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Abstract
Mathematical models of dynamics of metabolic pathways are used for analysis of complex regulations of biochemical

reactions as an intrinsic property of a metabolism. The models are derived under assumptions of kinetic rate functions

and usually result in simplification in view of the model theoretical scope and/or its practical application. The main ob-

stacle in kinetic modeling is the dimensionality of the parametric space, its nonlinearity and ill-conditioned relations for

kinetic parameter estimation. In this work these problems are effectively resolved by use of an approximate linear-loga-

rithmic (Lin-log) applied in analysis of regulation of Escherichia coli central metabolism. Complex multiplicative Mic-

haelis-Menten kinetic rate expressions are transformed into simple in parameter linear functions and non-linear loga-

rithmic dependencies on concentrations of substrates, and cofactors. The Lin-log kinetic rates enable direct estimation

of rate elasticities which are the key parameters in metabolic control analysis (MCA). Due to in the parameter linearity,

the estimation problem is solved in a non-iterative least square algorithm. Applied is singular value decomposition

(SVD) algorithm for system matrix pseudoinversion with the eigenvalue cut-off threshold at 0.01. The results are pre-

sented as parameters of enzyme activities and reaction elasticities. Evaluated activities and elasticities provided insight

into the fluxes regulation. Comparison of the simulation results by Lin-log and Michaelis-Menten model reveals that er-

rors are of the same order of magnitude. 
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1. Introduction

Biochemical networks of industrial microorganism
metabolisms are very complex and highly regulated. For
better understanding of the structure, regulation and inter-
connectivity of metabolic networks, mathematical models
of biochemical system need to be developed. A mathema-
tical model of a metabolic network includes reaction rates
for each reaction, kinetic parameters of reactions and
mass balances for each metabolite based on stoichiome-
tric matrix. In metabolic control analysis (MCA) the kine-
tic models are used for prediction of changes of enzyme
activities or enzyme concentrations on specific fluxes and
metabolite level.1 Most of kinetic models are based on dif-
ferential equations which are solved with appropriate nu-
merical integration method during simulations of pertur-
bed unsteady metabolism.2 Mass balances of metabolites
can be solved in time course (dynamic models) or in
steady state (state in which metabolite concentrations are

at constant level).3 Kinetic parameters of enzyme cataly-
zed reactions are usually based on experimental data gat-
hered by tests on purified enzymes in test tubes (in vitro
experiments). However, conditions in living cells are usu-
ally much more complex compared to those in the test tu-
bes what leads in un-appropriate models based on in vitro
experimental data. To overcome the problem in modeling
and MCA analysis experiments are conducted by rapid
high throughput on-line metabolite intracellular concen-
tration measurements. In order to automate kinetic mode-
ling in simultaneously with experiment automation, from
a view of the general Biochemical Systems Theory (BST)
derived are several “new” enzyme kinetic models which
are amenable for modeling automation.4 For example, so-
me of them are: linear model, logarithmic-linear, linear-
logarithmic (Lin-log), power law Generalized Mass Ac-
tion (GMA), power law Synergy Systems (S-systems),
thermokinetic,).1 The Lin-log model has important theore-
tical background based on thermodynamic concept of
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steady state in reaction systems.5 Upon perturbation of a
steady state rates driving force of reactions are proportio-
nal to reaction affinities which are linear functions of con-
centrations of reacting species. Onsager derived the so-
called phenomenological relations in which reaction rates
are proportional to corresponding affinities, i.e. proportio-
nal to logarithms of reactant concentrations.6 This is an
asymptotic result which is theoretically valid only for infi-
nitesimal perturbations around an equilibrium, but in ap-
plications has been extended to analysis of transient expe-
riments with finite perturbations. From practical (compu-
tational) point of view, advantage of approximate kinetics
is that it allows, in some cases, analytical solutions of net-
work fluxes and metabolite concentration as a function of
enzyme level.1,3 Approximate kinetics has some other de-
sired properties: the conversion rate is proportional to the
corresponding enzyme level, minimum number of para-
meters are used, and analytical solution of steady state ba-
lances are possible. These advantages enable simplified
metabolic control analysis, such as determination of flux
“bottlenecks” and possible network reorganization and
optimization.

