine Kampanel pri Paklenih otokih južno od Hvara in material uporabil za magistrsko nalogo z naslovom Recentne foraminifere iz morja zahodno od otoka Hvara (srednja Dalmacija) v lu~i aktuopaleontologije. Nazadnje je obdelal foraminiferno favno iz sedimentov v Velikem jezeru na Mljetu. O raziskavah jadranskih foraminifer je poro~al na kongresih CIESM (Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée) in na drugih znanstvenih sestankih. Ve~ let je bil pri CIESM tudi ~lan Komiteja za bentos. Sinteza vseh raziskav v tem sklopu je monografija Mediterranean Foraminifera, ki jo je leta 1991 objavil v soavtorstvu z dr. Martinom Langerjem, in se v svetu {e danes uporablja kot temeljno delo za raziskave recentnih foraminifer. V 90. letih in po upokojitvi se je ponovno ve~ posve~al fosilnim foraminiferam. Sodeloval je v skupini, ki je pod vodstvom dr. Bogomirja Jelena preu~evala Sote{ke plasti na tipi~nem ozemlju med Socko in Dobrno. V teh plasteh je dolo~il foraminiferno združbo, zna~ilno za zgornji eocen. Tako je razre{il poldrugo stoletje ugibanj o starosti Sote{kih plasti, ki so jim vse od njihovega prvega poimenovanja leta 1858 pripisovali razli~ne starosti, od eocena in oligocena do miocena. S temi raziskavami je tudi dokazal, da so klasi~ne Sote{ke plasti starej{e od podobnih razvojev v Zasavju, ki so oligocenske starosti in torej ne morejo pripadati Sote{kim plastem, kamor so jih uvr{~ale prej{nje raziskave. Po letu 2000 je najve~ delal na projektih, ki jih je Paleontolo{ki in{titut Ivana Rakovca izvajal v okviru varstva geolo{ke naravne dedi{~ine na gradbi{~ih avtocest. V poro~ila je prispeval poglavja o terciarni foraminiferni favni na odsekih Pera~ica–Podtabor, Vrba–^rnivec in Spodnja Senarska–Cogetinci. V zadnjem ~lanku se je vrnil k oligocenskim foraminiferam iz svoje mladosti. S {tudijem notranje strukture mikrosferi~nih in makrosferi~nih oblik je pojasnil morfogenezo foraminifere Halkyardia maxima Cimerman, ki jo je opisal pred 46 leti. Izida ~lanka ni do~akal. V letih, ko je bil kustos v Prirodoslovnem muzeju, se je veliko ukvarjal s poljudnimi predstavitvami geologije. Razstavne zbirke je takrat preurejal iz starega na~ina postavitve, pri katerem je bil glavni poudarek na sistematiki, v modernej{i, tedaj sodobni dioramski na~in. Pripravil je na~rte za dioramsko predstavitev življenja na Zemlji od paleozoika do pleistocena. V naslednjih letih je postavil dve obsežnej{i ob~asni razstavi: Ledena doba s tiskanim vodnikom (1961) in Okamnine, pri~e izumrlega življenja, prav tako s tiskanim vodnikom (1971). Takrat in tudi pozneje je zavzeto pisal poljudne paleontolo{ke ~lanke, najve~ v revijo Proteus. Na poljudne prispevke je nasploh gledal kot na pomembno dolžnost stroke, bil pa je neprizanesljiv kritik pretirano poenostavljenih razlag, ki negeologe zavajajo, namesto da bi jim približale logiko geolo{kega razmi{ljanja. Od nekdaj se je zanimal tudi za zgodovino geologije. Bil je izvrsten poznavalec življenja in dela geologov, ki so slovensko ozemlje raziskovali v 19. in na za~etku 20. stoletja. Kot pisec njihovih biografij je v 80. letih sodeloval pri Enciklopediji Slovenije. Od leta 2011, že kot upokojenec, je bil podro~ni urednik za naravoslovje pri Novem Slovenskem biografskem leksikonu. V zgodovini geologije bo Franc Cimerman zapisan kot odli~en raziskovalec foraminifer z izostrenim ob~utkom za taksonomske detajle. Enako pomembni so rezultati njegovih biostratigrafskih raziskav, s katerimi je odlo~ilno prispeval k natan~nej{i stratigrafski raz~lenitvi terciarja v Sloveniji. Vsi, ki smo Francija poznali osebno, se ga bomo spominjali po veliki ljubezni do geologije in {iroki splo{ni razgledanosti. Odlikovala sta ga iskriva duhovitost in spo{tljivo prijateljstvo do vseh ljudi, s katerimi se je v življenju sre~eval. Še dolga leta po upokojitvi, vse do lanske jeseni, ko je hudo zbolel, je redno prihajal na in{titut. Najbližji sodelavci smo ga cenili zaradi bogatega geolo{kega znanja in izku{enj, pogosto pa smo se nanj obra~ali tudi z manj strokovnimi