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Abstract
It has long been demonstrated that the level of cholesterol in cells regulates the cholesterol biosynthesis through SREBF
transcription factors, but lately it has been shown that other factors are also important. To study the system we employed
Bayesian network inference and combined it with mathematical modeling and simulation. We constructed a mathemat-
ical model of cholesterol biosynthesis and studied its properties through simulation. We measured transcriptional
changes of cholesterogenic genes using the Steroltalk microarray and treated human hepatocyte samples. We employed
Bayesian inference to identify gene-to-gene interactions from both microarray measurements and simulated data. The
inferred networks show that the expression of cholesterogenic genes can be predicted from the expression of 4 key
genes, one of them being SREBF2. Networks also indicate a strong interaction between SREBF2 and CYP51A1, but not
between SREBF2 and HMGCR, the rate-limiting enzyme of cholesterol biosynthesis. The expression of HMGCR seems
to be regulated by other factor(s). Computer simulations of the mathematical model of cholesterol biosynthesis exposed
that a large number of perturbations of the system is critical for identification of gene-to-gene interactions, and that dif-
ferences between human individuals (biological variability) and measurement noise (technical variability) pose a seri-
ous problem for their automatic inference from DNA microarray data.

Keywords: Functional genomics, systems biology, gene interaction network, Bayesian inference, mathematical model-
ing and simulation, human cholesterol biosynthesis

1. Introduction
Cholesterol biosynthesis is an anabolic pathway in

which a cholesterol molecule is built from acetyl-CoA
through more then 20 reactions (Figure 1). It takes place
in almost all cell types and involves numerous enzymes
from different protein families. It is composed of two con-
secutive phases, the isoprenoid biosynthesis forming
squalene, and the post-squalene phase resulting in choles-
terol. It has long been demonstrated that the level of cho-
lesterol in cells regulates the cholesterol biosynthesis by
the negative feedback loop involving SREBF (sterol regu-
latory element binding factor) in signaling pathway.1,2

SREBFs are membrane bound transcription factors,

which are cleaved when cholesterol is limited. The DNA-
binding portion of the SREBF protein is then transported
to the nucleus, where it binds to sterol regulatory DNA el-
ements in promoters of responsive genes and activates
their transcription. The level of cholesterol in the cell de-
termines the fate of SREBF: more cholesterol blocks the
cleavage, less cholesterol results in SREBF cleavage and
up-regulation of genes involved in cholesterol biosynthe-
sis. However, SREBFs may not be the only transcription
factors involved in control of biosynthesis. For example,
the cAMP signaling pathway has been documented to
control cholesterol biosynthesis in certain physiological
conditions.3,4 Additionally, TNFα might also have an ef-
fect on the cholesterol homeostasis.5
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The aim of this study was to combine tools from
functional genomics and systems biology for identifica-
tion of control mechanisms involved in expression of
genes encoding enzymes of the cholesterol biosynthesis.
The expression of cholesterogenic genes has been meas-
ured in primary hepatocytes of seven human individuals
using the Steroltalk v2 microarray.6,7 The hepatocytes of
each individual were treated with three xenobiotic sub-
stances. Automatic network inference approach was em-
ployed for discovery of interaction between genes. In par-
allel, a mathematical model of cholesterol biosynthesis
was constructed and used for simulation of the expression
of cholesterogenic genes under various experimental con-
ditions. Gene interaction network identified from the
measured data was compared to the networks identified

from the simulated data and effects of various experimen-
tal conditions were studied in silico. The structure of the
mathematical model was adjusted according to data from
microarray measurements.

2. Methods

2. 1. Microarray Experiments 
and Data Processing

Human hepatocytes isolated from 7 individuals
were treated with rifampicin, a typical activator of the
pregnane X receptor (PXR), rosuvastatin, a well known
cholesterol lowering drug, and LK935, a novel cholesterol

Figure 1. Schematic view of cholesterol biosynthesis in human (adapted from BioCyc Database Collection, http://biocyc.org). Gene names are list-
ed in Table 1 in Supplement. FF-MAS: follicular fluid-meiosis activating sterol, T-MAS: testis meiosis-activating sterol.



lowering drug-candidate (Lek Pharmaceuticals d. d.,
Ljubljana, Slovenia)8 for 12, 24 and 48 hours (experimen-
tal details are to be published elsewhere). All cell cultures
were grown for the same period of time in parallel with
untreated cultures (control) and harvested simultaneously.
RNA was isolated and hybridized to Steroltalk v2 micro-
array6,7 using a common reference design. Arrays were
scanned using a Tecan LS200 scanner (Tecan Group Ltd.,
Maennedorf, Switzerland) and images were analyzed us-
ing Array-Pro Analyzer v.4.5 software (Media Cyberne-
tics, Bethesda, MD, USA).

Gene expression data was normalized using Orange9

normalization widget as follows. First, spots with the inten-
sity below 1.5 of the intensity of a local background or be-
low 2 standard deviations of a local background were re-
moved. Next, data from Lucidea Universal ScoreCard
(Amersham Biosciences, GE Healthcare UK limited, Little
Chalfont, UK) ratio spike-in controls were adjusted accord-
ing to their expected ratios between Cy3 and Cy5 dyes.
These controls, together with Lucidea Universal ScoreCard
calibration controls, were used to fit LOWESS normaliza-
tion curve.10 The expression values of non-filtered genes
were adjusted according to that normalization curve. Data
from within-array replicated probes (3 per gene) were
merged using median, thus removing potential outliers.