In this work are presented attempts to apply lin-log
kinetic formalism for transient data far from equilibrium
obtained in a fully automated on-line intracellular respon-
se of E.coli central metabolism upon glucose impulse.7,8

This experiment is performed far from a cell steady state,
i.e. under drastic changes from a glucose starvation to a
step impulse in glucose saturation. The results have mode-
led by complex Michaelis-Menten kinetics, D. Dege-
nring,7,8 and improved model was optimized by AI met-
hods (Genetic Algorithm, Differential Evolution, Simula-
ted Annealing), S. ^eri} and @. Kurtanjek.9

The model is given by 24 highly regulated bioche-
mical reactions, 132 kinetic parameters, describing the
glucose consumption for energy and cell building blocks.
It includes glycolysis, pentose phosphate pathway, Ent-
ner-Doudoroff pathway and synthesis of cell building
blocks. Reaction rates included into the model are descri-
bed with the multiplicative Michaelis-Menten kinetics:

(1)

were c, c1 and c2 are metabolites, νmax is maximal reaction
rate and Km,c are half saturation constants for the metaboli-
tes. 

1. 2. Lin-log Kinetics

The rate of enzyme catalyzed reaction is in general
proportional to enzyme activity e, dependent intracellular
metabolites and cofactors x, and independent extracellular
metabolite c concentrations and kinetics parameters K.1,10

(2)

This dependency is highly non-linear and can be ap-
proximated by linear-logarithmic (Lin-log) kinetic rate in
a simple, in parameter linear maner:11,12

(3)

where n is the number of dependent and m is number of
independent concentrations. The rate is proportional to the
enzyme level (e), while (a, pi and ci) are termed as the Lin-
log kinetic parameters. In eq. (3) dependent and indepen-
dent metabolite concentrations are given by xi and ci. In
the Lin-log format all the rate equations have the same
mathematical structure: proportionality of rate of enzyme
activity, non-linearity in concentrations and linearity in
the parameters.3 In this form the number of kinetic para-
meters is reduced; only one parameter can be assigned to
one metabolite (concentration).

Lin-log format is usually written in normalized
format. In metabolic systems normalization is usually
based on steady (reference) state, before the perturba-
tion is introduced. Reaction rate in a reference state is
defined by reference flux r0, and extracellular and intra-
cellular metabolite level c0, x0. In those conditions the
effects of concentrations on the reaction rate are defined
as elasticites ε0 for dependent and independent metabo-
lites:

(4)

(5)

Including elasticities and reference state in the eq.
(3) the following expression in a matrix form is derived
for a network of reactions:10,11

(6)

where i is the unit vector, Ex0 and Ec0 are matrices contai-
ning elasticites for intracellular and extracellular metabo-
lites, x/x0 and c/c0 are vectors of dependent and indepen-
dent metabolites and e/e0 is matrix containing relative
enzyme activities. 

Elasticity εεs are calculated using expression:

(7)

For example, Michaelis-Menten kinetic rate in Lin-
log approximation becomes:

(8)
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As in most of approximate kinetic models, Lin-log
is not suitable for all range of concentrations. Asymptotic
values of the Lin-log rates for very low and very high con-
centrations deviate from zero rate and saturation rate. Ho-
wever, when applied for intracellular processes in living
cells, concentrations are close to homeostatic conditions
and the limiting situations do not occur. 

2. Experimental

Lin-log approach was applied on 24 reaction rates
included into the model of E. coli central metabolism
upon glucose impulse. The metabolic network is presen-

ted in Fig. 1. The dynamic model is a system of ordinary
differential equations (ODE-s) which are composed of
mass balances of the metabolites. The cofactors are ex-
perimentally measured and are included into the balan-
ces as polynomial interpolations. By Lin-log approxima-
tion the number of parameters is reduced from 132 for
the original Michaelis-Menten model to 86 parameters
of enzyme activities and reaction elasticities. For exam-
ple, the most complicated kinetic expression included
into the model is the one describing the kinetics of pyru-
vate kinase (enzyme that catalyzes the transfer of phosp-
hate group form phosphoenolpyruvate to ADP, yielding
one molecule pyruvate and one molecule ATP), given
here:

Fig. 1 The biochemical network applied in the model of E. coli response upon glucose impulse.
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This kinetic expression includes 14 kinetic parame-
ters (Vf,pk, Keq,pk , Ki,Pyr,pk, Km,ADP,pk, Ki,PEP,pk, Km,,PEP,pk, Vr,pk,
Km,ATP,pk, Km,Pyr,pk, Ki,ADP,pk, Ki,G6P,pk, Ki,C5P,pk, npk,1, npk,2).
Using lin-log approximation reaction rate for pyruvate ki-
nase kinetic is transformed into:

Number of the parameters is in this way reduced
from 14 to 7 and non-linear expression is transformed to
linear function of the parameters which is easy for estima-
tion and analysis. The system of balances is integrated in
intervals of 0.5 s., from ti-1 to ti yielding a set of linear
equations for the unknown parameters b:

(11)

The linear model eq. (11) reflects the network topo-
logy and the preselected Lin-log kinetic terms. The ele-
ments of the matrix A are obtained by multiplication of
the network stoichiometric matrix N and the vector obtai-
ned by corresponding interval integrations of time profiles
for each intracellular metabolite:

(12)

The interval integrals are calculated by numerical
integration of the interval polynomial interpolation of the
second order over the discrete set of experimental data.
The interpolation and numerical integrations are evaluated

by the corresponding algorithms provided by Wolfram
Research Mathematica.15 For this case, with 10 metaboli-
tes, and 30 intervals of integration, the dimensions of the
system eq. (12) are: Y =Y(300 x 1), A = A(300 × 86), and
b = b(86 × 1). The system is over-determined, there are

300 equations with 86 unknowns, and can be solved in the
sense of the least squares method (LS). In a case when the
“covariance” matrix is non-singular, the minimum varian-
ce yields a unique solution:

(13)

and in this work pseudoinversion method is applied, i.e.
when a case of poorly conditioned systems often occurs, a
solution should be found based on singular value decom-
position (SVD) with account of elimination of “small”
and insignificant eigenvalues which have a pronounced
effect on amplification of numerical and measurement er-
rors on parameter estimation. In order to cut-off the insig-
nificant eigenvalues, the tolerance condition, defined as
the ratio between the acceptable smallest and the maximal
eigenvalue, is used provided by Wolfram Research Mathe-
matica algorithm for PseudoInverse algorithm15:

(14)

The tolerance is the ratio between the larges and the
smallest eigenvalue included in the SVD algorithm. Here
is applied the value of β = 0.01 based on a reason that nu-
merical accuracy is for a factor better than experimental
error in data. The obtained solution minimizes the Eucli-
dian norm of the model error:

(15)

Alternatively, the same modeling approach can be

(9)

(10)
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set in the frame of decoupled equations with provided es-
timates of the derivatives rather than interval integrals
(Voit and Almeida, 2004).17 This leads to a significant
simplification in parameter estimation, especially for lar-
ge biochemical networks, but the numerical burden of pa-
rameter estimation and instability is shifted from estima-
tion kinetic parameters to estimation of derivates. 

3. Results and Discussion

Results of the Lin-log model are depicted in Fig.
2–6. and the parameters are given in Table 1. In calcula-
tion of the parameters, the enzyme activities and elastici-
ties, the median values of the corresponding intracellular
concentrations are taken as the reference states. In discus-
sion are included results obtained by A. Tu{ek and @. Kur-
tanjek on the global parametric sensitivity of the Mic-
haels-Menten model based on Fourier Amplitude Sensiti-
vity Test (FAST) method.16

Fig. 2. Glucose-6-phosphate (G6P) response to the external gluco-

se impulse (G). The extracellular impulse is depicted with a dashed

line, the experimental data for intracellular glucose-6-phosphate

are given by symbols and the Lin-log model prediction by a conti-

nuous curve.

