
https://doi.org/10.31449/inf.v47i6.4622 Informatica 47 (2023) 75–96 75

ASM-based Formal Model for Analysing Cloud Auto-Scaling Mechanisms

Ebenezer Komla Gavua1, Gabor Kecskemeti2
1Institute of Information Technology, Miskolc-Egyetemvaros, 3515, Miskolc, Hungary
1Department of Computer Science, Koforidua Technical University, Koforidua, Ghana
2Department of Computer Science, Liverpool John Moores University, Liverpool, UK
E-mail: gavua@iit.uni-miskolc.hu, g.kecskemeti@ljmu.ac.uk

Keywords: auto-scaling, abstract state machines, cloud computing algorithms; formal modelling

Received: January 18, 2023

The provision of resources to meet workloads demands has become a crucial responsibility for auto-scaling
mechanisms (auto-scalers) on cloud infrastructures. However, implementing auto-scaling mechanisms on
cloud frameworks has presented numerous technical challenges. A typical challenge is that, these auto-
scalers are often designed on different cloud systems making their evaluation, comparisons and wider
applicability problematic. To address this issue, we propose an Abstract State Machine (ASM) model as
a solution. Our ASM model was developed systematically according to the behaviours of several auto-
scalers, covering the necessary system processes. Rigorous validation and evaluation of our model have
been conducted using the CoreASMModel Checker. The results demonstrate that our model can effectively
analyze and generate accurate ASM refinements for auto-scalers, even without the need for real-life exper-
iments. Our model, therefore, provides the platform to evaluate the behaviours of algorithms executed on
clouds.

Povzetek: Razvit je model ASM, ki analizira in generira izboljšave ASM za avtomatske skalirnike.

1 Introduction
The dynamic provisioning of computational resources has
emerged as a critical objective for many cloud applications
designers. To achieve this, auto-scaling mechanisms (auto-
scalers) are employed to ensure that resources effectively
meet workload demands while upholding the reliability of
virtual infrastructures [1, 2]. Research has identified many
challenges with auto-scalers [3, 5]. These challenges pre-
dominantly stem from limited understanding of the behav-
iors exhibited by auto-scalers, particularly when they are
developed across different frameworks.
In this paper, we advocate the use of Abstract State

Machines (ASMs [8]) as a mathematically well-founded
framework for analyzing and comparing auto-scalers de-
signed on different cloud systems. ASMs, initially intro-
duced by Gurevich as evolving algebras [4], have proven
successful in cloud systems for formally designing adap-
tivity components [22].
The main contribution of this work is to introduce new

ways of analysing and comparing auto-scalers designed on
different clouds. The modelling process of our ASMmodel
is presented in five steps. These are (i) design and analy-
sis of the framework of our model. (ii) design and imple-
mentation of five ASM transition rules to reflect typical job
execution phases. (iii) comparisons of auto-scalers offered
alongside the DISSECT-CF cloud simulator [10], with our
transition rules. (iv) validation of our model with test cases
created from existing auto-scalers. (v) evaluation of our

model with our transition rules, ASM refinement method,
and evaluation goals. To accomplish these steps, first, we
created the blueprint of our model while detailing state tran-
sitions during job processing. This blueprint comprises of a
framework that represents categories of auto-scalers. Sec-
ond, we described the details of our ASM rules and how
they were implemented to reflect our model. Third, we ex-
amined algorithms developed from available auto-scalers to
identify similar behaviours among them. Fourth, we vali-
dated test cases developed from available auto-scalers. The
validation processes were accomplished with goals created
from our model’s transition rules. Our model was checked
and validated with test cases using the CoreASM Model
Checking Tool. Fifth, we evaluated our model with criteria
developed from ASM definitions and methods to highlight
the efficiency of our model.
The results of our validation and evaluation demonstrate

that our model provides valuable insights into the behavior
of auto-scalers, even without the need for real-life or sim-
ulated experiments. It offers a robust approach to analyze
and compare auto-scalers designed for different cloud sys-
tems.
The remaining sections of this paper are structured as fol-

lows: In Section 2, we review relevant research on auto-
scaling techniques and the application of ASMs in cloud
and distributed systems. Section 3 presents our methodol-
ogy for analysing these techniques. We then validate and
evaluate the results of our modeling through ASM simula-
tions in Section 4. Finally, in Section 5, we conclude the

76 Informatica 47 (2023) 75–96 E.K. Gavua et al.

paper and provide recommendations for future work.

2 Related works and background
This section discusses past research efforts to provision re-
sources during auto-scaling, and the application of ASM on
distributed and cloud systems.

2.1 Overview of auto-scaling research
The quest for auto-scaling of computing resources on
clouds, has been due to deviations in expected resources
versus actual resource usage [2, 13]. This deviation was
analysed by [3], and in their work, auto-scaling techniques
were classified into demand-oriented categories. These
works propelled research activities into the provision of
cloud resources to meet workload demands.
Ghanbari et al. [11] employed a stochastic, Model Pre-

dictive Control problem (MPC) technique to formulate
an auto-scaling approach that exploits the trade-off be-
tween performance-related objectives and cost minimiza-
tion. Yang et al. [7] investigated the problem of cost-
aware auto-scaling along with predicted workloads in ser-
vice clouds. They proposed an approach to scale service
clouds in both real-time scaling and pre-scaling modes.
Gandhi et al. [12] proposed a new cloud service, Depend-
able Compute Cloud (DC2), that automatically scales user
applications in a cost-effective manner to provide perfor-
mance guarantees. DC2 determines scaling actions for an
application deployed in the cloud. Saxena et al. [14] pro-
posed an integrated proactive auto-scaling and allocation of
VMs approach. The solution allows load consolidation on
few energy-efficient physical machines without affecting
user application performance. Al-Dulaimy et al. [15] pro-
posed a Service Level Agreement provisioning approach
(MULTISCALER) that aims at the control of the contention
and scaling of resources amongst co-hosted VMs. MULTI-
SCALER handles changes in workloads auto-scaling in the
presence of noisy neighbours. Ullah et al. [16] proposed
a Cartesian genetic programming (CPG) based neural net-
work (ANN) for resource utilisation estimation. The pro-
posed system utilises a rule-based scaling system for elastic
scaling of cloud resources.
Most of the auto-scaling research discussed above used

statistical and experimental procedures. Less attention have
been given to devising a flexible and formal approach [17]
(such as ASMs) for evaluating auto-scalers. Let us now dis-
cuss the application of ASMs in clouds and other distributed
systems.

2.2 Prior art with ASMs for clouds and
other distributed systems

A few auto-scaling works have been undertaken relating to
ASM modelling. LakshmiPriya et al. [19] proposed a for-
mal framework based onASMs, for specifying and defining

an autonomous network layer grid. The model serves as a
guideline to identify the minimum functionalities required
of a grid. Bianchi et al. [20] proposed anASMmodel to rep-
resent the standard mechanisms defined in Open Grid Ser-
vice Architecture (OGSA) for job management and execu-
tion capability. The approach describes the components of
a grid system, dynamical properties and relations between
them in a service-oriented view. Bianchi et al. [21] pro-
posed a formal framework for job execution management
in grid systems and implemented it on the coreASM tool.
The framework expresses the composition of interopera-
ble, always refineable building blocks, which is an effec-
tive choice for defining a precise semantic foundation of a
grid system. Arcaini et al. [22] proposed a ASM solution
to tackle the problem of making cloud services usable to
different end-devices. The framework consists of a server
that intercepts requests from the clients and forwards them
to the cloud.
The above discussion demonstrates limited research re-

lating to formalizing auto-scalers. Thus we set out to devise
a formal ASM model, which allows comparison of auto-
scalers. But first, let us carry out a comparative analysis of
the above related works with our proposed solution.

2.3 Comparative discussion of overview of
related works

This section presents the comparative analyses of the re-
search activities discussed in sub-sections 2.1 and 2.2 with
our proposed approach. Table 1 discusses the summary of
the results of the overview of the auto-scaling approaches.
Ghanbari et al. [11] formulated an approach that exploits

the trade-off between performance-related objectives and
cost minimization. However, the technique experiences
challenges in resource provision due to delays associated
with boot-up, running the initial installation scripts, and the
initial warm-up. Also, the algorithms utilised have not been
made public and not sufficiently analyse to foster compre-
hension and improvement. Therefore, an approach which
allows in-depth analyses and comparisons of scaling algo-
rithmswill foster the efficient evaluation of auto-scaling ap-
proaches. Yang et al. [7] investigated the problem of cost-
aware auto-scaling along with predicted workloads in ser-
vice clouds. However, the approach is only applicable to
service clouds. This inherent challenge limits the strategy’s
extension to several cloud platforms. Gandhi et al. [12] pro-
posed DC2 that scales the infrastructure to meet the user-
specified performance requirements. However, the method
applied does not offer optimal estimates of the state of pro-
cesses. Therefore, an approach that models the state tran-
sition of processes will allow users to evaluate state transi-
tions during job processing.
Saxena et al. [14] developed an integrated proactive re-

source provisioning and allocation approach. However,
the approach requires further work on tasks prediction and
scheduling of VMs to reduce network traffic. Therefore,
an approach that allows the modelling of the auto-scaling

ASM-based Model for Analysing Cloud… Informatica 47 (2023) 75–96 77

Auto-Scaling
Approaches Results Design Deficiency / Up-

grade
Suitable for Analysis and
Adaptability

Cost Minization [11]
This approach models appli-
cation dynamics in clouds
via the MPC technique.

This approach experiences
delays linked with boot-up,
running the initial installa-
tion and warm-up.

The shortfalls identified in
this approach with resource
provision does not foster ex-
tension to other platforms.

Workloads
Prediction [7]

This approach predicts
workload to scale virtual re-
sources at different resource
levels in service clouds.

Key state transitions during
resource provision are omit-
ted in the algorithms.

The design is limited to only
service clouds and not ex-
tensible to other cloud plat-
forms.

DC2 Approach [12]

DC2 scales the infras-
tructure to meet the user-
specified performance
requirements.

The service time estimated
at runtime becomes prob-
lematic with some work-
loads.

This approach lacks opti-
mal estimates of process
states which prevents in-
depth analysis.

Proactive
Auto-Scaler [14]

This approach consolidates
load on few PMs without af-
fecting user application per-
formance.

Tasks are scheduled on VMs
which are distant. This
causes excess network traf-
fic, resulting in high energy
usage.

The VMs locations affects
resources provisions evalua-
tion. Also, the algorithms
are analysed into details to
foster extension.

MULTISCALER
Approach [15]

MULTISCALER allocates
resources to VMs based on
the SLA requirements.

Only vertical scaling is ap-
plied to meet applications
performance goals by as-
signing the resources re-
quired.

The skewed nature of this
approach affects its applica-
bility to several situations.

Resource
Estimation [16]

This approach estimates re-
sources with recurrent CGP
and ANN.

This strategy is designed
with offline evolvability and
coarse-grained scaling mak-
ing it inaccessible.

The scaling algorithms are
not analysed and integrated
toworkloads analysis, which
is inimical to extension.