For each treatment a maximum treatment effect was
assessed by comparing expression values from untreated
samples to those from samples treated for 12, 24 and 48
hours. For Bayesian network inference, only the expres-
sion values from untreated samples and those representing
maximum treatment effect were considered, thus remov-
ing potential statistical dependencies between consecutive
expression measurements. Changes in gene expression as
response to different compound administration were com-
pared to those contributed to differences between individ-
uals. As Spearman correlation coefficients between ex-
pression profiles of different individuals (0.408 ± 0.144, n
= 21) was significantly lower (two-tailed t-test, p =
0.0013) than the correlation between various treatments
(0.675 ± 0.183, n = 6), the differences between individuals

were assumed large enough to represent divergent and in-
dependent instantiations of the observed biological sys-
tem. Thus the expression profiles were considered indi-
vidually. Missing values in data were estimated from the
expression measurements of other genes using k-nearest
neighbors algorithm11 with k set to 10 and using a tricubic
weighting scheme. The expression profiles of individual
genes were discretized using three intervals of equal
length, thus reducing noise in the data.

2. 2. Bayesian Network Inference

Using Banjo,12 we employed steady-state Bayesian
network inference13 of interactions between genes in-
volved in cholesterol biosynthesis that are present on the
Steroltalk v2 microarray: CYP51A1, DHCR24, DHCR7,
EBP, FDFT1, FDPS, HMGCR, HMGCS1, HSD17B7,
IDI1, LSS, MVD, MVK, NSDHL, PMVK, SC4MOL,
SC5DL and SQLE (for gene names see Table 1 in Supple-
ment). Additionally, we considered expression of gene
SREBF2 which is most actively involved in the regulation
of the above-listed genes. We used simulated annealing to
search for the most probable network and evaluated the
networks using Bayesian-Dirichlet scoring metrics.14

Considering data from all of the above-listed genes, the
straightforward inference approach resulted in many struc-
turally-different networks with equal scores, thus making
it impossible to select the most probable one. Dealing with
too many variables (n = 19) for the given number of meas-
urements (m = 4* 7 = 28 considering 4 treatments, includ-
ing control, and 7 individuals) this was an expected result.

We therefore employed model averaging approach15

to estimate the significance of interactions between genes
and constructed BNs considering only the most relevant
interactions. The approach exploits the fact that the most
probable BN can be found relatively quickly (within few
seconds) if the number of variables (genes) is small
enough. From the above-listed genes, we generated all
possible subsets of 5 genes, thus considered each pair of
genes within different data environments composed of all
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Table 1. Experimental results (real) in compare with simulated data (sim) for several treatments. For simulated data, peak or trough value of the
corresponding metabolite data is presented. Treatments were simulated by reducing the levels of targeted enzymes. Compounds 5d, 5j, 4c and 12a
are described by Koro{ec et al., 2007.8

relative-to- cholesterol desmosterol 7-dehydro lathosterol FF-MAS lanosterol
normal cholesterol 
values + zymosterol
treatment real sim real sim real sim real sim real sim real sim
atorvastatin 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
rosuvastatin 0.3 0.3 0.6 0.4 0.5 0.4 0.4 0.3 0.4 0.3 0.0 0.1
comp. 5d 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 6.2
comp. 5j 0.1 0.1 0.0 0.1 1.0 1.1 0.5 0.5 2.5 2.4 1.0 1.1
comp. 4c 0.2 0.0 0.1 0.0 2.0 1.7 0.9 0.7 3.7 3.6 1.3 1.5
comp. 12a 0.0 0.1 0.0 0.1 1.0 1.1 0.1 0.1 6.5 5.9 1.0 1.1
high-fat diet – 3.0 – 0.1 – 0.1 – 0.1 – 0.1 – 1.0
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possible combinations of three other genes. Note that the
number of such subsets equals n!/r!(n-r)! with n and r cor-
responding to the number of genes and a subset size, re-
spectively (considering 19 genes there are 11628 subsets
of 5 genes). For each subset we searched for the most
probable Bayesian subnetwork, which resulted in a single
best-scoring solution. Considering all inferred subnet-
works we analyzed the frequencies of discovered gene-to-
gene interactions and their influence scores (IS), which,
where assigned, indicate whether the influence is either
positive or negative and its relative magnitude ranging
from 0 (lowest) and 1 (highest). Cause-effect relationship
between variables (genes) often cannot be determined un-
ambiguously16 resulting in interactions contradicting in
the direction of the influence, but not in its sign; we there-
fore constructed undirected networks and computed rela-
tive frequencies of interactions irrespectively of directions
of influences (EF: edge frequency) and corresponding fre-
quencies of IS assignments, mean IS scores and their de-
viations from the mean. We selected only the most fre-
quent interactions (EF filtering criterion) and presented
them on edges of an undirected network.

We visually inspected the networks and compared
them to each other on the basis of individual interactions
and their structural complexity. We estimated structural
complexity of the networks from the number of key ge-
nes, i.e. genes representing a minimal set of genes whose
expression needs to be known in order to predict the ex-
pression of other genes in a network. To predict expres-
sion of a gene from the expression of all genes that are
connected to that gene must be known. Although key
genes often cannot be identified uniquely, they can be
counted; their smallest number indicates the complexity
of the considered expression data, thus implying on the
number of the transcription factors involved in regulation
of genes being considered. From structural complexity of
the networks we reasoned about the complexity of the
modeled system.

