
DERIVING PROTOCOLS FROM SERVICES IN THE FINITE
STATE MACHINE REPRESENTATION

INFORMATICA 2/88

UDK 519.713
Monika Kapus-Kolar

Inst. Jožef Stefan, Ljubljana

A method is suggested for derivation of protocols from services, based entirely
on the finite state machine representation. The method provides several
suggestions for human intervention in the design process and thereby for a
great variety of solutions. Other benefits are parametrization, transforma-
tions for data-flow.optimization, uniform treatment of synchronous and asyn-
chronous channels. a uniform approach to composition and decomposition of
entities and thereby a uniform approach to design of services and protocols.

IzpBljava protokolov iz servisov ob uporabi predstavitve s koncnimi avtamati.
Predstavljena je metoda za avtomatsko konstrukcijo komunikacijskih protokolov
za realizacijo podanega globalhega servisa, ki v celoti temelji na predstavitvi
s končnimi avtomati. Metoda je zelo primerna za interaktivno delo, ki vodi v
široko paleto rešitev. Druge dobre lastnosti metode so parametrizacija, trans-
formacije za optimizacijo pretoka podatkov, enotna obravnava sinhronih in
asinhronih kanalov in enoten pristop h kompoziciji in dekpmpoziciji osebkov. ki
omogoča poenotenje načrtovanja servisov in protokolov.

0. Introduction

Derivation of a communication protocol from a
given service specification is one of the most
challenging problems in the field of computer
networks. Two methods have been proposed so
far, which we find particularly interesting,
because they provide algorithms for totally
automatic construction of a suitable protocol.
The method, proposed in [Prinl , constructs a
Petri-net type protocol specification from a
finite-state machine service specification,
while the method of [BochGotz] is based on
•attribute grairanars. In our paper, we are propo-
sing a method, based entirely on finite state
machines, which follows the selection / resolu-
tion principle and is therefore also suitable
for construction of protocols in a man-machine
dialogue.

We assume that a distributed system consists of
a set of entities, communicating with each
other and the environment through a set of
reliable two-point channels. Some of the chan-
nels are unbounded FIFOs with unknown delays
(asynchronous). while the others are synchro-
nous (the "rendez-vous" type of communication).

A global service, which a system should provide
to the environment, is specified by a finite
state machine G, with edges representing an
asynchronous transmission or reception of a
particular message by the system on a particu-
lar external channe1 or a synchronous external
event. Paths, leading from the starting state
of G, represent the characteristic sequences of
system actions.

A message is a tuple of parameters, posessing
explicitely or implicitely stated identifiers
and.values. The crucial observation about para-
meters is that each parameter identifier,
occurring in a specification, represents a

global system variable,
updated or read by the
exchanged in an action,
ters, while parameters.

which is concurrently
entities. Parameters.
are its output parame-
generating the values

of the output parameters, are the input parame-
ters of the action. If an action is not an
asynchronous transmission, the values of its
parameters can also be obtained from the envi-
ronment. G must possess the following proper-
ties:

Property O.ls It must not contain two non-
terminal states Si and S 3, such that for everv
outgoing edge a in Si, leading to a state S,
there is also the same outgoing edge in Ss. and
vice-versa (equivalent states).

Property 0.2: If in a state Si, there are two
paths Pi and P3, such that the action sequence
of Pz is a permutation of the action sequence
of Pi, respecting all causality relations of Pi
(Pz is equivalent to Pi), they must both lead
to the same state S=. Path equivalence is
formalized in the sectipn 1.

Property 0.3: If there is an edge, representing
an action, reguiring a value of a particular
parameter as an input, then the edge must be-
preceded from any direction by some edge,
generating the value.