Table 1: Summary results of overview of related works.

of resources and the scheduling of VMs will improve the
current design. Al-Dulaimy et al. [15] developed a novel
Multi-Loop Control approach to allocate resources to VMs
based on Service Level Agreements (SLA). However, their
approach is limited to the provision of platform metrics
such as CPU utilisation as input for scaling. Therefore,
an approach that promotes the modelling of hybrid scal-
ing will help service providers to design their platforms to
meet the demands of a larger section of users. Ullah et
al. [16] proposed a Cartesian genetic programming based
neural network for resource utilisation estimation. How-
ever, the method utilized is not integrated with predictive
scaling mechanisms for the analysis of workloads. There-
fore, an approach that is capable of analysing auto-scalers
with emphasis on VMs provisions, will enable authors to
evaluate the shortfalls in their approach, for the upgrade of
their current design.
Furthermore, table 2 discuss the summary of results of

the state-of-the-art applications of ASM to clouds and other
distributed systems discussed in sub-section 2.2.
LakshmiPriya et al. [19] developed a formal framework

for an autonomous Network-Infrastructure for grids. How-
ever, the authors did not include validation techniques and
refinement schemes for grids. Therefore, amodel with flex-
ible transition rules that includes formal framework with

validation and refinement schemes will foster the applica-
tion the modelling and validation processes to grids.
Bianchi et al. [20] utilized ASM modelling to study

Grid systems as a composition of interoperable building
blocks. However, the architectural specifications provided
did not capture user requirements for performance monitor-
ing. Therefore, a model that provides ASM refinements on
user service requests and response for vertical and horizon-
tal scaling will be essentially required for model adaptabil-
ity and enhancements.
Bianchi et al. [21] also developed an ASM-based model

for grid job management. However, the resource dispatch-
ing policy of the model requires further works. Therefore,
an model that focuses on resources provisions behaviours
and allows the comparisons of several situations will enable
researchers and practitioners to evaluate all aspects of dis-
tributing computing and to provide the upgrades required.
Arcaini et al. [22] employed ASM to formally analyse a

Client-Server (CS) adaptivity component for clouds. How-
ever, their design was limited to communications between
client-server applications. Extensions were not provided to
auto-scaling mechanisms. Therefore, a model that focuses
on the auto-scaling of resources during job processing will
allow users to examine their work for improvement.

78 Informatica 47 (2023) 75–96 E.K. Gavua et al.

ASMs on Clouds &
Distributed
Systems

Results Design Deficiency / Up-
grade

Suitable for Adapting to
Other Frameworks

Autonomous
Network-

Infrastructure [19]

A formal framework for the
minimum functionalities re-
quirements for grids was
proposed.

Model validation techniques
and refinements schemes are
unavailable.

This framework is not suit-
able for modelling resource
provision behaviours in
grids and clouds.

Grid Systems [20]

ASM was utilised to model
the standard mechanisms de-
fined in OGSA for job man-
agement and execution ca-
pability.

Complete architectural spec-
ification with requirements
for grids to foster adaptabil-
ity is unavailable.

The incomplete specifica-
tions in this approach makes
the framework unadaptable
to architectures.

Grid Job
Management. [21]

A formal framework for job
execution management in
grid systems was developed.

The resource allocation pol-
icy which monitors resource
provisions is incomplete.

The deficiencies in this ap-
proach makes it unadaptable
to the frameworks of other
distributed systems.

Client-Server
Adaptivity

Component. [22]

A formal framework was de-
veloped for cloud service
provisioning to different de-
vices with different profiles.

The design was limited to
CS applications interactions.
The Auto-Scaling of Re-
sources on clouds was not
considered.

The transition rules are not
formalized to foster the flex-
ible adaptation of the frame-
work to cloud auto-scalers.

Proposed Model

A formal framework capable
of analysing the virtual ma-
chine provision behaviours
of auto-scaling mechanisms.

Model validation techniques
and refinements schemes are
available. Complete archi-
tectural specification with
requirements for clouds.

This approach allows adop-
tion of auto-scalers with ex-
tra features besides vertical
and horizontal scaling to fos-
ter their evaluation.

Table 2: Summary results of overview of related works continuation

cond 1

cond n

rule1

rulen

j1

. . . .

ifctl_state = i then

ifcond1then

rule1

ctl_state:= j1

. . .

ifcondnthen

rulen

ctl_state:= jn

jn

i

Figure 1: Control state ASMs

2.4 Abstract state machine theory
This sub-section reviews the theoretical background for
ASMs. The ASM theory encompasses a formal system en-
gineering technique that guides software development.

2.4.1 Abstract state machines

Abstract State Machines (ASM) are systems based on the
concept of state transitions. They represent the rapid con-
figurations of a system under development with transition

rules. ASM transition rules express how function inter-
pretations are modified from one state to another to reflect
system changes. The basic form of a transition rule is the
guarded update: “if condition then updates”, where up-
dates is a set of function of the form f(t1, ..., tn) := t.
These updates are executed when a condition is true.

Definition 1. A Control State ASM is a given control state
i, where only one of the conditions condk can be true for
all 1 ≤ k ≤ n. If the machine executes rulek and condk to
true. It changes the control state from i to jk. These ASMs
are mostly applied in the ASM refinement method.

2.4.2 The ASM refinement method

The ASM refinement method is a stepwise refinement for
crossing levels of abstraction. This method links models
through well-documented incremental development steps.
The steps start from ground models and turn them piece-
meal into executable codes [23, 24]. Now, let us define a
theorem for checking equivalence in our model.

Definition 2. Börger’s refinement: Given a notion ≡ of
equivalence, an ASMM∗ is a correct refinement of an ASM
M if and only if, for each M∗-run S0

∗, S1
∗,…, there is

an M -run S0, S1, …and sequences i0 ≤ i1 ≤ . . . and
j0 ≤ j1 ≤ . . . such that i0 = j0 = 0 and Sik ≡ Sjk for each
k and either, as seen in figure 3.

ASM-based Model for Analysing Cloud… Informatica 47 (2023) 75–96 79

Figure 2: Architectural view of Auto-Scaling Mechanisms (ASMs) on DISSECT-CF.

S0
S1

S0
* S1

*

≡

≡

S3M

M*

S2

S2
*

S4 S5

S3
*

S4
* S5

*
S6*

≡

≡

Figure 3: Borger’s refinement

2.4.3 Ground model, universes and signatures

A ground model is a rigorous high-level system blueprint
specification using domain-specific terms. All stakehold-
ers can understand this model as it reflects the initial re-
quirements and removes ambiguities of the initial textual
conditions. The ground model is designed with universes
and signatures. ASM depicts universes as basic sets with
functions and relations. These sets require signatures for
modelling state transitions. A signature is a finite set of
function names, each of fixed arity. Now let’s discuss our
model’s design in the next section.

3 Methodology
This section discusses our ASM model developed accord-
ing to the following goals. First, we review the auto-
scalers offered alongside DISSECT-CF. Second, we discuss
our ground model, universe and signatures developed fol-
lowing the ground model discussion in sub-section 2.4.3.
Third, we discuss our model’s ASM functions developed
per definition 1. Fourth, we discuss our model’s develop-
ment process per method 2.4.2 while comparing the cate-
gories of auto-scalers.

3.1 Auto-scalers on DISSECT-CF
This sub-section discusses the auto-scalers whose be-
haviours were utilized to establish our model. Many auto-
scalers are evaluated through simulations. So, we have in-
vestigated one such simulation environment based on the
DISSECT-CF simulator. We chose it as it has been shown
through research to be efficient for auto-scaling experi-
ments. In our model building, we have examined the sim-
ulator’s auto-scaling related examples1.
The chosen examples were built on several components.

The auto-scalers observed can be grouped into two cate-
1available at https://github.com/kecskemeti/

dissect-cf-examples and at https://github.com/kecskemeti/
dcf-exercises

gories (i.e. simple and multimode auto-scalers). The sim-
ple auto-scalers respond to demands by either increasing
or decreasing the VM instance counts. The scaling ad-
justments ensure that the quantity of VMs instances meets
workload demands. The multimode auto-scalers also ex-
hibit simple auto-scaler features. Furthermore, the multi-
mode auto-scalers monitor the VM counts during scaling
operations, which also influences the schedule resulting in
the utilization of VMs. All auto-scalers are founded on a
handful of classes including the Virtual Infrastructure (VI),
JobArrivalHandler, BasicJobScheduler (BJS), GenericTra-
ceProducer (GTP) and Simscaler.
VIs have the dedicated role of managing VMs belonging

to particular applications. JobArrivalHandlers abstract the
application model with the help of replaying customizable
parts of pre-recorded workload traces. BasicJobScheduler
combines with the job arrival handler functionality to pro-
cess jobs. JobLaunchers and JobToVmSchedulers focus on
the model for cluster scheduling techniques over the VMs
offered by a particular VI.
Now let’s discuss the auto-scalers offered with the simu-

lator:

ThresholdBasedVI Mechanism is governed by a lower
and an upper threshold. It observes VM utilisation
and makes decisions based on how it relates to the two
thresholds. It removes VMs not used to some extent
to the lower threshold. In contrast, it adds new VMs
when most of the VMs in the managed infrastructure
are utilised more than the upper threshold.

VMCreationPriorityBasedVI Mechanism is a variation
of the above approach, by anticipating growth in the
infrastructure utilisation. It focuses on creating VMs
mainly and only removes VMs as a last resort.

PoolingVI Mechanism is designed to keep a given num-
ber of completely unusedVMs for newly arriving jobs.
Hence, it can accept a new job anytime.

VMOptimisationBasedMechanism allowsVMs created
for one kind of executable to be repurposed to execute
others, fostering VM reuse.

FixedVM Mechanism is designed to provision VMs for
scaling jobs at minimal system resources. It uti-
lizes a scaling mechanism (simscaler) on a production
cloud infrastructure. The simscaler combines with the
GenericTraceProducer to provision VMs for jobs.

80 Informatica 47 (2023) 75–96 E.K. Gavua et al.

Figure 4: Basic elements of the ASM model for Auto-
Scaling

For ease of discussion, the above mechanisms will be
referred to as Threshold, Vmopt, Vmcreate, Pooling and
FixedVM.

3.2 Model design
This sub-section discusses the modelling processes of our
approach. This is presented in five design stages:

Design and Analysis of the model’s framework as dis-
played in figures 4 and 5. The framework shows our
model’s ground model for the two categories of auto-
scalers. Figure 4 shows the basic elements (universes
interacting with signatureswith arrows) utilised in de-
signing our model. The arrows represent the relations
between the signatures and the universes while pro-
visioning resources during multimode or simple auto-
scaling. The signatures are declared through func-
tion created in accordance with sub-section 2.4.3. Fig-
ure 5 shows universes interacting with unidirectional
and bidirectional arrows. The bidirectional arrows
represents information flow between universes while
the unidirectional arrow represent the expected state
changes during ASM runs.

Design and implement the model’s ASM Transition Rules
to reflect the job execution phases. Five ASM rules
were defined and discussed in conjunction with the
ASM method 2.4.2 and definitions 1 and 2.