Linlog rate  r / mmol L–1 s–1 Elasticities εε/ s–1

A1 = 1.35106

ε pts
GLC = 0.6817

ε pts
G6P = –1.736

ε pts
PEP = –0.0782

A2 = 0.40706

ε pgi
GLC = –0.4269

ε pgi
F6P = –2.85709

A3 = 1.48104

ε pfk
F6P = 0.043449

ε pfk
PBP = –0.87217

ε pfk
PEP = –0.19324

ε pfk
ATP = –0.274505

ε pfk
ADP = –0.1278905

A4 = –1.2104

ε FBPase
FBP = 1.06718

A7 = 1.34993

ε GAP
gappep = 0.60028

ε NAD
gappep = 0.3639603

ε ADP
gappep= 0.29365

A8 = 0.491559

ε pyk
PYR = 0.25725

ε pyk
G6P = 1.90026

ε pyk
C5P = –1.608228

ε pyk
PEP = –0.01727

ε pyk
ADP = –1.38766

ε pyk
ATP = –0.2027

A23 = –1.12469

ε PEP
pepck = –0.61872

ε OAA
pepck = 0.68556

Table 1. Evaluated elasticities of the fluxes derived from Lin-log kinetics.
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In Fig.2. are given the experimental data for the ex-
tracellular glucose step impulse from glucose starvation
to a saturation and the intracellular glucose 6-phosphate
(G6P) response during first 12 seconds. Scatter of the ex-
perimental data is significant due to complexity and in-
terference effects involved in on-line intracellular assay.
The result implies initially very high activity of phospho-
transferase system (PTS) leading to fast establishment of
intracellular glucose equilibrium at average concentra-
tion of 1 mmol L–1. Prior to the impulse, for “negative” ti-
me the intracellular concentration is practically zero, and
after the impulse saturation is established during the first
second. PTS is activated by extracellular glucose, yiel-
ding ε pts

GLC = 0.6817 s–1. The negative feedback mecha-
nism for PTS regulation is due to the role of G6P which is
revealed by the high negative elasticity ε pts

G6P = –1.736 s–1.
The result ε pts

GEP = –0.0782 s–1 shows negligible effect of
phosphoenolpyruvate (PEP) on PTS, which could be ex-
plained that PEP needed for PTS is readily available by
reactions from the network metabolites, supported by the
initial high concentration of PEP 1.1 mmol L–1 prior to
perturbation by the impulse, Fig. 5. 

Responses of F6P, the experimental and the lin-log
model, are depicted in Fig. 3. There is a time delay of 0.5
s. after the perturbation during the first 2 s. the concentra-
tion shoots up to the maximum level of 1.4 mmol L–1,
which afterwards oscillatory relaxes to average 1.4 mmol
L–1. The influx to F6P pool, depicted as r2 in Fig. 1., is re-
gulated through negative feedback of the external glucose
and F6P. The dominant effect is due to F6P implied by the
estimated corresponding elasticities ε pgi

GLC = –0.4269 s–1

and ε pgi
F6P = –2.85709 s–1. The oscillatory behavior infer-

red from the scatter of the experimental data is also pre-
dicted by the lin-log model.

The response of fructose1,6-biphosphae (FBP), pre-
sented in Fig. 4., shows qualitatively different behavior.
Initial concentration is at maximum level 2.7 mmol L–1 is
decreasing to a lower 2.3 mmol L–1. The time delay in the

perturbation is more pronounced, and is about 2.5 s. Ba-
sed on the FAST analysis is concluded that the key control
is exerted by PEP on phosphofructokinase (PFK). Howe-
ver, the Lin-log model implies distributed negative feed-
back effects by F6P, FBP, PEP, ATP, and ADP, with the
corresponding elasticities: ε pfk

F6P = 0.043449 s–1, ε pfk
FBP =

–0.87217 s–1, ε pfk
PEP = –0.19324 s–1, ε pfk

ATP  = –0.274505 s–1,
and ε pfk

ADP  = –0.1278905 s–1. The reverse flux is positively
regulated by FBP with ε FBPase

FBP = 1.06718 s–1. 

The immediate response to the impulse by PEP is
shown in Fig. 5. Decrease from the initial PEP concen-
tration 1.1 mmol L–1 to the minimum of 0.1 mmol L–1

occurs during PTS, and afterwards relaxes through oscil-
latory response to a previous level. Qualitatively and nu-
merically the Lin-log model predicts the same behavior.
The in-flux to PEP pull, denoted as r7 in Fig. 1, is positi-
vely activated by GAP, NAD and ADP with correspon-
ding elasticities: ε GAP

gappep = 0.60028 s–1, ε NAD
gappep =

0.3639603 s–1, and ε ADP
gappep = 0.29365 s–1. The second inf-

lux to PEP is revealed through negative enzyme activity

Fig. 3. Fructose-6-phosphate response to the glucose impulse. The

experimental data are depicted by symbols and the Lin-log model

prediction by a curve.