vpra{anji. Bil je neprecenljiv svetovalec pri pisanju poljudnih ~lankov in za vsak tehni~ni problem je vedno na{el domiselno prakti~no re{itev. Z inteligentnim spontanim humorjem in igralskim talentom je znal ustvariti spro{~eno razpoloženje in poskrbeti za prijazno delovno okolje. Izgubili smo vrhunskega strokovnjaka, plemenitega ~loveka in dragega prijatelja. Zelo ga bomo pogre{ali. Mag. Franc Cimerman: bibliografija 1961–2015 Seznam obsega objavljena znanstvena in strokovna dela. Povzetki predavanj, poljudni ~lanki in prispevki v enciklopedijah v pregledu niso zajeti. Popoln seznam bibliografskih enot je dostopen na spletnih straneh v sistemu COBISS. ciMerMan, F. 1961: Ledena doba vodnik po razstavi. Prirodoslovni muzej Slovenije, Ljubljana: 16 p. ciMerMan, F. 1965. Henrik Freyer -geolog in paleontolog. Proteus, 28/ 9–10, 242–247. CiMerMan, F. 1967: Oligocene beds in Upper Carniola (Slovenia, NW Yugoslavia) and their foraminiferal fauna. Bulletin scientifique. Section A, Sciences naturelles, techniques et medicales, 12/9–10: 251–253. CiMerMan, F. 1969: The genus Pavonitina Schubert (Foraminiferida) and its systematic position. Micropaleontology, 15: 111–115. CiMerMan, F. 1969: Halkyardia maxima n. sp. (Middle Oligocene) and Halkyardia minima (Liebus) (Middle Eocene). Annales Societatis Geologorum Poloniae, 39: 295–304. CiMerMan, F. 1971: Okamnine, pri~e izumrlega življenja. Prirodoslovni muzej Slovenije, Ljubljana: 26 p. CiMerMan, F., Pavlovec, R, Pavši^, J. & toDesco, L. 1974: Biostratigrafija paleogenskih plasti v Gori{kih brdih. Geologija, 17: 7–130. oGorelec, B., Miši^, M., šercelj, A., CiMerMan, F., FaGaneli, J. & steGnar, P. 1981: Sediment se~oveljske soline. Geologija, 24: 179–216. DroBne, K. & CiMerMan, F. 1984: Die vertikale Verbreitung der Lituolaceen und Miliolaceen (Foraminifera) an einem Unterwasserkliff in der Adria (Jugoslawien). Facies, 11: 157–172. Špela Gori~an GoluBi], S., caMPBell, S.E., DroBne, K., caMeron, B., BalsaM, W.L., CiMerMan, F. & DuBois, L. 1984: Microbial endoliths: a benthic overprint in the sedimentary record, and a paleobathymetric cross-reference with foraminifera. Journal of Paleontology, 58/2: 351–361. oGorelec, B., Miši^, M., FaGaneli, J., šercelj, A., CiMerMan, F., Dolenec, T. & PezDi^, J. 1984: Kvartarni sediment vrtine V-3 v Koprskem zalivu. Slovensko morje in zaledje, 7/6–7: 165– 186. CiMerMan, F. 1985: L’analyse statistique des foraminiferes arénacés et porcelanés a l’ouest de l’île de Hvar (Adriatique moyenne, Yougoslavie). Rapports et Proces Verbaux des Réunions - Commission Internationale pour l’Exploration Scientifique de la Mer Méditerranée, 29/5: 345–346. DroBne, K., Pavlovec, R., DroBne, F., CiMerMan, F. & šiKi], L. 1985: Nekatere velike foraminifere iz zgornjeeocenskih in bazalnih oligocenskih skladov v severni Sloveniji. Geolo{ki glasnik (Sarajevo), 28: 77–177. Pavlovec, R., Kulenovi], E., ^i^i], S., junGwirth, E., Panti], N.K., Mihajlovi], \.S., šiKi], L., teMKova, V., DroBne, K., DroBne, F., CiMerMan, F., šiMuni], A., šiKi], K., Mitrovi]-Petrovi], J., BaBi], L., zuPani], J., MilaKovi], B.B., Pavlovi], M.B., Pavši^, J., Pleni^ar, M. & herlec, U. 1985: Simpozij o “Doga|ajima na granici izme|u eocena i oligocena u Jugoslaviji” u okviru Me|unarodne potkomisije za stratigrafiju paleogena: project 174. Geolo{ki glasnik (Sarajevo), 28: 204 p. Pleni^ar, M. & CiMerMan, F. 1985: Oligocenske bazalne usedline v Sloveniji. Geolo{ki glasnik (Sarajevo), 28: 179–183. CiMerMan, F., DroBne, K. & oGorelec, B. 1988: L’association de foraminiferes benthiques des vases de la baie de Veliko jezero sur l’île de Mljet et de la falaise Lenga, ouverte vers la mer (Adriatique moyenne). Revue de Paléobiologie, Vol. spécial 2: 741–753. CiMerMan, F. & lanGer, M.R. 1991: Mediterranean Foraminifera. Dela 30, Slovenska akademija znanosti in umetnosti (Znanstvenoraziskovalni center SAZU, Paleontolo{ki in{titut Ivana Rakovca, 2), Ljubljana: 118 p., 93 pls. jelen, B., KeDves, M., sKaBerne, D., BreziGar, A., Buser, S., CiMerMan, F., DroBne, K., Monostori, M., Pavlovec, R. & Pavši^, J. 