The first step in our protocol design method
is to convert 6 into another finite state
machine G*., wMch mirrors particular design
decisions about parallel execution of external
actions of a system. while respecting the
čausality relations of G. Then the states of
Gi=, requiring communication betveen entities.
are identified. For each such state. a proce-
dure for exchanging messages on internal chan-
nels must be provided by a designer. Such
procedures explicitate externally invisible
transitions of a system, which are initiallv
hidden in the states of G, as indicated in Gc,

70

an extended version of GF>. Note also that it is
execution of the internal procedures. that
entities without acce3s to, external channels
are used for. At that point it may turn out
that the task can not be solved with the
existing channels. By integrating the internal
procedures into G c another global system beha-
viour specification Gi is obtained. vrtiich is
data-flow optimized into 5o and subsequently
used for generation of finite state machines
for individual entities.

Two algorithms wi11 be used extensively
throughout the paper: Algorithm 0.1, which
introduces to a atate machine a new path, and
Algorlthm 0.2, which deletes a particular path.

Algorithn 0.li

{create a new path P)

b«gin<Algorithm 0.1>
represent P by a fihite set of finite
segments
(not all types of the representation might be
suitable fofa particular purpose):

•or every segment, which is a concatenation
of an action sequence s and an action
a and should lead from Si to Sj do

bagin
i* there is no state S«, different from 8i,

with a single outgoing edge, namely
a. leading to Bj, or with a single
incoming path, namely a, with the
initial state Bi

then create 8K as a new state;
if in SK, there is no outgoing edge a
than create an edge a from SK to SJ
•lm*
i* the edge a leads to a state, different

from Sj,
than «xit with irror;
if in Si, there is no outgoing path •
than create a path s from Si to 8K;
• 1 M
H the path m leads to a state, different

from SK,
thwi «xit Mith error;

merge the equivalent states
•nd

•nd(Algorithm 0.1).

Algorithm 0.2i

{delete a particular path. leading from Si to

b«gin{Algorithm 0.2>
for every state S of the path do
bagin
i* in 8, there are some incotning edges. not

lying on the path, and also some, lying
on the path.

th»n
bagin
create a 3tate SH. equivalent to 8;
redirect the incoming edges of S, not
lying on the path, to Se

end;
•for every edge o of the path do
i-f all outgoing edges of the destination

state of • are lying on the path
than delete •;
delete the unconnected states;
merge the equivalent states

•nd<Algorithm 0.2>.

1. Converting a Global Service Specification
into an Equivalent Form with a Oesired Degree
o-f ParallalisiB

Service specifications in [BochGotz] use three
types of composition (parallel, sequential and
alternative) . This versatility makes it diffi-

cult to identify actions, which could be ena-
bled concurr.ently. as in a gpecif ication. they
might lie far apart.

In a finite state machine specification, paral-
lel composition of actions is represented by
various permutations of tlie actions. connecting
the same pair of states, with parametera indu-
cing no causality relationship between the
actions. The desired degree of parallelism in
a global service specification can be achieved
by repeated application of Tranmformation 1.1,
which increases paralleli3m, and Tran«-formation
1.2, which decreases it.

The idea behind Tran«-formation 1.1 is that if
there is a path P from a state Si to a state
Sa, the two states may alao be connected by all
paths. equivalent to P. Pi is «quival«nt to Pa,
iff there is a path P, 3uch that the action
sequer.ces of Pi and Pa can be generated from P
by zero or tnore applications of Trans-formation
1.1. Tran»-formation 1.1 generates equivalent
paths by repeatedly selecting an action a3 of
the current action sequence and moving it
towards the start of the sequence. If in that
process a2 meets an action t>, such that ii is
a potential necessary condition for «a
(Pradicate 1.1), as may not move any further.
We use the word "potential", because G tnight
negate the causality relationship between twa
actions by providing an alternative path with
the two actions in the reverse order.

Predicate l.li

(a, is a potential nacassary condition for a2>

begin{Predicate 1.1}
Prodicat« 1.1:-
(a» is a synchronous action or a reception
and
aa is a synchronous action or a trans-
mission)

or
ai and aa are two actions on the same
channel

or
ai generates a parameter value. which is
read or redefined by a2

end{Predicate 1.1>.

Transformation 1.1« If there is a path daa,
connecting St and Sa, and ti is not a potential
necessary condition for ta (Pradicat* 1.1),
then it is possible to create (by Algorithm
0.1) a path aa«i from 8» to 8a.