Compare algorithms from the two categories of auto-
scalers offered with DISSECT-CF, with Transition

Rules. This step was modelled simultaneously with
the previous step to ensure model coherence.

Model Validation with validation goals on test cases cre-
ated from existing auto-scalers. The test cases are ab-
stracted from the formalized algorithms of our auto-
scalers to determine if the algorithms satisfy the re-
quirements of our ground model.

Evaluation of the model with the Transition Rules and
evaluation goals. This process was achieved in con-
junction with the ASM refinement method (an ASM
benchmark). The evaluation goals were employed to
foster the applicability of our model to existing auto-
scalers and to foster their equivalence to our ground
model. The evaluation goals were selected in ac-
cordance to our transition rules and the control state
ASMs.

Now let’s describe our identified universes:

The JOBHANDLER is the universe that processes traces
and sends its jobs to a joblauncher in the multimode
auto-scaling mechanisms. In the simple auto-scalers,
it is in charge of sending jobs to VMs for processing.

The JOBLAUNCHER is the universe that emits jobs for
processing for the multimode auto-scalers. This deals
with the ordering and timing of new jobs before they
are released for processing.

A JOB The data submitted by a Jobhandler to be executed
on a node. It contains binaries of an application, li-
braries and resource descriptions.

The ARESOURCE represent the major resources re-
quired for job processing. These include virtual infras-
tructures, cloud service, and hardware disk require-
ments. Different categories of resources (i.e. hetero-
geneous nodes) are also part of Aresources.

The TIME The duration a submitted job must spend being
processed by virtual machines. This is usually mea-
sured in seconds.

The VM The virtual machine required for processing jobs
in an auto-scaled infrastructure.

The VI This universe is responsible for managing VMs
for applications in multimode environments.

The PROCESS This universe is responsible for ensur-
ing that installed tasks receive the necessary attention
from the Aresources and the VM.

The SERVICE This universe is responsible for service
provision in multimode environments. Services are
supplied per user requests at specific times on service
clouds.

The SIMSCALER This universe is responsible for ensur-
ing basic scaling activities in simple auto-scaled envi-
ronments.

ASM-based Model for Analysing Cloud… Informatica 47 (2023) 75–96 81

Figure 5: Ground model for ASM auto-scaling

Submitted Running

Waiting

Done

Failed

Figure 6: Job state transitions

The BASICJOBSCHEDULER utilises clustering pat-
terns to monitor VMs for simple auto-scalers.

The GENERICTRACEPRODUCER provisions sets of
jobs for processing for specific durations in simple
auto-scaled environments.

3.3 ASM functions
Our ASM functions and corresponding state diagrams are
depicted in tables 3 and figures 7 and 6 respectively.

JobState depicts the state transitions of job during data

Figure 7: Process state transitions

processing. Jobs’ states transition from submitted to
either done or failed as shown in figure 6.

JobTime depicts periods reflective of job states during task
processing. It combines with JobState to describe at
what period a particular state change occurred.

ProcessState illustrates process state transitions from new
to stopped during job processing as shown in figure 7.

JobRequest invokes jobs generation which are mapped to
VMs for task processing. It combines with process-
Request to maintain a job and process requests during
job initialising and handling.

82 Informatica 47 (2023) 75–96 E.K. Gavua et al.

MappedVM monitors the state of VMs and jobs connec-
tion for job processing. It combines with MappedJob
to maintain the link between jobs and VMs.

Belongsto ensures that there is enough aresources to sup-
port a VM before it is selected. Compatible ensures
that the VM selected is the appropriate one. This is
done to prevent the selection of VMs with less utilisa-
tion which can be destroy within a short period.

AddVM combines withCompatible, and BelongsTo to fos-
ter VMs selection during job queuing.

DestroyVM is activated by auto-scalers to monitor VM
utilisation and to remove unused VMs. Additionaly,
it is used by certain auto-scalers to monitor the dura-
tion VM utilisation.

SystemRequest is the refinement for ProcessRequest and
JobRequest. ReqResources is the refinement for
MappedVM and MappedJob.

JobProcessing is the refinement function for the provision
and monitoring of the vital portion of the job handling.
It ensures that sufficient time is allocated for tasks. It
also models the outputs of job processing.

VMCount is applied in the queuing phase to monitors the
number of VMs provisioned for task processing.

InitReslist and QueReslist are the refinements for the pro-
vision and monitoring of the universes and functions
required for the first and second phases of our model.

SystemState is a the refinement for ProcessState, JobState,
and JobTime to reflect system state changes.

VMRequest is the refinement for the VM selection process
during job queuing.

InitReqFunctions is the refinement for the provision and
monitoring of the universes and functions required for
the second phase (job initialising) of our model.

JobHandReslist is the refinement for the provision and
monitoring of universes and functions required for the
fourth phase of our model. It combines with a derived
function called jobhandling module to process jobs.

Auto-scaler design is focused on optimizing metrics
about the virtual infrastructure. Functions designed to
model these metrics are described as follows.

TLevel defines the VMs threshold required for certain
auto-scalers. The threshold could be tmin, tavg , or
tmax for minimum, average and maximum thresholds
respectively.

VMUL defines VM utilization levels during job
processing. The VM utilization levels could
be VMutmin, VMutavg , or VMutmax .

VMPool defines VM provisions in VM pools. Also, VM-
Pool implements RVM to monitor VM optimisation
levels for reusable VMs. The quantity of VMs in the
pool could be qmin, qavg or qmax for minimum, av-
erage and maximum quantities respectively.

VMPost defines VMs’ position in the VI during job pro-
cessing. VMs positions could be vmf , vml for first
and last positions which depicts the particular vir-
tual machine that is being monitored by certain auto-
scalers. These auto-scalers destroy VMswith less util-
isation, unless the VM is the last one to be processed.

These functions and universes were combined to create the
algorithms in our model.

3.4 Comparison between multimode and
simple mechanisms

Our ASMmodel comprises of five Transition Rules. These
rules are designed to reflect the execution phases an auto-
scaler undergoes during job processing. The rules enable
users to analyse the VM provision behaviours of auto-
scaling mechanisms. We utilised algorithms to express the
details of our ground model shown in figure 5. These algo-
rithms were further refined according to the ASM refine-
ment method into lower levels of abstractions. Our ground
model and the refinements are later compared for equiva-
lence according to Börger’s refinement to check for the con-
sistency of state transitions. The ASM Transition rules are:
(i) Initial Phase (ii) Job Initialising (iii) Job Queuing (iv)
Job Handling and (v) Job Termination.
The initial phase is the first transition rule of our model.

This is the phase where all requisite resources are availed
for job processing to commence. The system state is idle
in this phase. The job initialising phase is the stage where
job processing commences with the activation of system
requests, and the mapping of jobs to VMs. The system
state transitions to active in this phase. The job queuing
phase is the stage where jobs queue due to the unavailabil-
ity of VMs. The system state transitions to waiting in this
phase. The job handling stages is the actual job processing
stage where all the requisite resources are availed and jobs
are processed till completion. The system state transitions
to busy in this phase. The job termination phase is the fi-
nal phase of our transition rules. This is the stage where all
upload jobs are completely processed or a system interrupt
causes job processing to halt. The system state transitions
to either done or stopped in this phase.
The ASM rules are described in conjunction with algo-

rithms 1 to 15 to identify the similarities existing between
auto-scalers developed from different frameworks. Also,
derived functions (ASM modules) were developed and ap-
plied to the rules of our model to ensure modularisation.
Let us discuss our model’s rules in the next sub-section.

ASM-based Model for Analysing Cloud… Informatica 47 (2023) 75–96 83

JobState: Job→ {idle, submitted, waiting, running, failed, done}
JobTime: Time→ {idle, started, processing, stopped, completed}
ProcessState: Process→ {new, ready, waiting, running, stopped}
SystemRequest: Request × AResource→ { true, false}
SystemState: InfraState→ {idle, active, waiting, busy, stopped, done}
JobOutcome: Job→ { success, failure}
Compatible: Select(attr(j),attr(vm))→ {undef , true, false}
AddVM: VM × Job→ {undef , true, false}
MappedJob: Job × VM→ {undef , true, false}
MappedVM: Job × Process→ {undef , true, false}
ReqResources: SystemRequest × AResource→ {undef , true, false}
JobRequest: Job × AResource→ {undef , true, false}
ProcessRequest:Process × AResource→ {undef , true, false}
Event: Task→ { start, aborted, terminated}
InitReslist: IReslist→ { IRLactive, IRLidle, IRLbusy}
QueReslist: QRlist→ { QRLactive, QRLidle,QRLbusy}
JobHandReslist: JobhReslist→ { JHRLactive, JHRLidle, JHRLbusy}
InitReqFunctions: InitReqFun→ { IRFactive, IRFidle, IRFbusy}
JobProcessing: Jobproc→ { JPactive, JPidle, JPbusy}
Job: Process→ Job
Jobhandler: Job→ Joblauncher, Job→ VM
Submitted: Job × VM→ {undef , true, false}
BelongsTo: AResource × VM→ {undef , true, false}
DestroyVm: VM→ {undef , true, false}
ThresholdLevel: TLevel→ { undef , Tmin, Tavg , Tmax}
VmPosition: VMPost→ {undef , VMF , VML}
ReusableVm: RVM→ {undef , Qmin, Qavg , Qmax}
VmPool: Vmpool→ {undef , Qmin, Qavg , Qmax}
VMCount: NumofVMs→ { Nummin, Numavg , Nummax}
VmUtilLevel: VmUL→ {undef , UtVMmin, UtVMavg , UtVMmax}
SimulationDuration: SimDur→ { SDmin, SDavg , SDmax}
AveragQueTime: AvgQT→ { AQTmin, AQTavg , AQTmax}
AveragUtilPM: AvgUPM→ { AUPMmin, AUPMavg , AUPMmax}

Table 3: List of ASM functions

3.4.1 Rule 1, initial phase

Algorithms 1 and 2 depict the first phase of our model, for
both Simple andMultimode auto-scalers as seen in figure 5.
At this phase, all universes are provisioned for job pro-
cessing to commence, however the process state is updated
to idle as seen in lines 1 to 2 of algorithms 1 and 2. The
system is inactive due to the absence of an ASM rule that
initialises job processing. The Simple auto-scaler utilises
the SimScaler (j,vm), BJS (j,vm) and GTP (j) to monitor
jobs and VMs provisions; while the Multimode auto-scaler
applies the VI (j, vm) and the joblauncher to do same as
seen in lines 4. Also, jobs and process requests are acti-
vated but no response is received. Jobs are not submitted
to VMs, but the VMs remain unmapped. The Multimode
auto-scalers activate specific functions to monitor key in-
dicators during auto-scaling as seen in lines 13 to 15 of al-
gorithm 2. However, in the absence of job processing, they
are all updated to undef. Algorithms 1 and 2 are refined in
algorithm 3.

Initial phase refinement: The InitReslist function is
utilised to check for the provision of universes for this
phase. InitReslist is a refinement for all required universes
and functions for this phase. Systemstate is updated to idle
as seen in lines 2. Since there are no activities at this stage.
Systemrequests and ReqResources are mapped to false, as
jobs are not submitted to VMs. Also, jobs and VMs are not
installed as tasks. This causes systemstate to remain up-
dated to idle. This refinement is equivalent to our ground
model’s algorithms discussed in algorithms 1 and 2. As the
state changes of algorithm 3 are equivalent to the state tran-
sitions of our model.