1994: Dorog type (Middle Eocene) spore-pollen assemblage in the Socka Beds of Slovenia. Plant Cell Biology and Development, 5: 20–28. oDin, G.S., jelen, B., DroBne, K., uhan, J., sKaBerne, D.,Pavši^, J., CiMerMan, F., cosca, M. & hunziKer, C. 1994: Premiers âges géochronologiques de niveaux volcanoclastiques oligocenes de la Région de Zasavje, Slovénie. Giornale di Geologia, 56/1: 199–212. Márton, E. & CiMerMan, F. 1995: Paleomagnetism of Oligocene andesite tuffs near Pera~ica (Slovenia). Razprave IV. razreda SAZU, 36: 277–285. Márton, E., DroBne, K., CiMerMan, F., ]osovi], V. & Košir, A. 1995: Paleomagnetism of latest Maastrichtian through Oligocene rocks in Istria (Croatia), the Karst region, and S of the Sava fault (Slovenia). In: vlahovi], I., veli], I., šParica, M. (Eds.). Zbornik radova = Proceedings. Institut za geolo{ka istraživanja, Zagreb: 355–360. turK, I., CiMerMan, F., Dirjec, J., PolaK, S. & MajDi^, J. 1995: 45.000 let stare fosilne dlake jamskega medveda iz najdi{~a Divje babe I v Sloveniji. Arheolo{ki vestnik, 46: 39–51. jelen, B., BalDi-BeKe, M., CiMerMan, F., ^ar, J., ]osovi], V., DroBne, K., FoDor, L., KeDves, M., Márton, E., Monostori, M., sKaBerne, D., touMarKine, M. & zaGoršeK, K. 2000: The Eocene in the Dobrna area. In: Bassi, D. (Ed.): Shallow water benthic communities at the Middle-Upper Eocene boundary: southern and north-eastern Italy, Slovenia, Croatia, Hungary: field trip guidebook. Annali dell’Universita di Ferrara, Sezione Scienze della Terra, 8, supplement: 99–104. jelen, B., šiMuni], A, DroBne, K., sKaBerne, D., ]osovi], V., avani], R., BalDi-BeKe, M., CiMerMan, F., ^ar, J., FoDor, L., KeDves, M., Márton, E., Monostori, M., Pavlovec, R., Placer, L., šiKi], L., touMarKine, M., turnšeK, D. & zaGoršeK, K. 2000: Eocene in NE Slovenia and NW Croatia : excursions 6 and 7. In: Bassi, D. (Ed.): Shallow water benthic communities at the Middle-Upper Eocene boundary: southern and north-eastern Italy, Slovenia, Croatia, Hungary: field trip guidebook. Annali dell’Universita di Ferrara, Sezione Scienze della Terra, 8, supplement: 104–147. turK, I. Dirjec, J., Bastiani, G., PFlauM, M., lauKo, T., CiMerMan, F., Kosel, F., GruM, J. & cevc, P. 2001: Nove analize “pi{~ali” iz Divjih bab I (Slovenija). Arheolo{ki vestnik, 52: 25–79. CiMerMan, F. 2002: Pismo profesorja Necker-Saussura o železovih rudnikih na Kranjskem Alexandru Brongniartu = Extrait de la Lettre de M. le professeur Necker-Saussure a M. Alexandre Brongniart, au sujet des breches en méme temps osseuses et ferrugineuses des mines de fer de la Carniole. Proteus, 64/ 9–10: 417–423. CiMerMan, F. 2003: Obisk frankfurtskega geologa Friedricha Kinkelina v Kropi in okolici poleti 1888. Vigenjc, 3: 41–43. CiMerMan, F. 2003: Pismo profesorja Necker-Saussurja Alexandru Brongniartu o železovih rudnikih na Kranjskem. Vigenjc, 3: 35–40. CiMerMan, F., jelen, B. & sKaBerne, D. 2006: Late Eocene benthic foraminiferal fauna from clastic sequence of the Socka – Dobrna area and its chronostratigraphic importance (Slovenia). Geologija, 49/1: 7–44. CiMerMan, F. & Košir, A. 2015: Remarks on the shell structure of Halkyardia maxima Cimerman: its umbilical plug and the microspheric form. Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen, 277/1: 43–48. V spomin Igorju špacapanu Dne 17. marca 2015 smo se na pokopali{~u v [marju – Sap z globoko žalostjo v srcih poslovili od izjemnega ~loveka, Igorja [pacapana. Igor ni bil samo izjemno dober strokovnjak s podro~ja inženirske geologije, bil je zvest soprog in skrben o~e trem otrokom ter prijazen dedek {tevilnim vnukom. Igor [pacapan se je rodil 27. 8. 