To achieve the highest possible degree of
parallelism, Transformation 1.1 should be
applied as long as possible. On the other hand,
we want GP- to be a finito state machine, but if
there is a cycle C and an action a, such that
it can move through the cycle for ever (as no
action of the cycle is a potential necessary
condition for it) and C contains at least two
different actions, the set of paths, equiva-
lent to the cycle, is infinite and can not be
described by a •finite stato machina. Therefore
Transformation 1.1 must be applied under desig-
ner's control.

If ai is not a potential necessary condition
for a=, a systetn is free to execute the actions
in the reverse order. because the environment
can not observe it. Trans-formation 1.1 adds a
path, which repre3ents execution of the actions
in the reverse order, but as the environment
can not observe the existence of such a path, a
designer is also free to delete it from G by
Transformation 1.2.

Trancformation 1.2i If there is a path i,b
from S» to Sa and a path aaai from St to S»
and a2 is not a potential necessary condition
for «i (Predicate 1.1), then it is possible (by

71

Algorithm 0.2) to delete the path t>«a.

2. Id«ntifying St«tam, Which Requir» Internal
Cornffluni c«t i on

Some states in G R might require communication
betveen entities. In this section we introduce
Algorithm 2.2. which generates another global
system specification Gc by extending GF- with
internal communication requirements.

Observing the actions, possible in a given
state 8, some of theih may be enabled simulta-
neously and some not. Simply speaking, a set of
actions may be enabled simultaneously, if they
are in parallel or in exclusive composition.
The next design step is to identify in each
state 8 a set of exclusive compositions of
parallel compositions of multisets of acti.ona,
possible in 8. which might be selected by a
system for simultaneous enabling. Algorithm
2.1, if not effected by designer's decisions,
generates a solution with the highest possible
degree of parallelism and minimal amount of
internal communication, securing complete
implementation of a service. The algorithm
should be called systematically from Algorithm
2.2.

Algorithm 2.1i

(Al : the set of all alt»rnative» of a given
state 3}

<A1B : the set of groups o-f •ltornativea, which
may be selected for simultaneous ena-
bling in 8}

begln<Algorithm 2.1)
find A, the set of all actions possible in 8;
find Al, the set of all non-empty multiset3
of actions in A, such that the members of
each multiset are in parallel composition
and lead to a final state or a state with an
outgoing edge. labeled by an action «, vrtiich
is not in parallel composition with _ the
members^of the multiset or must not be added
to the multiset because of a designer's
decision
(members of a multiset are in parallel
composition, iff they may access their
parameters simultaneously. each permutation
of them is represented by an outgoing path
in 8 and any two prefixes of the paths with
the same multi3et of actions lead to the
same state};

find Alo, the set of all subsets of Al. which
are maximal in respect to the following
property P (for special control purposes, a
designer may also decide to cover Al with
subsets. which do poses the property P, but
are not maximal):
<a subset X of a set Y is maximal in respect
to a property P, iff it has the property P,
but can not be extended by any other
members of Y without loosing the property>
if all members (alternatives) of a member X
of Al are enabled simultaneously, the
entities. participating in their execution,
are always able to select one of the
alternatives vithout any internal cotnmuni-
cation
(the global decision is equivalent to a
set of local decisions)

•nd{Algorithm 2.1>.

Al in Algorithm 2.1 ansvrers the question, which
actions may be enabled simultaneously, because
they are in parallel composition, but one has
to be careful. First, although we wish to
enable simultaneously as many actions as pos-
sible. strict application of that rule : might
lead to an incomplete implementation \ of a
service. Second, if in a state 8, there is a
loop with all edges labeled with the same

J

label, it is possible to define an infinite Al.
which requires careful definitipn of Ale and
careful construction of paths in Algorithm 2.2.

The idea behind grouping of alternatives is
that a global decision procedure for selecting
an alternative for actual execution might to
some extent be performed as a set of local
decision procedures. Respecting the property
minimizes the amount of internal communication
and at the same time provides a solution to
the problem that actions for further execution
can only be discussed among entities in terms
of their a priori properties (as the only a
priori property of a reception is its channel,
it might not be possible to distinguish between
two alternatives).