2. 3. Mathematical Model 
of Cholesterol Biosynthesis
A model of cholesterol biosynthesis was constructed

using the data from literature17,18 and structural informa-
tion of the involved substances (KEGG, Biosynthesis of
steroids – Reference pathway, http://www.genome.jp
/kegg/pathway/map/map00100.html) with the purpose to
study the interplay between metabolites, proteins, and
genes that are involved in cholesterol biosynthesis as well
as the effect of drugs on cholesterol biosynthesis. The
model is based on non-linear differential equations that
represent the dynamics of enzyme reactions, as well as
biochemical and gene expression feedback mechanisms.
Regulation of enzyme levels in the model is achieved in
two ways. On the biochemical level, enzymes are regulat-
ed with reduction of active enzyme levels when choles-

terol is raised above its physiological level.19 Gene ex-
pression in the model is regulated by SREBF2 protein.
The levels of active or cleaved SREBF2 are regulated by
the levels of cholesterol and other sterols, such as desmos-
terol, and oxysterols, such as 25-hydroxycholesterol, 27-
hydroxycholesterol, and 7-hydroxycholesterol.20,21 The
level of active SREBF2 in turn regulates the expression of
cholesterogenic genes.

Pre-lanosterol pathway is generally a single-track
pathway with one significant branch leading towards co-
enzyme Q. Thus the pathway can be reduced to only a few
key metabolites and the rest can be grouped together as
single metabolites without significantly affecting dynami-
cal characteristics of the model. Post-lanosterol pathway,
however, consists of many parallel tracks. In physiologi-
cal conditions, only the most important track is active,
therefore post-lanosterol pathway can also be simplified
similarly to the pre-lanosterol one. Grouping of metabo-
lites also implies grouping of proteins that catalyze reac-
tions between them as well as of genes that encode these
proteins. The model structure operates with the following
protein and gene groups: E1 (IDI1, FDPS, GGPS1,
FDFT1, SQLE and LSS), E2 (LBR, SC4MOL, NSDHL,
HSD17B7 and EBP), and E5 (MVK, PMVK and MVD).
For a single metabolic pathway with no branches, all
genes of the pathway should be commonly regulated in
order to prevent high accumulation of intermediates.
Grouping of commonly regulated genes into single enti-
ties thus represents a simplification of the model that does
not affect model dynamics significantly.

The model as composed in Dymola22 is presented in
Figure 2. It was validated against experimental data pre-
sented by Koro{ec et al., 20078 and adjusted accordingly,
introducing negative biochemical feedback of lanosterol
on HMGCR (described also by Song et al., 200523), and
negative biochemical feedback of 7-dehydrocholesterol
on CYP51A1 activity (not confirmed by the literature).
Validation results are shown in Table 1 together with high-
fat diet simulation, which showed shut-down of choles-
terol biosynthesis in the model.

3. Computer Simulation 
of Gene Expression Data

Computer simulation of the mathematical model
was used to predict expression of cholesterogenic genes
mimicking the experimental conditions of the conducted
microarray measurements. Different experimental factors
were considered and their effect on interactions between
genes was studied. The following factors were consid-
ered: treatments with various compounds, measurement
noise and differences between individuals. In simulation
experiments, mRNA levels of genes/gene groups were
sampled at 12 h, 24 h, and 48 h after xenobiotic adminis-
tration in accordance with design of microarray experi-



ments and the value with maximum deviation from the
initial value (representing the starting time point) was se-
lected to represent the simulated response of each gene.

Treatments were simulated by blocking or inducing
the expression of proteins and transcription factors as a re-
sponse to administration of different compounds. First, ef-
fects of the three compounds administered ex vivo were
simulated: rifampicin by activating PXR24 (in the model
simulated as reduction of bile acid synthesis through inac-
tivation of SREBF2 transcription factor), rosuvastatin by
blocking HMGCR25, and LK935 by inhibiting
CYP51A1.8 Next, hypothetic compounds were simulated
by blocking E1, E2, E5, SC5DL, DHCR7, DHCR24 and
active form of SREBF2, respectively. Thus simulated data
from up to 10 different perturbations of the system was
obtained. Measurement noise was simulated by adding
Gaussian noise to the mRNA levels of genes with zero
mean and relative standard deviation (RSD) up to 5% us-
ing pseudorandom number generator. The level of noise
was selected in accordance to the technical variability in
the performed microarray measurements. Simulations
were repeated for 7, 20 and 100 times, thus producing da-
ta similar to performing 7, 20 and 100 technical replica-
tions of gene expression measurements.

Differences between individuals were simulated by
perturbing parameters of the model describing respon-
siveness of genes to mature nuclear SREBF2 protein level
changes (mRNAmax) and the rate of drug metabolism (ke).
Originally, all model parameters were set to arbitrary val-
ues that resulted in stable model responses, with time con-
stants providing peak response at approximately 24 h. For
each gene, pseudorandom number generator was used to
vary values of mRNAmax and ke using normal distribution
with mean equal to their original values and 1% RSD for
mRNAmax and up to 50% RSD for ke. Other parameters of
the model were kept constant since they showed limited or
no effect on gene expression. Simulations were repeated
for 7, 20 and 100 times, thus producing data similar to as
performing 7, 20 and 100 biological replications of gene
expression measurements. All simulations were repeated
under identical conditions, but using a different seed to
initialize a pseudorandom number generator. The repro-
ducibility of the identified gene-to-gene interactions was
judged by visual inspection of the inferred networks. The
selected noise levels and inter-individual variability re-
sulted in simulated data for which similar Spearman cor-
relation coefficients between different individuals and
treatments were observed as for the measured data.
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Figure 2. A simplified mathematical model of cholesterol biosynthesis. Black blocks represent metabolites (squares), enzyme reactions (circles)
and metabolite sources (triangles). Dark grey blocks represent enzymes (large squares), their biochemical control (triangles and small squares), and
enzyme production regarding gene expression (circles). White blocks represent gene expressions (squares) and their control (triangles). Light grey
blocks represent transcription factors (squares), their production regarding gene expression (circles), and their activation/inactivation (squares).
Gene names are listed in Table 1 in Supplement.
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Figure 3. Complete BN of cholesterol biosynthesis inferred from measured data using model averaging approach. Only interactions which appear
in all subnetworks of 4 genes are shown (filtering parameter EF = 0.99). Nodes represent genes (yellow for those involved in isoprenoid phase, blue
for those involved in post-squalene phase) and edges represent gene-to-gene interactions (green for positive interactions and black for interactions
of undeterminable sign). The numbers on edges show mean influence score (IS) and its deviation from the mean, and relative frequencies of inter-
action appearance (EF) and of IS assignment. For interactions of undeterminable sign only EF is shown. Gene names are listed in Table 1 in
Supplement.