1947 v Postojni, mladost pa je preživljal v Vipavski dolini. Po zaklju~ku osnovne {ole, ki jo je obiskoval v Ajdov{~ini, je z vpisom na gimnazijo Jurija Vege v Idriji nakazal, da mu je naravoslovje zelo pri srcu. Razumljivo je, da je svoje izobraževanje nadaljeval na Fakulteti za naravoslovje in tehnologijo. Odlo~il se je za {tudij geologije. Po zaklju~ku {tudija in opravljenem služenju voja{kega roka se je leta 1976 zaposlil na Zavodu za raziskavo materialov in konstrukcij, kjer je služboval vse do upokojitve konec leta 2014. V inženirsko geologijo ga je v prvih letih službovanja vpeljal Anton Grim{i~ar, ki je bil v tistem obdobju vodilni inženirski geolog v Sloveniji. Prvi izzivi so bili geolo{ki pregledi gradbenih jam za gradbene konstrukcije na obmo~ju Velenja. Na ta na~in je spoznal, kako sta geolo{ka in gradbena stroka povezani in prepleteni. Ta dognanja je koristno uporabil pri izdelavi geolo{ko geotehni~nih podlog za projekte {tevilnih infrastrukturnih objektov. Strokovni razcvet je dosegel v obdobju Nacionalnega programa izgradnje slovenskih avtocest (NPIAC), ki se je pri~el leta 1993. Brez pretiravanja lahko re~emo, da je bil Igor [pacapan glavni tvorec omenjenega nacionalnega projekta, saj je od 514 km avtocest geolo{ko in geotehni~no obdelal ve~ kot polovico odsekov. Kronolo{ko je odsek HC Razdrto – Vipava eden prvih projektov, za katere je pripravil geotehni~ne podloge. Sledil je odsek AC Arja vas – Vransko, nato dograditev AC Arja vas – Celje – Dramlje – Sl. Konjice – Sl. Bistrica – Fram. Po {tajerski »etapi« je sledila Dolenjska, kjer je izdelal geolo{ko geotehni~na poro~ila za vse projektne nivoje odsekov Trebnje – Hrastje, Korenitka – Pluska, Novo mesto – Kronovo in Kronovo – Dobru{ka vas. V letu 2004 se je ponovno pri~elo na~rtovanje avtocest na Štajerskem in v Prekmurju. Podpisan je pod geolo{ko geotehni{ko dokumentacijo odsekov sp. Senarska – Cogetinci ­Vu~ja vas – Beltinci in Beltinci – Pince. V zadnjem obdobju je sodeloval pri projektiranju AC odseka Slivnica – Draženci. Na projektih zadnjega AC odseka v okviru NPIAC Draženci – Gru{kovje, ki se bo pri~el graditi v leto{njem letu, pa je [pacapan podpisan kot odgovorni projektant geotehnike. Bil je glavni in odgovorni geolog in geotehnik pri na~rtovanju tretje razvojne osi in sicer tako na severu (Sl. Gradec – Dravograd) kakor na jugu (Novo mesto – Metlika – ^rnomelj). Poleg aktivne vloge v NPIAC je igral pomembno vlogo pri na~rtovanju železnic in sicer pri projektu drugega tira od Diva~e do Kopra in od Maribora do [entilja, izgradnji izven-nivojskih križanj železnice in ceste na odseku Pragersko – Hodo{, idejnih zasnovah za izgradnjo železni{kega Ljubljanskega vozli{~a in obnovi železni{ke proge Beltinci – Lendava. Nabor izdelanih geolo{ko geotehni~nih poro~il kolega [pacapana je {e bistveno dalj{i in je shranjen v arhivu Gradbenega in{tituta ZRMK. V tem zapisu so namre~ navedeni le glavni projekti infrastrukturnih objektov. Ne glede na izjemno bibliografijo strokovne dokumentacije je bilo za Igorja [pacapana zna~ilno, da so vsi izdelani dokumenti enako kvalitetni ne glede na pomembnost in odmevnost posameznega projekta. Vsa poro~ila so vsebinsko in grafi~no vrhunsko obdelana. Poleg preglednega in natan~nega opisa obravnavanega prostora so bile jasno navedene vse raziskave, ki so bile vedno racionalne ne glede na naro~nika. Obdelava pridobljenih podatkov je bila brezhibna in je projektantom podala vhodne podatke za izdelavo kvalitetnega projekta. Tega so se projektanti dobro zavedali, zato je bila njihova želja po sodelovanju prav s kolegom [pacapanom pogosto izražena. O kvaliteti njegovih izdelkov nazorno pri~ajo poro~ila recenzentov njegovih poro~il, ki obi~ajno niso imeli nikakr{nih pripomb in so jih dajali za vzor ostalim geologom in geotehnikom. ^eravno kolega [pacapan v svojem aktivnem obdobju ni uporabljal osebnega ra~unalnika, je sledil ra~unalni{kim programom s podro~ja geotehnike, ki ob primernih vhodnih podatkih omogo~ajo hitre izra~une in preveritve stabilnosti in nosilnosti. Delo je zaupal svojim mlaj{im sodelavcem pri tem, da je na »svoj na~in« redno kontroliral ustreznost dobljenih rezultatov. Uporabljal je rezultate in nova znanja s podro~ja terenskih in laboratorijskih raziskav, tehnolo{ke možnosti za grafi~no in tekstualno pripravo kon~nega poro~ila, bistveno pa je bilo njegovo inženirsko geolo{ko znanje in sposobnost, da je vse to združil