3.4.2 Rule 2, job initialising

The second phase of our model (shown in figure 5) be-
gins with a system call activated by the application of an
ASM control state rule. The universes provisioned from
the previous phase are assigned. This transitions pro-
cessState from new to ready as seen in lines 2 of our

84 Informatica 47 (2023) 75–96 E.K. Gavua et al.

Algorithm 1 Simple Initial Phase

1: if ∃vm ∈ VM ∧ ∃p ∈ PROCESS ∧ ∃ar ∈
ARESOURCE∧∃j ∈ JOB∧∃t ∈ Time then

2: processState(p) := idle
3: end if
4: while SimScaler(j, vm) ∧ BJS(j, vm) ∧

GTP (j) do
5: if jobRequest(j, ar) = true ∧

processRequest(p, ar) = true then
6: JobT ime(j) := idle
7: end if
8: if mappedVM(j, p) = false ∧

mappedJob(j, p) = false then
9: JobT ime(j) := idle
10: end if
11: if installed(j, vm) = false ∧

Jobhandler(j, vm) = undef then
12: JobState(j) := idle ∧ JobT ime(j) :=

idle
13: end if
14: end while

ground model algorithms 4 and 5. Specific universes are
provisioned to monitor the activities of jobs and VM in
line 4. The Simple auto-scalers utilise SimScaler (j,vm),
BJS (j,vm) and GTP (j); while Multimode auto-scalers ap-
ply VI (j,vm) and the joblauncher. JobRequests and pro-
cessRequests are activated to connect VMs to Jobs. Job-
time transitions to started. Jobs are mapped to VMs and
installed as tasks as seen in lines 6 to 11. The jobhan-
dler is activated to process the tasks in the Simple scalers
whilst the joblauncher is activated for theMultimode auto-
scalers. Jobstate is updated to submitted as seen in line 12.
Algorithms 4 and 5 are refined in algorithm 6.
Job Initialising Refinement utilised the InitReqFunc-

tions ASM derived function to check for the provisioning
of requisite universes for this phase as seen in line 1 of al-
gorithm 6. InitReqFunctions is a refinement for all required
universes and functions for job initialising. The authenti-
cation of the universes updates Systemstate to active. Sys-
temRequest is activated to initiate job requests and to pro-
vision VMs, which causes systemstate to be updated to ac-
tive as seen in line 3 to 4. ReqRequest is applied to map
jobs to VMs to be installed as tasks for the Jobhandler
and Joblauncher to enforce their task processing. These
activities cause the Systemstate to be updated to active as
seen in line 7. This refinement is equivalent to the algo-
rithms 4 and 5 of the second phase of our ground model as
seen in figure 5. As the state changes of algorithm 6 are
equivalent to the state transitions of our ground model.

3.4.3 Rule 3, job queuing:

The job queuing phase commences when there is a short-
age of VMs during job processing. The phase is modelled
as part of our ground model as seen in algorithms 7 and
8, and figure 5 for Simple and Multimode auto-scalers. In
this phase, universes from the previous phases are provi-

Algorithm 2Multimode Initial Phase

1: if ∃vm ∈ VM ∧ ∃p ∈ PROCESS ∧ ∃ar ∈
ARESOURCE∧∃j ∈ JOB∧∃t ∈ Time then

2: processState(p) := idle
3: end if
4: while V I(j, vm) ∧

Joblauncher(Jobhandler(j, vm)) do
5: if jobRequest(j, ar) = false ∧

processRequest(p, ar) = false then
6: JobT ime(j) := idle
7: end if
8: if mappedVM(j, p) = false ∧

mappedJob(j, p) = false then
9: JobT ime(j) := idle
10: end if
11: if installed(j, vm) = false ∧

Joblauncher(Jobhandler(j, vm), vm) =
false then

12: JobState(j) := idle ∧ JobT ime(j) :=
idle

13: numofSerReq(si) := undef
14: V mUL = undef
15: V mpool := undef ∧RVM := undef
16: end if
17: end while

Algorithm 3 Refined Initial Phase

Require: AResource
1: if InitReslist = IRLidle ∧ ReqResources =

false then
2: SystemState(j, p) := idle
3: end if
4: while SystemRequest = false ∧

ReqResources = false do
5: SystemState(j, p) := idle
6: end while
7: if installed(j, vm) = false ∧

Jobhandler(j, vm) = undef then
8: SystemState(j, p) := idle
9: end if

sioned. This causes jobTime and processState to transi-
tioned to started and ready as seen in lines 1 to 5. Job
and process requests are activated to foster VM provisions.
The VM count is monitored to determine the quantity of
VMs available. When the quantity is below the required
threshold for task processing; the MappedVM, Jobhandler
and joblauncher are updated to false to confirm low VM
count. This causes the jobs to queue as seen in lines 9 to 12
of both algorithms. JobState transitions to waiting to sig-
nify the current state of the modelling process. Our ground
model algorithms are refined in algorithm 9.

Job Queuing Refinement is achieved by activating
the InitReqFunctions and ReqRequest functions to foster
resource provisions, and the mapping of VMs to jobs.
This causes SystemState to be updated to active as seen in
lines 1 to 2. The QueReslist derived function is applied
to provision universes and functions for job queuing. Ad-
ditionally, SystemRequest is activated to initiate jobs and

ASM-based Model for Analysing Cloud… Informatica 47 (2023) 75–96 85

Algorithm 4 Simple Jobs Initialising

1: if ∃vm ∈ VM ∧ ∃p ∈ PROCESS ∧ ∃ar ∈
ARESOURCE∧∃j ∈ JOB∧∃t ∈ Time then

2: processState(p) := ready
3: end if
4: while SimScaler(j, vm) ∧ BJS(j, vm) ∧

GTP (j) do
5: if jobRequest(j, ar) = true ∧

processRequest(p, ar) = true then
6: JobT ime(j) := started
7: end if
8: if mappedVM(j, p) = true ∧

mappedJob(j, p) = true then
9: JobT ime(j) := started
10: end if
11: if installed(j, vm) = true ∧

Jobhandler(j, vm) = true then
12: JobState(j) := submitted
13: end if
14: end while

Algorithm 5Multimode Jobs Initialising

1: if ∃vm ∈ VM ∧ ∃p ∈ PROCESS ∧ ∃ar ∈
ARESOURCE∧∃j ∈ JOB∧∃t ∈ Time then

2: processState(p) := ready
3: end if
4: while V I(j, vm) ∧

Joblauncher(Jobhandler(j, vm)) do
5: if jobRequest(j, ar) = true ∧

processRequest(p, ar) = true then
6: JobT ime(j) := started
7: end if
8: if mappedVM(j, p) = true ∧

mappedJob(j, p) = true then
9: JobT ime(j) := started
10: end if
11: if installed(j, vm) = true then
12: JobState(j) := submitted
13: end if
14: end while

VMs requests as seen in lines 3 to 4. The VM count is
monitored to check for the quantity of VMs. A reduction
in the VM count causes ReqRequest and Jobhandler to be
updated to false, which causes the SystemState to transition
to waiting as seen in lines 5 to 7. This refinement is equiv-
alent to our ground model algorithms, as their system states
transitioned to waiting as seen in figure 5.

3.4.4 Rule 4, job handling

Job handling is the fourth phase of our model. This phase
requires a derived function called the Jobhandling Module
to optimise job processing, and the VM selection during job
queuing. This function is created for each category of auto-
scalers (i.e. Simple andMultimode Jobhandling module) as
seen in algorithms 10 and 11. These modules perform sim-
ilar functions with different structural features. The Simple
JobhandlingModule utilise InitReqFunctions andQueRes-

Algorithm 6 Refined Job Initialising

Require: AResource
1: if InitReqFunctions = IRFactive then
2: SystemState(j, p) := active
3: while SystemRequest = true ∧

ReqResources = true do
4: SystemState(j, p) := active
5: end while
6: if installed(j, vm) = true ∧

Jobhandler(j, vm) = true then
7: SystemState(j, p) := active
8: end if
9: end if

Algorithm 7 Simple Jobs Queuing

1: if ∃j ∈ JOB ∧ ∃ar ∈ ARESOURCE ∧ ∃p ∈
PROCESS ∧ ∃vm ∈ VM ∧ ∃t ∈ Time then

2: JobT ime(j) := started
3: end if
4: while SimScaler(j, vm) ∧ BJS(j, vm) ∧

GTP (j) do
5: processState(p) := ready
6: if jobRequest(j, ar) = true ∧

processRequest(p, ar) = true then
7: JobT ime(j) := started
8: end if
9: if VMCount ≤ Nummin then
10: MappedVM(j, vm) := false
11: Jobhandler(j, vm) := false
12: JobState(j) := waiting
13: end if
14: end while

list to check for the provision for job initialising and queu-
ing universes and functions. Once they are authenticated,
systemState is updated to active as seen in lines 1 to 4. Auto-
scaler specific universes are provisioned to foster the ex-
hibitions of VM provision behaviours. VMs and jobs re-
quests are activated, which causes VM counts to be moni-
tored. When the VM count falls below the required thresh-
old, a system state change occurs. This causes ReqRe-
sources and Jobhandler to be updated to false. The sys-
temState transitions to waiting as seen in lines 5 to 10 of
both algorithms. The ReqResources is rechecked period-
ically, to confirm if jobs have been mapped to VMs and
installed as tasks. If the response is negative, the VM se-
lection mode is activated via AddVM function. Once VM
selection is accomplished, jobs are then mapped to VMs as
seen in lines 11 to 19 of algorithm 10. This process differs
from the Multimode Jobhandling module. The VmRequest
function (a refinement of the VM selection process) is ac-
tivated, which causes jobs to be mapped to VMs via the
ReqResources as seen in lines 12 to 16 of algorithm 11.