If only a partial implementation of a service
is required, Algorithm 2.1 is the most suitable
point for human intervention. Partial implemen-
tations can be generated by definition of
incomplete sets of alternatives or groups of
alternatives.

Algorithm 2.2i

begin<Algorfthm 2.2} ,
Open:" (stirting state of G»>J;
Closad:- [];
Gc is just the starting state of &»;
whil« not 0pen-[] do
begin • v'
move a state So from Open to Closad;
find (by Algorithm 2.1) Al(SD) and Ale(8o);
for each member As of Als(8o) do
begin
i-f As is not the only member of A1 D(8D)

or special guarding is required
then add to Gc a rD edge from 8o to a new

state Si
{a state is new. iff there is no
state with the same name neither in
6F> nor in Gf=>

else Si :- Sr>;
find I(A»), the set of input iparameters
of AB; i '
i-f I (Ao) is not empty
then
begin
•for each member In of I(AB) do \
begin
find U(In), the set of entities,
using the value of In in execution
of A»; / •
find K(In), the set of entities.
knowing the value of In

end;
create an edge T P from 8i tp a new
state 8 A

end
else S«:- Si';
{create in 8» a graph G«, r^presenting
execution of Ao:>

•for each outgoing path.of So in Gp.,
representing execution of pne of the
members of AB, do

create the same outgoing path |in 8« in Gc
<Add a3 few new edges as possible
(Algorithm Oi1), but keep paths, belon-
ging to different groups ofj alternati-
ve3, disjoint. Do not use in GA any old
state names.>;

find Pr(Ao). the 3et of all entities.
1 participating in execution of Ao;

•for each member E of Pr(Ao) do '
3elect T(E), the set of all , action
sequences with a length>-0, ekecuted
by E as part of execution of Ao.: after
which E might decide to abandon execu-
tion of Aa and enter a synchronization
procedijire \
{although T(E) is selected by a desig-
ner. it has some mandatory members: the
sequences, after which E has no asynch-
ronous transmission to execute in A»>;

72

find T, the set of all synchronization
states of GA
{8 is a synchronization state of G«, iff
for every entity E, the projection of a
path from S« to S on the actions of E is
in T(E)>;

find TN, a version of T, in which every
member is replaced by its old name (the
name of the equivalent state in Gr») ;

•for each member S N of TIM do
begin
i-f S N is not yet in Gc
thon add SM to G c;
i-f not S N in Closed
then add S N to Open
end;
•for each member S s of T do
begin
find its old name SN;
create in Gc a r s edge from Ss to S N

end
•nd

end;
terminal states of Gc: - terminal states of GF>

end{Algorithm 2.2>.

Each edge TV requires execution of a parameter
distribution procedure.

Each state S D, coming onto Open in Algorithm
2.2, requires a global decision. what to do
next, and is therefore called a decieion state.
If in SD, there are several groups of alterna-
tives or special guarding is necessary, then S D

requires execution of a decision procedure. In
Gi, decision procedures are represented as
trees of f D edges in decision states (SD) .

After a group of alternatives As has been
selected and enabled, it starts executing.
After executing Aa for some titne, control of
the participating entities is gradually trans-
ferred to a synchronization procedure. States
of G«, in which all the entities might enter a
synchronization procedure, are called aynchro-
nization statea. In G c, synchronization proce-
dures are represented as f s edges in synchroni-
zation state3 (SB). With the help of a syn-
chronization procedure, a system synchronizes
to a state S N of GF> , which corresponds to the
currently active synchronization state.

The aim of firing a synchronization procedure
after successful execution of one of the ena-
bled alternatives is distribution o.f the know-
ledge that the actions. guarded by the alterna-
tive, are now enabled. The aim of firing a
synchronization procedure before successful
execution of any of the enabled alternatives is
resynchronization of a system. after which
another group of alternatives may be selected.
This might be necessary. _if the environment is
not forcihg the same group of alternatives as
the system and does not cooperate promptly.