v kon~na poro~ila, ki so berljiva, natan~na, razumljiva in vzor tistim, ki bodo na tem podro~ju delali naprej. Vsi, ki smo bili z Igorjem v poslovnih kontaktih, smo prej ali slej ugotovili da je njegova predanost delu neizmerna. Ob velikih obsežnih nalogah pa je bil sposoben problem, ki se je pojavil na terenu med gradnjo, hitro razumeti in kar takoj najti enostavno inženirsko re{itev. V obdobju zadnjih 10 let je nekatere faze dela zaupal svojim sodelavcem, ogromen delež pa je vedno opravil sam. Od sodelavcev je prav tako pri~akoval doslednost in predanost delu, po dobro opravljenem delu pa je z njimi delil tudi zadovoljstvo ob pohvalah. S sodelavci je v pisarni in na terenu v zadnjih letih preživel verjetno ve~ ~asa kot med doma~imi. Pa vendar bi lahko rekli, da mu je veselje prina{alo uspe{no delo in ob~asni kratki dopusti ali pa drobne družinske obveznosti, od nakupov pa do ob~asnih prevozov vnukov, ki jim je z veseljem prilagodil svoj res dolg delovni dan. Z odhodom kolega Igorja [pacapana bo v slovenski inženirski geologiji in gradbeni geotehniki zazevala velika praznina. Nam, ki smo ga imeli privilegij poznati, bo ostal lep spomin na izjemnega ~loveka. Mlaj{im generacijam pa bodo ostali {tevilni vsebinsko bogati in tehni~no natan~ni dokumenti kot primer popolnosti. Na ta na~in bo Igor [pacapan za vedno ostal med nami. Andrej Lo~ni{kar Du{ka Broži~ Matjaž Kromar Navodila avtorjem GEOLOGIJA objavlja znanstvene in strokovne ~lanke s podro~ja geologije in sorodnih ved. Revija od leta 2000 izhaja dvakrat letno. ^lanke recenzirajo doma~i in tuji strokovnjaki z obravnavanega podro~ja. Ob oddaji ~lankov avtorji predlagajo tri recenzente, vendar pa si uredni{tvo pridržuje pravico do izbire recenzentov po lastni presoji. Avtorji morajo ~lanek popraviti v skladu z recenzentskimi pripombami ali utemeljiti zakaj se z njimi ne strinjajo. Avtorstvo: Za izvirnost podatkov, predvsem pa mnenj, idej, sklepov in citirano literaturo so odgovorni avtorji. Z objavo v GEOLOGIJI se tudi obvežejo, da ne bodo drugje objavili prispevka z isto vsebino. Jezik: ^lanki naj bodo napisani v angle{kem, izjemoma v slovenskem jeziku, vsi pa morajo imeti slovenski in angle{ki izvle~ek. Za prevod poskrbijo avtorji prispevkov sami. Vrste prispevkov: Izvirni znanstveni ~lanek Izvirni znanstveni ~lanek je prva objava originalnih raziskovalnih rezultatov v tak{ni obliki, da se raziskava lahko ponovi, ugotovitve pa preverijo. Praviloma je organiziran po shemi IMRAD (Introduction, Methods, Results, And Discussion). Pregledni znanstveni ~lanek Pregledni znanstveni ~lanek je pregled najnovej{ih del o dolo~enem predmetnem podro~ju, del posameznega raziskovalca ali skupine raziskovalcev z namenom povzemati, analizirati, evalvirati ali sintetizirati informacije, ki so že bile publicirane. Prina{a nove sinteze, ki vklju~ujejo tudi rezultate lastnega raziskovanja avtorja. Strokovni ~lanek Strokovni ~lanek je predstavitev že znanega, s poudarkom na uporabnosti rezultatov izvirnih raziskav in {irjenju znanja. Diskusija in polemika Prispevek, v katerem avtor ocenjuje ali dokazuje pravilnost nekega dela, objavljenega v Geologiji, ali z avtorjem strokovno polemizira. Recenzija, prikaz knjige Prispevek, v katerem avtor predstavlja vsebino nove knjige. Oblika prispevka: Besedilo pripravite v urejevalniku Micro-soft Word. Prispevki naj praviloma ne bodo dalj{i od 20 strani formata A4, v kar so v{tete tudi slike, tabele in table. Le v izjemnih primerih je možno, ob predhodnem dogovoru z uredni{tvom, tiskati tudi dalj{e prispevke. ^lanek oddajte uredni{tvu vklju~no z vsemi slikami, tabelami in tablami v elektronski obliki po naslednjem sistemu: -Naslov ~lanka (do 12 besed) -Avtorji (ime in priimek, naslov, e-mail naslov) -Klju~ne besede (do 7 besed) -Izvle~ek (do 300 besed) -Besedilo -Literatura -Podnaslovi k slikam in tabelam -Tabele, Slike, Table Citiranje: V literaturi naj avtorji prispevkov praviloma upo{tevajo le tiskane vire. Poro~ila in rokopise naj navajajo le v izjemnih primerih, z navedbo kje so shranjeni. V