Job handling commences with the application of InitRe-
qFunctions to foster the provision of job initialising uni-
verses and functions. Once these are active, the Jobhand-
Mod is activated to provision all the universes and func-

86 Informatica 47 (2023) 75–96 E.K. Gavua et al.

Algorithm 8Multimode Jobs Queuing

1: if ∃j ∈ JOB ∧ ∃ar ∈ ARESOURCE ∧ ∃p ∈
PROCESS ∧ ∃vm ∈ VM ∧ ∃t ∈ Time then

2: JobT ime(j) := started
3: end if
4: while V I(j, vm) do
5: processState(p) := ready
6: if jobRequest(j, ar) = true ∧

processRequest(p, ar) = true then
7: JobT ime(j) := started
8: end if
9: if VMCount ≤ Nummin then
10: MappedVM(j, vm) := false
11: Joblauncher(Jobhandler(j, vm)) :=

false
12: JobState(j) := waiting
13: end if
14: end while

Algorithm 9 Refined Jobs Queuing

Require: AResource
1: while InitReqFunctions = IRFactive ∧

ReqResources = true do
2: SystemState(j, p) := active
3: if QueReslist = QRLactive ∧

SystemRequest(p, ar) = true then
4: SystemState(j, p) := active
5: if VMCount ≤ Nummin then
6: ReqResources := false
7: Jobhandler((j, vm) := false
8: SystemState(j, p) := waiting
9: end if
10: end if
11: end while

tions for job handling. This causes SystemState to be up-
dated to active as seen in lines 1 to 3 of algorithm 12. Suf-
ficient time request is made and the response granted by
the AResources to ensure that the jobs provisioned are ad-
equately processed. The SystemRequest is activated to fos-
ter jobs and process requests. An authentication of this re-
quest, maps jobs to VMs via ReqResources. This causes
the mapped jobs and VMs to be installs as tasks to either
continue or restart job processing as seen in lines 5 to 10.
The outputs of job processing are monitored with Simulion-
Duration, AverageUtilPM and AverageQueTime. The job
processing activity causes the SystemState to transition to
busy as seen in lines 11 to 17. Our ground model’s job han-
dling algorithms are refined in algorithm 13.
Job Handling Refinement is accomplished by activat-

ing the the InitReqFunctions and SystemRequest functions
to foster the provision of the requisite universes for job ini-
tialising. This causes SystemState to be updated to active as
seen in line 1 of algorithm 13. Moreover, the Jobhandling
Module and the jobhandler are activated to foster VMs se-
lection during job queuing, and the installing of mapped
VMs and jobs as tasks for job processing as seen in lines 2
to 3 . The JobProcessing function is activated to foster time

Algorithm 10 Simple Jobhandling Module

Require: AResource
1: while InitReqFunctions = IRFactive do
2: SystemState(j, p) := active
3: if QueReslist = QRLactive ∧

SystemRequest(p, ar) = true then
4: SystemState(j, p) := active
5: end if
6: while SimScaler(j, vm) ∧ BJS(j, vm) ∧

GTP (j) do
7: if VMCount ≤ Nummin then
8: ReqResources := false
9: Jobhandler((j, vm) := false
10: SystemState(j, p) := waiting
11: end if
12: if (ReqResources = false ∧

installed(task(j, vm)) = false then
13: AddVM(vm, j) := true
14: Compatible(attr(j), attr(vm)) := true
15: belongsTo(j, vm) := true
16: ReqResources := true
17: end if
18: end while
19: end while

requests and themapping of jobs to VMs for job processing.
Furthermore, the output of job handling are modelled as the
job processing ensues. This activity causes the SystemState
to transition to busy as seen in lines 5 to 12. This refinement
is equivalent to our ground model’s job handling algorithm,
as SystemState transitioned to busy as seen in figure 5.

3.4.5 Rule 5, job termination

Job Termination is the fifth phase of our model. This phase
requires two conditions to be initiated. First, a system fail-
ure or an abrupt system call to halt job processing. Second,
the exhaustion of jobs generated. This phase is a result of
the activities of job handling as seen in algorithm 14 of
our ground model. Hence, there must be activities on-
going to demonstrate job processing, before job termina-
tion occurs. Therefore, before job processing is halted,
the universes and functions required for job initialising
should be provisioned. This updates processState to ready
as seen in lines 1 to 2. Job processing is monitored via
the allocated time, and how long jobs remain mapped to
VMs. As job are being processed, processState and job-
State transtion to running. Also jobTimes updates to pro-
cessing as seen in lines 3 to 10. When a system interrupt
occurs which causes the job processing to halt; jobstate
transitions to failed and processState to stopped as seen
in lines 13 to 15. Moreover, when job processing is com-
pleted; jobState transitions to done, jobTime to completed,
and event(t) to terminate as seen in lines 17 to 20 depicting
the exhaustion of job generated. The system state changes
can be seen in the job and process states figures 6 and 7.
Job termination is refined in algorithm 15.
Job Termination Refinement is achieved by the ap-

ASM-based Model for Analysing Cloud… Informatica 47 (2023) 75–96 87

Algorithm 11Multimode Jobhandling Module

Require: AResource
1: while InitReqFunctions = IRFactive do
2: SystemState(j, p) := active
3: if QueReslist = QRLactive ∧

SystemRequest(p, ar) = true then
4: SystemState(j, p) := active
5: end if
6: while V I(j, vm) do
7: if VMCount ≤ Nummin then
8: ReqResources := false
9: Joblauncher(Jobhandler(j, vm), vm) :=

false
10: SystemState(j, p) := waiting
11: end if
12: while V mRequest(j, vm) = active do
13: ReqResources := true
14: end while
15: end while
16: end while

plication of InitReqFunctions, SystemRequest and ReqRe-
sources. This is to foster the provision of universes and
functions for job initialising and job handling. This causes
systemstate to transition to active as seen in lines 1 to 2 of
algorithm 15. The JobHandReslist function and the job-
handler are activated to foster job processing. Systemstate
is updated to busy as seen in lines 3 to 4. When a sys-
tem call is activated that causes job processing to halt; the
systemstate is automatically updated to stopped as seen in
lines 5 to 6. This event signifies an abrupt job termination.
Furthermore, when systemRequest is active while there are
no jobs to be processed; event and systemstate are updated
to terminate and done as seen in lines 7 to 12. This signi-
fies the completion of job processing. This refinement is
equivalent to our ground model’s algorithm 14 as system-
state transitioned to either stopped or done aligningwith the
job termination conditions. Let us now discuss the evalua-
tion of our model.

4 Evaluation
This section is split into two parts: the validation and eval-
uation of our model. The validation sub-section focuses
on test cases developed from our model’s previously dis-
cussed algorithms. The evaluation sub-section focuses on
examining the five auto-scalers used to construct ourmodel.
Finally, we conclude our evaluation by demonstrating our
model’s applicability to other auto-scalers from prior art.
Let us now proceed to discuss the validation of our model.

4.1 Validation
Our ASM model’s validation was achieved via the creation
of test cases from our ground model’s algorithms and their
refinements. These test case were developed on CoreASM
(a plug-in available for the Eclipse IDE). The test cases

Algorithm 12 Job Handling

Require: AResource
1: while InitReqFunctions = IRFactive ∧

SystemRequest(p, ar) := true do
2: JobHandModmultimode := active
3: Jobhandler((j, vm) := true
4: SystemState(j, p) := active
5: while t ∈ TIME ∧ TimeRequest(j, p) =

true do
6: mappedVM(j, vm) := true
7: if SystemRequest(p, ar) = true then
8: ReqResources := true
9: installed(j, vm) := true
10: event(t) := started
11: SimulationDuration := SDmax
12: AveragUtilPM := AUPMmax
13: AveragQueT ime := AQTmax
14: end if
15: SystemState(j, p) := busy
16: end while
17: end while

Algorithm 13 Refined Job Handling

Require: AResource
1: while InitReqFunctions = IRFactive ∧

SystemRequest(p, ar) := true do
2: JobHandModmultimode := active
3: Jobhandler((j, vm) := true
4: SystemState(j, p) := active
5: while JobProcessing = JPactive do
6: SystemRequest(p, ar) := true
7: ReqResources := true
8: SystemState(j, p) := busy
9: end while
10: end while

(i.e., coreasm specifications) were designed as interactive
sequences with suitable checks to describe the expectations
of our model’s states. These test cases were checked to see
if specified assertions hold in given states. The test cases
were processed and checked if all the assertions were sat-
isfied. A satisfied assertion finished with a pass verdict.
However, as soon as an assertion was not satisfied, the sim-
ulation was interrupted, reporting a violation. At each step,
the simulator performed update checking to ensure that all
states were updated. Our validation goals are:

To assess the interactions of the phases of our ground
model via the application of universes and signatures.

To examine the application of derived functions (modules)
as refinements of our ground model.

To assess the application of guarded updates (which are
reflective of control state ASMs) to ensure equiva-
lence (between ground model algorithms and their re-
finements).

Our validated specifications are available in the Auto-

88 Informatica 47 (2023) 75–96 E.K. Gavua et al.

Algorithm 14 Job Termination

1: if ∃j ∈ JOB ∧ ∃ar ∈ ARESOURCE ∧ ∃p ∈
PROCESS ∧ ∃t ∈ Time ∧ JobRequest(j, ar)
then

2: processState := ready
3: while t ∈ TIME ∧ TimeRequest(j, p) =

true ∧mappedVM(j, vm) = true do
4: JobT ime(j) := processing
5: while processRequest(p, ar) = true ∧

jobhandler(j, vm) = true do
6: installed(j, vm) := true
7: event(t) := started
8: JobState(j) := running
9: ProcessState(p) := running
10: JobT ime(j) := processing
11: end while
12: end while
13: if jobRequest(j, ar) = true ∧

event(task(p)) = terminate then
14: JobState(j) := failed ∧

processState(p) := stopped
15: end if
16: end if
17: if ¬∃j ∈ JOB ∧ ¬∃p ∈ PROCESS ∧

JobRequest(j, ar) then
18: Event(t) := Terminate ∧ jobT ime(j) :=

Completed
19: jobState(j) := done
20: end if

Scaling-ASM repository on Github2. This allows for fur-
ther scrutiny and reuse of our validation approach. We pro-
vide a short overview of the validation process.

4.1.1 Model modules

CoreASM modules (CoreModules) were designed with
ASM rules which aligned with the control state ASM defi-
nition 1 to ensure that, once the conditions for state transi-
tions were met, system states were updated accordingly.
Three key modules (shown in figure 8) were applied to

support our model validation. These modules represents
the actual file names of the modules with the ASM speci-
fication file extensions (.casm). The arrows represents the
levels of dependency of each file from the bottom to the top.
The topmost file is the module for job initialising, which is
followed by the job queuing module. The jobhandler mod-
ule for Simple and Multimode auto-scalers are on the same
level, which are followed by a general jobhandler module
with VM selection integrated refinements. The MultiJob-
HandMod and SimJobHandMod modules were validated
separately, and applied to theMultimodes and Simple auto-
scalers as seen in MultiJobHandMod.casm and SimJob-
HandMod.casm.
In order to validate the modules, the test case were

checked for the provision of aresources and job queuing re-

2https://github.com/EbenezerKomlaGavua/
Auto-Scaling-ASM

Algorithm 15 Refined Job Termination

Require: AResource
1: while InitReqFunctions = IRFactive ∧

SystemRequest(p, ar) = true do
2: ReqResources := true ∧

SystemState(j, p) := active
3: while JobHandReslist = JHRLactive ∧

jobhandler(j, vm) = true do
4: SystemState(j, p) := busy
5: if SystemState(j, p) = busy ∧

event(task(p)) = terminate then
6: SystemState(j, p) := stopped
7: else if SystemRequest(p, ar) ∧ ¬∃j ∈

JOB ∧ ¬∃p ∈ PROCESS then
8: Event(t) := Terminate
9: SystemState(j, p) := done
10: end if
11: end while
12: end while