To minimize the amount of internal communica-
tion, an entity should fire a synchronization
procedure only when it has no other action to
execute without cooperation of the environment,
but in principle, a designer might also define
some additional synchronization states. When
entering a synchronization procedure, the
entity does not know, which of the enabled
actions have already been executed by other
entities. Therefore definition of synchroniza-
tion states should be consistent, as stated in
Algorithm 2.2.

If in a decision state, there are several
groups of alternatives and a system is trying
to execute one of them by repeatedly selecting
a group, trying for some time to execute it and
(if not successful) resynčhronizing, some
actions are enabled infinitely often, but not
all the time. If the pending actions are
synchronous, this is a degradation of fairness

of the system, which is due to a particular
distribution of external channels among the
entities.

3. A General Design Method -for Internal Proce-
dures

The next task is to construct a finite state
machine Go by integrating into Gc the neces-
sary internal procedurea. Go should represent
the total behaviour of a system in a concise
style, aimilar to that of Gi».

In GF-, all actiona are on external channel3,
which have two end-points, but are observed
only from the side of the system, while the
actions, constituting internal procedures, are
on internal channels with both end-points
within the system. An action on an asynchronou3
internal channel actually consista of two
events: transmission of a message and reception
of the message. To retain the specification
style of GR, all actions should be represented
in Go as single events and their granularity
should not become apparent before projecting Go
onto individual entities.

Let's ignore for a moment the external actions
of a system and concentrate on its internal
actions - the protocol. We argue that a
general purpose protacol should be speci-fied by
a single deterministic finite state machine P,
representing the characteristic sequence» of
message transmissions and synchronous events.
In that way, a designer is forced to concen-
trate entirely on inter-entity causality rela-
tions of the protocol and not to rely upon
intra-entity causality relations, which should
be treated as implementation detaila. The
approach is a direct application of the "empty
medium abstraction" heuristic, which has proved
to be useful for protocol verification, to
protocol synthesis.

Specifications of individual entities can be
gener"ated from a global protocol specification
P by Algorithm 3.1 and Tran»-formations 1.1 and
1.2. Algorithm 3.1 projects P on one of the
entities E, so that all actions on its incoming
channels become receptions. Then Trans-forma-
tions 1.1 and 1.2 are applied to specifications
of individual entities to obtain the desired
degree of intra-entity parallelism. In the two
transformations. E represents a system. and the
entities, cooperating with it, represent its
environment.

Algorithm 3.1:

{projecting a global protocol specification P
onto an individual entity E>

begin<Algorithm 3.1>
while applicable do
begin
i-f there is an edge from Si to Sa, labeled

by an action on a channel, which is not
connected to E
ar
there is an edge a from S to Si and an
edge a from S to S 3

then merge Si and S 3 into a single state;
i-f there are two or more a edges from Sx to

S 3

then replace them by a single a edge
end

snd{Algorithm 3.1}.

Application of Trans-f ormations 1.1 and 1.2
mlght result in several different sets of
individual entity specifications. But this
ambiguity of a global protocol specification P
is not a deficiency of the specification
method: As delays of all asynchronous channels
are totally 'nknown. the sets can not be

73

distinguished by observing the entities for a
finite period bf time, hence the ambiguitv is
immaterial and any attempt to retnove it (by
explicitly mentioning asynchronous receptions
in the global state machine or by •specifying
the protoco,l by a set of local state machines)
is an overspeci-f ication and should be avoided.

The basic problem in protocol synthesis is to
avoid deadlocks, unspecified receptions and
unspecified parameters. When designing a global
protocol specification of our type, those
design errors can be avoided by respecting five
simple common sense Rules 3.1 to 3.5.

Considering only the basic semantics of a state
machine, each node represents an exclusive
composition of the outgoing paths, but in
protocol specification, there is also another,
equally important type of composition - the
parallel composition of actions. Parallel com-
position of actions can be described by exclu-
sive composition of their permutations, but
this mental task is not trivial enough to be
carried out subconsciously. A potential deacl-
lock or an unspecified reception occurs when-
ever sotne actions are in parallel composition
by thev nature of the system architecture, but
that fact is not properly described by a state
machine, usually because a designer is not
aware of the existence of the parallel composi-
tion.