seznamu literature naj bodo navedena samo v ~lanku omenjena dela. Citirana dela, ki imajo DOI identifikator, morajo imeti ta identifikator izpisan na koncu citata. Za citiranje revije uporabljamo standardno okraj{avo naslova revije. Med besedilom prispevka citirajte samo avtorjev priimek, v oklepaju pa navajajte letnico izida navedenega dela in po potrebi tudi stran. ^e navajate delo dveh avtorjev, izpi{ite med tekstom prispevka oba priimka (npr. Pleni^ar & Buser, 1967), pri treh ali ve~ avtorjih pa napi{ite samo prvo ime in dodajte et al. z letnico (npr. MlaKar et al., 1992). Citiranje virov z medmrežja v primeru, kjer avtor ni poznan, zapi{emo (internet 1). V seznamu literaturo navajajte po abecednem redu avtorjev. Imena fosilov (rod in vrsta) naj bodo napisana po{evno, imena vi{jih taksonomskih enot (družina, razred, itn.) pa normalno. Imena avtorjev taksonov naj bodo prav tako napisana normalno, npr. Clypeaster pyramidalis Michelin, Galeanella tollmanni (Kristan), Echinoidea. Primeri citiranja ~lanka: Mali, n., urBanc, j. & leis, a. 2007: Tracing of water movement through the unsaturated zone of a coarse gravel aquifer by means of dye and deuterated water. Environ. geol., 51/8: 1401–1412, doi:10.1007/s00254-006-0437-4. Pleni^ar, M. 1993: Apricardia pachiniana Sirna from lower part of Liburnian beds at Diva~a (Triest-Komen Plateau). Geologija, 35: 65–68. Primer citirane knjige: FlüGel, e. 2004: Mikrofacies of Carbonate Rocks. Springer Verlag, Berlin: 976 p. jurKov{eK, B., toMan, M., oGorelec, B., šriBar, l., DroBne, K., PoljaK, M. & šriBar, lj. 1996: Formacijska geolo{ka karta južnega dela Trža{ko-komenske planote – Kredne in paleogenske kamnine 1: 50.000 = Geological map of the southern part of the Trieste-Komen plateau – Cretaceous and Paleogene carbonate rocks. Geolo{ki zavod Slovenije, Ljubljana: 143 p., incl. Pls. 23, 1 geol. map. Primer citiranja poglavja iz knjige: turn{eK, D. & DroBne, K. 1998: Paleocene corals from the northern Adriatic platform. In: hottinGer, l. & DroBne, K. (eds.): Paleogene Shallow Benthos of the Tethys. Dela SAZU, IV. Razreda, 34/2: 129-154, incl. 10 Pls. Primer citiranja virov z medmrežja: ^e sta znana avtor in naslov citirane enote zapi{emo: ^arMan, M. 2009: Priporo~ila lastnikom objektov, zgrajenih na nestabilnih obmo~jih. Internet: http://www.geo-zs. si/UserFiles/1/File/Nasveti_lastnikom_objektov_na_ nestabilnih_tleh.pdf (17. 1. 2010) ^e avtor ni poznan zapi{emo tako: internet: http://www.geo-zs.si/ (22. 10. 2009) ^e se navaja ve~ enot z medmrežja, jim dodamo {e {tevilko internet 1: http://www.geo-zs.si/ (15. 11. 2000) internet 2: http://www.geo-zs.si/ (10. 12. 2009) Slike, tabele in table: Slike (ilustracije in fotografije), tabele in table morajo biti zaporedno o{tevil~ene in ozna~ene kot sl. 1, sl. 2 itn., oddane v formatu TIFF, JPG ali EPS z lo~ljivostjo 300 dpi. Le izjemoma je možno objaviti tudi barvne slike, vendar samo po predhodnem dogovoru z uredni{tvom. Obvezno je treba upo{tevati zrcalo revije 172 x 235 mm. Ve~jih formatov od omenjenega zrcala GEOLOGIJE ne tiskamo na zgib, je pa možno, da ve~je oziroma dalj{e slike natisnemo na dveh straneh (skupaj na levi in desni strani) z vmesnim »rezom«. V besedilu prispevka morate omeniti vsako sliko po {tevil~nem vrstnem redu. Dovoljenja za objavo slikovnega gradiva iz drugih revij publikacij in knjig, si pridobijo avtorji sami. Table pripravite v formatu zrcala na{e revije. ^e je ~lanek napisan v slovenskem jeziku mora imeti celotno besedilo, ki je na slikah in tabelah tudi v angle{kem jeziku. Podnaslovi naj bodo ~im kraj{i. Korekture: Te opravijo avtorji ~lankov, ki pa lahko popravijo samo tiskarske napake. Kraj{i dodatki ali spremembe pri korekturah so možne samo na avtorjeve stro{ke. Prispevki so prosto dostopni na spletnem mestu: http://www. geologija-revija.si/ Oddajanje prispevkov: Avtorje prosimo, da prispevke po{ljejo na naslov uredni{tva: GEOLOGIJA Geolo{ki zavod Slovenije Dimi~eva ulica 14, 1000 Ljubljana bernarda.bolegeo-zs.si ali urednikgeologija-revija.si