Figure 8: ASM validation modules

sources via the InitReqFunctions and QueReslist functions.
It checked for the provisions of specific auto-scaling uni-
verses for the two categories of auto-scalers via the JobInit-
FunMod.casmmodule file. The result showed a check suc-
ceeded assertion verdict with systemstate updated to active.
Moreover, the test case checked for the number of VMs
available via the VMcount. The result showed a check suc-
ceeded assertion. The Jobhandler, Joblauncher and Re-
qResource were updated to false which caused systemstate
to transition to waiting. The test case checked for VM se-
lection. The result showed a check succeeded assertion.
The AddVM function was activated to select VMs which
caused ReqResource to transition to true. The two special-
ized modules fostered the transition of their auto-scalers
from queuing to job handling. The CoreModules were
then utilised to validate the other test cases representing the
phases of our ground model.
Initial Phase was validated following rule 1 (discussed

in sub-section 3.4.1) of our model as seen in the JobInit-
FunMod.casm file. A series of checks were done to validate
this phase. First, the test case checked for the provision of
universes and functions. The result showed a check suc-
ceeded assertion. The processState function was updated
to ready. Second, the test case checked for jobs and process

ASM-based Model for Analysing Cloud… Informatica 47 (2023) 75–96 89

requests via jobRequest and processRequest functions. An
expected false result was returned with a check succeeded
assertion. A false result was expected because no requests
is made at the initial phase. Third, a mappedVM checks
were done and an expected false result was returned with a
a check succeeded assertion. Finally, the test case checked
if VMs were mapped to jobs and installed as tasks. The
result showed a check succeeded assertion. The above val-
idation process can be seen in the SimpleInitialPhase.casm
and MultimodeInitialPhase.casm files.
Moreover, the test cases for the refinements of the ini-

tial phase were checked to ensure equivalence with those
representing our ground model. The CoreASM checked
for the provision of universe and functions via InitReslist
function. The results showed a check succeeded assertion.
Systemstate was updated to active. The test case checked
for job and process requests via SystemRequest. The re-
sult showed a check succeeded assertion. The test case then
checked for the mapping of VMs and jobs viaReqResource.
The result showed a check succeeded assertion. Finally,
the test case checked the status of joblauncher and jobhan-
dler. The result showed a check succeeded assertion with
an expected false, which showed that jobs and VMs were
not installed as tasks. The checks on the refinement were
equivalent to those of our ground model. The above vali-
dation process can be seen in the RefinedInitialPhase.casm
file.
Job Initialising was validated following rule 2 (dis-

cussed in sub-section 3.4.2) of our model. The Simple
andMultimode auto-scalers were validated separately. The
test case for job initialising checked for the provision and
interaction of universes and functions from the previous
phase via the InitReqFunctions function in the JobInitFun-
Mod.casm module file. Also, the test case checked for
the application of an ASM rule to initiate job processing
and the request for jobs and processes. The result showed
a check succeeded assertion verdict with jobTime updated
to started. The test case checked for the installation of
mapped jobs as tasks. The result showed a check succeeded
assertion with jobTime updated to started and jobState to
submitted. The job initialising validation can be seen in
the SimpleJobJobInitialising.casm and MultimodeInitialis-
ing.casm files.
Furthermore, the test case for the refined algorithms

checked for the provision of universes and functions via Ini-
tReqFunctions. The result showed a check succeeded as-
sertion verdict with systemstate updated to active. The test
case checked for jobs and VMs request via systemRequest.
A check succeeded assertion verdict was returned. Also,
the test case checked for the installation of mapped jobs as
tasks. The result showed a check succeeded assertion ver-
dict with the jobhandler updated to true. The systemstate
was updated to active which was equivalent to the checks
executed on the test cases of our ground model. The refined
job initialising validation can be seen in the RefinedJobIni-
tialising.casm file.
Job Queuing was validated per rule 3 of our model

(discussed in sub-section 3.4.3). The Simple and Multi-
mode auto-scalers were validated separately. The test cases
checked for the provision of of universes from the first
two phase of our model. It also checked for specific auto-
scalers universes and functions as seen in the JobQueFun-
Mod.casm module file. The result showed a check suc-
ceeded assertion. JobTime and processState were updated
to started and ready. The test cases checked for jobs and
VMs requests and the VM count. The result showed a check
succeeded assertion. When the VM count fell below the
expected threshold, the jobhandler was updated to false in
the Simple auto-scalers and the joblauncher was also up-
dated to false in Multimode auto-scalers. This situation
transitioned JobState to waiting. The job queuing valida-
tion can be seen in the SimpleJobQue.casm and Multimod-
eJobQue.casm files.
Moreover, the test case for the refined job queuing was

validated. The test case checked for the provision of uni-
verses and functions via theQueReslist function. The result
showed a check succeeded assertion which caused system-
state to be updated to active. Also, the test case checked
for for jobs and VMs requests, and the level of the VM
count. The result showed a check succeeded assertion
which caused systemstate to be updated to waiting. This
showed that there was shortage of VMs. The test cases
demonstrated the equivalence of the refined queuing algo-
rithms to those of our ground model. The refined job queu-
ing validation can be seen in the RefinedJobQue.casm file.
Job Handling The test case created to validate Job

handling applied rule 4 of our model (discussed in sub-
section 3.4.4). This phase applied the MultiJobHand-
Mod and SimJobHandMod modules discussed in sec-
tion 4.1.1 to validate the two categories of auto-scalers. The
test case checked for the provision and interaction of uni-
verses and functions via InitReqFunctions in the JobInit-
FunMod.casm file. Also, the test case checked for the
job queuing and VM selection via the jobhandling mod-
ules in JobHandVmReqMod.casm file. The results showed
a check succeeded assertion. Moreover, the test cases
checked for the request for sufficient time for tasks pro-
cessing via timeRequest and the installation of tasks. The
results showed a check succeeded assertion. The system-
state transitioned to busy. The Job handling validation can
be seen in the JobHandling.casm file.
Furthermore, the refined algorithm was also validated

with the Jobhandling module. The test cases checked for
the provision resources via JobInitFunMod.casm file. Also,
it checked for the VMs shortage and selection at the queu-
ing phase with the jobhandling module. The results showed
a check succeeded assertion which caused the systemstate
to transition to active. The test case checked for the map-
ping VMs to jobs, time requests and systemrequest via
the JobProcessing function. The results showed a check
succeeded assertion. The refined job handling test cases
showed equivalence to those our ground model, since they
all caused a system state update to busy. The refined Job
handling validation can be seen in the RefinedJobHan-

90 Informatica 47 (2023) 75–96 E.K. Gavua et al.

dling.casm file.
Job Termination was validated following sub-

section 3.4.5 of our model. The test cases developed for
this phase checked the conditions for job termination.
Sequential checks were employed to ensure that all the
previous phases were appropriately validated. First, the
test case checked for job initialising via the InitReq-
Functions function in the JobInitFunMod.casm file. The
results showed a check succeeded assertion which caused
processstate to transition to ready. Second, the test case
checked for the mapping of VMs to jobs, time request and
the status of the Jobhandler. The results showed a check
succeeded assertion. Third, the test case checked for
system interruptions (via universes designed to halt mid-
way during task processing). The results showed a check
succeeded assertion. Fourth, the test case checked for the
quantity of jobs available at the end of task processing.
The results showed a check succeeded assertion. The
validation can be seen in the JobTermination.casm file.
Job Termination refinement test case checked for uni-

verses and functions via the InitReqFunctions function.
The result showed a check succeeded assertion which
caused systemstate to transition to active. Then, the test
case checked for job handling via JobHandRelist. A check
succeeded assertion was returned and systemstate to tran-
sition to busy. Moreover, the test case checked for sys-
tem state interruption. A check succeeded assertion was
returned and systemstate transitioned to stopped (as ex-
pected). Finally, the test case checked for systemRequest
when all the jobs generated were exhausted. A check suc-
ceeded assertion was returned, which caused systemstate
to transitioned to done (as expected). The refined job ter-
mination test cases showed equivalence to those of our
groundmodel, since they all caused a system state transition
to stopped and done per the conditions for job termination.
The validation process can be seen in the RefinedJobTer-
mination.casm file.
In conclusion, the test cases developed from our ground

model algorithms and their refinements aligned with the
validation goals discussed in section 4.1.

4.2 Abstract state machine model evaluation
This section describes the evaluation process of our model.
Our evaluation criteria are discussed emphasizing the ASM
theory described in sub-section 2.4. We applied the follow-
ing criteria to evaluate our model.

– To assess the equivalence of the refined auto-scaler al-
gorithms to our ground model via the application of
universes and signatures.

– To examine the application of derived functions to spe-
cific portions of auto-scaling; such as job initialising,
VM selection and job handling to ensure the applica-
tion of ASM Model Refinement.

– To assess the application of guarded updates and
Börger’s refinement on auto-scalers.

Algorithm 16 Threshold Initial Phase

Require: AResource
1: if InitReslist = IRLidle then
2: TLevel := undef ∧ SystemState(j, p) :=

idle
3: end if
4: while SystemRequest = false do
5: SystemState(j, p) := idle
6: end while
7: if ReqResources = false then
8: SystemState(j, p) := idle
9: end if
10: if installed(j, vm) = false then
11: Joblauncher(Jobhandler(j, vm)) :=

false
12: SystemState(j, p) := idle
13: end if

In order to prevent the repetition of algorithms, we will
selectively utilise a few formalized algorithms for our dis-
cussion. Let us discuss the evaluation of our ASM rules.

4.2.1 Rule 1, initial phase

This phase was evaluated per sub-section 3.4.1 and algo-
rithm 1 of our model. Algorithm 16 is used for our dis-
cussion, since aside the specific function TLevel, the state
changes are the same for all auto-scalers. At the initial
phase, all the auto-scalers apply the InitReslist function to
access universes and functions. However, no aresources
are provisioned. Therefore systemstate is updated to false
and the threshold monitoring function TLevel is updated
to undef as seen in lines 1 to 3 of algorithm 16. Also, job
and process requests are initiated, but no responses are re-
ceived (as expected). Hence, there was no state transitions
for systemstate as seen in lines 4 to 6. Also, no VMs were
mapped to jobs, and installed as tasks for processing. This
caused the Joblauncher to be updated to false and system
state to idle as as seen in lines 7 to 13.
The refinement is equivalent to the first phase of our

ground model shown in figure 5. Since the system state
transitioned to idle as seen in algorithm 3. Also, the re-
finement satisfies the evaluation criteria discussed in sub-
section 4.2, since derived function were applied to model
the refinement. Also, state transitions were observed when
conditions were met, which are reflective of guarded up-
dates of control state ASMs.