Rules '3.1 and 3.2 define paths. which must
mandatory be specified, while Rules 3.3 to 3.5
define some mandatory properties of the speci-
fied paths.

Rule 3.1i • If A is a subset of actions, which
are labels of the outgoing edges of a state S,
such. that every entity participates in execu-
tion of at most one member of A (an asynchro-
nous transmission has one participant, the
sender, and a synchronous action has two. parti-
cipantsl - the actions are in parallel composi-
tion, then every permutation of the members of
A must be represented by an outgoing path of S,
as no entity is allowed to make any assump-
tions about execution of the actions of other
entities, which it is not guarding. In the case
of parametrization, any two actions, possible
in a state S, on different channels, which are
not both synchronous, must also be considered
as in parallel composition and obey Rule 3.1,
although the actions share a participant. This
is to guarantee the soundness of Rule 3.3.

Rule 3.2i If in a state S, there is an outgoing
path iii2 and, by Rule 3.1, an outgoing edge a=
must not be created in S without creating an
outgoing path aaai , then the path must actually
exist.

Rule 3.3i If in a-state S, there are two
outgoing paths with the same multiset of
actions M, such that no two different members
of H belong to the same channel and no two
different synchronous members of M share both
participants, then the two paths must lead to
the same state, as no entity can communicate to
the rest of the system any information about
the order, in which it has executed the
actions of M.

Rule 3.4i Projection onto any entity must have
Property 0.3.

Rule 3.5i If two actions are in parallel
composition and one of them is generating a
value of a parameter, then the other must
neither'read nor redefine the value.

Formal proof of the rules if outside the scope
of the paper. Intuitively, they prevent unspe-
cified receptions, because receptions are hid-
den in transmissions, they prevent deadlocks.

because there is no state without transmissions
and they guarantee coordinated progress or aii
participating entities, because any assumptions
about non-existing information exchanges are
avoided.

Returning to our original task, we point out
that the initial service specification G for a
system S under design should be obtained by the
same method. S should be considered as an
entity of a wider closed system W, consistang
of S and the relevant entities, external to S^
A designer should first specify a "protocol"
for the system Ul, so that he is forced to think
about implications of communication on the
channels, connecting entities, external to S,
on the service requirements for S. Then 5 can
be generated by Algorithm 3.1.

As suggested in the section 4, the method
should also be used for design of internal
procedures. introduced by Gc.

4. Design of Parameter Distribution, Decision
And Synchrohization Procedures

In the section 2, we have defined three types
of internal procedures: parameter distribution
procedures, decision procedures and synchroni-
zation procedures. The nature bf a pr'otocol is
mainly determined by decision procedures, while
procedures of the other two types only play an
auxiliary role. In our method, design of inter-
nal procedures and their integration is guided
by eight.basic heuristics:

Heuristic 4.1t Initiallv. each internal proce-
dure should appear in the specification separa-
ted from the others. Message merging is subject
to the final optimization (section 5).

Heuristic 4.2: An internal procedure should
initially be scheduled just before its results
are necessary. Earlier scheduling is subject
to the final optimization.

In particular, . parameter distribution procedu-
res are inserted in 6c instead of T> edges.
Decision procedures are inserted in Gc instead
of TD trees, so that the starting state of a
procedure is located at the root and its
terminal states at the leaves of a tree. For
synchronization procedures, the simplest kind
of their integration into Gc is a bit more
complicated and wi11 be discussed later. The
place for their integration is indicated by TB
edges.

Heuristic 4.3: To prevent harmful re-ordering
of messages, belonging to various internal
procedures, during their transport, all parti-
cipants of an internal procedure must agree on
its termination, so that the internal procedu-
res can be treated as atomic. Note that this
is a general solution to the problem. described
in the section 3.3 of [BochGotz]. If some of
the messages are redundant. they can be deleted
in the final optimization, which might someti-
mes result in the solution from (BochGotz).