Uredni{tvo Geologije Instructions for authors Scope of the journal: GEOLOGIJA publishes scientific papers which contribute to understanding of the geology of Slovenia or to general understanding of all fields of geology. Some shorter contributions on technical or conceptual issues are also welcome. Occasionally, a collection of symposia papers is also published. All submitted manuscripts are peer-reviewed by at least two specialists. When submitting their paper, authors should recommend at least three reviewers. Note that the editorial office retains the sole right to decide whether or not the suggested reviewers are used. Authors should correct their papers according to the instructions given by the reviewers. Should you disagree with any part of the reviews, please explain why. Revised manuscript will be reconsidered for publication. Author’s declaration: Submission of a paper for publication in Geologija implies that the work described has not been published previously, that it is not under consideration for publication elsewhere and that, if accepted, it will not be published elsewhere. Language: Papers should be written in English or Slovene, and should have both English and Slovene abstracts. Types of papers: Original scientific paper In an original scientific paper, original research results are published for the first time and in such a form that the research can be repeated and the results checked. It should be organised according to the IMRAD scheme (Introduction, Methods, Results, And Discussion). Review scientific paper In a review scientific paper the newest published works on specific research field or works of a single researcher or a group of researchers are presented in order to summarise, analyse, evaluate or synthesise previously published information. However, it should contain new information and/or new interpretations. Professional paper Technical papers give information on research results that have already been published and emphasise their applicability. Discussion paper A discussion gives an evaluation of another paper, or parts of it, published in GEOLOGIJA or discusses its ideas. Book review This is a contribution that presents a content of a new book in the field of geology. Style guide: Submitted manuscripts should not exceed 20 pages of A4 format (12 pt typeface, 1 line-spacing, left justification) including figures, tables and plates. Only exceptionally and in agreement with the editorial board longer contributions can also be accepted. Manuscripts submitted to the editorial office should include figures, tables and plates in electronic format organized according to the following scheme: -Title (maximum 12 words) -Authors (full name and family name, postal address and e-mail address) -Key words (maximum 7 words) -Abstract (maximum 300 words) -Text -References -Figure and Table Captions -Tables, Figures, Plates References: References should be cited in the text as follows: (FlüGel, 2004) for a single author, (Pleni^ar & Buser, 1967) for two authors and (MlaKar et al., 1992) for multiple authors. Pages and figures should be cited as follows: (Pleni^ar, 1993, p. 67) and (Pleni^ar, 1993, fig. 1). Anonymous internet resources should be cited as (internet 1). Only published references should be cited. Manuscripts should be cited only in some special cases in which it also has to be stated where they are kept. Cited reference list should include only publications that are mentioned in the paper. Authors should be listed alphabetically. Journal titles should be given in standard abbreviated form. A doi identifier, if there is any, should be placed at the end as shown in the first case. Taxonomic names should be in italics, while names of the authors of taxonomic names should be in normal, such as Clypeaster pyramidalis Michelin, Galeanella tollmanni (Kristan), Echinoidea. Articles should be listed as follows: Mali, n., urBanc, j. & leis, a. 2007: Tracing of water movement through the unsaturated zone of a coarse gravel aquifer by means