4.2.2 Rule 2, job initialising

Job Initialising was evaluated with sub-section 3.4.2. Al-
gorithm 17 is utilised for our discussion, since all the state
changes are the same for all auto-scalers (aside the spe-
cific reusable VMs function RVM). The InitReqFunctions
derived function is applied to foster the provision of Are-
sources via universes and functions for this phase. The Sys-
temRequests and ReqResources functions activated jobs
and VMs requests, and the mapping of VMs to jobs as seen

ASM-based Model for Analysing Cloud… Informatica 47 (2023) 75–96 91

Algorithm 17 V mopt Jobs Initializing

Require: AResource
1: if InitReqFunctions = IRFactive ∧

SystemRequest = true then
2: Joblauncher(Jobhandler(j, vm)) :=

true ∧ReqResources := true
3: if installed(j, vm) = true∧RVM = Qmin
then

4: SystemState(j, p) := active
5: end if
6: end if

Algorithm 18 V mcreate Jobs Queuing

Require: AResource
1: while InitReqFunctions = IRFactive do
2: ReqResources := true ∧ TLevel := Tmin
3: SystemState(j, p) := active
4: if QueReslist = QRLactive then
5: SystemState(j, p) := active
6: end if
7: if VMCount ≤ Nummin then
8: ReqResources := false
9: Joblauncher(Jobhandler(j, vm)) :=

false
10: TLevel := Tavg

11: SystemState(j, p) := waiting
12: end if
13: end while

in lines 1 to 2. Tasks are installed for job processing to
commence and the function RVM is updated to minimum,
which caused SystemState to transition to active as seen in
lines 3 to 6. This evaluation is applicable to Threshold, Vm-
create, Pooling and FixedVM auto-scalers. In the case of
the other multimode auto-scalers, threshold and vmcreate
transition to Tmin, while pooling to Qmin during job ini-
tialising.
This refinement is equivalent to the second phase of our

model shown in figure 5 and algorithm 6. Also, the re-
finement satisfies our evaluation criteria discussed in sub-
section 4.2, since derived function were applied to cause
job processing to commence. State transitions were seen
when conditions were met, which are reflective of guarded
updates of control state ASMs.

4.2.3 Rule 3, job queuing

Job queuing evaluation was achieved via Rule 3 of our
model discussed in sub-section 3.4.3. Algorithm 18 (rep-
resenting Vmcreate auto-scaler) is used for our discussion.
The InitReqFunctions function is activated for the provision
of universes to foster job initialising. This caused system-
State to transition to active. Tlevel transitions to Tmin (i.e.,
minimum VM threshold utilisation) as seen in lines 1 to 3.
QueResList is activated tomonitor process and job requests,
and the mapping of VMs to jobs as seen in lines 4 to 6.
The VM count are monitored. A reduction in the VM
count, caused ReqResources and Joblauncher to be updated

to false. Also, Tlevel transitions to Tavg (i.e., average VM
threshold utilisation). This caused SystemState to transi-
tion to waiting as seen in lines 7 to 13. This evaluation is
applicable to all auto-scalers. In the case of the othermulti-
mode auto-scalers Threshold transitioned to Tavg , Pooling
to Qavg and Vmopt to Qavg during job queuing.
This refinement is equivalent to the job queuing of our

model shown in figure 5 and algorithm 9. Also, the refine-
ment satisfies the evaluation criteria discussed in subsec-
tion 4.2. This is seen in the application of derived functions
to model job queuing. Also, state changes are seen when
function conditions were met, which are reflective of the
guarded updates of control state ASMs.

4.2.4 Rule 4, job handling

Job handling was evaluated per Rule 4 (discussed in sub-
section 3.4.4). During job handling, the auto-scalers ac-
tivate the InitRequiredFunctions, JobHandRelist derived
functions and the jobhandling modules (designed in algo-
rithms 10 and 11) for job processing. Aresources are pro-
visioned via universes and functions for job processing.
This caused SystemState to transition to busy as seen in
lines 1 to 6 of algorithm 19.
The auto-scalers exhibited behaviours per their core

functions. The behaviours are analysed as follows.
First, threshold and vmcreate appliedVmUL to monitor VM
utilization. VmUL is utilised differently in the two auto-
scalers. In the case of threshold, if the current VM util-
isation is lower than the average VM threshold, the VMs
are destroyed. However, if the current VM utilisation is
lower than the average VM threshold but the VM is the last
VMbeing processed; the duration period is extended by one
hour to receive a new job before the VM is destroyed. In
the case of Vmcreate, if the maximum utilisation of VMs is
greater than the expected VM threshold, more VMs added
are created. Also, if the current threshold is greater than
the expected VM threshold, more VMs are created. This
caused SystemState to transition to busy.
Second, Vmopt monitors the VM count of reusable VMs

in the VI. If the number reusable VMs are more than and
equal to the minimum number expected, job processing
continues until all the jobs are processed. Third, Pooling
monitors the VM count in its VM pool during job process-
ing. If the number of VMs are more that the minimum
expected, more VMs are created. Job processing contin-
ues until all the jobs are processed as seen in lines 7 to 12
of algorithms 19. This causes SystemState to transition
to busy. The output of job processing showed Simulation-
Duration, AveragQueTime and AveragUtilPM transitioned
to maximum levels.
These job handling refinements are equivalent to the al-

gorithms of our ground model shown 12 to 13 which are
reflective of figure 5. Also, the refinement satisfies the
evaluation criteria discussed in sub-section 4.2 as derived
functions were applied to model job initialising to job han-
dling.

92 Informatica 47 (2023) 75–96 E.K. Gavua et al.

Algorithm 19 Pooling Jobs handling

Require: AResource
1: while InitReqFunctions = IRFactive do
2: JobHandMODmultimode := active
3: if JobHandReslist = JHRLactive ∧

V mpool = Qmax then
4: ReqResources := true ∧
5: SystemState(j, p) := busy
6: end if
7: if V mpool >= MinQ then
8: AddVM(j, vm) := true∧
9: ReqResources := true
10: Joblauncher(Jobhandler(j, vm)) :=

true
11: SystemState(j, p) := busy
12: SimulationDuration := SDmax
13: AveragQueT ime := AQTmax
14: AveragUtilPM := AUPMmax
15: end if
16: end while

4.2.5 Rule 5, job termination:

Job Termination was evaluated per rule 5 of our model (dis-
cussed in sub-section 3.4.5). The pooling auto-scaler was
utilised to evaluate this phase. The evaluation of job termi-
nation required a modelling that showed an interaction of
the previously discussed phases.
Initially, InitRequiredFunctions, jobhandling modules

are activated for the provision of Aresources via universes
and functions towards job initialising and job handling.
The JobHandRelist is triggered to foster the job han-
dling. Vmpool transitions to Qmax to signifying sufficient
provision of VMs for job processing. SystemState transi-
tions to busy as seen in lines 1 to 4 of algorithm 20. More-
over, the VM count is checked in the VM pool. If the num-
ber of VMs in the VM pool is within the minimum range,
more VM are provisioned. This causes the systemState to
transition to busy as seen in lines 7 to 10. The SimulatioDu-
ration transitions to SDmax and AverageQueTime to AQT-
max. Also AverageUtilPM transitions to AUPMmax as
seen in lines 11 to 13. Furthermore, while jobs are being
processed, a terminate event causes systemState transitions
to stopped and event to terminate as seen in lines 15 to 16.
Also, when the jobs generated are exhausted while System-
Request is activated; event transitions to terminate and sys-
temstate to doneas seen in lines 17 to 21.
This job termination refinement of the pooling auto-

scaler is equivalent to the fifth phase of our model shown
in figure 5, and algorithm 14 to 15. Also, the refinement
satisfies the evaluation criteria discussed in sub-section 4.2
as derived functions were utililsed to model job initialis-
ing to job termination. Also, state changes were seen when
the conditions for function were met, which are reflective
of guarded updates of control state ASMs. Also, there is
interaction between the phases of our model via the appli-
cation of universes and functions.
In conclusion, this evaluation enabled us to check the

Algorithm 20 Pooling Jobs Termination

Require: AResource
1: while InitReqFunctions = IRFactive do
2: JobHandMODmultimode := active
3: if JobHandReslist = JHRLactive ∧

V mpool = Qmax then
4: ReqResources := true
5: SystemState(j, p) := busy
6: end if
7: if V mpool >= MinQ then
8: AddVM(j, vm) := true
9: ReqResources := true
10: SystemState(j, p) := busy
11: SimulationDuration := SDmax
12: AveragQueT ime := AQTmax
13: AveragUtilPM := AUPMmax
14: end if
15: if SystemState(j, p) = busy ∧

event(task(p)) = terminate then
16: SystemState(j, p) := stopped
17: else if SystemRequest(p, ar) ∧ ¬∃j ∈

JOB ∧ ¬∃p ∈ PROCESS then
18: Event(t) := Terminate
19: SystemState(j, p) := done
20: end if
21: end while

applicability of our model to the auto-scalers offered with
DISSECT-CF, and also the flexibility of the transition rules
of our model.

4.3 Evaluation of our model with another
auto-scaling mechanism

The literature in section 2 analysed past auto-scalers mech-
anisms, and selected [7] for in-depth analysis with our
model. The algorithms of Yang et al.’s work have been
made public; hence it was possible to apply our model. This
auto-scaler presents a typical auto-scaling approach using
workload prediction, as well as horizontal and vertical scal-
ing. Therefore, it was possible to analyse and classified it
as a multimode auto-scaler due to its specific features. We
discuss only the job handling phase since the other phases
apply features similar to those discussed per the multimode
auto-scalers above.

Job Handling: In order to evaluate this auto-scaler,
the jobhandling module for multimode auto-scalers is
adopted and applied to optimize VM selection. VM selec-
tion was activated via VmRequest. This caused VMs and
jobs to be mapped and installed as tasks to continue job pro-
cessing.
The auto-scaler by [7] applies InitReqFunctions to initi-

ate job processing. This activates the Workload prediction
function and jobhandling module. This causes systemstate
to be updated to active as seen in lines 1 to 5 of algorithm 21.

JobHandReslist is activated to foster the provision of
resources via universes and functions for job handling.
This activity causes the VMs utilisation levels to in-

ASM-based Model for Analysing Cloud… Informatica 47 (2023) 75–96 93

Algorithm 21 LoadPredict Jobs handling

Require: AResource
1: if InitReqFunctions = IRFactive ∧

SystemRequest(p, ar) = true then
2: WorkloadPrediction := PWLactive ∧

ReqResources := true
3: JobHandModL := active ∧

Joblauncher(Jobhandler(j, vm)) := true

4: SystemState(j, p) := active
5: end if
6: while JobHandReslist = JHRLactive do
7: if V mULt > VMutmax then
8: SystemState(j, p) := busy
9: end if
10: for all vm ∈ VM do
11: if V mULt > VMutmax then
12: selfhealingSU := active
13: end if
14: if V mULt > VMutmax then
15: ARSU := active
16: end if
17: if V mULt < VMutmin then
18: AR(V R)SD := active
19: end if
20: end for
21: AveragUtilPM := AQTmax
22: SimulationDuration := SDmax
23: AveragQueT ime := AUTmax
24: SystemState(j, p) := busy
25: end while

crease. A maximum utilisation threshold transitions sys-
temstate to busy as seen in lines 6 to 9.
When more VMs are provisioned with a reciprocal in-

crease in VM utilisation threshold. Self-healing scaling
up is activated to ensure that more Aresources are provi-
sioned. This supports the increased VM utilisation thresh-
old as seen in lines 10 to 13. Also, the high VM utilisation
threshold causes resource-level scaling up to be activated.
This utilises unallocated available Aresources to scale up
the VMs as seen in lines 14 to 16.
However, when the VM utilisation threshold de-

creases, Aresources scaling down is activated as seen in
lines 17 to 20. This causes the outputs of job processing
to be generated. The simulation duration, average queuing
time and average utilisation of PMs are updated to maxi-
mum values. The systemstate is updated to busy as seen in
lines 21 to 25. This refinement is equivalent to the fourth
phase of our ground model as shown in figure 5. The auto-
scaler by [7] employs three specialised scaling operations
in this phase.
Virtual Resource Scaling Down: During job handling,

when the VM utilisation threshold is below the expected
maximum threshold, VM level scaling down is activated.
This causes unused Aresources of VMs to be scaled down
as seen in lines 3 to 6 of algorithm 22. Also, when the
state of the VM utilisation threshold still remains the same,