Figure 4. Reduced BN of cholesterol biosynthesis inferred from measured data using model averaging approach with 5 genes and filtering param-
eter EF = 1.0. Genes were grouped in agreement with the mathematical model. See Figure 3 for explanation of the symbols. Gene names are listed
in Table 1 in Supplement.

4. Results

4. 1. Gene-to-Gene Interactions From
Measured Data

Figure 3 shows a BN of cholesterol biosynthesis con-
structed from the measured data using the model averaging
approach. Only the most frequent interactions, i.e., interac-
tions that appear within almost all subnetworks of 4 genes
(EF = 0.99) are shown. Increasing/decreasing the subset
size by one, only small differences in frequencies of less
frequent interactions were observed, but no changes in the
most frequent interactions (example not shown).

To enable comparison of the network inferred from
the measured data to networks inferred from the simulated
data we formed groups of genes in the same way as for the
mathematical model. We used median of measured ex-
pression values of genes within each group to represent
expression of individual groups. From that data we con-
structed a BN that is shown in Figure 4 (reduced model).
Comparison of the reduced and the complete BN reveals
the following correspondences between them: HMGCR-
SC5DL and SREBF2-CYP51A1 appear at 100% in both
models; SREBF2-E5 from the reduced model is represent-
ed by SREBF2-PMVK and SREBF2-MVD in the complete

model; SC5DL-E2 from the reduced model is represented
by SC5DL-SC4MOL in the complete model; HMGCR-E1
from the reduced model is represented by HMGCR-SQLE
in the complete model; and DHCR7-E1 from the reduced
model is represented by DHCR7-FDPS and DHCR7-LSS
in the complete model.

We examined the frequencies of interactions appear-
ing only in the reduced model (see Table 2 for frequencies
of interactions from the complete model which are not
shown in Figure 3): SREBF2-DHCR24 from the reduced
model appears at 88% in the complete model; both
DHCR7-E2 and SREBF2-E2 from the reduced model
have their counterparts in the complete model, of which
most frequent are DHCR7-NSDHL (90%) and SREBF2-
SC4MOL (78%), respectively. We also examined the fre-
quencies of interactions appearing only in the complete
model (see Table 3 for frequencies of interactions from
the reduced model which are not shown in Figure 4):
FDPS-EBP, LSS-EBP and IDI1-SC4MOL from the com-
plete model are represented by E1-E2 in the reduced mod-
el at 57%; HMGCR-HSD17B7 is represented by
HMGCR-E2 at 40%; HSD17B7-MVD is represented by
E2-E5 at 6%; MVD-DHCR24 is represented by E5-
DHCR24 at 29%; and MVK-SC5DL is represented by E5-
SC5DL at 40%.



Table 2. Gene-to-gene interactions from the complete BN of cho-
lesterol biosynthesis inferred from measured data using model av-
eraging approach. Columns represent interacting genes, mean in-
fluence score of their interaction (IS) and its deviation from the
mean, frequencies of interaction appearance (EF) and IS assign-
ment (IS freq). Only interactions that meet criterion 0.78 ≤ EF < 1.0
are listed.

Gene 1 Gene 2 mean IS ± st.dev. EF IS freq
CYP51A1 FDFT1 0.589 ± 0.094 0.852 0.426
CYP51A1 MVD 0.579 ± 0.269 0.86 0.559
DHCR24 DHCR7 0.474 ± 0.158 0.882 0.823
DHCR24 EBP 0.522 ± 0.000 0.986 0.978
DHCR24 SREBF2 0.721 ± 0.000 0.882 0.397
DHCR7 SC5DL 0.664 ± 0.000 0.86 0.566
EBP MVD 0.195 ± 0.170 0.875 0.022
FDFT1 SQLE 0.516 ± 0.230 0.89 0.486
FDPS DHCR24 0.362 ± 0.210 0.787 0.456
FDPS FDFT1 0.576 ± 0.524 0.875 0.765
FDPS NSDHL 0.556 ± 0.176 0.904 0.404
HMGCR FDFT1 – 0.963 –
HMGCR HMGCS1 0.111 ± 0.000 0.882 0.007
HMGCR IDI1 0.472 ± 0.463 0.926 0.912
HMGCR LSS 0.438 ± 0.173 0.868 0.559
HMGCR NSDHL 0.739 ± 0.084 0.883 0.412
HMGCS1 HSD17B7 0.718 ± 0.000 0.897 0.537
HMGCS1 IDI1 0.672 ± 0.109 0.971 0.596
LSS FDFT1 0.681 ± 0.283 0.882 0.875
LSS MVD 0.658 ± 0.058 0.824 0.824
NSDHL DHCR7 0.689 ± 0.153 0.904 0.714
NSDHL SC4MOL 0.159 ± 0.057 0.786 0.036
NSDHL SC5DL 0.683 ± 0.123 0.89 0.478
PMVK CYP51A1 0.857 ± 0.000 0.875 0.235
PMVK MVD 0.613 ± 0.127 0.801 0.265
SC4MOL HSD17B7 0.223 ± 0.099 0.86 0.044
SC4MOL MVK 0.775 ± 0.000 0.883 0.471
SC5DL CYP51A1 – 0.875 –
SC5DL HSD17B7 0.383 ± 0.000 0.875 0.404
SREBF2 MVK 0.786 ± 0.000 0.883 0.368
SREBF2 SC4MOL 0.158 ± 0.000 0.78 0.007
SREBF2 SC5DL – 0.882 –