of dye and deuterated water. Environ. geol., 51/8: 1401–1412, doi:10.1007/s00254-006-0437-4. Pleni^ar, M. 1993: Apricardia pachiniana Sirna from lower part of Liburnian beds at Diva~a (Triest-Komen Plateau). Geologija, 35: 65–68. Books should be listed as follows: FlüGel, e. 2004: Mikrofacies of Carbonate Rocks. Springer Verlag, Berlin: 976 p. jurKovšeK, B., toMan, M., oGorelec, B., šriBar, l., DroBne, K., PoljaK, M. & šriBar, lj. 1996: Formacijska geolo{ka karta južnega dela Tržako-komenske planote – Kredne in paleogenske kamnine 1: 50.000 = Geological map of the southern part of the Trieste-Komen plateau – Cretaceous and Paleogene carbonate rocks. Geolo{ki zavod Slovenije, Ljubljana: 143 p., incl. Pls. 23, 1 geol. map. Book chapters should be listed as follows: turnšeK, D. & DroBne, K. 1998: Paleocene corals from the northern Adriatic platform. In: hottinGer, l. & DroBne, K. (eds.): Paleogene Shallow Benthos of the Tethys. Dela SAZU, IV. Razreda, 34/2: 129-154, incl. 10 Pls. Internet resources should be listed as follows: Known author and title: ^arMan, M. 2009: Priporo~ila lastnikom objektov, zgrajenih na nestabilnih obmo~jih. Internet: http://www.geo-zs. si/UserFiles/1/File/Nasveti_lastnikom_objektov_na_ nestabilnih_tleh.pdf (17. 1. 2010) Unknown authors and title: internet: http://www.geo-zs.si/ (22.10.2009) When more than one unit from the internet are cited they should be numbered: internet 1: http://www.geo-zs.si/ (15.11. 2000) internet 2: http://www.geo-zs.si/ (10.12. 2009) Figures, tables and plates: Figures (illustrations and photographs), tables and plates should be numbered consequently and marked as Fig. 1, Fig. 2 etc., and saved as TIFF, JPG or EPS files and submitted at 300 dpi. Colour pictures will be published only on the basis of previous agreement with the editorial office. The maximum size of full-page illustrations and tables is 172 x 235 mm. Larger formats can only be printed as a double-sided illustration (left and right) with a cut in the middle. All figures should be referred to in the text and should normally be numbered in the sequence in which they are cited. The approval for using illustrations previously published in other journals or books should be obtained by each author. When a paper is written in Slovene it has to have the entire text which accompanies illustrations and tables written both in Slovene and English. Figure and table captions should be kept as short as possible. Proofs: One set of page proofs (as pdf files) will be sent by e-mail to the corresponding author. Corrections are made by the authors. They should correct only typographical errors. Short additions and changes are possible but should be paid by the authors. Geologija is an open access journal, all pdfs can be downloaded from the website: http://www.geologija-revija.si/en/ Submission: Authors should submit their papers to the address of the editorial office: GEOLOGIJA Geological Survey of Slovenia Dimi~eva ulica 14, 1000 Ljubljana, Slovenia bernarda.bolegeo-zs.si or urednikgeologija-revija.si The Editorial Office GEOLOGIJA št.: 58/1, 2015 www.geologija-revija.si Čeru, T., Dolenec, M. & Markič, M. 7 Mineral composition of sediments underlying the Velenje lignite seam in the P-9k/92 borehole (Slovenia) Kanduč, T. 35 Isotopic composition of carbon in atmospheric air; use of a diffusion model at the water/atmo sphere interface in Velenje Basin Torkar, A. & Brenčič, M. 47 Spatio-temporal distribution of discharges in the Radovna River valley at low water conditions Križnar, M. 57 Zob paleozojskega morskega psa rodu Glikmanius (Chondrichthyes, Ctenacanthidae) iz Kara vank (Slovenija) Mikuž, V. 63 Nekaj novih najdb eocenskih rakovic iz najdišča Ćopi v Istri Mikuž, V., Križnar, M. & Caf, N. 71 Panonijski mehkužci iz najdišča Osek-2 v Slovenskih goricah 81 Šoster, A., Potočnik Krajnc, B. & Mikuž, V. Doliostrobus taxiformis iz soteških plasti pri Dobrni Placer, L. 89 Simplified structural map of Kras Kras (Slovene), Carso (Italian) = Geographical unit ISSN 0016-7789