Algorithm 22 V irtual Resource scaling down

Require: AResource
1: while JobHandModL = busy do
2: SystemState(j, p) := busy
3: while JobHandReslist = JHRLactive do
4: if V mULt < VMutmax then
5: VMLevelSD := active
6: end if
7: if V mULt < VMutmin then
8: RLevelSD := active
9: end if
10: SystemState(j, p) := busy
11: end while
12: end while

Algorithm 23Pre−scaling at the (t+1)th interval

Require: AResource
1: while JobHandModL = busy do
2: SystemState(j, p) := busy
3: while JobHandReslist = JHRLactive do
4: Predict−NumofSerReqt+1 := active

5: Calculate− V mULt+1 := active
6: if V mULt+1 > VMutmax then
7: Cost−AwareP−SU := active
8: end if
9: SystemState(j, p) := busy
10: end while
11: end while

the resource level scaling down is activated as seen in
lines 7 to 9. SystemState remains updated to busy through-
out this operation.
Pre-scaling at (t + 1)th interval: Also, the number of

service requests are predicted during job handling. This
activates the computation of VM utilisation threshold at
(t + 1)th intervals as seen in lines 3 to 5 of algorithm 23.
When the VM utilisation threshold at (t + 1)th interval is
greater than the maximum VM utilisation threshold, cost
aware scaling up is activated as seen in lines 6 to 8. System-
State remains updated to busy throughout this operation.
Cost-aware Pre-scaling up: Moreover, during VM

level scaling up; when the number of user requests is greater
than zero, and the Aresources provisioned are not suffi-
cient to handle user requests. The VM with the smallest
capacity is activated as seen in lines 3 to 7 of algorithm 24.
Conversely, if the Aresources are sufficient, a compari-
son between resource level scaling up or VM level scal-
ing up is made to select the appropriate option as seen in
lines 8 to 11. SystemState remains updated to busy through-
out this operation as seen in line 12.
This refinements satisfies our evaluation criteria dis-

cussed in sub-section 4.2 since derived functions were ap-
plied to evaluate job handling of [7]. Also, the systemstate
transitioned during the modelling of the phase including the
specialised operations which are equivalent to our ground
model.

94 Informatica 47 (2023) 75–96 E.K. Gavua et al.

Algorithm 24 Cost− aware Pre− scaling up

Require: AResource
1: while JobHandModL = busy do
2: SystemState(j, p) := busy
3: while JobHandReslist = JHRLactive do
4: V mLevelSU := active
5: if NumOfRequests > 0 then
6: if Aresource < NumOfRequests
then

7: SmallestV MSU := active
8: else
9: RlevelSU := active ∨

VMlevelSU := active
10: end if
11: end if
12: SystemState(j, p) := busy
13: end while
14: end while

5 Conclusion
In this paper, we investigated the issues with evaluating
auto-scaling mechanisms. We proposed an ASM model
to formalize newly proposed or pre-existing auto-scaling
techniques. The development of our ASM model in-
volved meticulous construction, comprising a comprehen-
sive ground model and a set of five ASM Rules. These ele-
ments served to capture the fundamental structure of auto-
scalers and their essential execution phases. The refine-
ment process employed within our model allowed for thor-
ough scrutiny, ensuring its validity by enabling equivalence
checks and formalization of the algorithms. Rigorous vali-
dation was carried out using the esteemed CoreASM Sim-
ulator, confirming the model’s accurate response to various
dynamic scenarios and system states.
In future work, we will focus on further fortifying the

verification of our model by applying comprehensive tem-
poral properties test cases. This verification process aims
to establish the correctness and equivalence of our specifi-
cations. To achieve this goal, we will explore and integrate
additional model-based testing and verification approaches,
harnessing their capabilities to enhance the reliability and
robustness of our model.

Acknowledgement

This research was supported by the Hungarian Scientific
Research Fund under the grant number OTKA FK 131793.

References
[1] N. Herbst, S. Kounev, and R. Reussner (2013). Elas-

ticity in cloud computing: What it is, and what it is
not. In Proceedings of the 10th International Confer-
ence on Autonomic Computing (ICAC 13) pp. 23–27,
2013.

[2] M. A. Netto, C. Cardonha, R. L. Cunha, and
M. D. Assunçao (2014). Evaluating auto-scaling
strategies for cloud computing environments, In
2014 IEEE 22nd International Symposium on Mod-
elling, Analysis and Simulation of Computer and
Telecommunication Systems. IEEE pp. 187–196.
https://doi.org/10.1109/mascots.2014.32.

[3] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano
(2014). A review of auto-scaling techniques for
elastic applications in cloud environments. Journal
of grid computing, vol. 12, no. 4, pp. 559–592.
https://doi.org/10.1007/s10723-014-9314-7.

[4] Y. Gurevich (1993) Evolving algebras: an at-
tempt to discover semantics. Current Trends in
Theoretical Computer Science, eds. G. Rozenberg
and A. Salomaa, World Scientific. pp. 266–292
https://doi.org/10.1142/9789812794499_0021

[5] N. Roy, A. Dubey, and A. Gokhale (2011). Efficient
autoscaling in the cloud using predictive models for
workload forecasting. In 2011 IEEE 4th International
Conference on Cloud Computing, IEEE, pp. 500–507.
https://doi.org/10.1109/cloud.2011.42.

[6] C. Qu, R. N. Calheiros, and R. Buyya (2018). Auto-
scaling web applications in clouds: A taxonomy and
survey. ACM Computing Surveys (CSUR), vol. 51,
no. 4, pp. 1–33. https://doi.org/10.1145/3148149.

[7] J. Yang, C. Liu, Y. Shang, Z. Mao, and J. Chen (2013).
Workload predicting-based automatic scaling in ser-
vice clouds. In 2013 IEEE Sixth International Con-
ference on Cloud Computing, IEEE, pp. 810–815.
https://doi.org/10.1109/cloud.2013.146.

[8] E. Börger (2010). The abstract state machines
method for high-level system design and anal-
ysis. In Formal Methods: State of the Art and
New Directions, Springer, 2010, pp. 79–116.
https://doi.org/10.1007/978-1-84882-736-3_3.

[9] P. Arcaini, R.-M. Holom, and E. Riccobene
(2016). Asm-based formal design of an adap-
tivity component for a cloud system. Formal
Aspects of Computing, vol. 28, no. 4, pp. 567–595.
https://doi.org/10.1007/s00165-016-0371-5.

[10] G. Kecskemeti (2015). Dissect-cf: a simu-
lator to foster energy-aware scheduling in
infrastructure clouds. Simulation Modelling
Practice and Theory, vol. 58, pp. 188–218.
https://doi.org/10.1016/j.simpat.2015.05.009.

[11] H. Ghanbari, B. Simmons, M. Litoiu, C. Barna,
and G. Iszlai (2012). Optimal autoscaling in a iaas
cloud. In Proceedings of the 9th international confer-
ence on Autonomic computing. ACM, pp. 173–178.
https://doi.org/10.1145/2371536.2371567.

ASM-based Model for Analysing Cloud… Informatica 47 (2023) 75–96 95

[12] A. Gandhi, P. Dube, A. Karve, A. Kochut, and
L. Zhang (2014). Adaptive, model-driven autoscaling
for cloud applications. In 11th International Confer-
ence on Autonomic Computing ({ICAC} 14), pp. 57–
64.

[13] M. Dhaini, M. Jaber, A. Fakhereldine, S. Ham-
dan and R. Haraty (2021). Green computing
approaches-A survey. Informatica, vol. 45, 2021.
https://doi.org/10.31449/inf.v45i1.2998.

[14] D. Saxena and A. K. Singh (2021). A proactive au-
toscaling and energy-efficient vm allocation frame-
work using online multi-resource neural network for
cloud data center.Neurocomputing, vol. 426, pp. 248–
264. https://doi.org/10.1016/j.neucom.2020.08.076.

[15] A. Al-Dulaimy, J. Taheri, A. Kassler, M. R. H. Fara-
habady, S. Deng, and A. Zomaya (2020). Multiscaler:
A multi-loop auto-scaling approach for cloud-based
applications. IEEE Transactions on Cloud Comput-
ing. https://doi.org/10.1109/tcc.2020.3031676.

[16] Q. Z. Ullah, G. M. Khan, and S. Hassan (2020).
Cloud infrastructure estimation and auto-scaling us-
ing recurrent cartesian genetic programming-based
ann. IEEE Access, vol. 8, pp. 17 965–17 985.
https://doi.org/10.1109/access.2020.2966678.

[17] A. Belkacem and Z. Houhamdi (2022). Formal ap-
proach to data accuracy evaluation, Informatica,
vol. 46, https://doi.org/10.31449/inf.v46i2.3027.

[18] H. Debbi (2021).Modeling and PerformanceAnalysis
of Resource Provisioning in Cloud Computing using
Probabilistic Model Checking, Informatica, vol. 45,
https://doi.org/10.31449/inf.v45i4.3308.

[19] T. LakshmiPriya and R. Parthasarathi, “An asm
model for an autonomous network-infrastructure
grid,” in International Conference on Networking
and Services (ICNS’07). IEEE, 2007, pp. 29–29.
https://doi.org/10.1109/icns.2007.29.

[20] A. Bianchi, L. Manelli, and S. Pizzutilo (2011),
A distributed abstract state machine for grid sys-
tems: A preliminary study. In Proceedings of the
Second International Conference on Parallel, Dis-
tributed, Grid And Cloud Computing For Engi-
neering, Civil-Comp Press, Ajaccio, France, Paper,
vol. 84. https://doi.org/10.4203/ccp.95.84.

[21] A. Bianchi, L. Manelli, and S. Pizzutilo (2013). An
asm-based model for grid job management. Informat-
ica, vol. 37, no. 3, 2013.

[22] P. Arcaini, R.-M. Holom, and E. Riccobene
(2016), Asm-based formal design of an adap-
tivity component for a cloud system, Formal
Aspects of Computing, vol. 28, no. 4, pp. 567–595.
https://doi.org/10.1007/s00165-016-0371-5.

[23] E. Börger (2003). The asm refinement method. For-
mal aspects of computing, vol. 15 (2-3): pp. 237–257.
https://doi.org/10.1007/s00165-003-0012-7.

[24] J. Fitzgerald and P. Larsen (2009). Modelling
systems: practical tools and techniques in soft-
ware development, Cambridge University Press.
https://doi.org/10.1017/cbo9780511626975.

96 Informatica 47 (2023) 75–96 E.K. Gavua et al.