Considering the fact that gene groups were formed
with no consideration of the measured expression levels,
we found the simplified mathematical model to be an ac-
ceptable approximation of the in vivo system and also ap-
propriate for simulation of the conducted microarray ex-
periments. The structural complexity of the reduced net-
work is 4, which is the number of key genes whose expres-
sion needs to be known in order to predict the expression
of other genes within that network. There are 5 possible
combinations of 4 key genes; though they cannot be identi-
fied uniquely, SREBF2 appears in all of the combinations.

4. 2. Gene Interactions From Simulated Data

We constructed BNs from expression data generated
by computer simulation of the cholesterol biosynthesis
model shown in Figure 2. Within this model, the expres-
sion of cholesterogenic genes is regulated solely by active

SREBF2 protein. Simulations of the following conditions
were considered:
a. Ideal: 10 treatments of a single individual through sim-

ulation of administration of different (existing and hy-
pothetical) compounds.

b. Noise: 7, 20 and 100 technical replications of gene ex-
pression measurements of a single individual treated
with rosuvastatin, LK935 and rifampicin by adding
Gaussian noise to mRNA levels (5% RSD).

c. Individuals: biological replications of gene expression
measurements of 7, 20, and 100 individuals treated with
rosuvastatin, LK935 and rifampicin by perturbing the
parameters mRNAmax (1% RSD) and ke (50% RSD) of
the model.

d. Realistic: biological replications of gene expression
measurements of 7, 20, and 100 individuals treated with
rosuvastatin, LK935 and rifampicin (similar to condi-
tion c, but using 30% RDS for ke) and accounting for
technical variability by adding Gaussian noise to mRNA
levels (similar to condition b, but using 3% RDS).

Similarly as for the measured data we employed the
model averaging approach and considered only the most
frequent interactions (EF = 1.0). According to the struc-
ture of the mathematical model where SREBF2 protein is
the only transcription factor and induces all genes of the
cholesterol biosynthesis,26 a BN of low structural com-
plexity was expected. Simulating ideal experimental con-
ditions (condition a: 10 treatments with no inter-individ-
ual differences or noise) resulted in complex network
structures such as shown in Figure 5 with large number of
key genes (6 for the network shown in Figure 5). This in-
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Table 3. Gene-to-gene interactions from the reduced BN of choles-
terol biosynthesis inferred from measured data using model averag-
ing approach. Columns represent interacting genes, mean influence
score of their interaction (IS) and its deviation from the mean, fre-
quencies of interaction appearance (EF) and IS assignment (IS freq).
Only interactions that meet criterion 0.058 ≤ EF < 1.0 are listed.

Gene 1 Gene 2 mean IS ± st.dev. EF IS freq
CYP51A1 DHCR24 – 0.572 –
CYP51A1 E1 – 0.114 –
CYP51A1 E2 – 0.285 –
CYP51A1 E5 0.757 ± 0.000 0.572 0.143
DHCR7 CYP51A1 0.638 ± 0.000 0.114 0.114
DHCR7 DHCR24 0.485 ± 0.084 0.714 0.714
DHCR7 SC5DL 0.664 ± 0.000 0.371 0.114
DHCR7 SREBF2 0.111 ± 0.000 0.058 0.029
E1 E2 – 0.571 –
E5 DHCR24 0.652 ± 0.000 0.285 0.114
E5 E2 0.649 ± 0.000 0.058 0.029
HMGCR DHCR7 0.124 ± 0.024 0.228 0.114
HMGCR E2 0.437 ± 0.000 0.4 0.086
SC5DL CYP51A1 0.167 ± 0.000 0.714 0.143
SC5DL E1 0.572 ± 0.000 0.2 0.114
SC5DL E5 – 0.4 –
SREBF2 SC5DL 0.329 ± 0.000 0.743 0.171
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dicates that though a single transcription factor regulates
the expression of all genes, the complexity of the modeled
system is high. Tests with fewer treatments (3, simulating
compounds administered ex vivo) resulted in networks of
a similar complexity (though often split into several high-
ly interconnected subnetworks), thus providing additional
evidence of the complexity of the modeled system.

Simulations with random noise (condition b) typi-
cally resulted in reduced number of connections and net-
work structures of low complexity such as the network
shown in Figure 6. For that network, only expression of a
single gene (E1) is required to predict the expression of
other genes. Increasing noise above 5% of mean mRNA
level resulted in networks reduced to a set of unconnected
genes. The simulations indicate that measurement noise
may hinder our ability to discover interactions between
genes solely from the expression measurements.