Heuristic 4.4: The main point in^design of an
internal procedure is to determine for each of
its terminal states T the synchronization set
Sy(T), the set of all entities. which must know
that the system wi11 progress through T. As at
that point of design, internal procedures are
scheduled just in time, the members of a
synchronization set Sy(T) are exactly the enti-
ties, executing the actions, possible in T.
When the participants of an internal procedure
have reached an agreement on its termination
(which is in a terminal state T), the membera
of Sy(T) must know, that the execution has
terminated in T.

74

Heuristic 4.5« As the basic aim of an internal
procedure is to lead a system to a particular
state, it should be designed as an exchange of
proposals about the terminal state. which the
procedure should reach. and sets of terminal
states. sugge3ted by various participants,
should be explicitly visible in the messages.
so that the terminal state, which a path is
leading to, can be calculated as an intersec-
tion of the sets, exchanged along the path.
Beside that. terminal states must appear in
the messages with the same names as in Gc. If
the requirements are too rigorous, they can be
overcome in the final optimization.

Heuristic 4.6i If an internal procedure is a
parameter distribution procedure, it must com-
municate the necessary parameter values from
the members of the relevant K sets to the
members of the relevant U sets (see Algorithm
2.2) .

Heuristic 4.7« We require that internal proce-
dures are provided by a designer (in the spirit
of the section 3). but this is not a serious
drawback for the automatization of the protocol
design process, as in practice, decision pro-
cedures, and even more procedures of the other
two types, are drawn from a small set of types.
which can be pre-constructed and used with
suitable parameters, whenever nece3sary. An
internal procedure must respect Rules 3.1 to
3.5, vhere RUIB 3.4 must be checked in regard
to the rest of the system specification.

Internal procedures can not be designed in an
optional order. The algorithm is the folloving:

1. Determine synchronization sets of parameter
distribution procedures and design the procedu-
res.
2. Determine synchronization sets of decision
procedure3 and design the procedures.
3. Determine synchronization sets of synchroni-
zation procedures and design the procedures.

Now we are ready to define an algorithm for
integrating into Gc a synchronization proce-
dure. Obaerving a graph GA. generated by Algo-
rithm 2.2, it is not sufficient to replace by
some procedures the t a edges in -its synchroni-
zation states. The whole G«, together with its
•fa edges, must be replaced by a graph Gs (the
starting state of Gs is the starting state of
G«, the terminal states of SB are those,
pointed to by t s edges), concisely represen-
ting the action sequences of the expression:

The expression has the following meaning: For
each member • of a T(E), design an internal
procedure P (B) , put s and P(B) into sequential
composition, put the expressions, belonging to
various members of T(E). into or composition,
then put the expressions. belonging to various
member of Pr(Ao) , into parallel composition.

With other words: each entity E, participating
in execution of an Ae, executes an action
sequence B, mandatory followed by a procedure
P(«), which distributes the knowledge of E
about N, the set of the possible terminal
states of Gs, as known by E after execution of
s, to the members of the union of the synchro-
nization sets of those states. M is a member of
N, iff in GA, there is a synchronization state
8, connected with M by a T S edge, reachable
from the starting state of GA by a path, whose
projection onto E is a.

The terminal state T, to which a path of Ga
should lead, can be determined from the patli by
Heuristic 4.5. The requirements of Heuristics
4.3 and 4.4 must be fulfilled on Gs as a vrtiole.
It turns out. that it is sufficient to fulfil

Heuristic 4.4 for each P(s), but for Heuristic
4.3 that might not be true. Hence, it is
necessary to •"blow" each terminal state T of Ge
into a termination agreement procedure for all
entities, participating in GE> . Procedures in
all terminal states of GB must be the aame.

The principles. used in the design of Gs, lead
to another heuristic for construction of inter-
nal procedures:

Heuristic 4.8i The first step in design of an
internal procedure is to identify the know-
ledge, which is to be communicated. For each
piece of knowledge (which might be a parameter
value or a set of suggested terminal states),
construct a procedure, which conveys the know-
ledge from its source to its destination. Put
all such procedures into parallel composition
and finally put the resulting procedure into
sequential composition with a termination
agreement procedure for all potential partici-
pants.