Fig. 4. Fructosebiphosphat response to the glucose impulse. The

experimental data are depicted by symbols and the Lin-log model

prediction by a curve.

Fig. 5. Phosphoenolepyruvate response to the glucose impulse. The

experimental data are depicted by symbols and the Lin-log model

prediction by a curve.
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A23 = –1.12469 of the flux from oxaloacetate OAA to
PEP. It is due to the modeling assumption of a single no-
nreversible flux toward TCA cycle. However, due to the
external glucose perturbation the sudden needed for PEP
to facilitate PTS reverses the flux, leading to the negati-
ve estimation of the enzyme activity. The negative value
should be interpreted as a product of the negative stoic-
hiometric coefficient and the positive activity. The flux
is positively activated by OAA and negatively regulated
by PEP with the estimates for elasticities ε OAA

pepck =
0.68556 s–1, ε PEP

pepck = –0.61872 s–1.
However, the model limitations are illustrated by

inadequate predictions of concentration of C5P pool, Fig.
6. The model fails to predict the oscillatory behaviour and
the errors between the experimental data and the model
show systemic error. One of the possible reasons for the
negative results is due to the large amplitudes which con-
tradict the fundamental property of lin-log model being li-
mited to relatively small variations. In other words, Lin-
log kinetics is applicable for modeling kinetic responses
to limited perturbations around steady states leading to
prediction of a behavior which is represented as a combi-
nation of exponential decay patterns. For prediction of the
observed oscillatory response essential nonlinear kinetics
and/or transport delays possibly need to be accounted in a
model. 

Comparison of the prediction errors by Lin-log and
Michaelis-Menten model9,16 leads to conclusion that the
both models have large errors, average relative error is in
order of about 25%. Most of the experimental data disper-
sions and deviations from the model predictions are due to
sampling and analytical errors during the rapid on-line in-
tracellular assay. However, the main advantage of the met-
hod is the numerical simplicity of Lin-log and direct eva-
luation of elasticities which provides a significant advan-
tage over models based on nonlinear Michael-Meneten ki-
netics.

4. Conclusions

Presented is a method of the Lin-log modeling for a
complex metabolic network. The models are expressed by
the enzyme activities and elasticities of the metabolic flu-
xes. The balances are transformed to a set of linear equa-
tions which are solved by the singular value decomposi-
tion. In order to reduce the sensitivity of estimates of the
model parameters to experimental and numerical errors
applied is pseudo inversion with a cut-off eigenvalue
threshold at the level of 0.01.

The proposed procedure is illustrated by the Ling-
log modeling of E. coli central metabolism transients un-
der large perturbation during a shift from glucose starva-
tion to glucose saturation by a step impulse. Although the
level of perturbation is large, the Lin-log modeling captu-
red the main features of the transients, especially for the
key glycolytic metabolites. However, the model failed to
predict response of the relatively “distant to glycolysis”
metabolites, for example for the C5P pool. The model er-
rors are greatly affected by dispersion of the experimental
data due to errors in sampling and on-line rapid intracellu-
lar composition measurements. 

The main advantages of Lin-log models are in sim-
plicity of the modeling procedure and direct evaluation of
enzyme activities and flux elasticities.

Based on the estimated elasticities are determined the
key flux regulation metabolites. The presented methodo-
logy may be potentially applied for rational planning of re-
structuring of metabolic networks by genetic engineering.
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Povzetek
Za analizo kompleksne regulacije biokemijskih reakcij kot bistvene lastnosti metabolizma se uporabljajo matemati~ni

modeli ki opisujejo dinamiko metabolnih poti. V raziskavah analize regulacije centralnega metabolizma Escherichia co-
li smo uspe{no uporabili aproksimativni linearno-logaritmi~ni (Lin-log) kineti~ni model, ki omogo~a direktno dolo~itev

elasti~nosti hitrosti reakcije, ki je klju~ni parameter pri analizi metabolne regulacije (metabolic control analysis MCA).

Rezultati so predstavljeni v obliki vrednosti encimskih aktivnosti in elasti~nosti hitrosti. S pomo~jo teh dveh parametrov

je bil omogo~en vpogled v regulacijo metabolnih fluksov. Primerjava rezultatov simulacije z Lin-log in Michaelis-Men-

ten modeloma sta pokazala, da so odstopanja istega reda velikosti. 