Simulations of random individuals (condition c)
typically resulted in structures similar to that shown in
Figure 7 where expression of 4 key genes (E1, E2, E5 and

SC5DL) is required to predict the expression of other
genes. Similarly to simulations with noise, increasing the
number of individuals results in a reduced number of con-
nections between genes compared to simulations of ideal
conditions. However, the number of key genes is not re-
duced so drastically as in the case of simulations of noise.
In case of exceeding differences between individuals, the
network is reduced to a set of unconnected genes similar-
ly to the case of exceeding noise. The simulations indicate
that inter-individual differences affect interactions be-
tween genes, but the effect is different from that of noise.
Yet it remains unclear whether the inter-individual differ-
ences may be exploited to substitute for a lack of suffi-
cient number of independent perturbations of the system.

4. 3. Structural Adjustment 
of the Mathematical Model
BNs inferred from simulation of the mathematical

model indicated that adaptation of its structure is required

Figure 5. BN of cholesterol biosynthesis inferred from simulation of 10 treatments (condition a) using model averaging approach with 5 genes and
filtering parameter EF = 1.0. See Figure 3 for explanation of the symbols. Gene names are listed in Table 1 in Supplement.

Figure 6. BN of cholesterol biosynthesis inferred from simulation of 3 treatments of a single individual and 100 technical replications (condition
b) using model averaging approach with 5 genes and filtering parameter EF = 1.0. See Figure 3 for explanation of the symbols. Gene names are list-
ed in Table 1 in Supplement.



in order to generate BNs similar to the one inferred from
the measured data. As SREBF2 may not be the only tran-
scription factor interfering with gene expression of cho-
lesterol biosynthesis, we considered expanding the model
with other biological regulatory mechanisms. Correlation
coefficients (Spearman r) between the measured expres-
sions levels of the observed genes (data not shown) indi-
cate that HMGCR, E1 and E2 may be regulated different-
ly from the remaining genes. We therefore presumed that
an additional transcription factor regulates the three
above-listed genes/gene groups and that this factor was
activated during the conducted biological experiments.
Simulation experiments showed that this factor is not di-
rectly influenced by cholesterol, but possibly by some of
the intermediates or other signaling pathways related to
cholesterol biosynthesis. Thus, a hypothetical transcrip-
tion factor T1 regulating expression of HMGCR, E1 and
E2 was introduced to the model.

Simulations of 100 random individuals with noise
(condition d) using structurally adjusted model resulted in
a network shown in Figure 8. Comparing the structure of
that network to the network inferred from the measured
data (Figure 4), both networks have similar connections
between genes and the same number of key genes.
SREBF2 is the most inter-connected gene (4 and 5 con-
nections in the measured and the simulated network, re-
spectively). Expression of CYP51A1 can be predicted
solely from the expression of SREBF2. SREBF2,
CYP51A1, E2 and E5 are interconnected in the same way;
they are also connected to both SC5DL and DHCR7,
though the pathway is mediated by E2 in the measured
and by SREBF2 in the simulated network, respectively. In
the latter model, an additional connection between
SC5DL and E5 appears. Similar is also the interaction be-
tween HMGCR and E1. Among the differences the most
noticeable is the connection between HMGCR on one
hand and SREBF2/CYP51A1 on the other. In the meas-
ured network, that pathway is mediated by E2, while in
the simulated network it is mediated by E1.

Structural complexity of both networks is similar:
expression of 4 key genes is needed to predict expression
of all other genes, and there are 5 possible combinations

of 4 key genes with SREBF2 appearing in all of them. In
the measured network, E2, E1, HMGCR, SC5DL and
DHCR7 appear in three of the combinations of key genes,
while in the simulated network, E1 in appears in four, E5
and DHCR24 in three, DHCR7 in two, and HMGCR and
SC5DL in one combination of key genes.

5. Discussion

To study the system of cholesterol biosynthesis, we
used primary human hepatocytes and treated them with
different compounds to perturb the system in different
ways. We measured the expression of cholesterogenic
genes using the Steroltalk v2 microarray6,7 and used
Bayesian inference approach to infer interactions between
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Figure 7. BN of cholesterol biosynthesis inferred from simulation of 3 treatments of 100 individuals (condition c) using model averaging approach
with 5 genes and filtering parameter EF = 1.0. See Figure 3 for explanation of the symbols. Gene names are listed in Table 1 in Supplement.

Figure 8. BN of cholesterol biosynthesis inferred from simulation
of 3 treatments of 100 individuals (condition d) using the struc-
turally adjusted model. Inference was made using model averaging
approach with 5 genes and filtering parameter EF = 1.0. See Figure
3 for explanation of the symbols. Gene names are listed in Table 1
in Supplement.
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genes. Experimental data only allowed for steady-state
BN inference due to measurements at only few time
points at which microarray measurements were performed
and slow sampling rate.27 Low number of the performed
perturbations represented an additional obstacle for infer-
ence of a reasonable model of cholesterol biosynthesis
from the data alone. We therefore took a more knowledge-
able approach and explored the possibility of adjusting a
literature-based mathematical model of cholesterol
biosynthesis according to the gene expression data. We
identified gene interaction networks from the measured as
well as from the simulated data using Bayesian inference
and the model averaging approach. We compared the two
networks in order to study effects of different experimen-
tal conditions in silico and to structurally adjust the math-
ematical model according to the gene expression meas-
urements. In simulations, the design of the conducted mi-
croarray measurements was considered and different pa-
rameters of the model were perturbed to mimic the real
experimental conditions.