The result of the integration of internal
procedures into Gc is a finite state machine,
which might have some equivalent states, that
have to be merged. Beside that, it might be
necessary to introduce aome new paths. required
by Rules 3.1 and 3.2. As shown in the section
5, the resulting machine Gi is further optimi-
zed into Go.

5. Final Opti mization o-f a Global Service
Provider Specification

Final optimization is performed by application
of Transformations 5.1 to 5.4. The transforma-
tions address Rules 3.1 to 3.5, which use the
notion of an action participant. The external
actions of a system (those from the initial
service specification) must be treated as
internal actions of particular entities, which
are their only participants. The transforma-
tions may only be applied, if they do not
change the order of external actions.

Trans-formation 5. ls If Rules 3.3 to 3.5 are not
violated. then it is possible to introduce (by
Algorithm 0.1) a particular path and all
paths. required by Rules 3.1 and 3.2.

The transformation could be used for increasing
parallelism or t'or moving scheduling points of
internal procedures.

Transformation 5.2: Let 0 be the set of out-
going edges of a state S. Identify P{0), the
set of all paths. mandatory in S by Rule 3.1.
Suppose that a member a of 0 is removed from S.
Identify P(0\a). If Rules 3.4 and 3.5 are not
violated, then it is possible to delete (by
Algorithm 0«2) the members of P(0) and intro-
duce to S (by Algorithm 0.1) the members of
P(0\a) and all paths. required by Rules 3.1 and
3.2.

The transformation could be used for decreasing
parallelism or for deleting redundant actions.

Transformation 5.3s If Rules 3.1 to 3.5 are not
violated. it is possible to apply a particular
change of edge labels and merge the resulting
equivalent states and edges.

The transformation could be used for decreasing
the number of message types or for the final
naming of messages.

Trans-formation 5.4i If Rules 3.3 to 3.5 are not
violated, then it is possible to replace (by
Algorithms 0.1 and 0.2) a path between a pair
of states by another path between the same pair
of states and then add (by Algorithm 0.1) all

75

paths, required by Rules 3.1 and 3.2.

The transformation could be used for changing
the order of actions or for merging of actions
(messages).

Whenever possible. the transformations should
be applied to sučh parts of a finite state
machine. that Rules 3.1 and 3.2 do not induce
any new paths or their destination states are
determined by Ruls 3.3. For instance. if an
action is executed without knowing. if it wi11
be necessary at all (optimistic scheduling.
introduced e.g. by Trans-formation 5.1). the
destination state of a new path p<. which
includes an unnecessary execution of the
action. must be provided by a designer. The
suggested heuristic is to direct p t to the same
state as p=. vrhich consists of the same
sequence of actions as Pi. except that the
unnecessary action is deleted.

6. Conclusions

In comparison to [BochGotzl. which generates an
unique solution. our method provides several
suggestions for human intervention in the
design process and therebv for a greater va-

riety of solutions. Other benefits are para-
metrization. transformations for data-flow
optimization. uniform treatment of synchronous
and asynchronous channels. a uniform approach
to composition and decomposition of entities
and thereby a uniform approach to design of
services and protocols. Similar conclusions can
be drawn when comparing our method to [Prinl.

If necessary. the design process can be fully
automatized. The only condition is existence of
parametrized transport procedures and termina-
tion agreement procedures and of some rules.
which prevent the process from construction of
infinite machines.

Re-f erences

(Prinl Prinoth.R.: "An Algorithm to Construct
Distributed Systems from State-Mach/ines" . in
Sunshine.C.(ed.): "Protocol Specification.
Testing. and Verification". pp.261-282. North-
Holland. 1982

[BochGotzl Bochman.G.v.. Gotzhein.R.: "Deriving
Protocol Specifications from Service Specifica-
tions". Proceedings of the ACM SIGCOM Sympo-
sium. pp. 148-156. 1986