Within the space of all possible gene interaction net-
works of cholesterol biosynthesis, which is too large to be
examined exhaustively, Bayesian inference relies upon a
heuristic search,15 thus resulting in a near-optimal solution
consisting of interactions of which some are important,
other spurious. The straightforward inference approach
lacks a mechanism for estimation of confidence in inter-
actions; we therefore resorted to the model averaging ap-
proach and estimated frequencies of their appearance con-
sidering different subsets of genes. Decreasing the num-
ber of genes considered at a time reduces the search-space
of possible structures, which can consequently be exam-
ined exhaustively within a reasonable amount of time. The
approach is different from the bootstrap method28 em-
ployed by Friedman et al., 200015 – while their aim was to
assess a reasonable model of the data, our was rather to
focus on the most confident interactions in order to com-
pare the networks from the simulated data to the one from
the measured data. One might argue that the proposed ap-
proach is limited to interactions appearing within a con-
text of a limited number of genes. A similar limitation ex-
ists within all practical implementations of BN inference
algorithms: due to computational efficiency the inference
is limited by the number of interactions a single gene may
receive. However, the model averaging approach inherent-
ly overcomes this limitation by considering each gene
within a context of all possible combinations of other
genes, though for that reason the frequencies of interac-
tions may be underestimated.

Simulations with the initial mathematical model re-
sulted in many different networks of which some exam-
ples are shown in Figures 5–7. Simulation of a large num-
ber of treatments (condition a) resulted in highly-intercon-
nected network (Figure 5) indicating high complexity of
the modeled system. Tests with different number of treat-
ments showed that their sufficient number (i.e., the num-

ber of independent perturbations of the system) is critical,
especially if the underlying system is a complex one, and
that even a small increase in their number is beneficial.
Either adding noise (condition b) or introducing inter-in-
dividual differences (condition c) resulted in a reduced
number of connections and reduced network complexity
(see Figures 6–7), though the complexity was less affect-
ed by inter-individual differences than by noise. Overall,
the simulations revealed several facts which can be used
for planning future experiments. Measurement noise hin-
ders our ability to discover interactions between genes,
therefore technical variability of microarray measure-
ments must be kept as low as possible. Though inter-indi-
vidual differences affect interactions between genes, their
effect is quite different from that of measurement noise.
Further simulation studies would need to be performed to
reveal whether inter-individual differences may be ex-
ploited in order to improve the inference of interactions
between genes and potentially substitute for insufficient
number of perturbations of a system.

Our inability to achieve an exact match between the
simulated and the measured BNs indicates that the struc-
ture of the measured BN is influenced by measurement
noise and large variability between the individuals in-
volved in the study, which is obstructing our ability to in-
fer the gene-to-gene interactions of the observed biologi-
cal system. The differences between BNs from the meas-
ured and simulated data may also be due to simplification
of the mathematical model by forming groups of genes
E1, E2 and E5. In case of genes within a group being reg-
ulated differently from each other, those with stronger
regulation will prevail and consequently the gene group
will connect to other genes differently as the genes them-
selves would, resulting in the observed differences be-
tween the networks. Therefore in future studies dealing
with expression of individual genes instead of gene
groups should be considered, accounting for the fact that
increased number of variables will result in substantial in-
crease of computational complexity.

Since active SREBF2 protein regulates expression
of cholesterogenic genes as well its own expression,29

our question was whether SREBF2 mRNA levels could
be a marker for the level of active protein and hence the
expression of cholesterogenic genes. BNs of cholesterol
biosynthesis constructed from the measured (Figure 4)
and simulated data (Figure 8) indicate that knowing
solely the expression of SREBF2 is not sufficient for pre-
dicting the expression of other genes. In fact, expression
of a minimum 4 key genes is needed in order to predict
the expression of all remaining genes. However, in both
networks SREBF2 is always one of the 4 key genes.
Looking at the measured and simulated networks we can
generate 5 different combinations of key genes from
which one combination is in common: SREBF2, SC5DL,
DHCR7 and E1. BNs from the measured and simulated
data showed persistent connection between SREBF2 on



one side and CYP51A1, E5 and E2 on the other. Yet
HMGCR and E1 are never directly connected to
SREBF2, but rather interconnected. This indicates that
expressions of CYP51A1, E5, E2, and SREBF2 are simi-
larly regulated, while expressions of HMGCR and E1 are
regulated by other factors. This was also taken into ac-
count for structural adjustment of the mathematical
model: a hypothetical transcription factor T1 regulating
HMGCR, E1 and E2 had to be included in order to ob-
tain a network more similar to the one inferred from the
measured data. We were not able to determine which
metabolite(s) may regulate the hypothetical factor ex-
cept that it must be either an intermediate in cholesterol
biosynthesis or a metabolite of cholesterol. In simula-
tions, if the factor was regulated by metabolites that
were not closely related to cholesterol biosynthesis, the
resulting BN was split into two interconnected groups of
genes, which was not the case if metabolites from the
cholesterol biosynthesis pathway were involved in the
regulation. It also remains unclear why the factor would
affect expression of genes which are not consecutive en-
zymes in the biosynthetic pathway (i.e., HMGCR, E1
and E2). Interpreting the results we must consider that
the above conclusions hold for liver cells only and that
the results may be biased towards the individuals in-
volved in the study; therefore the proposed structural ad-
justment of the mathematical model needs to be further
evaluated using microarray data from additional pertur-
bations of the system and potentially samples from larg-
er number of individuals.

In the study we also explored the possibility of find-
ing key genes of cholesterol homeostasis. Similarly as it
was shown for metabolites previously, intermediate lath-
osterol correlates well with HMGCR enzyme activity and
was therefore selected as a marker of the rate of the cho-
lesterol biosynthesis.30 Using gene interaction networks
we wished to find markers whose mRNA levels would in-
dicate the expression of other cholesterogenic genes and
also the rate of cholesterol biosynthesis. The results indi-
cate that SREBF2 is a strong candidate.

6. Conclusion

Bayesian networks have been proven to be a useful
tool in deciphering interactions between genes and also in
development of mathematical models of biosynthetical
pathways. This study revealed that inter-individual differ-
ences and measurement noise may seriously hinder our
ability to discover gene-to-gene interactions and therefore
pose a serious problem if not properly managed. However,
using a reasonable number of individuals, proper experi-
mental design together with a stringent control of techni-
cal variability of microarray experiments, and large num-
ber of independent perturbations of the system enable us
to discover interactions between genes and thus gain an

important insight into the system under study on the level
of mRNA. Within this study we demonstrated how such
information may be used to improve the structure of a
mathematical model representing comprehensive knowl-
edge of the studied system.

Within the context of cholesterol biosynthesis we
have demonstrated that SREBF2 protein may not be the
only transcription factor important for regulation of cho-
lesterogenic genes in liver, and proposed how an addition-
al (hypothetical) transcription factor may be involved in
the regulation.
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8. Abbreviations
BN – Bayesian network: a probabilistic graphical model that

represents a set of variables and their probabilistic inde-
pendencies

E1 – group of genes* IDI1, FDPS, GGPS1, FDFT1, SQLE and
LSS

E2 – group of genes* LBR, SC4MOL, NSDHL, HSD17B7 and
EBP

E5 – group of genes* MVK, PMVK and MVD
EF – edge frequency: relative frequency of a gene-to-gene inter-

action appearance irrespectively of the direction of the in-
fluence

IS – influence score: a metric for representing the degree to
which a gene-to-gene interaction is monotonic in nature,
and if so, whether the influence is either positive or negative
and its relative magnitude ranging from 0 (lowest) to 1
(highest)

RSD – absolute value of the coefficient of variation (ratio of the
standard deviation to the mean) expressed as a percent-
age

* Abbreviations of gene names follow annotations from Table 1 in
Supplement.
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Povzetek
@e dolgo je poznano, da raven holesterola v celici uravnava sintezo holesterola preko transkripcijskih faktorjev SREBF,
toda v zadnjem ~asu vse ve~ raziskav ka`e na vpletenost tudi drugih dejavnikov. Da bi raziskali ta sistem, smo uporabili
pristop avtomatske konstrukcije Bayesovih mre` in ga zdru`ili s pristopom matemati~nega modeliranja in simulacije.
Skonstruirali smo matemati~ni model sinteze holesterola in s simulacijami prou~evali njegove lastnosti. Z mikromre`o
Steroltak smo izmerili spremembe v izra`anju genov sinteze holesterola v tretiranih primarnih ~love{kih hepatocitah. S
pomo~jo Bayesovih mre`, zgrajenih tako iz podatkov meritev z mikromre`ami kot tudi iz simuliranih podatkov, smo do-
lo~ili interakcije med geni. Rezultati Bayesovega modeliranja ka`ejo, da je izra`anje holesterogenih genov mo`no
napovedati iz poznavanja izra`anja 4 klju~nih genov, med katerimi je tudi SREBF2. Mre`e tudi ka`ejo na mo~no inter-
akcijo med genoma SREBF2 in CYP51A1, ne pa tudi med SREBF2 in HMGCR, in da je izra`anje HMGCR verjetno
uravnavano z drugimi dejavniki. Ra~unalni{ke simulacije matemati~nega modela sinteze holesterola so pokazale, da je
za dolo~itev interakcij med geni klju~no zadostno {tevilo perturbacij sistema, in da razlike med posameznimi osebki (bi-
olo{ka variabilnost) in meritvena napaka (tehni~na variabilnost) predstavljajo resno oviro pri njihovem avtomatskem
dolo~evanju iz podatkov meritev DNA mikromre`.
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Supplement

Table 1. Gene names with corresponding accession number and
description.

Gene Gene description GeneBank 
symbol Acc. No.
CYP51A1 Lanosterol 14a-demethylase NM_000786
DHCR24 24-dehydrocholesterol reductase BC004375
DHCR7 7-dehydrocholesterol reductase NM_001360
EBP Emopamil binding protein BC046501

(sterol C7,8-isomerase)
FDFT1 Squalene synthase BC009251
FDPS Farnesyl diphosphate synthase BC010004
HMGCR HMG CoA reductase BC033692
HMGCS1 HMG CoA synthase 1 NM_002130
HSD17B7 17-beta-hydroxysteroid NM_016371

dehydrogenase type 7
IDI1 Isopentenyl-diphosphate delta BC005247

isomerase
LBR Lamin B receptor (potential sterol not present on 

∆14-reductase) Steroltalk array
LSS Lanosterol synthase BC035638
MVD Mevalonate (diphospho) NM_002461

decarboxylase
MVK Mevalonate kinase NM_000431
NSDHL NAD(P) dependent steroid BC007816

dehydrogenase-like
PMVK Phosphomevalonate kinase NM_006556
SC4MOL Sterol-C4-methyl oxidase-like BC010653
SC5DL Sterol C5 desaturase NM_006918
SQLE Squalene epoxydase BC017033
SREBF2 Sterol regulatory element binding NM_004599

transcription factor 2


